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We construct the phase diagram of the quark-antiquark and diquark condensates at finite temperature

and density in the 2þ 1 dimensional (3D) two flavor massless Gross-Neveu (GN) model with the 4-

component quarks. In contrast to the case of the 2-component quarks, there appears the coexisting phase

of the quark-antiquark and diquark condensates. This is the crucial difference between the 2-component

and 4-component quark cases in the 3D GN model. The coexisting phase is also seen in the 4D Nambu

Jona-Lasinio model. Then we see that the 3D GN model with the 4-component quarks bears closer

resemblance to the 4D Nambu Jona-Lasinio model.
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I. INTRODUCTION

Investigating the phase structure of quantum chromody-
namics (QCD) has stirred a lot of interest of theorists to
understand the field of strong interaction physics. QCD is
an asymptotically free theory and the interactions between
quarks and gluons become weak at high energy [1]. Then,
at high temperature and/or density, the quarks and gluons
constitute a rather weakly interacting system, which is
called the quark-gluon plasma. On the other hand, at low
temperature and density, quarks and gluons are confined
into hadrons and cannot be observed as free particles.
Furthermore, it is widely believed that the various states
are realized at low temperature and moderate baryon
density.

The study of QCD at low temperature and finite baryon
density is a traditional issue in nuclear physics. The be-
havior of the cold, dense quark matter is important for
astrophysics to understand the structure of compact stars
and condition near the core of collapsing stars. In the case
of such high baryon density, the system is expected to be a
color superconductor. The color superconductivity is the
state in which the quarks near the Fermi surface become
correlated to form quark-quark (diquark) Cooper pairs [2].
Since it was revealed that the related gaps in the fermion
spectrum could be of the order 100 MeV [3], the color
superconducting states have been considered as the impor-
tant phases in the QCD phase diagram. For review articles
on the color superconductivity, see e.g. [4].

One of the simple theories to treat the above-mentioned
subject is the Nambu Jona-Lasinio (NJL) model, which is a
low energy effective field theory of QCD [5]. The NJL
model successfully describes the QCD phase structure, and
a variety of works has been devoted to the study on the
basis of the NJL model. (For reviews, see, e.g. [6,7].) In
particular, through analysis on the competition between
quark-antiquark (q �q) and diquark (qq) condensates in the

NJL model, it has been found that there appears the coex-
isting phase of the q �q and qq condensates (see [7]).
The study of the phase structure of the NJL model in

lower dimensions (D) is also an interesting issue since the
models usually become simpler in lower dimensions [8].
Indeed, the Gross-Neveu (GN) model [9], which is the
counterpart of the NJL model in 2D and 3D, becomes
renormalizable. Since the GN model shares many proper-
ties with QCD, it has been regarded as an important model
and there have been a great deal of works on it [10–15].
The phase diagram of the q �q condensate within the original
2D GN model was derived in [12], and the phase diagram
in the 3D GN model was obtained in [13]. Recently, by
using the mean-field approximation, the phase structure of
the q �q and qq condensates was studied within the 3D GN
model [14,15].
It is worth mentioning that, in 3D at finite temperature,

Hohenberg proved that the qq condensate does not happen
by evaluating the fluctuations of the order parameter in
superfluids and superconductors [16]. He used the
Bogoliubov inequality to show the assumption of a broken
symmetry in Bose or Fermi liquids leads to a contradiction.
Mermin andWagner also proved that, at finite temperature,
the 3D isotropic Heisenberg model with finite-range ex-
change interaction can be neither ferromagnetic nor anti-
ferromagnetic [17]. Furthermore, Coleman showed that the
Goldstone phenomenon [18] cannot occur in 3D [19].
These results are called the Mermin-Wagner-Coleman
theorem and it prohibits the spontaneous breaking of a
continuous symmetry in 3D at finite temperature.
However, I believe, it is worth studying the competition
between the q �q and qq condensates through evaluating the
renormalized effective potential from the phenomenologi-
cal point of view. In fact, the q �q and qq condensates could
be formed in the 3D GN model as shown in [14,15].
In [14,15], the quarks are assigned to the lowest non-

trivial (2-dimensional) representation of the Oð2; 1Þ group
which we refer to as the 2-component (2c) quarks. The
resultant phase diagrams show that there does not appear*kohyama@sci.osaka-cu.ac.jp
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the region where the q �q and qq condensates coexist, which
is in sharp contrast to the 4DNJL case. This difference may
stem from the difference in form of the qq condensate term
in the Lagrangian between them. In the 2c quark case in
3D, the qq condensate term in the Lagrangian does not
include the �5 matrix, which leads to the above-mentioned
difference. However, as discussed in [20], the �5 enters in
the case of the 4c quarks in 3D. In this sense, the 3D GN
model with the 4c quarks is expected to bear closer resem-
blance to the 4D NJL model. Actually, in vacuum (zero
temperature and chemical potential) theory, the coexisting
phase of the q �q and qq condensates has been found in the
3D GN model with the 4c quarks [21]. The relation be-
tween the 2c and 4c quark cases is discussed in [10].

