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The hadronic k?-spectrum inside a high-energy jet is determined including corrections of relative

magnitude Oð ffiffiffiffiffiffi
�s

p Þ with respect to the Modified Leading Logarithmic Approximation (MLLA) in the

limiting spectrum approximation (assuming an infrared cutoff Q0 ¼ �QCD) and beyond (Q0 � �QCD).

The results in the limiting spectrum approximation are found to be, after normalization, in impressive

agreement with preliminary measurements by the CDF Collaboration, unlike what occurs at MLLA,

pointing out small overall nonperturbative contributions. Within the same framework, 2-particle corre-

lations inside a jet are also predicted at next-to-MLLA and compared to previous MLLA calculations.
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I. INTRODUCTION

The production of jets—a collimated bunch of had-
rons—in eþe�, e�p and hadronic collisions is an ideal
playground to investigate the parton evolution process in
perturbative QCD (pQCD). One of the great successes of
pQCD is the existence of the hump-backed shape of in-
clusive spectra, predicted in [1] within the Modified
Leading Logarithmic Approximation (MLLA), and later
discovered experimentally (for review, see e.g. [2]).
Refining the comparison of pQCD calculations with jet
data taken at LEP, Tevatron and LHC will ultimately allow
for a crucial test of the Local Parton Hadron Duality
(LPHD) hypothesis [3] and for a better understanding of
color neutralization processes.

Progress towards this goal has been achieved recently.
On the theory side, the inclusive k?-distribution of parti-
cles inside a jet has been computed at MLLA accuracy [4],
as well as correlations between two particles in a jet [5].
Analytic calculations have first been done in the limiting
spectrum approximation, i.e. assuming an infrared cutoff
Q0 equal to �QCD (� � lnQ0=�QCD ¼ 0). Subsequently,

analytic approximations for correlations were obtained
beyond the limiting spectrum using the steepest descent
method [6]. Experimentally, the CDF Collaboration at
Tevatron reported on k?-distributions of unidentified had-
rons in jets produced in p �p collisions at

ffiffiffi
s

p ¼1:96TeV [7].

MLLA corrections, of relative magnitude Oð ffiffiffiffiffiffi
�s

p Þ with
respect to the leading double logarithmic approximation
(DLA), were shown to be quite substantial for single-
inclusive distributions and 2-particle correlations [4,5].
Therefore, it appears legitimate to wonder whether correc-
tions of order Oð�sÞ, that is next-to-next-to-leading or
next-to-MLLA (NMLLA), are negligible or not.
The starting point of this analysis is the MLLA evolution

equation for the generating functional of QCD jets [8].
Together with the initial condition at threshold, it deter-
mines jet properties at all energies. At high energies one
can represent the solution as an expansion in

ffiffiffiffiffiffi
�s

p
. Then,

the leading (DLA) and next-to-leading (MLLA) approx-
imations are complete. The next terms (NMLLA) are not
complete but they include an important contribution which
takes into account energy conservation and an improved
behavior near threshold. An example of a solution for the
single-inclusive spectrum from the MLLA equation is the
so-called ‘‘limiting spectrum’’ (for a review, see [8]) which
represents a perturbative computation of the spectrum at
� ¼ 0 with complete leading and next-to-leading asymp-
totics. Some results for such NMLLA terms have been
studied previously for global observables and have been
found to better account for recoil effects. They were shown
to drastically affect multiplicities and particle correlations
in jets: this is, in particular, the case in [9], which deals
with multiplicity correlators of order 2, and in [10], where
multiplicity correlators involving a higher number of par-
tons are studied; in particular, the higher this number, the
larger turn out to be NMLLA corrections.
The present study makes use of this evolution equation

to estimate NMLLA contributions to our differential ob-
servables. It presents the complete calculations of the
single-inclusive k?-distribution leading to the main results
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published in [11], and extends them to 2-particle correla-
tions inside a high-energy jet.

The paper is organized as follows. First, Sec. II presents
a system of evolution equations including Oð�sÞ correc-
tions, which allows for the computation of the inclusive
spectrum, G, beyond MLLA accuracy. Section III is de-
voted to the NMLLA evaluation of the color currents of
quark and gluon jets and, from them, to the inclusive
k?-distribution in the limiting spectrum approximation.
These predictions are also compared to preliminary mea-
surements performed recently by the CDF Collaboration.
Going beyond the limiting spectrum is the subject of
Sec. IV, in which inclusive k?-distributions are computed
at an arbitrary �. The 2-particle correlations including
NMLLA corrections are determined in Sec. V. Finally,
the present approach and the results obtained in this paper
are discussed in detail and summarized in Sec. VI.

II. EVOLUTION EQUATIONS

A. Logic and energy conservation

As a consequence of the probabilistic shower picture,
the notion of Generating Functional (GF) was proved
suitable to understand and includes higher-order correc-
tions to DLA asymptotics (see [8] and references therein).

The single-inclusive spectrum and the n-particle mo-
mentum correlations can be derived from the MLLA
Master Equation for the GF Z ¼ ZðuÞ [8] after succes-
sively differentiating with respect to a certain probing
function u ¼ uðkÞ; k denotes the quadri-momentum of
one parton inside the shower and the solutions of the
equations are written as a perturbative expansion in �s.
At high energies this expansion can be resummed and the
leading contribution can be represented as an exponential
of the anomalous dimension �ð�sÞ; since further details to
this logic can be found in [5,8], we only give the symbolic
structure of the equation for the GF and its solution as

dZ

dy
’ �0ðyÞZ) Z ’ exp

�Z y
�ð�sðy0ÞÞdy0

�
(1)

where �ð�sÞ can be written as an expansion in powers offfiffiffiffiffiffi
�s

p

�ð�sÞ ¼ ffiffiffiffiffiffi
�s

p þ �s þ �3=2
s þ �2

s þ . . . : (2)

The equation in (1) applies to each vertex of the cascade
and its solution represents the fact that successive and
independent partonic splittings inside the shower, such as
the one displayed in Fig. 1, exponentiate with respect to the
evolution-time parameter dy ¼ d�=�;� � 1 is the angle
between outgoing couples of partons. The choice of y
follows from Angular Ordering (AO) in intrajet cascades;
it is indeed the suited variable for describing timelike
evolution in jets. Thus, Eq. (1) incorporates the Markov
chains of sequential angular ordered partonic decays which

are singular in� and �ð�sÞ determines the rate of inclusive
quantities growth with energy.
While DLA treats the emission of both particles as

independent by keeping track of the first term � ffiffiffiffi
�

p
s in

(2) without constraint, the exact solution of the MLLA
evolution equation (partially) fulfills the energy conserva-
tion in each individual splitting process (zþ ð1� zÞ ¼ 1)

by incorporating higher-order (�n=2s , n > 1) terms to the
anomalous dimension. Symbolically, the first two analyti-
cal steps towards a better account of these corrections in
theMLLA, NMLLA evolution, which we further discuss in
Sec. II C, can be represented in the form

�� ’
Z
ð�s þ �s‘

�1 lnzÞdz� �s þ �3=2
s ;

where ‘ ¼ lnð1=xÞ � ��1=2
s with x� 1 (fraction of the jet

energy taken away by one hadron), z� 1 for hard parton
splittings such as g! q �q . . . (this is in fact the region
where the two partons are strongly correlated).
Energy conservation is particularly important for ener-

getic particles as the remaining phase space is then very
limited. On the other hand, a soft particle can be emitted
with little impact on energy conservation. Some conse-
quences of this behavior have also been noted in [12]:
(i) the soft particles follow the features expected from

DLA;
(ii) there is no energy dependence of the soft spectrum;
(iii) the ratio of soft particles r ¼ Ng=Nq in gluon and

quark jets is consistent with the DLA prediction
Nc=CF ¼ 9=4 (see the measurement by DELPHI
[13]).

This is quite different from the ratio of global multi-
plicities which acquires large corrections beyond DLA
(see, for example, Fig. 18 in the second reference given
in [14]). For this quantity the HERWIG parton shower
model corresponding to MLLA and exact energy conser-
vation (same Fig. 18) and the full summation of the per-
turbative series of MLLA evolution equation (see also
[15]) come close to the data at r ¼ Ng=Nq � 1:5 at LEP

energies. As an intermediate example, we can mention the
successful description of the semisoft particle lnð1=xÞ dis-
tribution (‘‘hump-backed plateau’’) where the first correc-
tion (MLLA), despite the large value of the expansion

B

h

Θ
Θ

C

0 E

zE

(1 − z)E

xE

A = (Q, G)

FIG. 1. Parton A with energy E splits into parton B (respec-
tively, C) with energy zE (respectively, ð1� zÞE) which
fragments into a hadron h with energy xE.
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parameter
ffiffiffiffiffiffi
�s

p � 0:35, already gives a good description of

the data at the Z0 peak (Q ¼ 91:2 GeV) of the eþe�
annihilation into a q �q pair [16].

B. MLLA evolution

We study the formation of hadrons inside a jet produced
in high-energy scattering processes, such as eþe� annihi-
lation or pp and p �p collisions. A jet of total opening angle
�0 is initiated by a parton A (either a quark, Q, or a gluon,
G) with energy E; A then splits into partons B and C, with
energy fractions z and (1� z), respectively, forming a
relative angle � (see Fig. 1). At the end of the cascading
process, the parton B fragments into a hadron h with
energy xE, with the fragmentation function

BðzÞ ¼ x

z
Dh

B

�
x

z
; zE�0; Q0

�
; ðB ¼ Q;GÞ (3)

which describes the distribution of the hadron h inside the
subjet B with an energy-fraction x=z.

As a consequence of AO in parton cascades, the func-
tions QðzÞ and GðzÞ satisfy the system of two-coupled
integro-differential evolution equations [5]:

Qy � dQ

dy
¼

Z 1

0
dz
�s
�

�g
qðzÞ½ðQð1� zÞ �QÞ þGðzÞ�;

(4)

Gy � dG

dy

¼
Z 1

0
dz
�s
�

½�g
gðzÞð1� zÞðGðzÞ þGð1� zÞ �GÞ

þ nf�
q
gðzÞð2QðzÞ �GÞ�; (5)

with �s, the running coupling constant of QCD, given by

�s � �sð‘; yÞ ¼ 2�

4Nc�0ð‘þ yþ �Þ ; (6)

and where we define

‘¼ lnð1=xÞ; y¼ ln
k?
Q0

¼ ln
xE�0

Q0

; �¼ ln
Q0

�QCD

;

(7)

following the notations of Ref. [8]; the MLLA equations
above follow from the GF logic commented upon in the
introductory paragraph. The scale Q0 appearing in (7) is
the collinear cutoff parameter,�QCD is the nonperturbative

scale of QCD which we set to 250 MeV in this work [17],
and

�0 ¼ 1

4Nc

�
11

3
Nc � 4

3
TR

�
(8)

is the first term in the perturbative expansion of the
�-function (Nc is the number of colors, TR ¼ nf=2 where

nf ¼ 3 is the number of light quark flavors). We only

consider in this work the 1-loop expression for the running
coupling constant, assuming that the role of the conserva-
tion of energy is much more important than the effects of 2-
loop corrections to �s, as seen for instance in the case of
multiplicity distributions [14]; we shall discuss this further
in Sec. VIA. The coupling constant �s is also linked to the
DLA anomalous dimension �0 of twist-2 operators by

�2
0ð‘; yÞ ¼ 2Nc

�sð‘; yÞ
�

¼ 1

�0ðY� þ �Þ ;

Y� ¼ ‘þ y ¼ ln
E�

Q0

:

(9)

In Eqs. (4) and (5), �B
AðzÞ represent the 1-loop DGLAP

splitting functions [8] and we note:

Q � Qð1Þ ¼ xDh
qðx; E�0; Q0Þ;

G � Gð1Þ ¼ xDh
gðx; E�0; Q0Þ:

In the small x� z limit which we consider here, the
fragmentation functions behave as

BðzÞ �x�z
�hB

�
ln
z

x
; ln
zE�0

Q0

�
¼ �hBðlnzþ ‘; yÞ; (10)

where �hB is a slowly varying function of the two logarith-
mic variables lnðz=xÞ and y [1] that describes the hump-
backed plateau.

