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Based on recent work on nuclear binding, we update and extend the anthropic constraints on the light

quark masses, with results that are more tightly constrained than previously obtained. We find that heavy

nuclei would fall apart (because the attractive nuclear central potential becomes too weak) if the sum of

the light quark massesmu þmd would exceed their physical values by 64% (at 95% confidence level). We

summarize the anthropic constraints that follow from requiring the existence both of heavy atoms and of

hydrogen. With the additional assumption that the quark Yukawa couplings do not vary, these constraints

provide a remarkably tight anthropic window for the Higgs vacuum expectation value: 0:39<

v=vphysical < 1:64.
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I. INTRODUCTION

To a first approximation, the fundamental parameters
that describe our world appear to be uniform in space and
constant in time. However, it is possible that their apparent
constancy is illusory because of our limited ability to make
observations across space and time. There are mechanisms,
such as chaotic inflation and the string landscape, that can
lead to a multiverse in which regions far outside of our
visible horizon have different parameters from those that
we see. Similarly it is possible (if there exists some nearly
massless ‘‘moduli field’’) that the parameters could have
been different in the early universe, and there are even
experimental hints for this option. While these possibilities
may or may not bear fruit in future studies, it is important
to explore these options as carefully as possible.

The possibility of variable parameters changes the way
that we approach the open questions of fundamental phys-
ics [1–4]. For example, the existence of a multiverse with
different parameters in different domains would modify the
way that we approach the issue of using those parameters
as a test of the underlying theory. Rather than looking for a
unique set of parameters to emerge from a fundamental
theory, we would expect them to be distributed in some
typical range. However, for some parameters there is a
further restriction in that there are combinations of parame-
ters that would lead to a domain that could not support life.
While there is some fuzziness in the constraints for the
existence of life, certain clear physical properties can be
used to delineate the extreme limits of the possible ranges.
For example, atoms must exist and this restricts the ranges
of the quark and lepton masses and possibly the Higgs
vacuum expectation value (vev) [3]. This ‘‘atomic con-
straint’’ is particularly significant for the Higgs vev be-
cause the small value of this parameter (on the grand
unified theory (GUT), or Planck, scale) is one of the great
fine-tuning problems of the standard model and conse-
quently it is one of the greatest motivations for new phys-

ics. Alternatively, taking for granted this fine-tuning
changes the way one can approach the need for new
physics (and notably supersymmetry [4]).
The work of Agrawal et al. (ABDS) [3] has used this

atomic principle (as it was called in [4]), i.e. the need for
the existence of atoms, to provide secure anthropic con-
straints on quark masses and the Higgs vev. In order to
translate from the direct bound on the quark masses, this
work assumes that the other parameters of the standard
model remain fixed while the Higgs vev is allowed to vary.
In a realistic theory, if the Higgs vev is able to take on
different values, then the other parameters may also vary.
However, the expected range of the Higgs vev is far larger
in the absence of other new physics—this is why this vev is
viewed as a great fine-tuning problem. As a consequence
this key anthropic constraint may still have a robust mean-
ing, even if other parameters are allowed to vary. Within
the standard model the quark masses follow from the weak
interaction, and are proportional to that scale. The Higgs
vev sets the scale of the weak interactions. In contrast, the
major contributions to nuclear masses are determined by
the strong interactions. The general constraint then is that
the effects of the scale of the weak interaction must overlap
the scale of the strong interactions. It is the interplay of
these two very different interactions that allows the exis-
tence of atoms. There is then a narrow volume of parameter
space that produces nuclei and atoms.
A temporal variation of parameters could have yet dif-

ferent implications. A continuous variation of some quan-
tity implies that this quantity is a field, i.e. it carries a
space-time dependence. For this variation to occur over
cosmological time scales the field must be nearly massless.
This then suggests that such a field coupled to matter
would lead to violations of the equivalence principle, for
example, or to other observable consequences.
In this paper we use recent work on nuclear binding to

address some of these issues. In particular, we refine the
understanding of the viable range of quark masses which
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follows from the existence of heavy nuclei. Other atomic
constraints (namely that hydrogen exists) bound the pos-
sible masses of the electron. We briefly discuss the con-
straint on the Higgs vev if the Yukawa couplings are held
fixed. We reserve to a companion paper the issue of im-
plications for tests of the equivalence principle [5].

Our paper is organized as follows: In Sec. II we use
recent work on effective field theory to estimate which
variation in quark masses would ‘‘unbind’’ heavy nuclei.
In Sec. III we provide more physical insight into the
sensitivity of nuclear binding to scalar interactions be-
tween nucleons by considering a simple model for homo-
geneous nuclear matter. Finally, Sec. IV displays the
anthropically allowed range of the masses of the first
generation of quarks and leptons: mu, md, me.

II. ANTHROPIC CONSTRAINTS FROM THE
EXISTENCE OF NUCLEI USING EFFECTIVE

FIELD THEORY

To the extent that we understand how the standard model
leads to the physical world that we observe, we should be
able to understand how that world would change if we
modify the parameters of the theory to take on values in the
neighborhood of their physical values. While we feel that
we do understand the overall phenomenology of the stan-
dard model, the precision that we claim in these calcula-
tions continues to advance at a relatively modest pace,
especially for what concerns the link between the funda-
mental Lagrangian and nuclear physics. However, the re-
cent advances in nuclear physics have been impressive,
largely through the application of the effective field theory
approach [6]. Since the energies in nuclear processes are
low, the effective field theory framework parametrizes the
key ingredients in terms of a relatively small number of
low energy constants. This method has been applied ex-
tensively to nuclear binding and has put traditional nuclear
phenomenology on a more solid basis.