In this paper, we study the q �q and qq condensates at
finite temperature and density in the 3D two flavor mass-
less GN model with the 4c quarks. We construct the phase
diagrams, and discuss the similarities and differences
among the models, the 3D GN model with the 4c quarks,
the 3D GN model with the 2c quarks, and the 4D NJL
model.

The paper is organized as follows: In Sec. II we intro-
duce the Lagrangian density in the 3D GN model with the
4c quarks and apply the mean-field approximation. In
Sec. III the derivation of the thermodynamic potential is
given. Then, in Sec. IV, we show the numerical results for
the q �q and qq condensates at zero and finite temperature.
In Sec. V, the phase diagrams of the q �q and qq condensates
are obtained. Section VI is devoted to concluding remarks.

II. 3D GROSS-NEVEU MODEL

A. Preliminary

We start with the following Lagrangian density which
includes the diquark interaction term,

L ¼ �qi6@qþGS½ð �qqÞ2 þ ð �qi ~��5qÞ2� þGDðqTOqÞ2:
(1)

Here q � q�k has two flavors � ¼ u, d and three colors
k ¼ r (red), g (green), b (blue) degrees of freedom. ~� ¼
ð�1; �2; �3Þ are the Pauli matrices in flavor space and O
denotes an operator acting in Dirac, flavor, and color
spaces. GS and GD are the coupling constants of the q �q
and qq interactions.

The form of the diquark interaction is determined by the
following consideration: First, the Pauli principle requires
the matrix O to be totally antisymmetric operators, since

qTOq ¼ Oijqiqj ¼ �Oijqjqi ¼ �qTOTq: (2)

Concerning the operator in color space, we choose the
color antitriplet matrices ð�2; �5; �7Þ because the attractive
interaction becomes the important contribution near the
Fermi surface [3]. The renormalization group arguments
[22] indicate that the operator in spinor space is also
antisymmetric. This means that the operator in flavor space

has to be antisymmetric. Then we restrict the form of the
Lagrangian equation (1) as

L ¼ �qi6@qþGS½ð �qqÞ2 þ ð �qi ~��5qÞ2�
þGD

X
a¼2;5;7

ð �qi�2�a�
5qCÞð �qCi�2�a�

5qÞ; (3)

where �2 is the antisymmetric matrix in flavor space and C
expresses the charge conjugation. The charge conjugated
fields are given by qC ¼ C �qT, �qC ¼ qTC, with the charge
conjugation matrix C. Without loss of generality, one can
choose a color direction for diquark condensate to blue,
which is equivalent to leaving �2 in Eq. (3). Then the
Lagrangian becomes

L ¼ �qi6@qþGS½ð �qqÞ2 þ ð �qi ~��5qÞ2�
þGDð �qi�2�2�

5qCÞð �qCi�2�2�
5qÞ: (4)

As done in [7,14,15], we focus on the competition between
two condensates h �qqi and h �qCi�2�2�

5qi, and drop the term
ð �qi ~��5qÞ2.

B. The model

Observing the above speculation, we employ the follow-
ing Lagrangian density of the 3D two flavor massless
Gross-Neveu model with the diquark interaction,

L ¼ �qi6@qþGSð �qqÞ2 þGDð �qi�2�2�
5qCÞð �qCi�2�2�

5qÞ:
(5)

In the 4-component spinor representation in 3D, the Dirac
matrices are the 4� 4 matrices and we use the same form
as used in [20],

�0 ¼ �3 0
0 ��3

� �
; �1 ¼ i�1 0

0 �i�1

� �
;

�2 ¼ i�2 0
0 �i�2

� �
; �5 ¼ i

0 1
�1 0

� �
:

(6)

The Lagrangian in Eq. (5) is invariant under the follow-
ing transformations:
(1) Parity P : qðt; x; yÞ ! �5�1qðt;�x; yÞ
(2) Time reversal T : qðt; ~xÞ ! i�2�5qð�t; ~xÞ
(3) Charge conjugation C: qC ! �2 �qT, �qC ! qT�2

