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In a framework that makes close contact with modern effective field theories for nonrelativistic bound

states at zero temperature, we study the real-time evolution of a static quark-antiquark pair in a medium of

gluons and light quarks at finite temperature. For temperatures ranging from values larger to smaller than

the inverse distance of the quark and antiquark, 1=r, and at short distances, we derive the potential

between the two static sources, and calculate their energy and thermal decay width. Two mechanisms

contribute to the thermal decay width: the imaginary part of the gluon self-energy induced by the Landau

damping phenomenon, and the quark-antiquark color-singlet to color-octet thermal breakup.

Parametrically, the first mechanism dominates for temperatures such that the Debye mass is larger than

the binding energy, while the latter, which we quantify here for the first time, dominates for temperatures

such that the Debye mass is smaller than the binding energy. If the Debye mass is of the same order as 1=r,

our results are in agreement with a recent calculation of the static Wilson loop at finite temperature. For

temperatures smaller than 1=r, we find new contributions to the potential, both real and imaginary, which

may be relevant to understand the onset of heavy quarkonium dissociation in a thermal medium.
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I. INTRODUCTION

The study of heavy quark-antiquark pairs in a thermal
medium at temperature T has received a lot of attention
since it was suggested that quarkonium dissociation due to
color screening may be a striking signature of the quark-
gluon plasma formation [1]. Based on this idea and the
assumption that medium effects can be understood in terms
of a temperature-dependent potential, the problem of
quarkonium dissociation has been addressed in terms of
potential models with screened temperature-dependent po-
tentials over the past 20 years (see, e.g., Refs. [2–4] for
some representative works). A derivation from QCD of the
in-medium quarkonium potential has not appeared in the
literature so far and expectedly not all medium effects can
be incorporated into a potential. A first step toward a QCD
derivation of the quarkonium potential at finite temperature
has been a recent calculation [5] of the static Wilson loop
in the imaginary-time formalism at order �s. After ana-
lytical continuation to real time, the calculation shows a
real part, which is a screened Coulomb potential, and an
imaginary part that may be traced back to the scattering of
particles in the medium carrying momenta of order T with
spacelike gluons, a phenomenon also known as Landau
damping. Some applications can be found in [6,7]. First
principle calculations of quarkonium properties at finite
temperature include calculations of Euclidean correlation
functions in lattice QCD and the reconstruction of the
corresponding spectral functions using the maximum en-
tropy method. At the present, however, a reliable determi-
nation of the quarkonium spectral functions from the

lattice data appears very difficult due to statistical errors
and lattice discretization effects (see the discussion in
Ref. [8] and references therein).
In this work, we will study static quark-antiquark pairs

in a thermal bath in real-time formalism (see, e.g., [9]) and
in a framework that makes close contact with effective field
theories (EFTs) for nonrelativistic bound states at T ¼ 0
[10]. In this framework, we will address the problem of
defining and deriving the potential between the two static
sources, and we will calculate their energy and thermal
decay width. We will describe the system for temperatures
that range from larger to smaller values with respect to the
inverse distance of the quark and antiquark, 1=r. In some
range, we will agree with previous findings; for tempera-
tures lower than the inverse distance of the quark and
antiquark, we will find new contributions to the potential,
both real and imaginary, with a nontrivial analytical struc-
ture. In particular, we will point out the existence of a new
type of process that contributes to the quark-antiquark
thermal decay width besides the Landau damping.
We will deal with static quarks only. The static case is

relevant also for the study of bound states made of quarks
with a large but finite mass m, like quarkonia, in a thermal
medium. Quarkonium is expected to exist in the medium if
the temperature and the other thermodynamical scales are
much lower than m. In this situation, one may consistently
integrate out the mass from QCD and expand order by
order in 1=m. The leading order of the expansion corre-
sponds to QCD with a static quark and a static antiquark.
Higher-order corrections in 1=m may be systematically
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included in the framework of nonrelativistic QCD
(NRQCD) [11].

Bound states at finite temperature are systems charac-
terized by many energy scales. There are the thermody-
namical scales that describe the motion of the particles in
the thermal bath: the temperature scale T (we will not
distinguish between T and multiple of �T), the Debye
mass mD, which is the scale of the screening of the chro-
moelectric interactions, and lower energy scales. In the
weak-coupling regime, which we will assume throughout
this work, one has mD � gT � T. Moreover, there are the
scales typical of the bound state. In the case of a system of
two static sources, the scales may be identified with the
inverse of the quark-antiquark distance r and the static
potential, the first being much larger than the second. We
will also assume that both scales are much larger than the
typical hadronic scale �QCD, i.e., we will concentrate on

the short-distance part of the potential (explicit expressions
of the potential, whose derivation is the main scope of the
paper, can be found in the following sections; for the
purpose of the power counting the leading term is suffi-
cient). This may be the part of the potential relevant for the
lowest quarkonium resonances like the J= or the �ð1SÞ,
which are the most tightly bound states. Thermodynamical
and bound-state scales get entangled and different hierar-
chies are possible. Bound states are expected to dissolve in
the bath at temperatures such that mD is larger than the
typical inverse size of the bound state. Hence we will
concentrate on the situation 1=r * mD (i.e., 1=r� mD

or 1=r�mD), and distinguish between the two cases
1=r� T and 1=r� T.

The paper is organized as follows. Sections II and III are
introductory: they deal with QCD with static sources,
which we call static QCD for short, but do not include
bound states. In Sec. II, we write the quark and gluon
propagators in static QCD at finite T. In Sec. III, we
summarize one-loop finite T contributions in static QCD
that are relevant to the present work. In Sec. IV, we
introduce the relevant EFTs and calculate the static poten-
tial in a situation where the inverse distance between the
static quark and antiquark is larger than the temperature of
the thermal bath: 1=r� T � mD. When T is as small as
the binding energy, we also calculate the leading thermal
contribution to the static energy and the decay width. In
Sec. V, we provide an alternative derivation of the potential
in perturbative QCD. In Sec. VI, we calculate the static
potential in the situation T � 1=r * mD. In Sec. VII, we
summarize and discuss our results and list some possible
developments.

II. STATIC QCD AT FINITE T

We consider here QCD with a static quark and anti-
quark; in particular, we write the quark, antiquark, and the
gluon propagators at finite T. To simplify the notation, we
will drop the color indices from the propagators.

Throughout the paper, the complex time contour for the
evaluation of the real-time thermal expectation values goes
from a real initial time ti to a real final time tf , from tf to
tf � i0þ, from tf � i0þ to ti � i0þ, and from ti � i0þ to
ti � i=T. The propagators will be given with this conven-
tional choice of contour. Furthermore, the following nota-
tions will be used. We indicate thermal averages as

hOiT ¼ Trfe�H=TOg
Trfe�H=Tg ; (1)

where H is the Hamiltonian of the system. We also define

nFðk0Þ ¼ 1

ek
0=T þ 1

; (2)

nBðk0Þ ¼ 1

ek
0=T � 1

: (3)

A. Quark propagator

In order to show the behavior of static sources in a
thermal bath, it may be useful to consider first a quark
(or antiquark) with a large but finite mass m, m� T, and
then perform the m! 1 limit.
We define the propagators

S>��ðxÞ ¼ h �ðxÞ y
�ð0ÞiT; (4)

S<��ðxÞ ¼ �h y
�ð0Þ �ðxÞiT; (5)

where  is the Pauli spinor field that annihilates the fer-
mion (in the following, the Pauli spinor field that creates
the antifermion will be denoted �). The free propagators,

S>ð0Þ
�� ¼ ���S

>ð0Þ; S<ð0Þ
�� ¼ ���S

<ð0Þ; (6)

satisfy the equations [in momentum space: SðkÞ ¼R
d4xeikxSðxÞ]:

k0S>ð0ÞðkÞ ¼ mS>ð0ÞðkÞ; (7)

k0S<ð0ÞðkÞ ¼ mS<ð0ÞðkÞ; (8)

where we have neglected corrections of order 1=m or
smaller: they will eventually vanish in the m! 1 limit.
If the heavy quarks are part of the thermal bath, they

satisfy the Kubo-Martin-Schwinger relation:

S<ð0ÞðkÞ ¼ �e�k0=TS>ð0ÞðkÞ: (9)

From the equal-time canonical commutation relation it
follows the sum rule

Z dk0

2�
ðS>ð0ÞðkÞ � S<ð0ÞðkÞÞ ¼ 1: (10)

The solutions of the Eqs. (7)–(10) are

S>ð0ÞðkÞ ¼ ð1� nFðk0ÞÞ2��ðk0 �mÞ; (11)
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S<ð0ÞðkÞ ¼ �nFðk0Þ2��ðk0 �mÞ: (12)

The spectral density �ð0Þ
F is given by

�ð0Þ
F ðkÞ ¼ S>ð0ÞðkÞ � S<ð0ÞðkÞ ¼ 2��ðk0 �mÞ; (13)

and the free propagator,

Sð0ÞðxÞ ¼ �ðx0ÞS>ð0ÞðxÞ � �ð�x0ÞS<ð0ÞðxÞ; (14)

is given in momentum space by

Sð0ÞðkÞ ¼ i

k0 �mþ i�
� nFðk0Þ2��ðk0 �mÞ: (15)

In the static limit m! 1, the propagators simplify
because nFðmÞ ! 0 for m! 1. Moreover, we may get
rid of the explicit mass dependence by means of the field
redefinition  !  e�imt, which amounts to change k0 �m
to k0 in the expressions for the propagators and the spectral
density; they read now

S>ð0ÞðkÞ ¼ 2��ðk0Þ; (16)

S<ð0ÞðkÞ ¼ 0; (17)

Sð0ÞðkÞ ¼ i

k0 þ i�
; (18)

�ð0Þ
F ðkÞ ¼ 2��ðk0Þ: (19)

The free static propagator is the same as at zero tempera-
ture. On the other hand, if wewould have assumed from the

beginning that S<ð0ÞðkÞ ¼ 0, i.e., that there is no backward
propagation of a static quark (in agreement with the Kubo-
Martin-Schwinger formula in the m! 1 limit) then, to-

gether with the equations of motion k0S>ð0ÞðkÞ ¼ 0,

k0S<ð0ÞðkÞ ¼ 0 (obtained after removing m via field rede-
finitions) and the sum rule (10), we would have obtained
Eqs. (16), (18), and (19).