C. Taylor expansion

The resummation scheme at MLLA is discussed in [5],
in which GðzÞ and Gð1� zÞ were replaced by Gð1Þ in the
nonsingular part of the integrands in Eqs. (4) and (5). In the
present work, we calculate next-to-MLLA corrections
from the Taylor expansion of �hB in the variables lnz and
lnð1� zÞ in the domain:

z� 1� z� 1; x� 1 ) ‘� j lnzj � j lnð1� zÞj
corresponding to hard parton splittings. To first order,

�ðlnzÞ ¼ �ðlnz ¼ 0Þ þ @�ðlnzÞ
@ lnz

��������lnz¼0
lnzþOðln2zÞ;

(11)

�ðlnð1� zÞÞ ¼ �ðlnð1� zÞ ¼ 0Þ

þ @�ðlnð1� zÞÞ
@ lnð1� zÞ

��������lnð1�zÞ¼0
lnð1� zÞ

þOðln2ð1� zÞÞ; (12)

or, equivalently, for the function BðzÞ:

BðzÞ �j lnzj�‘
Bð1Þ þ B‘ð1Þ lnzþOðln2zÞ; (13)

Bð1� zÞ �j lnð1�zÞj�‘
Bð1Þ þ B‘ð1Þ lnð1� zÞ

þOðln2ð1� zÞÞ: (14)
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The derivative with respect to lnz or lnð1� zÞ has been
replaced by the one with respect to ‘ because of (10) and
the property that, at low x, B is a function of ( lnzþ ‘) or
( lnð1� zÞ þ ‘). Since ‘ ¼ Oð1= ffiffiffiffiffiffi

�s
p Þ (see [8]) the above

expansion can be written symbolically,

BðzÞ � Bð1� zÞ ’ c1 þ c2ð ffiffiffiffiffiffi
�s

p Þ þOð�sÞ;
c1; c2 ¼ Oð1Þ:

The terms proportional to B‘ thus provide NMLLA cor-
rections to the solutions of the MLLA evolution Eqs. (4)
and (5).

D. Evolution equations including NMLLA corrections

1. Quark jet

In order to determine NMLLA corrections to the evolu-
tion Eq. (4), the 1-loop splitting functions (see [8]) are
written as

�g
qðzÞ ¼ CF

�
2

z
þ�g

qðzÞ
�
;

ð1� zÞ�g
gðzÞ ¼ 2Nc

�
1

z
þ�g

gðzÞ
�
;

where�g
qðzÞ ¼ ðz� 2Þ and�g

gðzÞ ¼ ðz� 1Þð2� zð1� zÞÞ
are regular functions of z. The term proportional to GðzÞ in
the integrand of (4) becomes

Z 1

0
dz
�s
�

�g
qðzÞGðzÞ ¼ 2CF

Z 1

0

dz

z

�s
�
GðzÞ

þ CF
Z 1

0
dz
�s
�
�g
qðzÞGðzÞ; (15)

the second part of which is expanded according to (13).
Replacing �s=� ¼ �2

0=2Nc (see (9)), one gets

Z 1

0
dz
�s
�

�g
qðzÞGðzÞ � CF

Nc

��Z 1

0

dz

z
�2
0GðzÞ

�
� 3

4
�2
0G

þ 7

8
�2
0G‘ þ . . .

�
; (16)

where G‘ � G‘ð1Þ and Q‘ � Q‘ð1Þ. The first integral in
the right-hand side of (16) provides the DLA (leading)
term as z! 0, while the second and third terms correspond
to higher powers of

ffiffiffiffiffiffi
�s

p
, that is MLLA and NMLLA

corrections, respectively. The z-dependence of �s in (16)
has only been taken into account in the singular (DLA) part
dominated by small z. On the contrary, for the nonsingular
parts corresponding to branching processes in which z�
1� z ¼ Oð1Þ, �s has been taken out of the z integral [18]
as done in [5]. The dependence on the other variables, k?,
�, is of course unchanged.

Likewise, the term proportional to Qð1� zÞ �Q in (4)
can be expanded according to (13), leading to

Z 1

0
dz
�s
�

�g
qðzÞðQð1� zÞ �QÞ

�
Z 1

0
dz
�s
�
Q‘�

g
qðzÞ lnð1� zÞ

�
�
CF
Nc

�
2
�2
0

�
5

8
� �2

6

�
G‘: (17)

In the second line of (17), we have used the approximated
formula Q‘ � CF=NcG‘ þOð�2

0Þ that holds at DLA be-

cause subleading terms would give Oð�4
0Þ corrections

which are beyond NMLLA (see also Appendix A).
Finally, plugging (16) and (17) into (4), we obtain

Qy ¼ CF
Nc

��Z 1

0

dz

z
�2
0GðzÞ

�
� 3

4
�2
0G

þ
�
7

8
þ CF
Nc

�
5

8
� �2

6

��
�2
0G‘

�
; (18)

where the term proportional to �2
0G‘ ¼ Oð�3

0Þ constitutes
the new NMLLA correction. It is quite sizable and should
be taken into account in the coming calculations.

2. Gluon jet

Along similar steps, we now evaluate NMLLA correc-
tions to Eq. (5). The first term in the integral can be cast in
the formZ 1

0
dz
�s
�

�g
gðzÞð1� zÞðGðzÞ þGð1� zÞ �GÞ

�
�Z 1

0

dz

z
�2
0GðzÞ

�
� 11

12
�2
0Gþ

�
67

36
� �2

6

�
�2
0G‘;

(19)

and the second into

nf
Z 1

0
dz
�s
�

�q
gðzÞð2QðzÞ �GÞ

� 2

3

nfTR
2Nc

�2
0ð2Q�GÞ � 13

18

nfTR
Nc

�2
0Q‘: (20)

Summing (19) and (20), replacing like before Q by its
DLA formula Q � CF=NcG (see Appendix A for further
details), the evolution equation for particle spectra inside a
gluon jet reads

Gy ¼
�Z 1

0

dz

z
�2
0GðzÞ

�
�

�
11

12
þ nfTR

3Nc

�
1� 2

CF
Nc

��
�2
0G

þ
�
67

36
� �2

6
� 13

18

nfTR
Nc

CF
Nc

�
�2
0G‘: (21)

The first term in parenthesis in (18) and (21) is, as stressed
before, the main (double logarithmic) contribution.
According to the Low-Barnett-Kroll theorem [19], the
dz=z term, which is of classical origin, is universal, that
is, independent of the process and of the partonic quantum
numbers. The other two (single logarithmic) contributions,
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which arise from hard parton splitting, are quantum cor-
rections. It should also be noticed that, despite the large
size of NMLLA corrections coming from g! gg and g!
q �q splittings, a large cancellation occurs in their sum (21).
The coefficients of the terms proportional toG‘ in (18) and
in (21) are in agreement with [20].

3. NMLLA system of evolution equations

Once written in terms of ‘0 ¼ lnðz=xÞ and y0 ¼
lnðxE�=Q0Þ, the system of two-coupled evolution
Eqs. (18) and (21) finally reads

Qð‘; yÞ ¼ �ð‘Þ þ CF
Nc

Z ‘

0
d‘0

Z y

0
dy0�2

0ð‘0 þ y0Þ
� ½1� ~a1�ð‘0 � ‘Þ þ ~a2�ð‘0 � ‘Þ
�  ‘ð‘0; y0Þ�Gð‘0; y0Þ; (22)

Gð‘; yÞ ¼ �ð‘Þ þ
Z ‘

0
d‘0

Z y

0
dy0�2

0ð‘0 þ y0Þ½1� a1�ð‘0 � ‘Þ
þ a2�ð‘0 � ‘Þ ‘ð‘0; y0Þ�Gð‘0; y0Þ; (23)

with  ‘ � G‘=G and the MLLA and NMLLA coefficients
[21] given by

~a1 ¼ 3

4
; (24a)

a1 ¼ 11

12
þ nfTR

3Nc

�
1� 2

CF
Nc

�
�nf¼3

0:935; (24b)

~a2 ¼ 7

8
þ CF
Nc

�
5

8
� �2

6

�
� 0:42; (24c)

a2 ¼ 67

36
� �2

6
� 13

18

nfTR
Nc

CF
Nc

�nf¼3
0:06: (24d)

As can be seen, the NMLLA coefficient a2 is very small
This may explain a posteriori why the MLLA ‘‘hump-
backed plateau’’ agrees very well with experimental data
[1,22]. Therefore, the NMLLA solution of (23) can be
approximated by the MLLA solution ofG (i.e. taking a2 ¼
0), which will be used in the following to compute the
inclusive k?-distribution as well as 2-particle correlations
inside a jet [23]. The MLLA gluon inclusive spectrum is
given by [8]:

Gð‘; yÞ ¼ 2
�ðBÞ
�0

Z �=2

0

d	

�
e�B�F Bð	; y; ‘Þ; (25)

where the integration is performed with respect to 	 de-
fined by � ¼ 1

2 ln
y
‘þ i	, and with

F Bð	; y; ‘Þ ¼
�cosh�� y�‘

yþ‘ sinh�
‘þy
�0

�
sinh�

�
B=2
IBð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zð	; y; ‘Þ

q
Þ;

Zð	; y; ‘Þ ¼ ‘þ y

�0

�

sinh�

�
cosh�� y� ‘

yþ ‘
sinh�

�
;

B ¼ a1=�0, and IB is the modified Bessel function of the

first kind. To get a quantitative idea on the difference
between the MLLA and NMLLA gluon inclusive spec-
trum, the reader is referred to Appendix B where a sim-
plified NMLLA equation (23) with a frozen coupling
constant is solved. The magnitude of ~a2, however, indicates
that the NMLLA corrections to the inclusive quark jet
spectrum may not be negligible and should be taken into
account. After solving (23), the solution of (22) reads

Qð‘; yÞ ¼ CF
Nc

½Gð‘; yÞ þ ða1 � ~a1ÞG‘ð‘; yÞ þ ða1ða1 � ~a1Þ
þ ~a2 � a2ÞG‘‘ð‘; yÞ� þOð�2

0Þ: (26)

It differs from the MLLA expression given in [4] by the
term proportional to G‘‘, which can be deduced from the
subtraction of ðCF=NcÞ � ð23Þ to Eq. (22).

III. SINGLE-INCLUSIVE k?-DISTRIBUTION IN
THE LIMITING SPECTRUM

While MLLA calculations show that, asymptotically, the
shape of the inclusive spectrum becomes independent of �
[8,24], setting the infrared cutoff Q0 of cascading pro-
cesses as low as the intrinsic QCD scale �QCD is a daring

hypothesis, since it is tantamount to assuming that a per-
turbative treatment can be trusted in regions of large run-
ning �s. However, it turns out that, experimentally, this
shape is very well described by � ¼ 0. We shall show
below that this remarkable property is also true for the
single-inclusive k?-distribution. This will be further con-
firmed in Sec. IV in which nonvanishing values of � are
considered.

A. Double-differential distribution

The double-differential distribution d2N=ðdxd ln
Þ for
the production of a single hadron h at angle � in a high-
energy jet of total energy E and opening angle �0 	 �,
carrying the energy-fraction x, is obtained by integrating
the inclusive double-differential 2-particle cross section
(see [4]) [25]. Then, the single-inclusive k?-distribution
of hadrons inside a jet is obtained by integrating
d2N=ðdxd ln
Þ over all energy-fractions x:

�
dN

d lnk?

�
q or g

¼
Z
dx

�
d2N

dxd lnk?

�
q or g

�
Z Y�0

�y

‘min

d‘

�
d2N

d‘d lnk?

