
Isospin analysis ofD0 decay to three pions

M. Gaspero,1 B. Meadows,2 K. Mishra,2,* and A. Soffer3
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The final state of the decay D0 ! �þ���0 is analyzed in terms of isospin eigenstates. It is shown that

the final state is dominated by the isospin-0 component. This suggests that isospin considerations may

provide insight into this and perhaps other D0-meson decays. We also discuss the isospin nature of the

nonresonant contribution in the decay, which can be further understood by studying the decay D0 !
�0�0�0.
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I. INTRODUCTION

An analysis of the resonant substructure in the decay
D0 ! �þ���0 was recently performed by the BABAR
Collaboration [1]. The Dalitz-plot distribution of theD0 !
�þ���0 events (Fig. 1) shows a clear six-fold symmetry,
with the probability density function vanishing along three
axes. As first described by Zemach [2] and noted in
Ref. [1], this behavior is indicative of a final state with
isospin I ¼ 0.

In the BABAR analysis, the Dalitz-plot distribution is
described by a probability density function formed from a
wave function taken to be the sum of Nr contributions,

 ðsþ; s�Þ ¼
XNr
r

Brgrðsþ; s�Þ; (1)

where sþ � ðp�þ þ p�0Þ2 and s� � ðp�� þ p�0Þ2 are the
squared invariant masses of the �þ�0 and ���0 pairs,
respectively, Br is a complex coefficient, and grðsþ; s�Þ is
the distribution of contribution r, whose functional form is
outlined in Ref. [1]. The definitions of grðsþ; s�Þ used here
differ from that of Ref. [1], in that we define these func-
tions to be normalized over the Dalitz plot,Z

dsþds�jgrðsþ; s�Þj2 ¼ 1: (2)

The values for the Br coefficients consistent with Eqs. (1)
and (2) are reproduced in Table I.

The goal of this paper is to quantify the extent to which
the I ¼ 0 component dominates the final state and learn
about the contributions of the other isospin eigenstates. In
Sec. II we perform an isospin analysis of the�þ���0 final
state. The observed dominance of the I ¼ 0 component
suggests that isospin considerations are useful for devel-

oping an understanding of this decay. In Sec. III we discuss
our results, the nature of the nonresonant contribution to
the decay, a possible mechanism for the observed I ¼ 0
dominance, and further measurements that will help clarify
outstanding questions.

II. ISOSPIN DECOMPOSITION

Next, we analyze the decay D0 ! �þ���0 in terms of
isospin eigenstates. The 3-pion final state can be described
in terms of the total isospin I, the isospin I12 of two of the
three pions, and the z-projection Iz, which is always 0 for
this final state. The seven eigenstates jIðI12Þi of these

FIG. 1. The Dalitz-plot distribution of D0 ! �þ���0 events,
from Ref. [1]. The fine diagonal line at low �þ�� mass
corresponds to the decays D0 ! K0

S�
0, which have been

removed.
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quantum numbers that also satisfy Iz ¼ 0 can be written as
a linear combination of the three-pion final states using the
appropriate Clebsh-Gordan coefficients:

j3ð2Þi ¼ 1ffiffiffiffiffiffi
10

p ðjþ 0�iþ j0þ�iþ jþ�0iþ j�þ0i

þ j0�þiþ j� 0þiþ 2j000iÞ;
j2ð2Þi ¼ 1

2
ðjþ 0�iþ j0þ�i� j0�þi� j� 0þiÞ;

j1ð2Þi ¼ 1ffiffiffiffiffiffi
60

p ½3ðjþ 0�iþ j0þ�iþ j0�þiþ j� 0þiÞ

� 2ðjþ�0iþ j�þ0iÞ� 4j000i�;
j2ð1Þi ¼ 1ffiffiffiffiffiffi

12
p ½jþ 0�i� j0þ�iþ 2ðjþ�0i� j�þ0iÞ

þ j0�þi� j� 0þi�;
j1ð1Þi ¼ 1

2
ðjþ 0�i� j0þ�i� j0�þiþ j� 0þiÞ;

j0ð1Þi ¼ 1ffiffiffi
6

p ðjþ 0�i� j0þ�i� jþ�0iþ j�þ0i

þ j0�þi� j� 0þiÞ;
j1ð0Þi ¼ 1ffiffiffi

3
p ðjþ�0i� j000iþ j�þ0iÞ; (3)

where we have used the notation

j þ 0�i ¼ j1; 1ij1; 0ij1;�1i ¼ j�þij�0ij��i;
j000i ¼ j1; 0ij1; 0ij1; 0i ¼ j�0ij�0ij�0i; (4)

etc., and it is implied that the first two pions are in an
isospin eigenstate whose eigenvalue is indicated by the
bracketed number I12.