The real-time free static propagator for the quark reads

S ð0Þ
��ðkÞ ¼ ���

Sð0ÞðkÞ S<ð0ÞðkÞ
S>ð0ÞðkÞ ðSð0ÞðkÞÞ�

� �

¼ ���

i
k0þi� 0

2��ðk0Þ �i
k0�i�

 !
; (20)

and for the antiquark

S ð0Þ
��ðkÞ ¼ ���

i
�k0þi� 0

2��ðk0Þ �i
�k0�i�

 !
: (21)

The main observation here is that, since the ½Sð0Þ
��ðkÞ�12

component vanishes, the static quark (antiquark) fields
labeled 2 never enter in any physical amplitude, i.e., any
amplitude that has the physical fields, labeled 1, as initial
and final states. Hence, when considering physical ampli-
tudes, the static fields 2 decouple and may be ignored.

The propagator Sð0Þ
�� may bewritten in a diagonal form as

S ð0Þ
��ðkÞ ¼ Uð0Þ

i
k0þi� 0

0 �i
k0�i�

 !
Uð0Þ; (22)

where

U ð0Þ ¼ 1 0
1 1

� �
; and for further use

½Uð0Þ��1 ¼ 1 0
�1 1

� �
:

(23)

Throughout the paper, we will use bold-face letters to
indicate 2� 2 matrices in the real-time formalism.

B. Gluon propagator

The gluon propagator in the real-time formalism can be
written as [9]

D ��ðkÞ ¼
D��ðkÞ D<

��ðkÞ
D>
��ðkÞ ðD��ðkÞÞ�

 !
; (24)

where

D>
��ðkÞ ¼

Z
d4xeik�xhA�ðxÞA�ð0ÞiT; (25)

D<
��ðkÞ ¼

Z
d4xeik�xhA�ð0ÞA�ðxÞiT; (26)

D��ðkÞ ¼
Z
d4xeik�x½�ðx0ÞhA�ðxÞA�ð0ÞiT

þ �ð�x0ÞhA�ð0ÞA�ðxÞiT�: (27)

Gluons being bosonic fields, the Kubo-Martin-Schwinger
relation reads

D<ðkÞ ¼ e�k0=TD>ðkÞ; (28)

from which it follows that

D>
��ðkÞ ¼ ð1þ nBðk0ÞÞ�B��ðkÞ; (29)

D<
��ðkÞ ¼ nBðk0Þ�B��ðkÞ; (30)

where

�B��ðkÞ ¼ D>
��ðkÞ �D<

��ðkÞ; (31)

is the spectral density.
We may express D�� also in terms of the retarded and

advanced propagators DR
�� and DA

��:

DR
��ðkÞ ¼

Z
d4xeik�x�ðx0Þh½A�ðxÞ; A�ð0Þ�iT; (32)

DA
��ðkÞ ¼ �

Z
d4xeik�x�ð�x0Þh½A�ðxÞ; A�ð0Þ�iT ; (33)

we have
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�B��ðkÞ ¼ DR
��ðkÞ �DA

��ðkÞ; (34)

D��ðkÞ ¼ DR
��ðkÞ þD<

��ðkÞ ¼ DA
��ðkÞ þD>

��ðkÞ

¼ DR
��ðkÞ þDA

��ðkÞ
2

þ
�
1

2
þ nBðk0Þ

�
�B��ðkÞ:

(35)

In the free case, in Coulomb gauge, the longitudinal and
transverse propagators have the following expressions
[12]:

D ð0Þ
00 ð ~kÞ ¼

i
~k2

0

0 � i
~k2

 !
; (36)

D ð0Þ
ij ðkÞ ¼

�
�ij � kikj

~k2

�

�
(

i
k2þi� �ð�k0Þ2��ðk2Þ

�ðk0Þ2��ðk2Þ � i
k2�i�

 !

þ 2��ðk2ÞnBðjk0jÞ 1 1
1 1

� �)
; (37)

where k2 ¼ ðk0Þ2 � ~k2. Note that the longitudinal part of
the gluon propagator in Coulomb gauge does not depend
on the temperature. The temperature enters only the trans-
verse part, which splits in the sum of a T ¼ 0 piece and a
thermal one.

C. Lagrangian

The Lagrangian of QCD with a static quark, a static
antiquark, and nf massless quark fields qi is

L ¼ � 1

4
Fa	
F

a	
 þXnf
i¼1

�qii 6Dqi þ  yiD0 þ �yiD0�;

(38)

where iD0 ¼ i@0 � gA0, i ~D ¼ i ~rþ g ~A, and igF	
 ¼
½D	;D
�. The free static quark propagator is given by

Eq. (20), the free static antiquark propagator by Eq. (21),
and the free gluon propagator (in Coulomb gauge) by
Eqs. (36) and (37). Note that transverse gluons do not
couple directly to static quarks.

III. ONE-LOOP FINITE T CONTRIBUTIONS IN
STATIC QCD

Throughout this work, we will assume that T, gT �
�QCD; this enables us to evaluate thermal properties of

QCD in the weak-coupling regime. In this section, we
consider one-loop thermal contributions to the static quark
propagator, quark-gluon vertices, and gluon propagator.
When the loop momenta and energies are taken at the scale
T and the external momenta are much lower, so that we

may expand with respect to them, these correspond to the
hard thermal loop (HTL) contributions [13].
The one-loop contributions to the static quark self-

energy, to the static quark longitudinal-gluon vertex and
to the static quark transverse-gluon vertex are displayed in
Figs. 1–3, respectively. It is convenient to fix the Coulomb
gauge. In that gauge, longitudinal gluons do not depend on
the temperature [see Eq. (36)] and the above diagrams do
not give thermal contributions. Moreover, if evaluated in
dimensional regularization they vanish after expanding in
the external momenta. Throughout this work, wewill adopt
the Coulomb gauge unless stated otherwise.
Momenta and energies of order T contribute to the gluon

self-energy diagrams. Since only longitudinal gluons
couple to static quarks, we will focus on the longitudinal
part of the polarization tensor. This will be the only com-
ponent of the gluon polarization tensor relevant to the
paper. Diagrams contributing to the thermal part of the
longitudinal-gluon polarization tensor in real-time formal-
ism at one-loop order are shown in Fig. 4. In Sec. III A, we
will give a general expression, and in Secs. III B, III C, and
III D, we will expand it in some relevant limits.

FIG. 1. Self-energy diagram. The continuous line stands for a
static quark, the dashed one for a longitudinal gluon.

FIG. 3. Vertex correction to the static quark line; the incoming
gluon is transverse.

FIG. 2. Vertex correction to the static quark line; the incoming
gluon is longitudinal.
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A. The longitudinal-gluon polarization tensor

Summing up all thermal contributions from the diagrams of Fig. 4, we obtain (for details see [14])

½�R
00ðkÞ�thermal ¼ ½�00ðk0 þ i�; ~kÞ�thermal; (39)

½�A
00ðkÞ�thermal ¼ ½�00ðk0 � i�; ~kÞ�thermal; (40)

½�00ðkÞ�thermal ¼ ½�00;FðkÞ�thermal þ ½�00;GðkÞ�thermal; (41)

½�00;FðkÞ�thermal ¼
g2TFnf

2�2

Z þ1

�1
dq0jq0jnFðjq0jÞ

�
2�

�
4ðq0Þ2 þ k2 � 4q0k0

4jq0jj ~kj
�
ln
k2 � 2q0k0 þ 2jq0jj ~kj
k2 � 2q0k0 � 2jq0jj ~kj

þ
�
4ðq0Þ2 þ k2 þ 4q0k0

4jq0jj ~kj
�
ln
k2 þ 2q0k0 � 2jq0jj ~kj
k2 þ 2q0k0 þ 2jq0jj ~kj

�
; (42)

½�00;GðkÞ�thermal ¼ g2Nc
2�2

Z þ1

�1
dq0jq0jnBðjq0jÞ

�
1þ ð2q0 � k0Þ2

8ðq0Þ2 � 1

2
� j ~kj2

2ðq0Þ2 þ 2

� j ~kj
2jq0j �

ðj ~kj2 þ ðq0Þ2Þ2
8jq0j3j ~kj � ð2q0 � k0Þ2

4ðq0 � k0Þ2

�
�
�ðj ~kj2 þ ðq0Þ2Þ2

8jq0j3j ~kj þ j ~kj
2jq0j

��
ln

��������j
~kj � jq0j
j ~kj þ jq0j

��������
� ð2q0 � k0Þ2

4

�
1

2jq0j j ~kj þ
1

ðq0 � k0Þ2
�ðk2 � 2q0k0Þ2

8jq0j3j ~kj þ k2 � 2q0k0

2jq0j j ~kj þ jq0j
2j ~kj

��

� ln
k2 � 2q0k0 þ 2jq0j j ~kj
k2 � 2q0k0 � 2jq0j j ~kj

�
; (43)

where R stands for retarded, A for advanced, F labels the
contribution coming from the loops of nf massless quarks
(first diagram of Fig. 4), and G labels the contribution from
the second, third, and fourth diagram of Fig. 4. Nc ¼ 3 is
the number of colors and TF ¼ 1=2. In the context of the
imaginary-time formalism, Eqs. (42) and (43) can be found

also in textbooks such as [15]. The original derivation of
(43) is in [16].
The retarded and advanced gluon self-energies contrib-

ute to the retarded and advanced gluon propagators. From
the retarded and advanced gluon propagators we may
derive the full propagator, the spectral density, and finally

FIG. 4. Diagrams contributing to the longitudinal component of the gluon polarization tensor at one-loop order. The continuous loop
stands for light (massless) quark loops, dashed lines for longitudinal gluons, and curly lines for transverse gluons. Ghosts do not
contribute to the thermal part of the gluon polarization tensor [12].
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all components of the 2� 2matrix of the real-time gluon propagator along the lines of Sec. II B. In the following, we study
Eqs. (39)–(43) in different kinematical limits.

B. The longitudinal-gluon polarization tensor for k0 � T� j ~kj
The typical loop momentum q0 is of order T. If we expand ½�R

00ðkÞ�thermal and ½�A
00ðkÞ�thermal in k

0 � T � j ~kj and keep
terms up to order k0, the result is

Re½�R
00ðkÞ�thermal ¼ Re½�A

00ðkÞ�thermal

¼ g2TFnf

�2

Z þ1

0
dq0q0nFðq0Þ

�
2þ

� j ~kj
2q0

� 2
q0

j ~kj
�
ln

��������j
~kj � 2q0

j ~kj þ 2q0

��������
�

þ g2Nc
�2

Z þ1

0
dq0q0nBðq0Þ

�
1�

~k2

2ðq0Þ2 þ
�
� q0

j ~kj þ
j ~kj
2q0

� j ~kj3
8ðq0Þ3

�
ln

��������j
~kj � 2q0

j ~kj þ 2q0

��������
�
; (44)

Im ½�R
00ðkÞ�thermal ¼ �Im½�A

00ðkÞ�thermal

¼ 2g2TFnf
�

k0

j ~kj
Z þ1

j ~kj=2
dq0q0nFðq0Þ þ g2Nc

�

k0

j ~kj
� ~k2
8
nBðj ~kj=2Þ þ

Z þ1

j ~kj=2
dq0q0nBðq0Þ

�
1�

~k4

8ðq0Þ4
��
:

(45)

Equation (45) and the gluonic part of (44) are in agreement
with [16].