�
q or g

: (27)

As in [4], a lower bound of integration, ‘min, is introduced
since the present calculation is only valid in the small-x
region, and therefore cannot be trusted when ‘ � lnð1=xÞ
becomes ‘‘too’’ small. We shall discuss this in more detail
in Sec. III C and Appendix G.
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According to [4], d2N
dxd ln� can be expressed as

d2N

dxd ln�
¼ d

d ln�
FhA0

ðx;�; E;�0Þ; (28)

where FhA0
, which represents the inclusive production of h

in the subjet of opening angle � inside the jet A0 of
opening angle �0, is given by a convolution product of
two fragmentation functions [4]:

FhA0
ðx;�; E;�0Þ �

X
A

Z 1

x
duDA

A0
ðu; E�0; uE�Þ

�Dh
A

�
x

u
; uE�; Q0

�
: (29)

The convolution expresses the correlation between the
energy flux of the jet and one particle within it.
Equation (29) is schematically depicted in Fig. 2: u is the
energy-fraction of the intermediate parton A,DA

A0
describes

the probability to emit A with energy uE off the parton A0

(which initiates the jet) taking into account the evolution of
the jet between�0 and�, andDh

A describes the probability
to produce the hadron h off A with energy-fraction x=u and
transverse momentum k? � uE� 	 Q0; k? is defined
with respect to the jet axis which is, in this context,
identified with the direction of the energy flux.

As discussed in [4], the convolution (29) is dominated by
u ¼ Oð1Þ. Therefore, DA

A0
ðu; E�0; uE�Þ is given by

DGLAP evolution equations. On the contrary, since x�
u ¼ Oð1Þ in the small-x limit where MLLA evolution
equations are valid, Dh

A behaves as (see (10))

Dh
A

�
x

u
; uE�; Q0

�
�x�u u

x
�hA

�
ln
u

x
; lnuþ Y�

�
: (30)

Since Y� þ lnu ¼ ‘þ lnuþ y, the hump-backed plateau
�hA depends on the two variables ‘þ lnu and y, and we
conveniently define ~D as

~Dh
Að‘þ lnu; yÞ � x

u
Dh

A

�
x

u
; uE�; Q0

�
: (31)

The Taylor expansion of �hA to the second order in lnu for
u� 1 , j lnuj � 1, that is, one step further than in [4],
leads to

xFhA0
ðx;�; E;�0Þ � x ~FhA0

ðx;�; E;�0Þ
þ 1

2

X
A

�Z
duuðln2uÞ

�DA
A0
ðu; E�0; uE�Þ

�
d2 ~Dh

Að‘; yÞ
d‘2

;

(32)

where

x ~FhA0
ðx;�; E;�0Þ �

X
A

�Z
duuð1þ ðlnuÞ A;‘ð‘; yÞÞ

�DA
A0
ðu; E�0; uE�Þ

�
~Dh
Að‘; yÞ (33)

is the MLLA distribution calculated in [4]. In (33) we have
introduced first logarithmic derivatives of ~Dh

A:

 A;‘ð‘; yÞ ¼ 1
~Dh
Að‘; yÞ

d ~DAð‘; yÞ
d‘

¼ Oð ffiffiffiffiffiffi
�s

p Þ: (34)

Thus, as in [4], in the soft limit the correlation disappears
and the convolution (29) is reduced to the factorized ex-
pression in (32).
The second term in the right-hand side of (32) is the new

NMLLA correction calculated in this paper. Since x=u is
small, the inclusive spectrum ~Dh

Að‘; yÞ occurring in (32)
should be taken as the next-to-MLLA solution of the
evolution Eqs. (22) and (23). However, as already men-
tioned and shown in Appendix B, the MLLA inclusive
spectrum for a gluon jet can be used as a good approxima-
tion for (23) (with a1 � 0, a2 ¼ 0) such that, in (33), it is
enough to use this level of approximation. So, we shall
therefore use Eqs. (25) and (26) in the following.
The NMLLA correction in (32) globally decreases

jxFhA0
j in the perturbative region (y 	 1:5). Indeed, while

the MLLA part proportional to lnu in (33) is negative [4], it
is instead, there, positive because of the positivity of u and

ln2u and
d2 ~Dh

A

d‘2
’ d2G

d‘2
(see Fig. 18 in Appendix C). The

NMLLA contribution therefore tempers somehow the
size of the MLLA corrections when y is large enough.

B. Color currents

The function FhA0
is related to the inclusive gluon distri-

bution via the color currents defined as [4,8]

xFhA0
¼ hCiA0

Nc
Gð‘; yÞ: (35)

The color current can be seen as the average color charge
carried by the parton A due to the DGLAP evolution from
A0 to A. Introducing the first and second logarithmic
derivatives of ~Dh

A,

DA 0
D

Θ0
hA
A

xE

h

(Jet Axis)

Θ
A0 E uEA

FIG. 2. Inclusive production of hadron h at an angle � inside
a high-energy jet of total opening angle �0.
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ð 2
A;‘ þ  A;‘‘Þð‘; yÞ ¼ 1

~Dh
Að‘; yÞ

d2 ~DAð‘; yÞ
d‘2

¼ Oð�sÞ;
(36)

which are MLLA and NMLLA corrections, respectively,
Eq. (32) can now be written as

xFhA0
� X

A

�
huiAA0

þ hu lnuiAA0
 A;‘ð‘; yÞ

þ 1

2
huln2uiAA0

ð 2
A;‘ þ  A;‘‘Þð‘; yÞ

�
~Dh
Að‘; yÞ;

where

hulniuiAA0
�

Z 1

0
duðulniuÞDA

A0
ðu; E�0; uE�Þ: (37)

Unlike in [4] at MLLA, using the approximation u ¼ Oð1Þ
to replace in (37) uE� by E� requires here some care,
since the resulting scaling violation of the DGLAP frag-
mentation functions also providesOð�sÞ corrections to hui.
Explicit calculations (see Appendix D) show that they
never exceed 5% of the leading term. Accordingly, we
neglect them in the following and replace (37) by

hulniuiAA0
’
Z 1

0
duðulniuÞDA

A0
ðu; E�0; E�Þ: (38)

The total average color current hCiA0
of partons caught by

the calorimeter decomposes accordingly into three terms
which can be written as

hCiA0
¼ hCiLOA0

þ �hCiMLLA�LO
A0

þ �hCiNMLLA�MLLA
A0

:

(39)

The leading order (LO) Oð1Þ and MLLA Oð ffiffiffiffiffiffi
�s

p Þ contri-
butions to the color currents have been determined in [4].
The new NMLLAOð�sÞ correction evaluated in this paper
reads

�hCiNMLLA�MLLA
A0

¼ Nchuln2uigA0
ð 2

g;‘ þ  g;‘‘Þ
þ CFhuln2uiqA0

ð 2
q;‘ þ  q;‘‘Þ; (40)

assuming Q ¼ CF=NcG. We checked that using instead
the NMLLA exact formula (26) for the quark inclusive
spectrum Q actually leads to negligible corrections to the
color currents (see Appendix E). Equation (40) can be
obtained from the Mellin-transformed DGLAP fragmenta-
tion functions

D A
A0
ðj; �Þ ¼

Z 1

0
duuj�1DA

A0
ðu; �Þ;

through the formula

huln2uiAA0
¼ d2

dj2
DA

A0
ðj; �ðE�0Þ � �ðE�ÞÞjj¼2

�
Z 1

0
duuln2uDA

A0
ðu; �Þ: (41)

Given the rather lengthy expressions, the complete analytic
results for hCiNMLLA�MLLA

A0
for quark and gluon jets are

given in Appendix F.
For illustrative purposes, the color currents are plotted in

Fig. 3 in the limiting spectrum approximation (� ¼ 0). The
LO (solid line), MLLA (dash-dotted) and NMLLA
(dashed) currents are computed for a quark (top) and for
a gluon jet (bottom) with energy Y�0

¼ 6:4—correspond-

ing to Tevatron energies—and at fixed ‘ ¼ 2. As can be
seen in Fig. 3, NMLLA Oð�sÞ corrections to the MLLA
color currents are clearly not negligible, yet of course
somewhat smaller than the MLLA Oð ffiffiffiffiffiffi

�s
p Þ corrections to

the LO result. In the perturbative region (y > 1:5), these
corrections are positive and consequently decrease the
difference with the LO estimate. On the contrary, at small
y 
 1:5, the corrections are rather large and negative com-
ing from the negative sign of G‘‘ð‘; yÞ (see Fig. 18 in

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4

0 1 2 3 4

LO

MLLA

NMLLA

Y = 6.4

l = 2

y

〈C
〉 Q

0.5

1

1.5

2

2.5

3

LO

MLLA

NMLLA

Y = 6.4

l = 2

y

〈C
〉 G

FIG. 3 (color online). Color currents at LO (solid lines),
MLLA (dash-dotted), and NMLLA (dashed) for a quark (top)
and gluon jet (bottom) with Y�0

¼ 6:4 and ‘ ¼ 2.
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Appendix C). However, it should be kept in mind that as y
goes to 0, k? gets closer to�QCD (recall thatQ0 ¼ �QCD in

the limiting spectrum approximation) and, thus, the present
perturbative predictions may not be reliable in this domain.

Note also that both the MLLA and NMLLA corrections
vanish at y ¼ 0 (since G‘ ¼ G‘‘ ¼ 0) and when � ¼ �0.
Another interesting property to mention is the decrease of
MLLA and NMLLA corrections as ‘ increases, that is,
when partons get softer and recoil effects more negligible.

From the color currents, the NMLLA double-differential
1-particle distribution at small x (see Eq. (28)),

�
d2N

d‘dy

�
A0

¼ 1

Nc
hCiA0

d

dy
Gð‘; yÞ þ 1

Nc
Gð‘; yÞ d

dy
hCiA0

;

(42)

can be determined for any value of �. The NMLLA be-
havior of d2N=d‘dy is therefore easily deduced from hCiA0

and its y-dependence, dhCiA0
=dy.

C. k?-distributions
The k?-distributions of hadrons are computed from the

numerical integration of the double-differential cross sec-
tion, Eq. (42). On Fig. 4 are shown the MLLA (dashed
lines) and NMLLA (solid lines) dN=dy distributions for a
quark (left) and a gluon jet (right) with Y�0

¼ 4:3 and

Y�0
¼ 6:4.

The size of NMLLA corrections proves quite substantial
over the whole y-range. We find, in particular, that at large
y (or k?), the distributions at NMLLA are lower than at
MLLA (and larger at small y). This softening of the spectra
can be understood physically by the role of energy conser-
vation in jets. With respect to DLA, MLLA and NMLLA
take better into account the recoil of the emitting parton at
each step of the cascading process. The fraction of energy
carried away by the emitted soft partons gets reduced,
which finally damps the final emission of hadrons at large
k? [26]. As already stressed in Sec. III A, the value of the
lower limit of integration ‘min below which the present
small-x calculation may not be trusted cannot be directly
predicted. In [4], the appearance of positivity problems in
the double-differential distribution at small ‘ led us to
consider a minimal value ‘min such that d2N=d‘d lnk? is
kept positive for all ‘ 	 ‘min, leading to [27] ‘min ’ 2:5.
For consistency, the same criterion is used in the present
paper. We find that smaller values of ‘ actually fulfill the
positivity requirement, roughly ‘min ’ 2 and ‘min ’ 1 for
quark and gluon jets at Tevatron energies.

It is interesting to note that the range over which
NMLLA calculations appear sensible extends to smaller
‘, therefore to larger x, than at MLLA; this also corre-
sponds to larger y at fixed Y. One could therefore expect
the present NMLLA predictions to agree with experimen-
tal results in a larger domain of k?. This is discussed in the
coming section.