(4) Discrete chiral symmetry XD: q ! �5q.
It should be noted that the inversion of both axes

ðx; yÞ ! ð�x;�yÞ could be achieved by the rotation.
Then we considered the parity transformation ðx; yÞ !
ð�x; yÞ as in [20]. The symmetry properties of the 4c
quarks and the relation between 4c and 2c quarks are
discussed in the papers [10,20] in more detail.
With the aim to study the system near the Fermi surface,

we introduce the mean-field approximation

� ¼ �2GSh �qqi; � ¼ 2GDh �qCi�2�2�
5qi: (7)

Here � and � are the order parameters for the q �q and qq
condensates, respectively. Within the mean-field approxi-
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mation, the Lagrangian can be written by

~L ¼ �qði@� �Þqþ 1

2
��ð �qCi�2�2�

5qÞ

þ 1

2
�ð �qi�2�2�

5qCÞ � �2

4GS

� j�j2
4GD

: (8)

The nonzero expectation value � and � indicate that the
chiral symmetry and the color symmetry are spontaneously
broken.

III. THE THERMODYNAMIC POTENTIAL

A. Derivation of the thermodynamic potential

The partition function of the ground canonical ensemble
is calculated by using the standard method,

Z ¼ N0 Z ½d �q�½dq� exp
�Z �

0
d�

Z
d2xð ~Lþ� �q�0qÞ

�
;

(9)

where � ¼ 1=T is the inverse temperature and � is the
quark chemical potential. Introducing the Nambu-Gorkov
basis [23]

� ¼ q
qC

� �
and �� ¼ ð �q �qCÞ; (10)

we have

Z ¼ N0 exp
�
�
Z �

0
d�

Z
d2x

�
�2

4GS

þ j�j2
4GD

��

�
Z
½d�� exp

�
1

2

X
n;p

��ð�G�1Þ�
�
: (11)

The matrix G�1 is defined by

G�1 ¼ ð6p� �þ��0Þ1f1c i�2�2�
5�

i�2�2�
5�� ð6p� ����0Þ1f1c

 !
;

(12)

where 1f and 1c are the unit matrix in flavor and color

spaces, respectively.
Then the thermodynamic potential � ¼ � lnZ=�V be-

comes

�ð�; j�jÞ ¼ �2

4GS

þ j�j2
4GD

� 1

�V
ln
Z
½d��

� exp

�
1

2

X
n;p

��ð�G�1Þ�
�
; (13)

where V is the volume of the thermal system. By applying
the formula

Z
½d�� exp

�
1

2

X
n;p

��ð�G�1Þ�
�
¼ det

1=2

ð�G�1Þ; (14)

we obtain

�ð�; j�jÞ ¼ �2

4GS

þ j�j2
4GD

� 1

�V
lndet

1=2

ð�G�1Þ: (15)

After some manipulations [7], the determinant becomes

det
1=2

ðG�1Þ ¼ ½p2
0 � Eþ2

� �4½p2
0 � E�2

� �4½p2
0 � Eþ2�2

� ½p2
0 � E�2�2; (16)

where p0 ¼ ið2nþ 1Þ�T, (n ¼ � � � ;�2;�1; 0; 1; 2; � � � )
and

E�2
� � ðE��Þ2 þ j�j2; E� � E��;

E �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þ �2

q
; ~p2 ¼ p2

1 þ p2
2:

(17)

Thus, we have

�ð�; j�jÞ ¼ �2

4GS

þ j�j2
4GD

� 2T
X
�

X
n

Z d2p

ð2�Þ2
� ½ln½�2ðp2

0 � E�2Þ� þ 2 ln½�2ðp2
0 � E�2

� Þ��:
(18)

One can carry out the frequency summation by follow-
ing the standard procedure [24]X

n

ln½�2ðp2
0 � E2Þ� ¼ �½Eþ 2T lnð1þ e��EÞ�: (19)

Then we finally obtain the thermodynamic potential

�ð�; j�jÞ ¼ �0ð�; j�jÞ þ�Tð�; j�jÞ; (20)

�0ð�; j�jÞ ¼ �2

4GS

þ j�j2
4GD

� 4
Z d2p

ð2�Þ2 ½Eþ Eþ
� þ E�

� �;
(21)

�Tð�; j�jÞ ¼ �4T
X
�

Z d2p

ð2�Þ2
� ½lnð1þ e��E�Þ þ 2 lnð1þ e��E�

� Þ�: (22)
�0 is the T independent contribution and �T is the T
dependent part. �0 includes ultraviolet divergent, while
�T is finite.