C. The longitudinal-gluon polarization tensor
for k0 � j ~kj � T

If we assume that all components of the external four-
momentum are much smaller than the loop momentum
q0 � T, then we may expand ½�R

00ðkÞ�thermal and

½�A
00ðkÞ�thermal in k

0 � j ~kj � T. At leading order, we ob-

tain the well-known HTL expression for the longitudinal-
gluon polarization tensor, which may be found, for in-
stance, in [9]

Re ½�R
00ðkÞ�thermal ¼ Re½�A

00ðkÞ�thermal

¼ m2
D

�
1� k0

2j ~kj ln
��������k

0 þ j ~kj
k0 � j ~kj

��������
�
; (46)

Im ½�R
00ðkÞ�thermal ¼ �Im½�A

00ðkÞ�thermal

¼ m2
D

k0

j ~kj
�

2
�ð�k2Þ; (47)

where mD is the Debye mass:

m2
D ¼ g2T2

3
ðNc þ TFnfÞ: (48)

We have used that
R1
0 dq

0q0nFðq0Þ ¼ �2T2=12 andR1
0 dq

0q0nBðq0Þ ¼ �2T2=6. Note that the expansions for

j ~kj ! 0 of (44) and (45) and those for k0 ! 0 of (46) and
(47) agree with each other at leading order.

1. The resummed longitudinal-gluon propagator

The longitudinal polarization tensor induces corrections
to the longitudinal-gluon propagator:

DR;A
00 ðkÞ ¼ i

~k2
� i

~k4
�R;A

00 ðkÞ þ � � � : (49)

Since�R;A
00 contains a real and an imaginary part, alsoDR;A

00

acquires a real and an imaginary part.
If the typical momentum transfer is of the order of the

Debye mass, j ~kj �mD, then the series in (49) needs to be
resummed:

DR;A
00 ðkÞ ¼ i

~k2 þ�R;A
00 ðkÞ : (50)

The resummed longitudinal propagator depends on k0 and
has a real and an imaginary part. The Debye massmD plays
the role of a screening mass for longitudinal gluons whose

momenta are such that k0 � T and j ~kj �mD. A study of
the resummed gluon propagator in the real-time formalism
may be found in [17].
The role of the screening mass can be made more

evident if we assume further that k0 � j ~kj �mD � T
and expand Eq. (50) in k0 up to order k0; then we obtain

DR;A
00 ðkÞ ¼ i

~k2 þm2
D

	 �

2

k0

j ~kj
m2
D

ð ~k2 þm2
DÞ2

; (51)

where theþ and� signs refer to the retarded and advanced
propagators, respectively. The corresponding spectral den-
sity is
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�B00ðkÞ ¼ DR
00ðkÞ �DA

00ðkÞ ¼ �
k0

j ~kj
m2
D

ð ~k2 þm2
DÞ2

: (52)

Following Sec. II B and expanding in k0 also the Bose
factor, nBðk0Þ 
 T=k0, at leading order in k0, we obtain
that the resummed HTL longitudinal propagator in the
real-time formalism is

D00ð0; ~kÞ ¼ i

~k2 þm2
D

1 0

0 �1

 !

þ �
T

j ~kj
m2
D

ð ~k2 þm2
DÞ2

1 1

1 1

 !
: (53)

D. The longitudinal-gluon polarization tensor
for j ~kj � T � k0

If we assume that j ~kj � T � k0, then the expression for
the longitudinal-gluon polarization tensor may be ex-
tracted from Eqs. (44) and (45) by expanding for large

j ~kj=T. At leading order, we obtain

½�R
00ðkÞ�thermal ¼ ½�A

00ðkÞ�thermal ¼ �Ncg
2T2

18
: (54)

The result is real and does not depend on k. Moreover, only
the gluonic part of the polarization tensor contributes in
this limit and at this order. Higher-order real corrections

are suppressed by T2= ~k2, while higher-order imaginary
corrections are exponentially suppressed.

IV. BOUND STATES FOR 1=r � T

Starting with this section, we shall address bound states
made of a static quark and antiquark in QCD at finite T.
Bound states introduce extra scales in the dynamics, be-
sides T and mD, that we have to account for. The most
relevant one is the distance r between the quark and the
antiquark. Throughout the paper, we will assume that
1=r� �QCD. We will further assume that also the binding

energy of the quark-antiquark static pair is larger than
�QCD.

First, we deal with the situation where the inverse dis-
tance of the two static sources is much larger than the
temperature: 1=r� T. Under this condition, we may in-
tegrate out 1=r from static QCD at T ¼ 0 order by order in
�s. The EFT that we obtain is potential nonrelativistic
QCD (pNRQCD) in the static limit [18,19], whose
Lagrangian can be written as

L ¼ � 1

4
Fa	
F

a	
 þXnf
i¼1

�qii 6Dqi þ
Z
d3rTr

�
Sy
�
i@0 þ CF

�Vs
r

�
Sþ Oy

�
iD0 � 1

2Nc

�Vo
r

�
O

�

þ VA TrfOy ~r � g ~ESþ Sy ~r � g ~EOg þ VB
2

TrfOy ~r � g ~EOþ OyO~r � g ~Eg þ � � � : (55)

The fields S ¼ S1c=
ffiffiffiffiffiffi
Nc

p
and O ¼ OaTa=

ffiffiffiffiffiffi
TF

p
are static

quark-antiquark singlet and octet fields, respectively, ~E is
the chromoelectric field: Ei ¼ Fi0, and CF ¼ ðN2

c �
1Þ=ð2NcÞ ¼ 4=3. The trace is over the color indices. The
matching coefficients�Vs ,�Vo , VA, VB are at leading order:
�Vs ¼ �s, �Vo ¼ �s, VA ¼ 1, and VB ¼ 1. Gluon fields
are multipole expanded and depend only on the center of
mass coordinate; they scale with the low-energy scales (T,
mD, �s=r, �QCD, . . .) that are still dynamical in the EFT.

The dots in the last line stand for higher-order terms in the
multipole expansion.

A. Singlet and octet propagators

The free real-time singlet and octet static propagators at
finite T are similar to the free static quark propagator (20),
although singlet and octet are bosons:

S singletðpÞ ¼
i

p0þCF�Vs=rþi�
0

2��ðp0 þ CF�Vs=rÞ �i
p0þCF�Vs=r�i�

0
@

1
A ¼ Uð0Þ

i
p0þCF�Vs=rþi�

0

0 �i
p0þCF�Vs=r�i�

0
@

1
AUð0Þ; (56)

S octetðpÞab ¼ �ab

i
p0��Vo=ð2NcrÞþi�

0

2��ðp0 � �Vo=ð2NcrÞÞ �i
p0��Vo=ð2NcrÞ�i�

0
@

1
A ¼ �abU

ð0Þ
i

p0��Vo=ð2NcrÞþi�
0

0 �i
p0��Vo=ð2NcrÞ�i�

0
@

1
AUð0Þ:

(57)

B. Nonthermal part of the singlet static potential

The contribution to the singlet static potential coming
from the scale 1=r can be read from the Lagrangian (55); it
is just the Coulomb potential, which in real-time formalism

reads

V sðrÞ ¼ �CF
�Vsð1=rÞ

r

1 0
0 �1

� �
; (58)
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where �Vsð1=rÞ is a series in �s: at leading order,

�Vsð1=rÞ ¼ �sð1=rÞ. Starting from order �4
s , �Vs is infra-

red divergent; these divergences, which appear at zero
temperature, have been considered elsewhere [20] and
will not matter here.

The matrix in (58) is such that

1 0
0 �1

� �
¼ ½Uð0Þ��1 1 0

0 �1

� �
½Uð0Þ��1: (59)

Together with Eq. (22), this guarantees that

SsingletðpÞ ¼
i

p0þi� 0

2��ðp0Þ �i
p0�i�

0
@

1
A

� X1
n¼0

2
4ð�iVsðrÞÞ

i
p0þi� 0

2��ðp0Þ �i
p0�i�

0
@

1
A
3
5n

;

(60)

i.e., that, like at T ¼ 0, the sum of all insertions of a
potential exchange between a free quark and antiquark
amounts to the propagator (56).

The singlet static potential does not get only contribu-
tions from the scale 1=r, but, if the next relevant scales are
the thermal ones, it will also get thermal contributions.
These will be the subject of the following sections.

C. Chromoelectric correlator

In the paper, it will become necessary to calculate the

chromoelectric correlator h ~EaðtÞ�ðt; 0Þadjab
~Ebð0ÞiT , where

�ðt; 0Þadjab is a Wilson line in the adjoint representation

connecting the points ðt; ~0Þ and ð0; ~0Þ by a straight line.
Such a correlator enters each time we consider diagrams
with two chromoelectric dipole insertions. In the real-time
formalism, the chromoelectric correlator is a 2� 2 matrix
in the field indices 1 and 2. We shall write it as

h ~EaðtÞ�ðt; 0Þadjab
~Ebð0ÞiT ¼ ðN2

c � 1Þ
Z dk0

2�
e�ik0t

Z d3k

ð2�Þ3
�ððk0Þ2DiiðkÞ þ ~k2D00ðkÞÞ;

(61)

where, at zeroth order in �s, D	
ðkÞ is the free gluon

propagator. In Coulomb gauge, the free gluon propagator
has been given in Eqs. (36) and (37); since the chromo-
electric correlator is a gauge invariant quantity the choice
of the gauge does not matter. At zeroth order in �s, the

thermal part of h ~EaðtÞ�ðt; 0Þadjab
~Ebð0ÞiT is

h ~EaðtÞ�ðt; 0Þadjab
~Ebð0ÞiTjthermal part

¼ ðN2
c � 1Þ

Z d3k

ð2�Þ3 2j
~kj cosðj ~kjtÞnBðj ~kjÞ 1 1

1 1

� �
:

(62)

Note that for t ¼ 0 Eq. (62) gives the thermal part of the
gluon condensate in the weak-coupling regime:

h ~Eað0Þ � ~Eað0ÞiTjthermal part ¼ ðN2
c � 1ÞT4�

2

15

1 1
1 1

� �
;

(63)

where we have used
R1
0 dkk

3nBðkÞ ¼ �4T4=15.
Equation (63) agrees with the Stefan-Boltzmann law
(see, for instance, [21]).