FIG. 4 (color online). MLLA (dashed lines) and NMLLA
(solid lines) inclusive y-distributions. From top to bottom: 2
upper pictures: quark then gluon jet at Y�0

¼ 4:3 (Q ¼
19 GeV); 2 lower pictures: quark then gluon jet at Y�0

¼ 6:4

(Q ¼ 155 GeV).
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D. Comparison with CDF preliminary data

The CDF Collaboration at Tevatron recently reported on
preliminary data of hadronic single-inclusive
k?-distributions inside jets produced in p �p collisions atffiffiffi
s

p ¼ 1:96 TeV [7]. The measurements cover a wide do-
main of jet energies, with hardnessQ ¼ E�0 ranging from
Q ¼ 19 GeV to Q ¼ 155 GeV. The CDF results, includ-
ing systematic errors, are plotted in Fig. 5 together with the
MLLA predictions of [4] (dashed lines) and the present
NMLLA calculations (solid lines). Data and theory are
normalized to the same bin, lnk? ¼ �0:1, because of
presently too large normalization errors in the CDF pre-
liminary data. The experimental measurements reflect a
mixing of quark and gluon jets:

�
dN

d lnk?

�
mix

¼ !

�
dN

d lnk?

�
g
þ ð1�!Þ

�
dN

d lnk?

�
q

(43)

characterized by one Q-dependent mixing-parameter !,
estimated from PYTHIA [28], used in the theoretical
calculation.

The agreement between the CDF results and the
NMLLA distributions over the whole k?-range is excel-
lent. The NMLLA calculation is, in particular, able to
capture the shape of CDF spectra at all Q. Conversely,
predictions at MLLA prove only reliable at not too large
k?.
The domain of validity of the predictions has been

enlarged to larger k? (and thus to larger x since Y is
fixed) computing from MLLA to NMLLA accuracy
[29]. However, it should be mentioned that, due to the
normalization at the first bin, this extension of the
domain of prediction only concerns, strictly speaking, the
shape of the distribution. Equally important, the agreement
between NMLLA calculations and experimental results
brings further support to the Local Parton Hadron
Duality (LPHD) picture [3]. We indeed find it remarkable
to observe that the entire k?-domain probed experimen-
tally can be very well described by strict perturbation
theory, leaving out only limited nonperturbative dynamics
in the production of hadrons inside a jet, at least
for inclusive enough observable like single-particle
k?-distributions.

NMLLA MLLA

Q=155 GeV

Q=90 GeV

Q=50 GeV

Q=27 GeV

ln (k⊥ / 1GeV)

1/
N

’  
dN

 / 
d 

ln
 k

⊥

0 1 2 0 1 2 3

normalized to bin: ln(k
⊥
)=-0.1

CDF preliminary

Q=119 GeV

Q=68 GeV

Q=37 GeV

Q=19 GeV

ln (k⊥ / 1GeV)

FIG. 5 (color online). CDF preliminary results on hadronic single-inclusive k?-distributions, compared with MLLA (dashed lines)
and NMLLA (solid lines) calculations at the limiting spectrum; the boxes are the systematic errors (their lower limits are cut at large
k? for the sake of clarity).
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E. Theoretical uncertainties

The spectacular agreement between our NMLLA calcu-
lations and preliminary data should not hide the theoretical
uncertainties that affect the former.

First, we did not take into account all NMLLA correc-
tions. While scaling violations have already been dealt
with in Sec. III B and Appendix D, other NMLLA correc-
tions arise from varying �QCD in the expression of �s. In

Figs. 6 the inclusive k?-distribution (Q ¼ 119 GeV) is
plotted at values of �QCD ranging from 150 to 500 MeV

(left), as well as the ratio to its value at the default�QCD ¼
250 MeV (right). All curves have been normalized to the
bin lnðk?=1 GeVÞ ¼ �0:1. In the largest bin
lnðk?=1 GeVÞ ¼ 3, varying �QCD ranging from 150 to

400 MeV does not yield a relative variation larger than
20%. The corresponding curves still fall within the experi-
mental systematic errors. Note that the fact that variations
seem only important at large k? only comes from the
normalization procedure in the bin lnðk?=1GeVÞ¼�0:1.
A more delicate matter concerns the dominance of the type
of NMLLA corrections that we have taken into account.
Some remarks concerning this point are postponed to the
general discussion in Sec. VI.

The second point concerns the jet axis, which is defined
here as the direction of the energy flow. It is implicitly
determined by a summation over all secondary hadrons in
energy-energy correlations. At the opposite, the jet axis is
experimentally determined exclusively from all particles
inside the jet. Whether these two definitions match within
NMLLA accuracy, Oð�sÞ, is a matter which deserves
further investigation. This goes however beyond the scope
of the present work.

Last, cutting the integral (27) at small ‘may look some-
what arbitrary. However, at the end of Appendix G, we
provide curves which show the variation of the inclusive
k?-distribution at MLLA and NMLLA when ‘gmin is

changed. Varying it from 1 to 1.75 does not modify the

NMLLA spectrum at large k? by more than 20%.
Variations are more dramatic at MLLA.

IV. SINGLE-INCLUSIVE k?-DISTRIBUTIONS
BEYOND THE LIMITING SPECTRUM

A. Inclusive spectrum

So far, the calculations have been performed in the
limiting spectrum approximation, Q0 ¼ �QCD or � ¼ 0.
This assumption, which cuts off hadronic yield below Q0,
should be valid as long as the mass of the produced hadrons
is not too large as compared to�QCD. This is the case when

dealing mostly with pions. We perform in this section the
exact calculation of single-inclusive spectra as well as
k?-distributions beyond this approximation, � � 0, that
is for hadrons with mass mh ’ Q0 � �QCD [24].

The inclusive gluon spectrum was given in [5] a compact
Mellin representation:

Gð‘; yÞ ¼ ð‘þ yþ �Þ
Z d!d�

ð2�iÞ2 e
!‘þ�y Z 1

0

ds

�þ s

�
�
!ð�þ sÞ
ð!þ sÞ�

�
1=�0ð!��Þ� �

�þ s

�
a1=�0

e��s;

from which an analytic approximated expression was
found using the steepest descent method [6]. However,
Gð‘; yÞ is here determined exactly from an equivalent
representation in terms of a single Mellin transform (which
reduces to (25) as �! 0) [24]

Gð‘; yÞ ¼ ‘þ yþ �

�0BðBþ 1Þ
Z þi1

�i1
d!

2�i
e!‘�ð�Aþ Bþ 1; B

þ 2;�!ð‘þ yþ �ÞÞKð!;�Þ (44)

which is better suited for numerical studies. The function
K appearing in Eq. (44) reads

K ð!;�Þ ¼ �ðAÞ
�ðBÞ ð!�Þ

B�ðA; Bþ 1; !�Þ; (45)

FIG. 6 (color online). The dependence on �QCD, absolute (left) and relative (right). The curves and the values of �QCD indicated in
the caption are set in the same order.
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where A ¼ 1=ð�0!Þ, B ¼ a1=�0, and � and � are the
confluent hypergeometric function of the first and second
kind, respectively. The single-inclusive spectrum at MLLA
is plotted in Fig. 7 for various values of �, � ¼ 0, 0.2, 0.5,
1, for a gluon jet with Y� ¼ 6:4. Increasing � reduces the
emission in the infrared region and therefore favors hard
particle production at ‘� Y=2 (asymptotic position of the
peak of the hump-backed plateau). Still, it is worth remark-
ing that the global shape of G at finite � remains similar to
that obtained in the limiting spectrum approximation. Note
also that there is a discrete part at finite �, proportional to
�ð‘Þ, corresponding to the finite probability for no parton
emission when Q0 � �QCD, the parton multiplicity be-

coming infrared finite at � � 0 (see the second reference
in [24]).

B. Color currents

The color currents, Eq. (39), can now be determined
beyond the limiting spectrum from the inclusive spectrum
calculated in the previous section. In Fig. 8 are displayed
the MLLA corrections to the LO color current,
�hCiMLLA�LO

A0
=hCiLOA0

(top), and NMLLA corrections to

the MLLA color currents, �hCiNMLLA�MLLA
A0

=hCiMLLA
A0

(bottom), for different values � ¼ 0, 0.5, 1. Figure 8
clearly indicates that the larger the values of �, the smaller
the MLLA (and NMLLA) corrections. In particular,
MLLA (NMLLA) corrections can be as large as 50%
(30%) in the limiting spectrum but no more than 20%
(10%) for � ¼ 1. This is not surprising since � � 0 (Q0 �
�QCD) reduces the parton emission in the infrared sector

and, consequently, higher-order corrections.
As discussed in Sec. III B, the large and negative cor-

rections to the color currents in the limiting spectrum lead

to negative double-differential spectra, d2N=d‘dy at small
y. Interestingly, at � � 0, the infrared sensitivity is some-
how weakened. As a consequence, d2N=d‘dy is no longer
negative at finite �, as illustrated in Fig. 9. Another inter-
esting consequence is the disappearance of the infrared
divergence at y ¼ 0 in the limiting spectrum, coming
from the running of �s: since Q0 � �QCD, �s and there-

fore d2N=d‘dy remain finite over the full momentum-
space.

C. k?-distributions
The absolute k?-distributions of ‘‘massive’’ hadrons is

computed in Fig. 10 (top) for various values of � for jets
with hardness Q ¼ 119 GeV. As expected, as � gets
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FIG. 7 (color online). Inclusive spectrum for a gluon jet
(Y�0

¼ 6:4) for different values of �.
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FIG. 8 (color online). MLLA (top) and NMLLA (bottom)
normalized corrections to the LO and MLLA color currents,
respectively, for different values of �.
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larger, soft gluon emission is strongly suppressed such that
the distribution flattens at small k?, while more hadrons
are produced at large k?, making in turn the distributions
harder. We also compare in Fig. 10 (bottom) these calcu-
lations with CDF preliminary data, all normalized to the
logðk?=1 GeVÞ ¼ �0:1 bin as before. The best descrip-
tion is reached in the limiting spectrum approximation, or
at least for small values of � & 0:5. This is not too surpris-
ing since these inclusive measurements mostly involve
pions.

Predictions beyond the limiting spectrum were shown to
describe very well the hump-backed shape of the inclusive
spectra for various hadron species; in particular, the
hadron-mass variation of the peak turned out to be in
good agreement with QCD expectations (see e.g. [2]).
The softening of the k?-spectra with increasing hadron
masses predicted in Fig. 10 is an observable worth to be
measured, as this would provide an additional and inde-
pendent check of the LPHD hypothesis beyond the limiting
spectrum. This could only be achieved if the various spe-
cies of hadrons inside a jet can be identified experimen-
tally. Fortunately, it is likely to be the case at the LHC,
where the ALICE [30] and CMS [31] experiments at the
Large Hadron Collider have good identification capabil-
ities at not too large transverse momenta.

V. 2-PARTICLE CORRELATIONS

A. Correlators and evolution equations

We work, like in [5], with the normalized correlators

C g ¼ Gð2Þ

G1G2

; Cq ¼ Qð2Þ

Q1Q2

(46)

where Gi, Qi, i ¼ 1, 2 are the inclusive spectra relative to

the outgoing hadrons h1 and h2, and G
ð2Þ, Qð2Þ are the 2-

particle distributions in gluon and quark jets, respectively.
The former are obtained by a single differentiation of the
‘‘MLLA’’ generating functional Z, and the latter by differ-
entiating it twice [5] (see also the discussion introduced in
Sec. II). Z satisfies the evolution equation described in
Sec. (2) of [5]: dZA=d ln� for the jet initiating parton A
is expressed as an integral over z involving the DGLAP
splitting functions �BC

A ðzÞ and ZB and ZC associated to the
products B and C of the splitting process; B carries away
the fraction z of the energy E of A and C the fraction (1�
z) (see Fig. 11). The topology of Fig. 11 respects the exact
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FIG. 10 (color online). Absolute (top) and normalized (bot-
tom) inclusive k?-distribution beyond the limiting spectrum
approximation at NMLLA in a jet of hardness Q ¼ 119 GeV.
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AO constraint over the successive emission angles of par-
tons (� 	 �1 	 �2).