B. Renormalized thermodynamic potential

To eliminate the divergent contribution in �0, we carry
out the renormalization through introducing the counter
Lagrangian density [14], which is of the form LC ¼
�ZS�

2=2� ZDj�j2. In the present case, the renormaliza-
tion factors ZS and ZD are given by

ZS ¼ 12

�
�� 3

2
�; (23)

ZD ¼ 4

�
�� 1

2
�: (24)
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Here � is the 3D momentum cutoff and � is an arbitrary
renormalization scale.

Then, by introducing the following parameters:

�0 � ��

3

�
1

4GS

� 3

4
�

�
; (25)

�0 � ��

2

�
1

4GD

� 1

2
�

�
; (26)

we have the renormalized thermodynamic potential

�rð�; j�jÞ ¼ �0rð�; j�jÞ þ�Tð�; j�jÞ; (27)

�0rð�; j�jÞ ¼ � 3�0

�
�2 � 2�0

�
j�j2 þ 2

3�
�3

þ 1

3�

X
�
½ð2�2 þ 2j�j2 ��2 ���Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ j�j2 þ�2 � 2��

q
� 3�j�j2

� lnf���þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ j�j2 þ�2 � 2��

q
g�:

(28)

�0 (�0) is the q �q (qq) condensate at T ¼ 0 and � ¼ 0 in
the model when the qq (q �q) condensate is absent. It should
be noted that the thermodynamic potential has two free
parameters �0 and �0. As in [14], we take �0 to be the
scale of the theory (�0 	 0). Then, after fixing �0, there
remains one free parameter �0 and we study the various
values for the ratio �0=�0.

IV. QUARK-ANTIQUARK AND DIQUARK
CONDENSATES

In this section, we show the numerical result of the q �q
and qq condensates through analyzing the thermodynamic
potential, Eq. (27). The realized condensates are obtained
by finding the minimum of the thermodynamic potential
with respect to � and �.
Figure 1 displays the results of the two condensates

against � at T ¼ 0. From the panel (a) (�0=�0 ¼ �6),
we see that the q �q condensate exists for small � and it
disappears when � becomes large. This clearly shows the
phenomena of the phase transition, and the transition
chemical potential is � ¼ 1:0�0. There does not occur
the qq condensate for whole �. However, for �0=�0 ¼
�1, the qq condensate appears at � ¼ 1:0�0, the value
where the q �q condensate disappears. Similar results are
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FIG. 1. � (circles) and � (triangles) as a function of chemical potential � at T ¼ 0.
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obtained in the cases �0=�0 ¼ 0, 1=2. At some chemical
potential, the q �q condensate falls and the qq condensate
arises. The transition chemical potentials are � ¼ 0:9�0

and 0:8�0 for �0=�0 ¼ 0 and 1=2, respectively. Thus the
transition chemical potential becomes smaller with in-
creasing the ratio �0=�0, and the value of the qq conden-
sate � enlarges. For �0=�0 ¼ 1:1, the qq condensate at
� ¼ 0 has the close value with the q �q condensate, and it
eventually exceeds the q �q condensate for �0=�0 ¼ 3=2.
Note that the q �q condensate does not exist for �0=�0 ¼
3=2 and there appears only the qq condensate. Thus we see
that the behaviors of the q �q and qq condensates are sensi-
tive to the value of the ratio �0=�0.

The results of the condensates at finite temperature are
shown in Fig. 2. In the panel (a) (�0=�0 ¼ 0, � ¼ 0), we
see that the q �q condensate occurs at T ¼ 0 and it decreases
when T becomes larger. The transition temperature in this
case is T ¼ 0:65�0. The panel (b) (�0=�0 ¼ 0, � ¼
1:0�0) shows that the qq condensate is 0:65�0 at T ¼ 0
and it disappears at T ¼ 0:35�0. Thus we see that the q �q
and qq condensates decrease as the temperature increases.
This is also the case for �0=�0 ¼ 1:1, which is shown in
the panels (c) and (d). We have analyzed the cases for other
values of �0=�0, and found that the behavior of the two
condensates do not change qualitatively.

It should be noted that, in Fig. 1 (T ¼ 0 case), the q �q
condensate disappears discontinuously. This is the signal
of the first-order phase transition. On the other hand, the q �q
condensate disappears continuously in Fig. 2(a) (� ¼ 0
case), which indicates the second-order phase transition.
This means that the critical point from the first-order phase
transition to the second-order one appears at some point in

the phase diagram, which we will discuss in more detail in
the next section.