D. Thermal corrections to the singlet static potential

We calculate now the leading thermal contributions to
the static potential assuming for definiteness that T andmD

are the next relevant scales after 1=r, i.e., that the binding
energy is much smaller than mD. We will further assume
that all other thermodynamical scales are much smaller
than the binding energy, so that we can ignore them. We
recall that from an EFT point of view, only energy scales
larger than the binding energy contribute to the potential,
which is the matching coefficient entering the Schrödinger
equation of the bound state, while all energy scales con-
tribute to physical observables such as, for instance, the
static energy [10]. We will comment on the impact of
degrees of freedomwith energies and momenta of the order
of the binding energy in Secs. IVE and IV F.
The calculation proceeds in two steps. The first step will

be performed in Sec. IVD 1. It consists of integrating out
from the pNRQCD Lagrangian (55) modes of energy and
momentum of order T. This modifies pNRQCD into a new
EFTwhere only modes with energy and momentum lower
than the temperature are dynamical. For our purposes, it
only matters that the pNRQCD Lagrangian gets additional
contributions in the singlet and in the Yang-–Mills sectors.
In the first sector, it is an additional contribution to the
singlet static potential. In the second one, the additional
contribution corresponds to the HTL Lagrangian [22].
The second step, which will be performed in Sec. IVD2,

consists of integrating out from the previous EFT modes of
energy and momentum of ordermD. The resulting EFTwill
only have degrees of freedom that are dynamical at energy
and momentum scales lower than the Debye mass. In the
singlet sector, the EFT gets modified by a further additional
contribution to the static potential.
In summary, if both T and mD are much larger than the

binding energy, the real-time Coulomb potential (58) gets
two type of corrections �VsðrÞ. The first one comes from
the scale T and the other one from the scale mD.

1. Contributions from the scale T

The leading thermal correction �VsðrÞ is induced by the
dipole terms Oy ~r � g ~ESþ Sy ~r � g ~EO in the Lagrangian
(55). It reads (see [19] for the T ¼ 0 case):
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½�VsðrÞ�11¼�ig2TF
Nc

r2

d�1

Z 1

0
dte�it�V

�½h ~EaðtÞ�ðt;0Þadjab
~Ebð0ÞiT�11

¼�ig2CF r2

d�1
	4�dZ ddk

ð2�Þd

� i

�k0��Vþ i�½ðk
0Þ2DiiðkÞþ ~k2D00ðkÞ�11;

(64)

½�VsðrÞ�22 ¼ �½�Vs��11; (65)

½�VsðrÞ�12 ¼ 0; (66)

½�VsðrÞ�21 ¼ ig2CF
r2

d� 1
	4�d Z ddk

ð2�Þd 2��ð�k
0 � �VÞ

� ½ðk0Þ2DiiðkÞ þ ~k2D00ðkÞ�21; (67)

where

�V ¼ 1

r

�
�Vo
2Nc

þ CF�Vs

�

 Nc�s

2r
:

The corresponding Feynman diagram is shown in Fig. 5.
Integrals over momenta have been regularized in dimen-
sional regularization (d is the number of dimensions, 	 is
the compensating scale). In Eq. (64), i=ð�k0 � �V þ i�Þ
arises from the 11 component of the static octet propagator;
Eq. (66) vanishes because the 12 component of the static
octet propagator vanishes and in Eq. (67), 2��ð�k0 �
�VÞ is the 21 component of the static octet propagator.
Note that vertices of type 1 and 2 have opposite signs.
Equation (65), which may also be read ½�i�VsðrÞ�22 ¼
½�i�VsðrÞ��11, reflects the relation existing between the 11
and 22 components of the propagators in the real-time
formalism.

We are interested in calculating the contribution to the
integrals in Eqs. (64)–(67) from momenta k� T. Since
T � �V, we may expand in �V=T. Moreover, at leading
order, the propagators in Eqs. (64) and (67) are the free

ones, Dð0Þ
00 and Dð0Þ

ii , given in Eqs. (36) and (37). However

the leading-order thermal contribution, which would be of
order g2r2T3, vanishes

½�VsðrÞ�11 ¼ �ig2CF r2

d� 1
	4�d Z ddk

ð2�Þd
i

�k0 þ i�

� ðk0Þ24��ðk2ÞnBðjk0jÞ ¼ 0; (68)

½�VsðrÞ�21 ¼ ig2CF
r2

d� 1
	4�d Z ddk

ð2�Þd 2��ð�k
0Þ

� ðk0Þ24��ðk2ÞnBðjk0jÞ ¼ 0: (69)

Several next-to-leading-order corrections are possible,
because several scales are still dynamical in the EFT: we
may have corrections of relative order �V=T, mD=T, ðrTÞ,
�s, and so on.
(1) First, we consider corrections of order �V=k0 or

higher to the quark-antiquark propagator, which
contribute to order g2r2T3 � �V=T or higher to
�VsðrÞ:

½�VsðrÞ�11 ¼ �ig2CF r2

d� 1
	4�d Z ddk

ð2�Þd

� i

�k0 � �V þ i�

� ½ðk0Þ2Dð0Þ
ii ðkÞ þ ~k2Dð0Þ

00 ðkÞ�11
¼ 4

3
CF

�s

�
r2T2�Vfð�V=TÞ

� i
2

3
CF�sr

2ð�VÞ3nBð�VÞ; (70)

½�VsðrÞ�21 ¼ ig2CF
r2

d� 1
	4�d Z ddk

ð2�Þd
� 2��ð�k0 ��VÞ
� ½ðk0Þ2Dð0Þ

ii ðkÞ þ ~k2Dð0Þ
00 ðkÞ�21

¼ i
4

3
CF�sr

2ð�VÞ3nBð�VÞ
¼ �2i Im½�VsðrÞ�11; (71)

where

fðzÞ ¼
Z 1

0
dx

x3

ex � 1
P

1

x2 � z2
; (72)

and P stands for the principal value. Since T � �V,
we can expand the above expressions in �V=T
obtaining

�VsðrÞ ¼ �

9
NcCF�

2
srT

2 1 0
0 �1

� �
þ � � �

� i

6
N2
cCF�

3
sT

1 0
�2 1

� �
þ � � � : (73)

The dots stand for higher-order real and imaginary
terms. We note that the matrices in Eq. (73) are such

to be diagonalized by the matrix ½Uð0Þ��1: the first
one is the same as in (59), the second one satisfies

FIG. 5. The single continuous line stands for a singlet propa-
gator, the double line for an octet propagator, the circle with a
cross for a chromoelectric dipole vertex, and the curly line
connecting the two circles with a cross for a chromoelectric
correlator.

STATIC QUARK-ANTIQUARK PAIRS AT FINITE . . . PHYSICAL REVIEW D 78, 014017 (2008)

014017-9



1 0
�2 1

� �
¼ ½Uð0Þ��1 1 0

0 1

� �
½Uð0Þ��1: (74)

The leading real contribution in Eq. (73) is of order
g2r2T3 � �V=T and comes from the diagram
shown in Fig. 6. The leading imaginary contribution
in Eq. (73) is of order g2r2T3 � ð�V=TÞ2 and comes
from the diagram shown in Fig. 7. This imaginary
part is a very peculiar feature of QCD. It originates
from the fact that thermal fluctuations of the me-
dium at short distances may destroy a color-singlet
bound state in an octet quark-antiquark state and
gluons. This process is kinematically not allowed at
zero temperature where only static octets may decay
into singlets with a leading-order width � ¼
N2
c�

4
s=ð12rÞ. In some kinematical situations, the

role of singlet-octet transitions in quarkonium-
hadron scattering in strongly interacting matter has
been discussed in Ref. [23].
Here we have assumed T � �V. In the kinematical
situation T ��V, Eq. (70) would provide a contri-
bution to the static energy rather than to the static
potential of the quark-antiquark pair. This contribu-
tion will be discussed in Sec. IVE.

(2) Another source of next-to-leading-order corrections
comes from next-to-leading-order corrections to the
chromoelectric field correlator. Their contribution to
the static potential at zero temperature has been
considered in [24]. They also contribute at order
g2r2T3 � �s � g2r2T3 � ðmD=TÞ2 to the thermal
part of the static potential. The chromoelectric
correlator enters in the potential in the expres-

sion 	4�dR ddk
ð2�Þd

i
�k0þi� ½ðk0Þ2DiiðkÞþ ~k2D00ðkÞ�11.

Since i=ð�k0 þ i�Þ ¼ �iPð1=k0Þ þ ��ð�k0Þ and

½ðk0Þ2DiiðkÞ þ ~k2D00ðkÞ�11 is even in k0, only the
��ð�k0Þ component of the static quark-antiquark

propagator contributes, therefore only the limit for

k0 ! 0 of ½ðk0Þ2DiiðkÞ þ ~k2D00ðkÞ�matters. In order
to evaluate it, it is convenient to perform the calcu-
lation first in temporal-axial gauge A0 ¼ 0. In this

gauge, the chromoelectric field is simply ~E ¼
�@0 ~A. Hence all corrections to the chromoelectric
correlator are encoded in the spatial part of the gluon
propagator alone: at one loop the correction is pro-
vided entirely by the gluon self-energy. In temporal-
axial gauge, from the transversality relation of the
polarization tensor it follows that (compare with the
expressions of the propagators in [16])

lim
k0!0

ðk0Þ2DR;A
ii ðkÞ

��������temporal-axial gauge

¼ lim
k0!0

i
~k2

~k2 þ�R;A
00 ðkÞ

��������temporal-axial gauge
: (75)

Since in the k0 ! 0 limit �R;A
00 ðkÞ is equal in

Coulomb and temporal-axial gauge, we can also
write that [compare with Eq. (50)]

lim
k0!0

ðk0Þ2DR;A
ii ðkÞjtemporal-axial gauge

¼ lim
k0!0

~k2DR;A
00 ðkÞjCoulomb gauge: (76)

The left-hand side is the only term of the chromo-
electric correlator contributing to the potential in
temporal-axial gauge: it may be evaluated by calcu-
lating the right-hand side in Coulomb gauge. At one
loop, the right-hand side gets contribution from the
gluon self-energy diagram shown in Fig. 8; hence, at
next-to-leading order we can write

½�VsðrÞ�11 ¼ �ig2CF r2

d� 1
	4�d Z ddk

ð2�Þd
� ��ð�k0Þ ~k2½�D00ðkÞ�11; (77)

½�VsðrÞ�21 ¼ ig2CF
r2

d� 1
	4�d Z ddk

ð2�Þd
� 2��ð�k0Þ ~k2½�D00ðkÞ�21; (78)

where

FIG. 6. Feynman diagram giving the leading-order real con-
tribution to Eq. (70). The symbols are as in Fig. 5. The cross
stands for a �V insertion in the octet propagator.