The three states in Eq. (3) for which I12 ¼ 1 are identi-
fied as those with a �ð770Þ, �ð1450Þ, or �ð1700Þ. We
denote these states as �n� according to their radial exci-
tation quantum number n 2 f1; 2; 3g, and use �þ, �0, and
�� to indicate any linear combination of these states with
specific electric charge. We define the � states to be

j�þi ¼ j1; 1i ¼ 1ffiffiffi
2

p ðj þ 0i � j0þiÞ;

j�0i ¼ �j1; 0i ¼ 1ffiffiffi
2

p ðj � þi � j þ�iÞ;

j��i ¼ j1;�1i ¼ 1ffiffiffi
2

p ðj0�i � j � 0iÞ;

(5)

where the minus sign in the j�0i definition implies that
there is no sign change under cyclic permutations of the
three pions, maintaining consistency with the definitions
used in Ref. [1]. Given Eq. (5), the I12 ¼ 1 states in Eq. (3)
can be written as

j2ð1Þi ¼ 1ffiffiffi
6

p ðj�þ��i � 2j�0�0i þ j���þiÞ;

j1ð1Þi ¼ 1ffiffiffi
2

p ðj�þ��i � j���þiÞ;

j0ð1Þi ¼ 1ffiffiffi
3

p ðj�þ��i þ j�0�0i þ j���þiÞ;

(6)

where the sign of each j��i state is such that it is sym-
metric under cyclic permutations of the three pions and
antisymmetric under the exchange of any pair of pions.
The �þ���0 part of the state j1ð0Þi is identified as the

sum of the contributions involving the two-body, I ¼ 0
resonances fi, with i ¼ 0, 2. We therefore write

j1ð0Þi ¼ 1ffiffiffi
3

p ð ffiffiffi
2

p jf�0i � j000iÞ: (7)

Since there are no I ¼ 2 resonances in Table I, the I ¼ 2
states in Eq. (3) have no resonant contributions. However,
the symmetry of the �þ���0 components of j3ð2Þi in-
dicates that it may be identified with the nonresonant
contribution of Table I. Alternatively, the nonresonant
contribution may constitute the �þ���0 component of
the symmetric I ¼ 1 state

j1ðSÞi � 2

3
j1ð2Þi þ

ffiffiffi
5

p
3

j1ð0Þi

¼ 1ffiffiffiffiffiffi
15

p ðj þ 0�i þ j0þ�i þ j þ�0i þ j � þ0i

þ j0�þi þ j � 0þi � 3j000iÞ: (8)

In principle, the observed nonresonant state may be a
superposition of j1ðSÞi and j3ð2Þi. However, the j1ðSÞi state
is expected to dominate, due to the following argument.
The four-quark final state produced by the weak decay c!
d �du, shown in Fig. 2, cannot have I ¼ 3. Since production

TABLE I. Amplitude coefficients Br ¼ jBrjei�r of the contrib-
uting final states of the decay D0 ! ���þ�0, adapted from
Ref. [1]. The f0ð400Þ was labeled �ð400Þ in Ref. [1].

Final state r Amplitude jBrj Phase �r (
�)

Nonresonant 0:106� 0:013� 0:014 �11� 4� 2
�ð770Þþ�� 1 0.0

�ð770Þ0�0 0:588� 0:006� 0:002 16:2� 0:6� 0:4
�ð770Þ��þ 0:714� 0:008� 0:002 �2:0� 0:6� 0:6
�ð1450Þþ�� 0:040� 0:011� 0:024 �146� 18� 24
�ð1450Þ0�0 0:062� 0:012� 0:007 10� 8� 13
�ð1450Þ��þ 0:154� 0:010� 0:007 16� 3� 3
�ð1700Þþ�� 0:236� 0:019� 0:014 �17� 2� 3
�ð1700Þ0�0 0:267� 0:016� 0:014 �17� 2� 2
�ð1700Þ��þ 0:210� 0:012� 0:007 �50� 3� 3
f0ð980Þ�0 0:056� 0:005� 0:006 �59� 5� 4
f0ð1370Þ�0 0:072� 0:010� 0:010 156� 9� 6
f0ð1500Þ�0 0:074� 0:007� 0:007 12� 9� 4
f0ð1710Þ�0 0:072� 0:010� 0:011 51� 8� 7
f2ð1270Þ�0 0:130� 0:005� 0:026 �171� 3� 4
f0ð400Þ�0 0:104� 0:008� 0:017 8� 4� 8
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of the third q �q pair will be dominated by the strong-
interaction, it will not change the total isospin. Therefore,
I ¼ 3 is disfavored. It is also possible that a very broad,
�þ�� S-wave resonance is present in these decays, and
that it was partly described by the constant nonresonant
term in the fit in Ref. [1]. In that case, it would contribute
only to the j1ð0Þi isospin eigenstate.