V. THE PHASE DIAGRAM

On the basis of the results obtained in the previous
section, we construct the phase diagram. Figure 3 displays
the phase structure of the q �q and qq condensates for the
cases �0=�0 ¼ �1; 0; 1=2; 1:1.
From the panel (a), we see that the q �q condensate phase

is realized at low T and �, and the qq condensate phase
occurs at low T and high �. At high T and �, there does
not exist a condensate, namely, the system is in the normal
phase. The similar structure is seen in the panel (b): q �q
phase at low T and �, qq phase at low T and high �.
However, in the case of �0=�0 ¼ 0, we see that the coex-
isting phase of the q �q and qq condensates appears at low T
and intermediate �. We refer to this phase as the ‘‘double
broken’’ (DB) phase. Thus, the system is characterized by
the following phases:
Q: q �q condensate phase (� � 0, � ¼ 0)
D: qq condensate phase (� ¼ 0, � � 0)
DB: Double broken phase (� � 0, � � 0)
N: Normal phase (� ¼ 0, � ¼ 0)
All of these phases appear in the case of �0=�0 ¼ 1=2

[panel (c)]. However the Q phase does not appear for
�0=�0 ¼ 1:1 and only the D phase and DB phase appear.
Thus, as the ratio�0=�0 increases, the Q condensate phase
shrinks toward the� axis and the region of the D phase and
DB phase becomes larger.
The points ð�c; TcÞ in the panels (a), (b), and (c) indicate

the critical points from the first-order phase transition to
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FIG. 2. The two gaps � (circles) and � (triangles) against T.
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the second-order one. The phase transition below the criti-
cal temperature Tc is of the first order and above Tc is of the
second order. We notice that the value of Tc increases when
�0=�0 becomes larger, while�c decreases with increasing
�0=�0. Then the critical point moves upward along the
transition line, and the region of the first-order phase
transition expands. The other phase transitions, namely,
the transitions Q ! DB, Q ! N, and D ! N, are of the
second order.

VI. CONCLUDING REMARKS

Through studying the q �q and qq condensates at finite
temperature and chemical potential, we have obtained the
phase diagrams in the 3D GN model with the 4c quarks.

We have shown that the q �q condensate (Q) phase is
realized at low T and �, the double broken (DB) phase
at low T and intermediate �, and the qq condensate (D)
phase at low T and high � (see Fig. 3(b) and 3(c)). This
feature bears resemblance to the case of the 4D NJL model.
It is difficult to make a direct comparison between the
present model and the 4D NJL model because the free
parameter in the NJL model is the ‘‘direct ratio’’ of the
coupling constants GD=GS, while the free parameter of the
present model is the ratio �0=�0 which is not GD=GS.
However, the parameter �0 is related to GD through
Eq. (26), and �0 becomes larger as GD increases. Then
the ratio �0=�0 increases as the qq coupling constant GD

increases. This means that, as GD=GS increases, the region
of the Q phase shrinks, and the regions of the D phase and
the DB phase expand. Then, the behavior of the phase

diagrams shows the close similarity to the case of the 4D
NJL model.
We are now in the position to make the comparison with

the 3D GN model with the 2c quarks. Comparing with the
phase diagrams in the 2c quark case obtained in [14], we
see a rather similar structure: The Q phase at low T and �,
and the D phase at low T and high�. However, there is one
crucial difference. There does not appear the DB phase in
the 2c quark case, while in the present 4c quark case, the
DB phase does appear. The latter fact is in accord with the
expectation mentioned in the introduction.
The critical points between the first-order and second-

order transition are located on the Q ! D phase transition
line in Fig. 3(a) and on theDB ! D transition line in Fig. 3
(b) and 3(c). In the model without qq condensate, the q �q
phase transition at zero temperature is of the first order and
the transition at finite temperature is of the second order.
This means that Tc is negligibly small in the model without
the qq condensate, while in the present model, Tc is finite,
which is the reflection of the existence of the qq conden-
sate. It is also worth comparing the present model with the
model with the 2c quarks, where the coexisting phase is
absent. The phase transition Q ! D is always of the first
order and the critical points are seen on the line Q ! N
[14]. This may come from the fact that the existence of the
qq condensate expels the q �q condensate. On the other
hand, in the present 4c quark case, the q �q and qq con-
densates can coexist and the Q ! D and DB ! D transi-
tions can be of second order.
Finally, it is worth reemphasizing that the significant

qualitative difference is that there exists the q �q and qq
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coexisting phase in the present model, which is not seen in
the 2c quark case. Then, when compared to the case of the
3D GN model with the 2c quarks, the phase structures of
the present 4c quark case bear closer resemblance to the 4D
NJL model.
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