FIG. 7. Feynman diagram giving the leading-order imaginary
contribution to Eq. (70). The symbols are as in Fig. 6.

FIG. 8. The symbols are as in Fig. 5. The dashed blob stands
for a one-loop self-energy insertion in the gluon propagator.
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½�D00ðkÞ�11 ¼ �DR
00ðkÞ þ �DA

00ðkÞ
2

þ
�
1

2
þ nBðk0Þ

�

� ð�DR
00ðkÞ � �DA

00ðkÞÞ; (79)

½�D00ðkÞ�21 ¼ ð1þ nBðk0ÞÞð�DR
00ðkÞ � �DA

00ðkÞÞ;
(80)

�DR;A
00 ðkÞ ¼ � i

~k4
�R;A

00 ðkÞ; (81)

and, the relevant limit for the gluon polarization

�R;A
00 ðkÞ in Coulomb gauge is given by Eqs. (44)

and (45). Finally, the correction to the real-time
potential reads

�VsðrÞ ¼
�
� 3

2
�ð3ÞCF �s

�
r2Tm2

D

þ 2

3
�ð3ÞNcCF�2

sr
2T3

�
1 0

0 �1

 !

þ i

�
CF
6
�sr

2Tm2
D

�
1

�
þ E þ ln�� ln

T2

	2

þ 2

3
� 4 ln2� 2

� 0ð2Þ
�ð2Þ

�

þ 4�

9
ln2NcCF�

2
sr

2T3

�
1 0

�2 1

 !
; (82)

where � ¼ ð4� dÞ=2, E is the Euler gamma and �
the Riemann zeta function [�ð2Þ ¼ �2=6]. Note that
in Eq. (82), besides terms that are proportional to the
Debye mass there are finite terms, both in the real
and in the imaginary parts, that do not depend on it.
Equation (82) contains an imaginary contribution.
The origin of this contribution is different from the
one in Eq. (73). The one here comes from the
imaginary part in the gluon self-energy, which is
due to the scattering of particles with momenta of
order T in the thermal bath with spacelike gluons,

ðk0Þ2 < j ~kj2 (Landau damping) while the one in
Eq. (73) signals the thermal breakup of a quark-
antiquark color-singlet pair into an octet one.
The result in Eq. (82) is infrared divergent and, in an
EFT language, calls for an opposite ultraviolet di-
vergence from lower energy contributions: the two
divergences should cancel in all physical observ-
ables. In the following section, we will show that
the infrared divergence generated by the diagram in
Fig. 8 when integrated over momenta of order T is
canceled by an ultraviolet divergence in the same
diagram when integrated over momenta of order
mD. For the purpose of the cancellation and the
calculation of the static potential in the situation
1=r� T � mD � �V it is irrelevant how we
regularize both divergent contributions, as long as

they are regularized in the same way: the divergen-
ces as well as any scheme dependence cancel in the
sum. However, it may be that expression (82) is used
in intermediate calculations that require further reg-
ularizations. An example is the solution of the
Schrödinger equation for quarkonium in a thermal
medium when the kinetic energy of the bound state
is larger than or of the same order as mD so that the
cancellation of the divergences does not occur at the
level of the potential. In such a situation, it is im-
portant to provide divergent contributions in a stan-
dard regularization scheme. Equation (82) has been
obtained by regularizing in dimensional regulariza-
tion only the integral in k. This is not sufficient to
qualify Eq. (82) as a standard dimensional regulari-
zation scheme result, which would also require the
calculation of the gluon polarization tensor at order
� in the dimensional regularization expansion. This
order, combined with the 1=� divergence of the
integral in k, contributes to the finite part of (82).
To our knowledge the expression of the gluon po-
larization tensor at order � is not known in the
literature and its calculation is beyond the purposes
of this work. However, it may become necessary for
a proper calculation of the quarkonium potential at
short distances when the Debye mass is of the same
order as or smaller than the kinetic energy.

(3) Finally, a source of higher-order contributions
comes from higher-order terms in the multipole
expansion. These are of two types. First, they may
involve operators of higher order in the multipole
expansion in the pNRQCD Lagrangian, such as, for
example, the operator 1

24 TrfOyrirjrkgDiDjEkSg.
However, the contribution of this operator vanishes
for reasons similar to the ones that led to the vanish-
ing of the leading-order thermal contribution in
Eqs. (68) and (69). Second, they may involve dia-
grams with three or more insertions of the operators

TrfOy ~r � g ~ESg or TrfOy ~r � g ~EOg. They contribute to
order g2r2T3 � g2rT or higher to the thermal part of
the static potential and hence are suppressed by at
least a factor rT with respect to the corrections
considered in the previous paragraph. We will ne-
glect them in the following.

2. Contributions from the scale mD

In the previous section, having integrated out T has led
to a new EFT, which in the Yang-Mills sector coincides
with the HTL EFT and in the singlet sector shows a
potential that is the sum of the terms (58), (73), and (82).
In the weak-coupling regime, the Debye massmD, which is
given by Eq. (48), is smaller than the temperature. We
assume that mD is the most relevant scale in the new
EFT. The leading contributions to the static potential
from the scale mD originate from the diagram shown in
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Fig. 5 when integrated over momenta k�mD. They are
given by

½�VsðrÞ�11 ¼ �ig2CF r2

d� 1
	4�d Z ddk

ð2�Þd
i

�k0 þ i�

� ½ðk0Þ2DiiðkÞ þ ~k2D00ðkÞ�11
¼ �ig2CF r2

d� 1
	4�d Z ddk

ð2�Þd
� ��ð�k0Þ½ðk0Þ2DiiðkÞ þ ~k2D00ðkÞ�11; (83)

½�VsðrÞ�22 ¼ �½�Vs��11; (84)

½�VsðrÞ�12 ¼ 0; (85)

½�VsðrÞ�21 ¼ ig2CF
r2

d� 1
	4�d Z ddk

ð2�Þd 2��ð�k
0Þ

� ½ðk0Þ2DiiðkÞ þ ~k2D00ðkÞ�21; (86)

whereD	
ðkÞ is now the HTL resummed propagator. After

integration in k0 only D00ð0; ~kÞ contributes, the expression
of which can be found in (53). Substituting and performing
the dimensional integrals, we obtain

�VsðrÞ ¼ CF
6
�sr

2m3
D

1 0

0 �1

 !

� i
CF
6
�sr

2Tm2
D

�
1

�
� E þ ln�þ ln

	2

m2
D

þ 5

3

�

� 1 0

�2 1

 !
: (87)

Equation (87) shows that the scale mD contributes at order
g2r2m3

D to the real part of the potential and at order
g2r2Tm2

D to the imaginary one.
The Debye mass effectively plays the role of a gluon

mass; in this sense, the real part of (87) agrees with a result
that can be found in [19]. The imaginary part originates, as
the one in Eq. (82), from the imaginary part of the gluon
self-energy. It shows an ultraviolet divergence. This can-
cels against the infrared divergence of Eq. (82), which, we
recall, comes from the diagram in Fig. 8 when integrated
over momenta of order T. We have already commented on
this cancellation at the end of the previous section; we will
add further specifications in Sec. IV F.

E. Singlet static energy for T & �V

If T � �V there are no temperature-dependent correc-
tions to the potential, but Eq. (70) gives the leading thermal
correction to the pole of the color-singlet propagator. The
real part of the pole provides the static energy of a color-
singlet quark-antiquark pair, whose leading thermal part is

�Es ¼ 2

3
NcCF

�2
s

�
rT2fðNc�s=ð2rTÞÞ; (88)

where the function f has been defined in (72). Minus twice
the imaginary part of the pole provides the color-singlet
thermal decay width, whose leading contribution, due to
the decay of a static quark-antiquark color singlet into a
quark-antiquark color octet, is

� ¼ N3
cCF
6

�4
s

r
nBðNc�s=ð2rÞÞ: (89)

In the situation T � �V, the thermal width is exponen-
tially suppressed, while the thermal contribution to the
static energy becomes

�Es ¼ � 8

45
�3 CF

Nc
r3T4

¼ � 4

3
�
CF
Nc

r3h ~Eað0Þ � ~Eað0ÞiTjthermal part: (90)

Equation (90) agrees with the analogous expression for the
leading gluon condensate correction to the quark-antiquark
static energy at zero temperature that was derived in [25].

F. Summary and comments

As in the zero temperature case also in a thermal bath,
the computation of the real-time potential between a static
quark-antiquark pair requires integrating out all modes of
energy and momentum larger than�V. Modes of energy or
momentum of order �V or smaller enter in physical ob-
servables, but, since they depend on the binding energy, do
not belong to a proper EFT definition of the potential [10].
If 1=r� T � mD � �V and in the weak-coupling

regime, the static potential of a quark-antiquark pair is
obtained by adding Eqs. (58), (73), (82), and (87). In its
diagonal form, it is given by

V sðrÞ ¼ ½Uð0Þ��1 VsðrÞ 0
0 �VsðrÞ�

� �
½Uð0Þ��1; (91)

where

VsðrÞ ¼ �CF
�Vsð1=rÞ

r
þ �

9
NcCF�

2
srT

2

� 3

2
�ð3ÞCF �s

�
r2Tm2

D þ 2

3
�ð3ÞNcCF�2

sr
2T3

þ CF
6
�sr

2m3
D þ � � � þ i

�
�N2

cCF
6

�3
sT

þ CF
6
�sr

2Tm2
D

�
2E � ln

T2

m2
D

� 1� 4 ln2

� 2
� 0ð2Þ
�ð2Þ

�
þ 4�

9
ln2NcCF�

2
s r

2T3

�
þ � � � :

(92)

The leading term is provided by the Coulomb part:
�CF�s=r. In the real part, the first thermal correction is
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of order g2r2T3 ��V=T, the second and third ones are of
order g2r2T3 � ðmD=TÞ2, and the last one is of order
g2r2m3

D. The correction proportional to �sr
2m3

D is sup-

pressed by mD=T with respect to the one proportional to
�sr

2Tm2
D and may be neglected. In the imaginary part, the

first term is of order g2r2T3 � ð�V=TÞ2 and the other ones
are of order g2r2T3 � ðmD=TÞ2. The dots in (92) stand for
higher-order real and imaginary terms. Temperature-
dependent higher-order terms are suppressed by powers
of �V=T, mD=T, rT, �V=mD, and rmD.