In what follows, we take the nonresonant contribution
jNRi to be due only to j1ðSÞi. Then Eqs. (7) and (8) yield
the relation

j1ð2Þi ¼ 3ffiffiffiffiffiffi
10

p jNRi �
ffiffiffi
5

6

s
jf�0i � 2ffiffiffiffiffiffi

15
p j000i: (9)

We now reorder the terms of Eq. (1) according to their
I12 eigenvalues:

 ðsþ; s�Þ ¼ BNRgNRðsþ; s�Þ þ B�þ��g�þ��ðsþ; s�Þ
þ B�0�0g�0�0ðsþ; s�Þ
þ B���þg���þðsþ; s�Þ þ Bf�0gf�0ðsþ; s�Þ;

(10)

where the first term is the nonresonant term, the last is a
sum over the six final states with I12 ¼ 0 resonances listed
at the bottom of Table I, and each of the second, third, and
fourth terms is a sum over the three I12 ¼ 1 �� states. For

example,

g�þ��ðsþ; s�Þ �
S�þ��

N�þ��
exp½�i��þ���; (11)

where

S�þ�� � X3
n¼1

B�þ
n �

�g�þ
n �

�ðsþ; s�Þ;

��þ�� � argðS�þ��Þ;

N�þ�� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
dsþds�jS�þ��j2

s
;

(12)

and �n (n ¼ 1, 2, 3) indicates the three � resonances of
Table I. With these definitions, the wave function
g�þ��ðsþ; s�Þ is explicitly normalized and has vanishing

average phase. Requiring that Eq. (10) be identical to (1)
leads to the following values for the coefficients of
Eq. (10):

BNR ¼ 0:1066e�i11:4� ;

B�þ�� � N�þ�� exp½i��þ��� ¼ 1:1976e�i4:3� ;

B�0�0 � N�0�0 exp½i��0�0� ¼ 0:8867ei6:3
�
;

B���þ � N���þ exp½i����þ� ¼ 1:0077e�i8:2� ;

Bf�0 � Nf�0 exp½i�f�0� ¼ 0:0700ei40:0
�
;

(13)

where the symbols Ns and �s for final state s are defined
analogously to Eq. (12). The value of BNR is taken from
Table I and the rest are calculated numerically as in
Eqs. (11) and (12). The phase convention is that of
Table I, namely, ��þ

1
�� � 0.

Next, we write the wave function of Eq. (10) as a sum
over the Dalitz-plot representations of the eigenstates of I
and I12 of Eq. (3):

 ðsþ; s�Þ ¼ C1ð2ÞM1ð2Þðsþ; s�Þ þ C2ð1ÞM2ð1Þðsþ; s�Þ
þ C1ð1ÞM1ð1Þðsþ; s�Þ þ C0ð1ÞM0ð1Þðsþ; s�Þ
þ C1ð0ÞM1ð0Þðsþ; s�Þ; (14)

where MIðI12Þðsþ; s�Þ is the normalized distribution func-

tion of the eigenstate jIðI12Þi, obtained by linearly combin-
ing the functions gxðsþ; s�Þ of Eq. (10) with the
coefficients of either Eq. (6) and (7), or (9). Terms for
j3ð2Þi and j2ð2Þi were not included in Eq. (14), as reasoned
earlier. Then from the definition of MIðI12Þðsþ; s�Þ follows
the desired transformation between the resonance-based fit
coefficients and the isospin coefficients:

FIG. 2. Feynman diagrams for the decay D0 ! �þ���0.
With curly brackets indicating a resonance, the diagrams corre-
spond to the decays (a) D0 ! �þ��, (b) D0 ! �þ��, and (c,
d) D0 ! �0�0 or D0 ! f�0.
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C1ð2Þ ¼
ffiffiffiffiffiffi
10

p
3
BNR;

C2ð1Þ ¼ 1ffiffiffi
6

p ðB�þ�� � 2B�0�0 þ B���þÞ;

C1ð1Þ ¼ 1ffiffiffi
2

p ðB�þ�� � B���þÞ;

C0ð1Þ ¼ 1ffiffiffi
3

p ðB�þ�� þ B�0�0 þ B���þÞ;

C1ð0Þ ¼
ffiffiffi
3

2

s
Bf�0 þ

ffiffiffi
5

6

s
C1ð2Þ;

(15)

where the expressions for C1ð0Þ and C1ð2Þ were chosen so as
to satisfy the �þ���0 projection of Eqs. (7) and (9).