In practice, suitably differentiating the master evolution
equation for ZA, which arises as a consequence of exact AO
in parton cascades, yields, for the correlation functions [8]

Gð2Þ �G1G2 � ðCg � 1ÞG1G2;

Qð2Þ �Q1Q2 � ðCq � 1ÞQ1Q2;
(47)

the system of coupled evolution equations:

ðQð2Þ �Q1Q2Þy ¼
Z 1

0
dz
�s
�

�g
qðzÞ½Gð2ÞðzÞ þ ðQð2Þð1� zÞ

�Qð2ÞÞ þ ðG1ðzÞ �Q1ÞðQ2ð1� zÞ
�Q2Þ þ ðG2ðzÞ �Q2ÞðQ1ð1� zÞ
�Q1Þ�; (48)

ðGð2Þ �G1G2Þy ¼
Z 1

0
dz
�s
�

�g
gðzÞ½ðGð2ÞðzÞ � zGð2ÞÞ

þ ðG1ðzÞ �G1ÞðG2ð1� zÞ �G2Þ�
þ

Z 1

0
dz
�s
�
nf�

q
gðzÞ½2ðQð2ÞðzÞ

�Q1ðzÞQ2ðzÞÞ � ðGð2Þ �G1G2Þ
þ ð2Q1ðzÞ �G1Þð2Q2ð1� zÞ �G2Þ�:

(49)

The derivative is taken with respect to y ¼ Y � ‘ rather
than with respect to ln�, since it is more convenient when
a collinear cutoff is imposed (see Sec. (2.1) of [5]). Like for
the inclusive spectra, the notations have been lightened to a

maximum, with Gð2Þ standing for Gð2Þðz ¼ 1Þ and likewise

for Qð2Þ. The notation xi; ‘i; . . . refers to the ‘i ¼ lnð1=xiÞ
of the outgoing parton (hadron) i.

B. Including NMLLA corrections

We follow the same logic, exposed in Sec. II C, for the 2-

particle distributions Qð2Þ, Gð2Þ, as the one used for the
inclusive spectra B in Sec. III A. Therefore, the expansion
at small x1, x2 is performed for x1

z Q1ðx1z Þ x2z Q2ðx2z Þ and

x1
z G1ðx1z Þ x2z G2ðx2z Þ as well as for x1

z
x2
z Q

ð2Þðx1z ; x2z Þ and x1
z �

x2
x G

ð2Þðx1z ; x2z Þ, similarly to Eq. (11).

1. Quark jet

Operating like for (16) and (17), the first (MLLA) term
in the right-hand side of (48) can be cast in the form

Z 1

0
dz
�s
�

�g
qðzÞ½Gð2ÞðzÞ þ ðQð2Þð1� zÞ �Qð2ÞÞ�

¼ CF
Nc

�Z 1

0

dz

z
�2
0G

ð2ÞðzÞ
�
� 3

4

CF
Nc

�2
0G

ð2Þ

þ CF
Nc

�
7

8
þ CF
Nc

�
5

8
� �2

6

��
�2
0G

ð2Þ
‘

þ
�
CF
Nc

�
2
�
CF
Nc

� 1

��
5

8
� �2

6

�
�2
0ðG1G2Þ‘; (50)

where we have plugged the DLA formula [22]

Qð2Þ
‘ ¼ CF

Nc
Gð2Þ
‘ þ CF

Nc

�
CF
Nc

� 1

�
ðG1G2Þ‘ þOð�2

0Þ (51)

in the right-hand side of (50); the terms in (51) of relative
order Oð�0Þ are neglected because their contribution pro-
vides corrections to (50) beyond NMLLA (see also
Appendix H). The second and third terms in the right-
hand side of (48) provide the NMLLA correction:

Z 1

0
dz
�s
�

�g
qðzÞðG1ðzÞ �Q1ÞðQ2ð1� zÞ �Q2Þ

¼ �s
�

�Z 1

0
dz�g

qðzÞ lnð1� zÞ
�
ðG1 �Q1ÞQ2;‘

¼
�
CF
Nc

�
2
�
1� CF

Nc

��
5

8
� �2

6

�
�2
0G1G2;‘; (52)

where the DLA expression Q‘ ¼ CF
Nc
G‘ þOð�2

0Þ is used

[22]; further corrections ðOð�2
0ÞÞ to this formula are here

again dropped out because their inclusion goes beyond the
present resummation logic. Likewise, we have

Z 1

0
dz
�s
�

�g
qðzÞðG2ðzÞ �Q2ÞðQ1ð1� zÞ �Q1Þ

¼
�
CF
Nc

�
2
�
1� CF

Nc

��
5

8
� �2

6

�
�2
0G1;‘G2: (53)

Gathering (50), (52), and (53) yields

ðQð2Þ �Q1Q2Þy ¼ CF
Nc

�Z 1

0

dz

z
�2
0G

ð2ÞðzÞ
�
� 3

4

CF
Nc

�2
0G

ð2Þ

þ CF
Nc

�
7

8
þ CF
Nc

�
5

8
� �2

6

��
�2
0G

ð2Þ
‘ ;

(54)

which is written in a form similar to (18).
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FIG. 11. 2-particle correlations inside a jet.
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2. Gluon jet

The structure of (49) can be worked out in the same way.
The first integral term in its right-hand side is the same as
that in (19), such that we can simply setZ 1

0
dz
�s
�

�g
gðzÞðGð2ÞðzÞ � zGð2ÞÞ

¼
�Z 1

0

dz

z
�2
0G

ð2ÞðzÞ
�
� 11

12
�2
0G

ð2Þ þ
�
67

36
� �2

6

�
�2
0G

ð2Þ
‘ :

(55)

The second term provides a contribution

�2
0

2Nc
G1‘G2‘

Z 1

0
dz�g

gðzÞ lnz lnð1� zÞ

¼
�
11�2

36
� 395

108
þ 2�ð3Þ

�
�2
0G1‘G2‘ ¼ Oð�4

0Þ;

that is beyond NMLLA and therefore dropped out here.
The second line of (49) simplifies toZ 1

0
dz
�s
�
nf�

q
gðzÞ½2ðQð2ÞðzÞ �Q1ðzÞQ2ðzÞÞ

� ðGð2Þ �G1G2Þ�
¼ nfTR

3Nc
�2
0½2ðQð2Þ �Q1Q2Þ � ðGð2Þ �G1G2Þ�

� 13

18

nfTR
Nc

�2
0ðQð2Þ �Q1Q2Þ‘; (56)

and the third one givesZ 1

0
dz
�s
�
nf�

q
gðzÞð2Q1ðzÞ �G1Þð2Q2ð1� zÞ �G2Þ

¼ nfTR
3Nc

�2
0ð2Q1 �G1Þð2Q2 �G2Þ

� 13

18

nfTR
Nc

�2
0½ð2Q1 �G1ÞQ2‘

þ ð2Q2 �G2ÞQ1‘�: (57)

Gathering (55)–(57) and setting (see Appendix H for
further explanations)

Q � CF
Nc

GþOð�0Þ;

Qð2Þ ¼ CF
Nc

Gð2Þ þ CF
Nc

�
CF
Nc

� 1

�
G1G2 þOð�0Þ

(58)

in the subleading pieces, we obtain the NMLLA equation
for the gluonic correlator

ðGð2Þ �G1G2Þy ¼
�Z 1

0

dz

z
�2
0G

ð2ÞðzÞ
�
�

�
11

12
þ nfTR

3Nc

�
�
1� 2

CF
Nc

��
�2
0G

ð2Þ þ 2nfTR
3Nc

�
�
1� CF

Nc

��
1� 2

CF
Nc

�
�2
0G1G2

þ
�
67

36
� �2

6
� 13

18

nfTR
Nc

CF
Nc

�
�2
0G

ð2Þ
‘

þ
�
13

9

nfTR
Nc

CF
Nc

�
1� CF

Nc

��
�2
0ðG1G2Þ‘:

(59)

The way to get the equations for the correlators Cg and

Cq, to be solved iteratively, proceeds like in Sec. 4 and

Appendices A and B of [5].

C. NMLLA correlators

1. Gluon correlator Cg
The differential expression for (21) reads

G‘y ¼ �2
0G� a1�

2
0ð ‘ � �0�

2
0ÞG

þ a2�
2
0ð 2

‘ þ  ‘‘ � �0�
2
0 ‘ÞG: (60)

Differentiating (59) with respect to ‘ gives the following
NMLLA differential equation:

ðGð2Þ �G1G2Þ‘y ¼ �2
0G

ð2Þ � a1�
2
0ðGð2Þ

‘ � �0�
2
0G

ð2ÞÞ
þ ða1 � b1Þ�2

0½ðG1G2Þ‘ � �0�
2
0G1G2�

þ a2�
2
0ðGð2Þ

‘‘ � �0�
2
0G

ð2Þ
‘ Þ

þ b2�
2
0½ðG1G2Þ‘‘ � �0�

2
0ðG1G2Þ‘�;

(61)

where a1, a2 are given by (24b) and (24b), and with the
following coefficients:

b1 ¼ 11

12
� nfTR

3Nc

�
1� 2CF

Nc

�
2 ¼nf¼3

0:915;

b2 ¼ 13

9

nfTR
Nc

CF
Nc

�
1� CF

Nc

�
�nf¼3

0:18:

(62)

Noting  ¼ lnG and � ¼ lnCg, the second line of (61) can
be rewritten in terms of logarithmic derivatives ofG and of
Cg (see Appendix I) from which Eq. (61) is solved iter-

atively. Setting Gð2Þ ¼ CgG1G2 in both members and mak-

ing use of (60) leads to the analytical solution of (61), valid
for arbitrary �

C g � 1 ¼ 1� �1 � b1ð 1;‘ þ  2;‘ � ½�0�
2
0�Þ � ½a1�‘ þ �2� þ �3

1þ �þ �1 þ ½a1ð�‘ þ ½�0�
2
0�Þ þ �2� þ �4

; (63)

where, like in [5], we introduce � ¼ ‘2 � ‘1. �3 and �4 are the new NMLLA corrections:
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�3ð‘1; ‘2;�Þ ¼ a2f1ð‘1; ‘2;�Þ þ b2f2ð‘1; ‘2;�Þ
¼ Oð�2

0Þ;
�4ð‘1; ‘2;�Þ ¼ �a2f3ð‘1; ‘2;�Þ ¼ Oð�2

0Þ;
(64)

and f1, f2 and f3 are defined in (I1) of appendix A. Setting
�3 ¼ �4 ¼ 0 in (63), one recovers the exact analytical
solution of the corresponding MLLA gluon equation
(with a2 ¼ b2 ¼ 0 in (61)); to derive this formula we
have used the same method that was, for the first time,
implemented in Appendix A of [5]. The other quantities
and their order of magnitude are (see [5])

� ¼ lnCg; �‘ ¼ d�

d‘
¼ Oð�2

0Þ;

�y ¼ d�

dy
¼ Oð�2

0Þ;
(65)

 i ¼ lnGi;  i;‘ ¼ 1

Gi

dGi

d‘
¼ Oð�0Þ;

 i;y ¼ 1

Gi

dGi

dy
¼ Oð�0Þ; ði ¼ 1; 2Þ;

(66)

� ¼ ��2
0 ð 1;‘ 2;y þ  1;y 2;‘Þ ¼ Oð1Þ; (67)

�1 ¼ ��2
0 ½�‘ð 1;y þ  2;yÞ þ �yð 1;‘ þ  2;‘Þ� ¼ Oð�0Þ;

(68)

�2 ¼ ��2
0 ð�‘�y þ �‘yÞ ¼ Oð�2

0Þ: (69)

To evaluate (65) we consider the bare correlator:

� ¼ ln

�
1þ 1� b1ð 1;‘ þ  2;‘Þ þ ½b1�0�

2
0�

1þ �þ ½a1�0�
2
0�

�
;

the derivatives of which are calculated numerically, to
eventually determine (68) and (69).
The analytical result (63) for Cg will be numerically

displayed for the limiting spectrum � ¼ 0 in Sec. VD by
using (25). For the case � � 0, we refer the reader to [6]
where it has been treated in MLLA by the steepest descent
method.