The imaginary part of VsðrÞ has two origins. The first
term comes from the thermal breakup of a quark-antiquark
color-singlet state into a color-octet state. The other terms
come from imaginary contributions to the gluon self-
energy that may be traced back to the Landau damping
phenomenon. Both are thermal effects: the first one is
specific of the non-Abelian nature of QCD, and the second
one would also show up in QED, although in QED the
photon polarization tensor would get only fermionic con-
tributions. Having assumed T � mD � �V, the term due
to the singlet to octet breakup is suppressed by ð�V=mDÞ2
with respect to the imaginary gluon self-energy contribu-
tions, which provide therefore the parametrically leading
contribution to the imaginary part of the potential.

The thermal part of Eq. (92) is finite because, under the
condition 1=r� T � mD � �V, it provides the leading
thermal contribution to the real-time energy and to the
decay width of a static quark and antiquark pair in a
color-singlet configuration. Note, however, that the non-
thermal part of the potential, �Vs , develops infrared diver-

gences starting from order �4
s , which eventually cancel in

physical quantities against contributions from the scale
�V. These have been most recently considered in [24]. If
1=r� T � �V * mD, the static potential is the sum of
Eqs. (58), (73), and (82). The thermal part is infrared
divergent. Divergences cancel in physical observables
against thermal contributions coming from the scale mD.
Finally, if 1=r� �V * T, the static potential is just its
Coulomb part (58). Thermal contributions affect physical
observables through loop corrections that involve momenta
or energies of the order of the binding energy or smaller,
but do not modify the potential. In this case, the leading
thermal effect on the static energy of the color-singlet
quark-antiquark pair can be read in (88) and the leading
thermal width, which is due to the singlet to octet breakup
phenomenon, in (89).

Our result is also relevant for the case of a quark and
antiquark with a large but finite mass m. This would
correspond to the actual case of heavy quarkonium in a
thermal medium. However, in the case of finite mass, the
relevant scales of the bound state are dynamical and the
above discussion gets modified accordingly. For a compre-
hensive review in the T ¼ 0 case we refer to [10]. Bound
states of heavy quarks are characterized by the energy
scales m, mv, and mv2, where v is the relative velocity

of the heavy quarks: mv is of the order of the inverse size
of the bound state and mv2 is of the order of the kinetic or
binding energy. The equation of motion of the quark-
antiquark bound state reduces in the nonrelativistic limit
to the Schrödinger equation. The potential is the interac-
tion term entering the Schrödinger equation. Only modes
of energy and momentum larger thanmv2 contribute to the
potential. With these specifications, Eq. (92) provides the
static potential of a heavy quarkonium in a thermal me-
dium under the condition m� mv� T � mD � mv2.
If m� mv� T � mv2 * mD, the heavy quarkonium
static potential is given by the sum of Eqs. (58), (73),
and (82) only. The potential turns out to be infrared diver-
gent also in its thermal part and the comment at the end of
paragraph (2) of Sec. IVD1 applies. The divergence will
eventually cancel in physical quantities against contribu-
tions coming from the scale mv2 or lower. If m� mv�
mv2 * T � mD, the heavy quarkonium static potential is
just the Coulomb potential (58) and thermal corrections
enter physical quantities in loop involving momenta at the
scale mv2 or lower.
In the next section, we provide a derivation of Eq. (92)

that does not make use of the EFT language and follows
directly from a calculation of the potential in perturbative
QCD.

V. SHORT-DISTANCE THERMAL CORRECTIONS
TO THE POTENTIAL IN PERTURBATIVE QCD

In this section, we ask the question of what would be the
origin of the thermal part of the potential given by Eq. (92)
if we would not introduce any EFT treatment, but simply
perform a calculation in perturbative QCD under the con-
dition that 1=r� T and where the binding energy is much
smaller thanmD. The answer is that the thermal part of (92)
would originate from the longitudinal-gluon exchange,
with a self-energy insertion, between a static quark and a
static antiquark shown in Fig. 9 and from the box diagram
shown in Fig. 11.
We first consider the diagram in Fig. 9, which contrib-

utes to the physical 11 component of the static potential by

½�VsðrÞ�11 ¼ 	4�d Z dd�1k

ð2�Þd�1
e�i ~k� ~rg2CF½i�D00ð0; ~kÞ�11;

(93)

where �D00ðkÞ is defined in Eqs. (79)–(81) and depends on
the gluon polarization �R;A

00 . Note that we have set to zero

the fourth component of the momentum in the longitudinal
gluon: corrections would be suppressed by powers of

k0=j ~kj � Vsr or Vs=T or Vs=mD. Equation (93) gets con-
tributions from different momentum regions.

(1) The first momentum region is j ~kj � 1=r. The ther-
mal contribution to the longitudinal-gluon polariza-

tion tensor when j ~kj � 1=r� T is provided by
Eq. (54), which, substituted in Eq. (93), gives (the

STATIC QUARK-ANTIQUARK PAIRS AT FINITE . . . PHYSICAL REVIEW D 78, 014017 (2008)

014017-13



integral is finite, hence d ¼ 4)

½�VsðrÞ�11 ¼
Z d3k

ð2�Þ3 e
�i ~k� ~r

�
�CF 4��s

~k4

�
Ncg

2T2

18

¼ �

9
NcCF�

2
srT

2; (94)

where we have used that the Fourier transform of

4�= ~k4 is �r=2. Equation (94) agrees with the real
part of Eq. (73).

(2) A second momentum region is j ~kj � T. Since T �
1=r, under the condition j ~kj � T we may expand the

exponential e�i ~k� ~r in (93):

½�VsðrÞ�11 ¼ 	4�d Z dd�1k

ð2�Þd�1

�
1� ð ~k � ~rÞ2

2

þ � � �
�
g2CF½i�D00ð0; ~kÞ�11: (95)

The first term in the expansion corresponds to a
mass correction and cancels against twice the ther-
mal contribution of the static quark self-energy with
a gluon self-energy insertion; see Fig. 10. The sec-
ond term coincides with the expression in Eq. (77)
and gives the same result as (82).

(3) Finally, a third momentum region is j ~kj �mD. The
contribution to the potential is like Eq. (95), but now

j ~kj �mD � T and the correct expression for

D00ð0; ~kÞ is the HTL resummed propagator given
in (53). The first term in the expansion corresponds
to a mass correction, which this time comes from the

scale mD and cancels against twice the contribution
of the static quark self-energy, see Fig. 1, when the
loop momentum is of order mD and a HTL re-
summed gluon propagator is used. The second
term gives the same result as (87).

We consider now the diagram of Fig. 11, which contrib-
utes to the physical 11 component of the static potential by
(we write the thermal part only)

½�VsðrÞ�11 ¼
Z d3k

ð2�Þ3 e
�i ~k� ~r

�
iN2

cCFg
6
Z d4p

ð2�Þ4
Z d4q

ð2�Þ4

� piðkj � pjÞ i

�p0 þ i�

i

p0 � q0 þ i�

�
�
�ij � qiqj

~q2

�
2��ðq2ÞnBðjq0jÞ i

~p2

i

j ~p� ~qj2

� i

j ~k� ~pj2
i

j ~k� ~pþ ~qj2
�
: (96)

The imaginary part of the integral comes from the real part

Re
Z dp0

2�

i

�p0 þ i�

i

p0 � q0 þ i�
¼ Re

i

�q0 þ i�

¼ ��ð�q0Þ;
which inserted in (96) gives the imaginary part of (73). The
result is exact and does not rely on any expansion in the
kinematical variables.
The sum of the contributions coming from the three

momentum regions in the integral (93) and from the imagi-
nary part of (96) gives Eq. (92). We note that also the
calculation in perturbative QCD shows that the imaginary
part of Eq. (73) has a different origin from the other ones: it
comes from the box diagram of Fig. 11, which describes a
singlet-to-octet-to-singlet transition, while the other ones
come from the gluon self-energy diagram of Fig. 9.

VI. BOUND STATES FOR 1=r � T

In this section, we consider bound states made of a static
quark and antiquark in a thermal bath at distances such that
1=r� T. We still keep that T, 1=r, and mD are perturba-
tive scales. We further neglect other thermodynamical
scales.

FIG. 9. Longitudinal-gluon exchange between a static quark
and a static antiquark; the dashed blob stands for the gluon self-
energy.

FIG. 10. Gluon self-energy correction to the one-loop self-
energy diagram of a static quark.

FIG. 11. Box diagram: the upper line represents a static quark
and the lower one a static antiquark.
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Under the above condition, the first scale to integrate out
from QCD is the temperature T. At one loop, this was done
in Sec. III. Integrating out T leads in the Yang-Mills sector
to the HTL Lagrangian [22]. In the heavy-quark sector,
one-loop contributions vanish in the static limit. At two
loop, see for instance the diagram in Fig. 10, there may be
effects. These are of order �2

sT � �sTðmD=TÞ2 �
�smDðmD=TÞ and will be neglected in the following where
we shall concentrate on the leading contribution coming
from the scale mD.

The next scale to integrate out is 1=r. We assume 1=r *
mD, and integrate out both scales 1=r and mD at the same
time. We shall specialize to the case 1=r� mD in
Sec. VI E.

A. Singlet and octet propagators

After integrating out the scales 1=r * mD it may be
convenient to introduce quark-antiquark fields in analogy
with what was done in previous sections. The real-time
quark-antiquark propagator, SðpÞ, is a 2� 2 matrix ob-
tained by matching equal-time quark and antiquark propa-
gators such that ½SðpÞ�ij provides the propagator of a

quark-antiquark pair of type i into a quark-antiquark pair
of type j. The explicit expressions of the free color-singlet
and color-octet quark-antiquark propagators are similar to
those derived in Sec. IVA:

S singletð0ÞðpÞ ¼
i

p0þi� 0

2��ðp0Þ �i
p0�i�

 !

¼ Uð0Þ
i

p0þi� 0

0 �i
p0�i�

 !
Uð0Þ; (97)

S octetð0ÞðpÞab ¼ �ab

i
p0þi� 0

2��ðp0Þ �i
p0�i�

 !