Taking the numerical values of the Br coefficients from
Eq. (13) and Table I, Eq. (15) gives

C1ð2Þ ¼ ð0:0629� 0:0028Þ exp½ið�8:9� 2:6Þ��;
C2ð1Þ ¼ ð0:1395� 0:0016Þ exp½ið�42:5� 0:7Þ��;
C1ð1Þ ¼ ð0:0814� 0:0023Þ exp½ið18:0� 2:0Þ��;
C0ð1Þ � 1;

C1ð0Þ ¼ ð0:0954� 0:0052Þ exp½ið14:5� 2:4Þ��;

(16)

where we have normalized the coefficients so that C0ð1Þ ¼
1. The errors reflect the full error matrix of the results
presented in Table I [3]. The correlation matrix for these
coefficients are given in Table II.

Equation (16) quantifies the observation, made qualita-
tively in Ref. [1] on the basis of the symmetry exhibited by
the Dalitz-plot distribution, that the final state of the decay
D0 ! �þ���0 is dominated by an I ¼ 0 component.

III. DISCUSSION AND CONCLUSIONS

We have analyzed the relative contributions of different
components to the decay D0 ! �þ���0 using results
published by BABAR [1]. It appears that isospin consider-
ations may form a solid basis for understanding the ob-
served decay pattern, as the amplitude of the j0ð1Þi final
state dominates by factors of seven or more over the other
isospin components. This dominance has no natural expla-

nation in the decay mechanisms suggested by the
factorization-motivated diagrams of this decay, shown in
Fig. 2. While factorization is useful in predicting the
behavior of B-meson decays, it is not as successful when
applied to the lighter D mesons. The observed j0ð1Þi
dominance in the decay D0 ! �þ���0 may lead to a
better general understanding of charmed meson decays.
Alternatively, perhaps the I ¼ 0 component is enhanced by
the presence of a yet-unknown and possibly broad state
with this quantum number, which couples strongly to three
pions. An inclusive search for such a state may answer this
question.
In conducting the isospin analysis, we took only the

�þ���0 projections of the isospin-eigenstates j1ð2Þi and
j1ð0Þi. The CLEO Collaboration [4] has set an upper limit
of 3:4� 10�4 on the branching fraction BðD0 !
�0�0�0Þ. Together with the BABAR [5] measurement
of BðD0 ! �þ���0Þ ¼ ð1:493� 0:057Þ%, this implies
an upper limit on the amplitude ratio AðD0 !
�0�0�0Þ=AðD0 ! �þ���0Þ< 0:15, consistent with the
suppression seen in the coefficients C1ð2Þ and C1ð0Þ, and the
expectation from Eqs. (7) and (9).
As discussed above, the �þ���0 nonresonant ampli-

tude may be a combination of j3ð2Þi, j1ðSÞi, and a broad
�þ�� resonance term in j1ð0Þi. If it is due only to the
j3ð2Þi, Eq. (3) predicts the ratio between the nonresonant

�0�0�0 and �þ���0 amplitudes to be RNR ¼ ffiffiffiffiffiffiffiffi
2=3

p
. By

contrast, j1ðSÞi-dominance leads to RNR ¼ ffiffiffiffiffiffiffiffi
3=2

p
, from

Eq. (8). In the j1ð0Þi case, the ratio between the nonreso-
nant �0�0�0 amplitude and the sum of the f�0 and non-

resonant �þ���0 amplitudes should be 1=
ffiffiffi
2

p
. We note

that the ratio RNR ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:556� 0:012

p
is observed in KL

decays to three pions, where the nonresonant contribution
accounts for over 95% of the branching fractions. The
same situation exists in the decay �! �þ���0. This
strengthens the justification of our choice to identify the
nonresonant contribution with the j1ðSÞi state. In any case,
the arguments given here demonstrate that a measurement
of the branching fraction BðD0 ! �0�0�0Þ and, possibly,
an analysis of this mode’s Dalitz-plot distribution should
shed more light on the role of isospin symmetry in D0

decays to three-pion final states.

TABLE II. Correlation matrix for the CIðI12Þ amplitude coefficients of Eq. (16).

jC1ð2Þj argðC1ð2ÞÞj jC2ð1Þj argðC2ð1ÞÞ jC1ð1Þj argðC1ð1ÞÞ jC1ð0Þj argðC1ð0ÞÞ
jC1ð2Þj 1 �0:120 0.105 �0:018 0.631 0.110 0.279 0.657

argðC1ð2ÞÞ �0:120 1 0.062 0.106 �0:211 0.539 �0:760 0.136

jC2ð1Þj 0.105 0.062 1 0.008 0.179 0.029 �0:017 0.078

argðC2ð1ÞÞ �0:018 0.106 0.008 1 0.148 0.333 0.110 0.151

jC1ð1Þj 0.631 �0:211 0.179 0.148 1 0.050 0.259 0.288

argðC1ð1ÞÞ 0.110 0.539 0.029 0.333 0.050 1 �0:296 0.097

jC1ð0Þj 0.279 �0:760 �0:017 0.110 0.259 �0:296 1 0.077

argðC1ð0ÞÞ 0.657 0.136 0.078 0.151 0.288 0.097 0.077 1
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