2. Quark correlator Cq
The differential expression of (18) reads

Q‘y ¼ CF
Nc

�
�2
0G� 3

4
�2
0ð ‘ � �0�

2
0ÞG

þ ~a2�
2
0ð 2

‘ þ  ‘‘ � �0�
2
0 ‘ÞG

�
: (70)

Differentiating (59) with respect to ‘ gives the NMLLA
differential equation

ðQð2Þ �Q1Q2Þ‘y ¼ CF
Nc

�
�2
0G

ð2Þ � 3

4
�2
0ðGð2Þ

‘ � �0�
2
0G

ð2ÞÞ

þ ~a2�
2
0ðGð2Þ

‘‘ � �0�
2
0G

ð2Þ
‘ Þ

�
; (71)

to be solved iteratively. Setting Qð2Þ ¼ CqQ1Q2 in both

members and using (70), one gets the analytical solution
(71), valid for arbitrary �

C q � 1 ¼
Nc
CF

Cg½1� 3
4 ð 1;‘ þ  2;‘ þ ½�‘� � ½�0�

2
0�Þ þ ~�3� CFNc

G1

Q1

CF
Nc

G2

Q2
� ~�1 � ½~�2�

~�þ ½1� 3
4 ð 1;‘ � ½�0�

2
0�Þ þ ~�4;1� CFNc

G1

Q1
þ ½1� 3

4 ð 2;‘ � ½�0�
2
0�Þ þ ~�4;2� CFNc

G2

Q2
þ ~�1 þ ½~�2�

; (72)

where ~�3 and ~�4 are the new NMLLA coefficients (~a2 is
given by (24c))

~� 3ð‘1; ‘2;�Þ ¼ ~a2f1ð‘1; ‘2;�Þ ¼ Oð�2
0Þ;

~�4;ið‘1; ‘2;�Þ ¼ ~a2f4ð‘1; ‘2;�Þ ¼ Oð�2
0Þ:

(73)

Setting ~�3 ¼ ~�4;i ¼ 0 in (72), one recovers the exact ana-
lytical solution of the corresponding MLLA quark equa-
tion (~a2 ¼ 0 in (71)) that was obtained in the Appendix B
of [5]. We have introduced (see [5])

~� ¼ ��2
0 ð’1;‘’2;y þ ’1;y’2;‘Þ ¼ Oð1Þ; (74)

~� 1 ¼ ��2
0 ½�‘ð’1;y þ ’2;yÞ þ �yð’1;‘ þ ’2;‘Þ� ¼ Oð�0Þ;

(75)

~� 2 ¼ ��2
0 ð�‘�y þ �‘yÞ ¼ Oð�2

0Þ; (76)

with ’k ¼ lnQk and � ¼ lnCq. For the numerical compu-
tation of �, we take

� ¼ ln

�
1þ

Nc
CF

Cg½1� 3
4 ð 1;‘ þ  2;‘ þ ½�‘ � �0�

2
0�Þ� CFNc

G1

Q1

CF
Nc

G2

Q2

~�þ ½1� 3
4 ð 1;‘ � ½�0�

2
0�Þ� CFNc

G1

Q1
þ ½1� 3

4 ð 2;‘ � ½�0�
2
0�Þ� CFNc

G2

Q2

�
; (77)

in which one uses the NMLLA expression (26) for G and Q deduced from (22) and (23), and the exact expression (63) for
Cgð‘1; y2; �Þ.
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The numerical solution of (72) is given in Sec. VD for
� ¼ 0. We make the approximation ’‘ �  ‘, ’y �  y
that is justified in Appendix E through (E2). We can there-
fore also use (25). The case � � 0 was also dealt with at
MLLA for a quark jet in [6].

Finally, taking x1 ¼ x2 in (63) and (72) and going to the
asymptotic limit Q! 1 (Y ! 1), one finds the implicit
overall normalization of these observables to be given by
those of the multiplicity correlators [32]

C g !Y!1 hngðng � 1Þi
hngi2

¼ 4

3
;

Cq !Y!1 hnqðnq � 1Þi
hnqi2

¼ 1þ Nc
3CF

;

for the gluon and quark jets, respectively. The statement
above can be easily explained; the asymptotic expressions
of (63) and (72) are, respectively, the DLA formulae (see
[8])

C gðx1; x2Þ �Y!1
1þ 1

1þ�ðx1; x2Þ ;

Cqðx1; x2Þ �Y!1
1þ Nc

CF

1

1þ�ðx1; x2Þ ;

and �ðx1; x2Þ ¼ 2 for x1 ¼ x2 in the same limit.

D. NMLLA corrections versus MLLA

Throughout this analysis, we have consistently incorpo-
rated a set of NMLLA corrections. These were not calcu-
lated in the previous work [5] which was done at MLLA
accuracy for � ¼ 0. The philosophy and the basic tech-
nique are, however, the same (as well as in [33]). We
comment below on the role of these corrections for 2-

particle correlations. Both �3 and ~�3 are dominated by
their leading term, such that

�3 � ða2 þ b2Þð 1;‘ þ  2;‘Þ2 ¼ Oð�2
0Þ;

~�3 � ~a2ð 1;‘ þ  2;‘Þ2 ¼ Oð�2
0Þ:

Since both a2 þ b2 and ~a2 are positive and  ‘ increases as
‘! 0, NMLLA corrections are expected to increase the
MLLA solution of [5] in the limit ‘1 þ ‘2 ! 0, as can be
seen in (63) and (72). Thus, as found for the single-
inclusive k?-distribution, the ðx1; x2Þ domain in which
the two particles are ‘‘correlated,’’ i.e. Cg;q � 1> 0, be-

comes larger than at MLLA. In the limit ‘1 þ ‘2 ! 2Y, the
role of the new corrections is, on the contrary, expected to
vanish since  ‘ ! 0 when ‘! Y.

This is indeed what appears in Figs. 12 and 13, which
compare the MLLA and NMLLA solutions at the Tevatron
energy scale (Q ¼ 155 GeV). While Eqs. (63) and (72) are
general analytical solutions of the evolution equations at
� � 0, the numerical results displayed below are calcu-
lated at the limiting spectrum � ¼ 0, by plugging the
formula (25) for the inclusive spectrum into (63) and (72).

The four lines in Fig. 14 show the positions in ð‘1; ‘2Þ
space corresponding to the curves of Figs. 12 and 13. The
two upper curves of Fig. 12 correspond to line 2, its two
lower curves to line 1; the two upper curves of Fig. 13
correspond to line 3, and its two lower curves to line 4.
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FIG. 12 (color online). 2-particle correlations as a function of
‘1 þ ‘2 for ‘1 � ‘2 ¼ 1:2 (top) and ‘1 � ‘2 (bottom), succes-
sively for a gluon jet and a quark jet: on each figure are displayed
MLLA (bottom), NMLLA (middle) and Fong-Webber (top) [34]
predictions.
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The correlations displayed in Figs. 12 and 13 appear
more important in NMLLA than in MLLA. Physically,
because the recoil of each emitting parton is better taken
into account in the former approximation, less energy

becomes available and the multiplicity of emitted particles
is expected to decrease. Consequently, inside a bunch of a
fewer number of particles, two among them get more
correlated.

E. Dependence on �QCD

We have tested the dependence of the gluonic correla-
tion function Cg on �QCD, by varying it from 150 MeV to

500MeV. The results are displayed in Fig. 15, as a function
of ‘1 þ ‘2 (top) and ‘1 � ‘2 (bottom). Variations are seen
to stay below 10%.

F. Comparison with Fong and Webber MLLA
predictions

The comparison with the predictions by Fong and
Webber [34] is also instructive. Let us recall that their
calculation is done at MLLA, yet obtained from the exact
result of [5] when the two outgoing partons are taken to be
close to the peak of the inclusive spectrum, and when the
exact solution is expanded at first order in

ffiffiffiffiffiffi
�s

p
. From the

present results and that of [5], we can conclude that:
(i) the convergence of the series obtained by expanding

the exact MLLA result in powers of
ffiffiffiffiffiffi
�s

p
is very bad;

if one proceeds in this way, NMLLA corrections
may be as large as MLLA, making the series mean-
ingless; note that similar conclusions have been ob-
tained in [9] when dealing with recoil effects and,
more precisely, with the role of exact kinematics in
the bounds of integrations;

(ii) instead, in the procedure that has been adopted here,
i.e. finding exact NMLLA solutions of the (approxi-
mate) MLLA evolution equations, NMLLA correc-
tions turn out to be under control and their inclusion
brings the predictions closer to Fong and Webber’s.

The present study, together with [5], consequently stresses
the importance of dealing with exact solutions of the
evolution equations in jet calculus.

FIG. 13 (color online). 2-particle correlations as a function of
‘1 � ‘2 for ‘1 þ ‘2 ¼ 6:4 (top) and ‘1 þ ‘2 ¼ 7:4 (bottom),
successively for a gluon jet and a quark jet: on each figure are
displayed MLLA (bottom), NMLLA (middle) and Fong-Webber
(top) [34] predictions.
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FIG. 14. Positions in ð‘1; ‘2Þ space of Figs. 12 and 13.
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VI. DISCUSSION AND SUMMARY

A. Discussion

Energy conservation is a fundamental issue in jet calcu-
lus. While it is well known that the complete neglect of the
recoil of the emitting parton leads to DLA (taking only into
account the singular parts of the splitting functions), the
MLLA, in which ‘‘single logarithms’’ are added to DLA,
takes partial account of the recoil. Corrections appearing at
higher orders in an expansion in powers of

ffiffiffiffiffiffi
�s

p
come from

(i) the shifts by lnz and lnð1� zÞ in the arguments of the
hadronic fragmentation functions; (ii) the nonsingular
terms in the splitting functions; and (iii) the running of
�s. Our line of approach in this paper was accordingly the
following:

(i) we considered MLLA evolution equations as kinetic
equations of QCD, and expanded their (exact) ana-
lytical solutions in powers of

ffiffiffiffiffiffi
�s

p
up to the order

Oð�sÞ. Contributions that do not fit into such an
framework are discarded;

(ii) we stuck to the logic advocated in [14,33,35] that, at
small x and for j lnzj � j lnð1� zÞj � lnð1=xÞ, the
successive corrections, MLLA, NMLLA, etc.,
which better and better account for energy conser-
vation, are taken care of by a systematic expansion
in powers of lnz and lnð1� zÞ.

The size of the NMLLA terms depends on the precise
definition of �QCD: a rescaling of �QCD would change the

terms at this order. Systematically solving this problem
would require a 2-loop calculation which has not been
obtained so far for any multiplicity-related observable.
We therefore have to consider here �QCD as a phenome-

nological parameter. The sensitivity of our results to var-
iations of �QCD have been studied and found moderate

(20% for inclusive k?-distribution and less than 10% for
correlations) when �QCD ! 2�QCD.

We left aside the question of the matching of the two
definitions of the jet axis, ‘‘inclusive’’ direction of the
energy flow in this work, and ‘‘exclusive’’ fixing from all
outgoing hadrons in experiments.
Last, hints that the NMLLA correction that has been

considered here is the dominant one can already be found
in [10], where this type of NMLLA recoil effect was shown
to drastically affect particle multiplicities and particle cor-
relations through a factor proportional to the number of
partons involved in the process. This however only con-
cerns a priori 2-particle correlations. Spanning a gate
between the Koba-Nielsen-Olesen [36]phenomenon and
the techniques that we have used here stays a challenging
task which we hope to achieve in the future.
Since calculated NMLLA corrections proved to be quite

substantial, a natural question arises concerning the mag-
nitude of higher-order corrections. There, in correlation
with the remarks at the end of the introduction of Sec. II,
it seems legitimate to consider that, since this observable is
mainly sensitive to soft particles, the corrections are ex-
pected to be moderate. This can be different for integrated
quantities like multiplicities.