¼ �abU
ð0Þ

i
p0þi� 0

0 �i
p0�i�

 !
Uð0Þ: (98)

Singlet and octet fields have been normalized as in Sec. IV.
Thermal contributions from the scales 1=r * mD mod-

ify the quark-antiquark propagator. In particular, the sin-
glet propagator gets the form

S singletðpÞ ¼
i

p0��m�VsðrÞþi� 0
i

p0��m�VsðrÞþi�� i
p0��m��V�

s ðrÞ�i�
�i

p0��m��V�
s ðrÞ�i�

 !

¼ Ssingletð0ÞðpÞ þ Ssingletð0ÞðpÞ½�i�m� iVs�Ssingletð0ÞðpÞ þ � � � ; (99)

where in the last line we have expanded with respect to �m
and Vs and introduced the 2� 2 matrices:

�m ¼ �m 0
�2i Im�m ��m�

� �

¼ ½Uð0Þ��1 �m 0
0 ��m�

� �
½Uð0Þ��1; (100)

V s ¼ Vs 0
�2i ImVs �V�

s

� �

¼ ½Uð0Þ��1 Vs 0
0 �V�

s

� �
½Uð0Þ��1: (101)

B. Matching the mass term �m

The static quark (antiquark) self-energy at one loop is
shown in Fig. 1. In the case considered here, the loop
momentum is of order mD and the HTL resummed gluon
propagator is used. We match in the real-time formalism
the self-energy diagram (normalized in color space) with

the second term in the expansion (99), Ssingletð0ÞðpÞ�
½�i�m�Ssingletð0ÞðpÞ, obtaining

½�m�11 ¼ iðigÞ2CF	4�d Z ddk

ð2�Þd
�

i

�k0 þ i�
� i

�k0 � i�

�

� ½D00ðkÞ�11
¼ iðigÞ2CF	4�d Z ddk

ð2�Þd 2��ð�k
0Þ½D00ðkÞ�11

¼ �CF�sðmD þ iTÞ; (102)

½�m�22 ¼ �½�m��11; (103)

½�m�12 ¼ 0; (104)

½�m�21 ¼ ig2CF	
4�d Z ddk

ð2�Þd ½2��ð�k
0Þ þ 2��ð�k0Þ�

� ½D00ðkÞ�21 ¼ 2iCF�sT; (105)

where i=ð�k0 þ i�Þ and �i=ð�k0 � i�Þ are the 11 com-
ponents of the static quark and antiquark propagators,
respectively, 2��ð�k0Þ is the 21 component of both static
quark and antiquark propagators and we have added the
contributions from the quark and the antiquark; Eq. (104)
vanishes because the component 12 of the heavy quark and
antiquark propagators vanishes; see Eqs. (20) and (21).
D00ðkÞ is the longitudinal HTL resummed gluon propaga-
tor, whose expression for k0 ¼ 0 is given in Eq. (53).
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The matrix �m has indeed the form (100); it is diago-

nalized by the matrix ½Uð0Þ��1 and �m is given by

�m ¼ �CF�sðmD þ iTÞ: (106)

The real part of �m corresponds to the free energy of two
isolated static quarks in the imaginary-time formalism,
which was first calculated in Ref. [26] (for further discus-
sions see Ref. [27]). The imaginary part of �m is minus
twice the damping rate of an infinitely heavy fermion [28].

C. Matching the singlet static potential Vs

The matrix elements ½Vs�ij are obtained by matching in

real time one-gluon exchange diagrams that transform a
quark-antiquark pair of type i into a quark-antiquark pair of
type j with the third term in the expansion (99),

Ssingletð0ÞðpÞ½�iVs�Ssingletð0ÞðpÞ. More precisely, by match-

ing the diagram of Fig. 12 with ½Ssingletð0ÞðpÞ�11½�iVs�11 �
½Ssingletð0ÞðpÞ�11, the diagram of Fig. 13 with

½Ssingletð0ÞðpÞ�22½�iVs�22½Ssingletð0ÞðpÞ�22, the diagrams of

Fig. 14 with ½Ssingletð0ÞðpÞ�1i½�iVs�ij½Ssingletð0ÞðpÞ�j2, and

the diagrams of Fig. 15 with ½Ssingletð0ÞðpÞ�2i½�iVs�ij�
½Ssingletð0ÞðpÞ�j1, we obtain

½VsðrÞ�11 ¼
Z d3k

ð2�Þ3 e
�i ~k�~rig2CF½D00ð0; ~kÞ�11

¼
Z d3k

ð2�Þ3 e
�i ~k�~r

�
�CF 4��s

~k2 þm2
D

þ iCF
T

j ~kjm
2
D

4�2�s

ð ~k2 þm2
DÞ2

�
; (107)

½VsðrÞ�22 ¼ �½VsðrÞ��11; (108)

½VsðrÞ�12 ¼ 0; (109)

½VsðrÞ�21 ¼
Z d3k

ð2�Þ3 e
�i ~k�~rið�g2ÞCFð½D00ð0; ~kÞ�12

þ ½D00ð0; ~kÞ�21Þ
¼ �2iIm½VsðrÞ�11; (110)

where the longitudinal HTL resummed gluon propagator,

D00ð0; ~kÞ, given in Eq. (53), comes from expanding in the
external energy, which is much smaller than the typical
momentum �1=r.
The matching conditions of Figs. 12 and 13 fix ½VsðrÞ�11

and ½VsðrÞ�22 as in Eqs. (107) and (108), respectively. In
Figs. 14 and 15 the first two diagrams cancel in the match-
ing against the terms i ¼ j ¼ 1 and i ¼ j ¼ 2 in the sum
on the right-hand side. In the case of Fig. 14, the last two
diagrams vanish, because the 12 component of the static
quark propagator vanishes, leading to Eq. (109); while in
the case of Fig. 15, the last two diagrams give ½VsðrÞ�21 as
in Eq. (110).
The matrix Vs has indeed the form (101); it is diagonal-

ized by the matrix ½Uð0Þ��1 and Vs is given by

VsðrÞ ¼
Z d3k

ð2�Þ3 e
�i ~k� ~r

�
�CF 4��s

~k2 þm2
D

þ iCF
T

j ~kjm
2
D

4�2�s

ð ~k2 þm2
DÞ2

�

¼ �CF �s

r
e�mDr þ iCF�sT

2

rmD

�
Z 1

0
dx

sinðmDrxÞ
ðx2 þ 1Þ2 : (111)

The expression of VsðrÞ, which we have derived here in
real-time formalism, agrees with the analogous expression
derived in imaginary-time formalism, after analytical con-
tinuation, in [5]. It should be emphasized that under the
condition 1=r�mD the real part of (111) is of order �smD,
hence subleading with respect to the imaginary part, which
is of order �sT: the quark-antiquark pair decays before
forming the bound state, whose typical time scale is pro-
portional to the inverse of the real part of the potential.
Note that the short-distance expansion of Eq. (111)

would give, up to order r0, the Coulomb potential and an
r-independent term, CF�sðmD þ iTÞ, which would cancel
the mass term derived in (106). In the kinematical situation
discussed here, this reflects the analogous cancellation
between the mass correction and the potential correction
induced by the scale mD discussed in paragraph (3) of
Sec. V.
In this section, we have assumed that the singlet propa-

gator has the form (99) and verified that this is indeed the
case by performing the matching. We could also have

2

2

2

2 2

2

FIG. 13. Matching condition for ½�iVs�22.

1 1

1

1

1 1

FIG. 12. Matching condition for ½�iVs�11; the numbers label
the type 1 and 2 propagators. All entries in a vertex are of the
same type. Vertices of type 1 and 2 have opposite signs.
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proceeded with the reverse logic used in the rest of the
paper: by matching �m and �Vs we would have realized

that these matrices are diagonalized by ½Uð0Þ��1, hence,
that they fulfill Eq. (60) and give rise to the resummed
propagator (99).

D. Singlet static energy for 1=r�mD

Adding the real parts of Eqs. (106) and (111) gives the
leading static quark-antiquark energy for 1=r�mD:

Es ¼ �CF�smD � CF
�s

r
e�mDr; (112)

and the imaginary parts of Eqs. (106) and (111) provide the
leading static quark-antiquark thermal decay width:

� ¼ 2CF�sT

�
1� 2

rmD

Z 1

0
dx

sinðmDrxÞ
ðx2 þ 1Þ2

�
: (113)

The thermal width originates from the imaginary part of
the gluon self-energy. Singlet to octet transitions contribute

to the decay width as well and the leading contribution is
provided by the diagram of Fig. 11, which gives [see the
imaginary part of (73)]: �� ¼ 1

3N
2
cCF�

3
sT. This contribu-

tion is parametrically suppressed by a factor �2
s , whose

natural scale is of order 1=r, with respect to the one in
(113). Note, however, that �� may be numerically as large
as 50% of � for �s 
 0:3 and even larger than � for �s 

0:5; see also Fig. 16.
The static energy given by Eq. (112) coincides with the

leading-order result [27] of the so-called singlet free en-
ergy first introduced by Nadkarni [29] (the heavy quark-
antiquark free energy was defined by McLerran and
Svetitsky in [30]) and also studied in lattice QCD (see,
e.g., [31–33] for reviews). We recall that the free energy
describes a thermodynamical property of the system and it
is computed from the static quark-antiquark propagator
evaluated at the imaginary time 1=T (for large tempera-
tures this corresponds to small imaginary times), while the
static energy studied in this work describes the real-time
evolution of a quark-antiquark pair and it is computed by
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2

2

1

1 2

1

1

1

1 2

21

2

2

1 2
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2

FIG. 14. Matching condition for ½�iVs�12.

++

++

1

2

1

2 1

2

1

1

2 1

12

2

2

2 1

2

1

1

2

2 1

2

1

FIG. 15. Matching condition for ½�iVs�21.
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evaluating the quark-antiquark propagator at infinite real
times. The thermal decay width (113) coincides with the
result of Ref. [5].

E. The 1=r � mD case

In the 1=r� mD case, but with mD still larger than the
binding energy, the scales 1=r and mD are integrated out in
two subsequent matchings. First, the matching at the scale
1=r can be done in close analogy with the discussion in
Secs. VIA, VIB, and VIC. The potential is given by

Eqs. (107)–(110): since j ~kj � 1=r� mD we expand

D00ð0; ~kÞ in powers of m2
D=
~k2. We need to regularize the

integrals because after expansion they become infrared
divergent:

VsðrÞ ¼ 	4�d Z dd�1k

ð2�Þd�1
e�i ~k� ~r

�
�
�CF 4��s

~k2

�
1�m2

D

~k2
þ � � �

�

þ iCF
T

j ~kjm
2
D

4�2�s

~k4
ð1þ � � �Þ

�

¼ �CF �s

r
� CF

2
�srm

2
D þ � � � þ i

CF
6
�sr

2Tm2
D

�
�
1

�
þ E þ ln�þ lnðr	Þ2 � 1

�
þ � � � : (114)

The dots stand for higher-order real and imaginary terms.
In the Coulomb part, we have displayed only the leading
term. In the imaginary part, the divergence comes from the

Fourier transform of 1=j ~kj5, which, in d dimensions, may
be found in [34]. Because we expand the gluon propagator

in m2
D=
~k2 the integral corresponding to the static quark

self-energy has no scale and the matching gives �m ¼ 0.
Next, we integrate out the scale mD. At one-loop level

this corresponds to evaluating the contribution to the po-

tential of the diagram generated by the singlet-octet vertex
(dipole interaction) in the effective theory, which is shown
in Fig. 5; the HTL resummed gluon propagator is used.
Therefore, the contribution is the same as the one calcu-
lated in Sec. IVD2 and given in Eq. (87). Summing its
diagonal element with Eq. (114) gives

VsðrÞ ¼ �CF �s

r
� CF

2
�srm

2
D þ CF

6
�sr

2m3
D þ � � �

� i
CF
6
�sr

2Tm2
D

�
�2E � lnðrmDÞ2 þ 8

3

�
þ � � � :
(115)

We see that in the sum the divergences of Eqs. (87) and
(114) cancel each other providing a finite physical result.

The term CF
6 �sr

2m3
D in the real part is suppressed by a

factor rmD with respect to � CF
2 �srm

2
D and will be ne-

glected in the following. Note the appearance of the loga-
rithm lnðrmDÞ2 opposed to the appearance of the logarithm
lnT

2

m2
D

in Eq. (92). In the first case, the logarithm signals that

divergences have been canceled when integrating out the
scales 1=r and mD;, in the second case it signals that
divergences have been canceled when integrating out the
scales T andmD. The real and imaginary parts of Eq. (115)
can be also obtained by expansion in rmD of Eq. (112) and
��=2, as defined in Eq. (113), respectively.

F. Singlet static energy for 1=r � mD

The real part of Eq. (115) provides the static quark-
antiquark energy for 1=r� mD, whose leading thermal
contribution is

�Es ¼ �CF
2
�srm

2
D; (116)

and minus twice the imaginary part of Eq. (115) provides
the static quark-antiquark thermal decay width

� ¼ CF
3
�sr

2Tm2
D

�
�2E � lnðrmDÞ2 þ 8

3

�
: (117)

Also in this case the singlet to octet breakup process
provides a contribution to the thermal width, which is
�� ¼ 1

3N
2
cCF�

3
sT. This contribution is parametrically sup-

pressed by a factor ð�V=mDÞ2 with respect to the one in
(117). However, depending on �s and rmD, it may still
contribute to a large fraction of �; see Fig. 16. Note that the
condition mD � �V requires �sð1=rÞ � 2=Nc � rmD to
be fulfilled.

VII. CONCLUSIONS

We have studied the real-time evolution of a static
quark-antiquark pair in a medium of gluons and light
quarks characterized by a temperature T. We have ad-
dressed the problem of defining and deriving the potential
between the two static sources, and of calculating their

FIG. 16 (color online). �=�� vs rmD for different values of
�s.
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energy and thermal decay width. In the different ranges of
temperature considered, we have set up and worked out a
suitable sequence of effective field theories. Our frame-
work has been very close to the modern EFT treatment of
nonrelativistic and static bound states at zero temperature
[10], but complicated by the existence of the thermal scales
T and mD. We have assumed that all the energy scales are
perturbative and worked in a strict weak-coupling frame-
work. This had two consequences: first, we could exploit
the hierarchy T � mD, and second, the potential that we
obtained is valid in the short range. In an EFT framework,
the potential is the r-dependent matching coefficient that
appears in front of the four-fermion operator that destroys
and creates the bound state, after having integrated out all
scales above the bound-state energy. Higher-order opera-
tors give lower energy contributions, entering into the
computation of physical observables, but not in the
Schrödinger equation that governs the motion of the bound
state and hence are not of a potential type.

A systematic treatment of nonrelativistic bound states in
a thermal medium, in an EFT framework and in real-time
formalism, has to our knowledge not been presented so far.
We have devoted several parts of this work to set up a
proper real-time formalism for static sources. The main
outcome of this more formal aspect of the paper is in
Eq. (60), which expresses the real-time quark-antiquark
propagator as an infinite sum of free propagators and
potential or mass-shift insertions. In all the considered
dynamical regimes, the structure of the potential is such
to satisfy this equation; see Eqs. (58), (91), (100), and
(101).

We have considered a wide range of temperatures and
provided the leading thermal effects to the potential. The
results may be summarized in the following way. (1) If the
temperature is smaller than or as large as the bound-state
energy scale, there are no thermal contributions to the
potential, which is simply the Coulomb potential (58).
Thermal effects enter in physical observables in loop cor-
rections induced by low-energy gluons. The static energy
and the thermal width of the system have been calculated
in (88) and (89). The system exhibits a thermal width,
because, due to thermal fluctuations, at short range a
color-singlet quark-antiquark state may break up into an
octet state and gluons. This is a novel feature of quark-
antiquark bound states in a thermal medium that, to our
knowledge, has not been considered quantitatively before.
The singlet to octet breakup mechanism provides the
dominant contribution to the thermal width when the tem-
perature is as large as the bound-state energy. (2) If the
temperature is larger than the bound-state energy scale but
smaller than 1=r and ifmD is smaller than or as large as the
bound-state energy scale, then the leading thermal correc-
tion to the Coulomb potential is given by the sum of
Eqs. (73) and (82). The potential develops a real and an
imaginary part. Both the singlet to octet thermal breakup

mechanism and the imaginary part of the gluon self-energy
induced by the Landau damping phenomenon contribute to
the imaginary part. If mD is smaller than the bound-state
energy scale then the singlet to octet thermal breakup
provides parametrically the dominant contribution to the
decay width. The imaginary part of the potential originated
by the imaginary part of the gluon self-energy is divergent
and needs to be regularized. In physical observables, the
divergent part cancels against contributions coming from
the scale mD. (3) If also mD is larger than the bound-state
energy scale, then a diagram similar to Fig. 5 with HTL
resummed gluon propagators contributes to the potential as
well. The expression of the potential turns out to be finite at
the considered order and is given by Eq. (92).
Equation (92) is finite because it provides the leading
thermal correction to the static energy and to the decay
width in the expansions in �V=T, mD=T, and rmD. The
same result has been also derived in perturbative QCD by
calculating the Fourier transform of the diagrams in Figs. 9
and 11. (4) If the temperature is larger than 1=r but mD is
smaller than 1=r, the static potential is given by Eq. (115).
If mD is also smaller than or of the same order as �V then
the potential is given by Eq. (114) and divergences cancel
in physical observables against loop corrections from the
scale mD. (5) Finally, if mD is of the order of 1=r the static
potential is given by Eq. (111): this result agrees with the
earlier finding of [5]. Equations (111) and (115) are finite
because, in the kinematical regions of validity, they pro-
vide the leading thermal correction to the static energy and
the decay width [see Eqs. (112), (113), (116), and (117)].
In the temperature ranges (3), (4), and (5), the parametri-
cally dominant contribution to the thermal width comes
from the imaginary part of the gluon self-energy.
While this work was being carried out and completed

some papers appeared dealing with some of the issues
addressed here. In [35,36], among others, the role of the
gluon condensate was considered. The gluon condensate
enters the expression of the mass of the quarkonium if the
typical binding energy is much larger than the hadronic
scale �QCD. The potential is therefore not affected, while

the effect of the gluon condensate on the mass is para-
metrically smaller than the leading relativistic corrections.
If the temperature scale is larger than the binding energy
then the temperature enters the potential and the effects
have been described in the present work. If T � 1=r,
temperature effects are carried by the dipole-dipole inter-
action shown in Fig. 5 and corrections to it. Only when the
time scale of the chromoelectric correlator is smaller than
the binding-energy scale, the chromoelectric correlator
reduces to the local condensate (see Sec. IVC). Low
temperatures, smaller than the binding energy, affect the
condensate but not the potential, which remains
Coulombic. In this case, thermal effects [in the static limit,
they have been evaluated in Eq. (90)] are parametrically
smaller than the leading relativistic corrections. It remains
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to be clarified if a temperature scale below the binding
energy is above the critical temperature: this may depend
on the fact that the temperature scale is T or a multiple of
�T. In [37], some of the issues discussed here about the
potential in real-time formalism have been addressed. In
particular, static particles in real-time formalism have been
considered and Eq. (111) has been derived for a hot QED
plasma in a real-time framework. It has been also pointed
out that the real part of the static potential (111) agrees
with the singlet free energy and that for large separations
r� 1=mD, �=2, as defined in Eq. (113), gives twice the
damping rate of an infinitely heavy quark. Finally, in [38] a
study of nonrelativistic bound states in a hot QED plasma
has been carried out in a nonrelativistic EFT framework,
which is similar to the one presented here.

There are many possible developments of this work,
some of which have already been mentioned in the pre-
vious pages. Here we stress a few of them. First, the
construction of a full EFT for nonrelativistic bound states
at finite temperature requires to be completed. We have
focused in the paper on the quark-antiquark color-singlet
state, but a complete identification and study of all relevant
degrees of freedom that appear once the thermal energy
scales have been integrated out, is still to be done. This
may require the construction of an EFT that includes the
dynamics of gauge fields below the scale mD [39]. Second,
in the EFT framework presented here, the study of quark-
antiquark states at large but finite mass, i.e., actual quark-
onium in a thermal medium, should be addressed. As

argued in the paper, the static limit provides the first piece
of a 1=m expansion; higher-order corrections may be sys-
tematically implemented in the framework of NRQCD and
pNRQCD. Finally, although the short-distance analysis
performed in this work may provide a valuable tool for
studying the thermal dissociation of the lowest quarkonium
resonances, the inclusion in the analysis of the nonpertur-
bative scale �QCD may become necessary for studying

excited states. Also in this case, it should be investigated
first what are the relevant degrees of freedom in a thermal
medium once �QCD has been integrated out and, in par-

ticular, the fate of the color-octet quark-antiquark state (see
also [40]).
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