B. Summary

In this work, we have computed next-to-MLLA correc-
tions to the single-inclusive k?-distributions as well as 2-
particle momentum correlations inside a jet at high-energy
colliders. It comes as a natural extension of [4,5] in which
MLLA results are provided. In particular, it exploits the
same logic of using, at small energy-fraction x of the
emitted hadron, exact solutions to (approximate) evolution
equations for the inclusive spectrum. The technique used is
based on a systematic expansion in powers of

ffiffiffiffiffiffi
�s

p
which

neglects nonperturbative effects. Nevertheless, it proves to
be remarkably efficient to describe the preliminary mea-
surements of (the shape of) the k?-differential inclusive
cross section performed by CDF [7]. This is an indication
that nonperturbative contributions play a small role in this

FIG. 15 (color online). Dependence of the gluonic 2-particle
correlation function Cg on �QCD. The curves and the values of

�QCD indicated in the caption are set in the same order.
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observable, and concentrates in the overall normalization.
(LPHD hypothesis is tantamount to stating that in this
universal factor lies the trace of the [soft and local] hadro-
nization process.) The transition from MLLA to next-to-
MLLA enlarges considerably the domain where the com-
putations agree with the experimental data, both in the
transverse momentum of hadrons and in their energy-
fraction x.

In our analysis, single-inclusive x-distributions as well
as k?-spectra have been determined exactly beyond the
limiting spectrum approximation, i.e. for arbitrary Q0 �

�QCD. This should, in particular, be relevant when dealing

with distributions of rather massive hadrons [24]. In this
respect, experimental identification of outgoing hadrons
could provide precious additional tests of LPHD and of
the physical interpretation of the infrared cutoff Q0 as the
‘‘hadronization scale.’’ As far as 2-particle correlations
inside a jet are concerned, future results from LHC, in
addition to the ones of OPAL [37] and recent ones from
CDF [38], are waited for to be compared with the NMLLA
predictions presented in this study.

The limitations of the method are in particular:
(i) neglecting nonperturbative contributions may prove

less justified for not so inclusive observables. In that
respect, forthcoming data on 2-particle correlations
from LHC promise to be very instructive. While
incorporating some nonperturbative contributions is
not excluded a priori, a systematic way to handle
them is of course still out of reach;

(ii) the absolute normalization of the distributions,
which involve nonperturbative effects (hadroniza-
tion) is not predicted;

(iii) the calculation is performed in the small-x limit and
extrapolation to larger x may become problematic.
The transition to larger x, or from MLLA to DGLAP
evolution equations, is undoubtedly also a very im-
portant issue. It may be tempting to proceed in this
direction by going to higher orders in the expansion
initiated in [4–6] and extended in the present work.
However, the universality of MLLA evolution equa-
tions as kinetic equations of QCD should be cast on
firmer grounds.

C. Perspective: going to larger x

A Taylor expansion, when used inside evolution equa-
tions, was already advocated long ago to better account for
energy conservation [33,35]. It appears fairly easy to real-
ize that pushing it at higher and higher orders of lnu at
small x inside the convolution integral (29) should play a
role in it extending the domain of reliability of the solution
to larger and larger values of x. Indeed, in (29), one
integrates from u ¼ x to u ¼ 1 a certain function Fðlnu�
lnxÞ. F is expanded at large j lnxj around j lnuj ¼ 0, which
corresponds to u ¼ 1. If one increases x, the domain of

integration shrinks closer and closer to its upper bound u ¼
1. Suppose that we set x ¼ 1� . The integral becomesR
1
1� duFðlnu� lnð1� ÞÞ. Now, in the argument of F, for

all u in the domain of integration j lnuj � j lnxj, such that a
reliable expansion of F, if it exists (it depends on its radius
of convergence), must involve a large number of terms.
This is like expanding a function fðt� aÞ around fð�aÞ:
for jaj � j lnxj � t� lnu � ln1, a few powers of t provide
a good approximation to fðt� aÞ, but when a decreases,
expanding fðt� aÞ around fð�aÞ uses an expansion pa-
rameter t of the same order of magnitude as a itself. We
conclude that increasing x requires going to higher and
higher orders in the expansion of F in powers of j lnuj.
Conversely, going to higher and higher order in this ex-
pansion is expected to yield a solution valid in a larger and
larger domain of x.
When applied to the evolution equations themselves,

and to the similar expansion in powers of ( lnz) that we
did in Sec. II, the same kind of arguments apply, which are
not unrelated with the link between MLLA and DGLAP
evolution equations. Since NMLLA corrections to 2-
particle correlations, unlike the ones for the inclusive k?
distribution, are directly connected with NMLLA correc-
tions to the evolution equations themselves, it is worth a
few comments concerning this issue.
(a) That MLLA evolution Eqs. (4) and (5) are, at least

for inclusive enough observables, valid in a much
broader x domain than has been known for a long
time [8]. It was furthermore noticed some years ago
[15] that, for parton multiplicities, the exact numeri-
cal solution of MLLA evolution equations perfectly
matched experimental results in a very large do-
main, and that, accordingly, the MLLA evolution
equations contain more information than expected
and the problems of finding their analytical solutions
are essentially of technical nature;

(b) at small x MLLA evolution equations are identical
to DGLAP evolution equations but for a shift by lnz
(z is the integration variable) of the variable Y ¼
yþ ‘ which controls the evolution of the jet hard-
ness [5,8];

(c) for soft outgoing hadrons (x small , j‘j � j lnxj
large), this shift is negligible in the hard parton
region (j lnzj< j lnxj). However, when going to
harder hadrons, that is when x grows, j‘j decreases
and j lnzj is no longer negligible. When it is so, the
function to integrate is no longer safely approxi-
mated by its 0th order expansion (corresponding to
lnz ¼ 0) and higher powers of lnz are needed. This
provides, in addition to the argumentation at the
beginning of this subsection, another link between
this expansion at higher orders and going to larger x;

(d) accordingly, the Taylor expansion that we used in-
side MLLA evolution equations, which extends
their ‘‘validity’’ to larger x, may contribute to span-
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ning a bridge between them and DGLAP evolution
equations (see for example [39,40]).

ACKNOWLEDGMENTS

It is pleasure to thank Yu. L. Dokshitzer, I.M. Dremin
and W. Ochs for illuminating discussions. We also thank S.
Jindariani (CDF) for an invaluable exchange of informa-
tion concerning CDF data.

APPENDIX A: NMLLA CORRECTIONS
NEGLECTED IN THE DERIVATION OF THE

APPROXIMATE EQUATIONS FOR THE
INCLUSIVE SPECTRUM

To get a self-contained equation for the inclusive spec-
trum inside a gluon jet, one needs to plug in consistently

Q ¼ CF
Nc

½1þ ða1 � ~a1Þ ‘�GþOð�2
0Þ;

Q‘ ¼ CF
Nc

G‘ þOð�2
0Þ

(A1)

respectively, in the first and second terms of the right-hand
side of (20). Taking into account the correction propor-
tional to  ‘ in (A1) would provide an extra term

. . .þ 2

3

nfTR
Nc

CF
Nc

ða1 � ~a1ÞG‘

which adds to the right-hand side of (21) and slightly
changes the value of a2 (24d) from 0.06 to 0.08; this
number is also small, such that the approximation that
we justify in Appendix B remains valid.

APPENDIX B: STEEPEST DESCENT EVALUATION
OF (23) FOR CONSTANT �2

0

We solve the self-contained gluon Eq. (23) with frozen
�s by performing the Mellin’s transform

Gð‘; yÞ ¼
ZZ

C

d!d�

ð2�iÞ2 e
!‘e�yGð!; �Þ: (B1)

The contour of integration (C) lies to the right of all poles,
and Gð!; �Þ is the ‘‘propagator’’ in Mellin’s space.
Plugging (B1) into (23) yields

Gð‘; yÞ ¼
Z
C

d!

2�i
exp

�
!‘þ �2

0

�
1

!
� a1

�
yþ a2�

2
0!y

�
:

(B2)

The simplest way to estimate the previous Mellin’s repre-
sentation is by substituting the DLA saddle point !0 ¼
�0

ffiffi
y
‘

q
into the MLLA ( / a1) and NMLLA ( / a2) terms.

Doing so, the steepest descent evaluation of the inclusive
spectrum at fixed �s in the limit ‘� 1 (x� 1) leads to

FIG. 16 (color online). Single-inclusive spectrum at fixed �s
as a function of y at Y�0

¼ 7:5 and ‘ ¼ 2:5.

FIG. 17 (color online). Logarithmic derivatives  ‘ (top) and
 y (bottom) of the inclusive spectrum Gð‘; Y�0

Þ at Y�0
¼ 7:5.
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Gð‘; yÞ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0y

1=2

�‘

s
exp

�
2�0

ffiffiffiffiffi
‘y

p � a1�
2
0yþ a2�

3
0y

ffiffiffi
y

‘

r �
:

(B3)

The result, plotted on Fig. 16 together with the DLA and
MLLA results (still at fixed �s), shows no significant
difference between the MLLA and NMLLA solutions.

We can therefore safely use the exact MLLA solution
(25) to compute the NMLLA inclusive k?-distribution.
Likewise, the logarithmic derivatives  ‘ ¼ G‘=G and
 y ¼ Gy=G

 ‘ð‘; yÞ ¼ �0

ffiffiffi
y

‘

r
� 1

2
a2�

3
0

�
y

‘

�
3=2
;

 yð‘; yÞ ¼ �0

ffiffiffi
‘

y

s
� a1�

2
0 þ

3

2
a2�

3
0

ffiffiffi
y

‘

r
;

(B4)

which are used to evaluate 2-particle correlation, are dis-
played in Fig. 17 as a function of ‘ ¼ Y� � y.

There, again, the difference between MLLA and
NMLLA is negligible, such that the exact MLLA expres-
sion of the single-inclusive distribution can be taken as a
good approximation in the evaluation of NMLLA 2-
particle correlations.

APPENDIX C: SECOND DERIVATIVE OF THE
SPECTRUM G‘‘ AT � ¼ 0

The expression of the second derivative of the inclusive
spectrum for a gluon jet reads

G‘‘ð‘; yÞ � Gð‘; yÞð 2
g;‘ þ  g;‘‘Þð‘; yÞ

¼ 2

‘þ y

�
G‘ð‘; yÞ � 1

‘þ y
Gð‘; yÞ

�
þ �ðBÞ

�0

�
Z �=2

�ð�=2Þ
d�

�
e�ðB�2Þ�

�
1

�2
0

F Bþ2 þ 6

�0ð‘þ yÞ
� sinh�F Bþ1 þ 8

ð‘þ yÞ2 sinh
2�F B

�
: (C1)

IB is the modified Bessel function of the first kind. G‘‘ is
displayed in Fig. 18 as a function of y for three values of ‘.
We notice that it is negative at small values of y and gets
positive at larger y.

APPENDIX D: SCALING VIOLATIONS

Varying uE� to E� in the argument of the DGLAP
splitting function DA

A0
in (37) yields corrections of relative

magnitude Oð�sÞ which are accordingly NMLLA. We
need to estimateZ 1

x
duuDA

A0
ðu; E�0; uE�Þ �

Z 1

x
duuDA

A0
ðu; �ðuÞÞ (D1)

where

�ðuÞ ¼ 1

b
ln

�
lnE�0

�

lnuE��

�
; b ¼ 4Nc�0:

Writing

DA
A0
ðu; E�0; uE�Þ ¼ elnuðd=ðd lnðE�ÞÞÞDA

A0
ðu; E�0; E�Þ;

where

d

d lnðE�Þ ¼ d

d�

d�

d lnðE�Þ ¼ � 1

b

1

lnðE�Þ
d

d�
;

leads to

elnuðd=ðd lnðE�ÞÞÞ ¼ 1� 1

b

lnu

lnðE�Þ
d

d�
þOð�2

sÞ:

Finally, (D1) can be approximated byZ 1

x
duuDA

A0
ðu; E�0; uE�Þ �

Z 1

x
duuDA

A0
ðu; E�0; E�Þ

� 1

b

1

lnE��

Z 1

x
duu lnu

@DA
A0

@�

� ðu; �ðu ¼ 1ÞÞ þOð�2
sÞ:

We can now estimate the order of magnitude of this
correction, taking, for example, the analytic form of Dq

qðuÞ
(nonsinglet combination of quark distributions) in the u!
1 limit [8,41]

Dq
qðuÞ � ð1� uÞ�1þ4CF�

with � ¼ �ðu ¼ 1Þ ¼ 1
b lnð

Y�0

Y�
Þ. We need to compare

FIG. 18 (color online). Second derivative of the single-
inclusive spectrum as a function of y at Y�0

¼ 7:5.
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I ¼
Z 1

x
duuð1� uÞ�1þ4CF�

with

�I¼ 4CF
bð‘þyþ�Þ

Z 1

x
duulnulnð1�uÞð1�uÞ�1þ4CF�ðu¼1Þ:

Taking, for instance, �ðY�0
¼ 6; Y� ¼ 3Þ ¼ 0:08, which is

a typical value at LEP or Tevatron energy scales, one finds
�I=I � 0:04. When Y� ! Y�0

, this ratio tends very fast to

0, such that the role of this correction at larger k? is
negligible.

APPENDIX E: EXACT VERSUS APPROXIMATE
NMLLA COLOR CURRENTS

Using (26) yields the following exact (in the sense that it
takes into account all subleading corrections coming from
(26)) expression for the color currents

hCiexacti ð‘; yÞ ¼ hCiapproxi ð‘; yÞ þ huiqi ð‘; yÞ
CF
Nc

½ða1 � ~a1Þ
�  g;‘ð‘; yÞ þ ða1ða1 � ~a1Þ þ ~a2 � a2Þ
� ð 2

g;‘ þ  g;‘‘Þð‘; yÞ� þ �huiqi ð‘; yÞ

� CF
Nc

ða1 � ~a1Þ 2
g;‘ð‘; yÞ þOð�2

0Þ; (E1)

where i ¼ g, q, and huiqi are given in [5]. The approximate
expression, used in the core of the paper, only keeps
ðCF=NcÞG in (26).

In Fig. 19, the exact and approximate color currents are
shown to be in practice indistinguishable, which justifies
the use of the latter in the core of the paper.

We also performed the following approximation to
evaluate the color current:

’‘ �  q;‘ ¼  g;‘

�
1þ ða1 � ~a1Þ

�
G‘‘

G‘

�G‘

G

��
þOð�2

0Þ
�  g;‘ �  ‘: (E2)

In fact, ða1 � ~a1Þ � 0:18 and G‘‘=G‘ �G‘=G ¼ Oð�0Þ.
These approximations were also made and numerically
tested in [4,5] (see, for example, Fig. 20 in [5]).

APPENDIX F: EXPRESSION OF �hCiNMLLA�MLLA
A0

A straightforward calculation that follows from (41)
gives, respectively, for the gluon and quark jets, the follow-
ing results:

�hCiNMLLA�MLLA
g ¼ 1

2

�
12:7394

�
�1:49751� 1

9
ln
‘þ yþ �

Y�0
þ �

��
�0:260721� 1

9
ln
‘þ yþ �

Y�0
þ �

��
‘þ yþ �

Y�0
þ �

�
50=81

þ 356:711

�
�0:0369486� 1

9
ln
‘þ yþ �

Y�0
þ �

��
0:377382� 1

9
ln
‘þ yþ �

Y�0
þ �

��
ð 2

g;‘ þ  g;‘‘Þ;

�hCiNMLLA�MLLA
q ¼ 1

2

�
�22:6479

�
�0:936071� 1

9
ln
‘þ yþ �

Y�0
þ �

��
0:164816� 1

9
ln
‘þ yþ �

Y�0
þ �

��
‘þ yþ �

Y�0
þ �

�
50=81

þ 356:711

�
�0:0635496� 1

9
ln
‘þ yþ �

Y�0
þ �

��
0:154028� 1

9
ln
‘þ yþ �

Y�0
þ �

��
ð 2

g;‘ þ  g;‘‘Þ;

where the expression and behavior of the function ( 2
g;‘ þ

 g;‘‘) are given in Appendix C.

APPENDIX G: FIXING AND VARYING ‘min

Our small x calculation cannot be trusted below a certain
‘min, otherwise, as shown in Fig. 20, d2N=d‘dy gets nega-
tive in the perturbative domain.

We give in Table I values of ‘min as they come out from
the requirement of positivity, for different values of the jet
hardness (and the corresponding maximal values of y).

‘min is not an intrinsic (physical) characteristic of the
system under concern (gluon or quark jet), it is only an ad
hoc parameter below which poor credibility can be at-
tached to the results. One notices in Table I that, at a given
Q, the ‘min for a quark jet is always larger than the one for a

gluon jet; this only means that our calculations can be
pushed to larger x for gluons than for quarks without
encountering problems of positivity. The question then
arises whether, in calculating the inclusive k? distribution
of a mixed jet, one should attach the same ‘min to each of its

FIG. 19 (color online). Approximate (used in the core of the
paper) and exact color currents for a gluon jet.
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components, which can only be, of course, the larger one,
that is, the one of the quark component, or give to each
component its proper value of ‘min as given in Table I. The
simple answer to this question comes from the fact that the
two choices give, in practice, extremely close results.
Deeper considerations on which ‘min should be chosen
are thus irrelevant.

For the sake of completeness, we plot in Fig. 21 the
inclusive gluon k?-distribution at Y�0

¼ 6, for different

values of ‘gmin, both at MLLA (top) and NMLLA (bottom).

Changing ‘gmin from 1 to 1.5 modifies the NMLLA spec-

trum by no more than 20% for logðk?=1 GeVÞ ¼ 2:5. At
MLLA, the dependence proves much more dramatic.
Like for the variation with �QCD in Sec. III E, that the

variations with ‘min seem to increase with k? is only an
artifact due to the normalization at the first bin.

APPENDIX H: NMLLATERMS NEGLECTED IN
VB

The approximations we have made in (58) needs further

comments; indeed one has to replaceQ andQð2Þ by the full
MLLA expressions

FIG. 20 (color online). d2N
d‘dy for a gluon jet (top) and a quark jet

(bottom) as a function of y for three values of ‘.

TABLE I. Values of ‘min and ymax for different values of the
jet hardness.

Q (GeV) Y�0
‘
g
min y

g
max ‘

q
min y

q
max

19 (CDF) 4.3 0.9 3.4 1.6 2.7

27 (CDF) 4.7 1.0 3.8 1.7 3.1

37 (CDF) 5.0 1.0 4.1 1.8 3.4

50 (CDF) 5.3 1.1 4.4 1.9 3.7

68 (CDF) 5.6 1.1 4.7 2.0 4.0

90 (CDF) 5.9 1.2 5.0 2.0 4.3

119 (CDF) 6.2 1.2 5.3 2.1 4.6

155 (CDF) 6.4 1.3 5.4 2.2 4.7

450 (LHC) 7.5 1.4 6.1 2.4 5.1

FIG. 21 (color online). The dependence on ‘gmin of the inclu-
sive gluon k? distribution for Y�0

¼ 6 at MLLA (top) and

NMLLA (bottom). The curves and the values of ‘min indicated
in the caption are set in the same order.
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Q ¼ CF
Nc

½1þ ða1 � ~a1Þ ‘�GþOð�2
0Þ; (H1)

Qð2Þ
Q1Q2

� 1

Gð2Þ
G1G2

� 1
¼ Nc
CF

�
1þ ðb1 � a1Þð ‘1 þ  ‘2Þ

1þ �

2þ �

�

þOð�2
0Þ (H2)

respectively. b1 is defined in (62) and

� ¼ ��2
0 ð 1;‘ 2;y þ  1;y 2;‘Þ ¼ Oð1Þ;  ‘ ¼ Oð�0Þ:

(H2) was obtained in [5] and displayed later in [6].
Working out the structure of (H2) after we have inserted
(H1), leads to

Qð2Þ ¼ CF
Nc

Gð2Þ þ CF
Nc

�
CF
Nc

� 1

�
G1G2 þ CF

Nc
ðb1 � a1Þ

� ð ‘1 þ  ‘2Þ
1þ �

2þ �
ðGð2Þ �G1G2Þ þ CF

Nc
ða1 � ~a1Þ

� ð ‘;1 þ  ‘;2ÞðGð2Þ �G1G2Þ þ C2
F

N2
c

ða1 � ~a1Þ

� ð ‘1 þ  ‘2ÞG1G2 þOð�2
0Þ: (H3)

As already mentioned in [6], the coefficient (b1 � a1),

which is color suppressed, is ’ 10�2,  ‘ ’ 10�1 and 1þ�
2þ� ’

3
4 . Thus, the whole correction is roughly ’ 10�4. This is

why it is not taken into account here, which allows for
analytic results. Introducing the terms of (H3) / ða1 � ~a1Þ
in the right-hand side of (56) provides extra terms

. . .þ 2nfTR
3Nc

CF
Nc

ða1 � ~a1Þð ‘;1 þ  ‘;2Þ�2
0ðGð2Þ �G1G2Þ

þ 2nfTR
3Nc

C2
F

N2
c

ða1 � ~a1Þ�2
0ðG1G2Þ‘

which add to the right-hand side of (59). They are both, in
particular, color suppressed, the first one by a factor /
1=N2

c and the second one by / 1=N3
c . Thus, for example,

taking  ‘ ’ 10�1, and taking into account that 2nfTR=3 ¼

1 for nf ¼ 3, the coefficient a2 defined in (24d) and which

also appears in the right-hand side of (61) would be modi-
fied to the close value a2 � 0:07. Finally, since in the
above

. . .þ 2nfTR
3Nc

CF
Nc

�
CF
Nc

� 1

�
ða1 � ~a1Þ�2

0ðG1G2Þ‘
� �0:01� �2

0ðG1G2Þ‘;
b2 defined in (62) would be changed to the value b2 �
0:17, which only represents a 1% variation.
The derivatives of (H1) and (H2) with respect to ‘ are

therefore, respectively, approximated by

Q‘ ¼ CF
Nc

G‘ þOð�2
0Þ;

Qð2Þ
‘ ¼ CF

Nc
Gð2Þ
‘ þ CF

Nc

�
CF
Nc

� 1

�
ðG1G2Þ‘ þOð�2

0Þ;
(H4)

because the inclusion of higher-order contributions (com-
ing from the derivatives of the above Oð�0Þ terms) in the
nonsingular parts of the equations (such as (17), (20), (52),
and (57)) would yield corrections beyond the precision of
our approach.

APPENDIX I: LOGARITHMIC DERIVATIVES OF
THE INCLUSIVE SPECTRUM

The logarithmic derivatives of G, that are used in
Sec. VC, read

Gð2Þ
‘ ¼ CgG1G2ð�‘ þ  1;‘ þ  2;‘Þ;

ðG1G2Þ‘ ¼ G1G2ð 1;‘ þ  2;‘Þ;
Gð2Þ
‘‘ ¼ CgG1G2½ð�‘ þ  1;‘ þ  2;‘Þ2

þ �‘‘ þ  1;‘‘ þ  2;‘‘�;
ðG1G2Þ‘‘ ¼ G1G2½ð 1;‘ þ  2;‘Þ2 þ  1;‘‘ þ  2;‘‘�:

The functions introduced in (64) and (73) are the follow-
ing:

f1ð‘1; ‘2;�Þ ¼ ð 1;‘ þ  2;‘ þ �‘Þ2 þ  1;‘‘ þ  2;‘‘ � �0�
2
0ð 1;‘ þ  2;‘ þ �‘Þ þ �‘‘ ¼ Oð�2

0Þ;
f2ð‘1; ‘2;�Þ ¼ ð 1;‘ þ  2;‘Þ2 þ  1;‘‘ þ  2;‘‘ � �0�

2
0ð 1;‘ þ  2;‘Þ ¼ Oð�2

0Þ;
f3ð‘1; ‘2;�Þ ¼ 2 1;‘ 2;‘ þ 2�‘ð 1;‘ þ  2;‘Þ þ �‘‘ þ �2

‘ � �0�
2
0�‘ ¼ Oð�2

0Þ;
f4ð‘1; ‘2;�Þ ¼  2

i;‘ þ  i;‘‘ � �0�
2
0 i;‘ ¼ Oð�2

0Þ:
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