We consider a relatively simple but reasonably model-
independent description of the parameters that influence
nuclear binding, limiting ourselves to those that appear
most important. For all but the lightest of nuclei, the key
aspect of binding comes from a central potential that is
isospin symmetric and which does not involve the spin of
the nucleons. These will be parametrized by a small num-
ber of contact interactions [7–9]. While the other compo-
nents of the nuclear force are important for the detailed
descriptions of nuclear states, the main contributions to the
binding energy comes from this spin-singlet and isospin-
singlet central potential.

In addition to this model-independent framework, we
employ the results of recent work on the variation of the
dominant coupling constants with a changing quark mass
[10]. While there are clearly some uncertainties in this
calculation, it is easy to argue that the dominant effects
are kinematic. The coupling constants are calculated using

a dispersive representation [11,12], with the threshold of
the dispersion integral appearing at the physical threshold
of 2m�. Raising the threshold is seen to lead to a kinematic
suppression of the coupling strength. While our estimate is
much more sophisticated than this, nevertheless the domi-
nant effect is that of the kinematic threshold.
In effective field theory, the propagation of the very light

degrees of freedom must be treated dynamically because
these particle can propagate long distances. By contrast, at
low energies, the more massive degrees of freedom cannot
propagate far and can be represented by contact interac-
tions—i.e. delta function potentials and derivatives of delta
functions. This has the effect of simplifying the contribu-
tions of various possible particle exchanges, with various
spatial potentials, into a few low energy constants describ-
ing the strength of the interactions. In nuclear processes, it
is useful to treat the direct effects of one-pion exchange
dynamically, but to treat the other components of the
nuclear force by contact interactions. For the spin-singlet
and isospin-singlet central potential responsible for nuclear
binding there are then two possible contact interactions,
called scalar and vector

Hcontact ¼ GSð �NNÞð �NNÞ þGVð �N��NÞð �N��NÞ þ . . .

(1)

where N denotes the nucleon field, and where GS is nega-
tive (i.e. attractive), while GV is positive (i.e. repulsive). In
traditional meson exchange models, the scalar component
corresponds to the exchange of the �ð600Þ meson and the
vector component corresponds to the exchange of the
!ð783Þ meson.
Our first task is to understand the primary ingredients of

nuclear binding in this framework. Fortunately the domi-
nant ingredients in the binding of heavy nuclei have been
elucidated in a set of papers by Furnstahl, Serot, and co-
workers [7–9]. For heavy nuclei, one-pion-exchange is not
very important because pion exchange is proportional to
the spin and isospin operators and the spins and isospins of
most nucleons average to a total that is close to zero.
Instead the isoscalar and spin independent contributions
sum over all nucleons and are dominant once one is away
from the few-nucleon cases. This is in accord with the
standard wisdom that the nuclear central interaction (J ¼
0 and I ¼ 0) is responsible for nuclear binding. The results
for heavy nuclei can be extracted from Fig. 1 and Fig. 2 of
[7]. As expected, the dominant effects are the scalar and
vector contributions described above. Other interactions
play reduced roles, although for a complete understanding
of the binding about a half-dozen contact interactions are
required. Here we will focus our attention on the dominant
isoscalar-scalar and isoscalar-vector interactions.
Using Ref. [7], one can quantify these contributions to

nuclear binding. We parametrize the results in terms of the
strengths of the contact interactions, normalized to their
physical values, defining
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�S � GS

GSjphysical �V � GV

GV jphysical : (2)

The contributions to the binding energy (B.E) for 16O (in
MeV)1 are

B:E:

A
’ �82�S þ 44�V þ 30 (3)

where A denotes the total baryon number. The first two
terms are the effects of the scalar and vector isoscalar
interactions. The third term is the sum of all other smaller
contributions to the binding energy and kinetic energy
contributions. There is in addition the Coulomb energy
and a small center of mass correction. For 208Pb, the result
is

B:E:

A
’ �104�S þ 57�V þ 36: (4)

The results of these calculations can be generalized to
other nuclei by a parametrization that resembles the semi-
empirical mass formula. For local interactions, because the
nuclear density is nearly constant in the central region one
expects that the binding energy will have a dependence on
the volume, which in turn is proportional to the number of
particles, r3 � A, and that interactions that occur near the
nuclear surface would have a modified result proportional

to the number of nucleons near the surface, r2 � A2=3. This
suggests that binding effects can be parametrized in terms

of behavior in A and in A2=3. Using the results for nuclear
matter and for specific nuclei, we find a good fit of the form

B:E:

A
¼ �

�
120� 97

A1=3

�
�S þ

�
67� 57

A1=3

�
�V

þ residual terms: (5)

The primary difficulty in applying these ingredients to
anthropic constraints is the need to connect the contact
interactions to the fundamental parameters of QCD.
However, there are two decades worth of work exploring
the ingredients in this connection. The framework used
below follows [10,12] in employing dispersion relations,
which can be used to express the desired couplings as
integrals over reactions involving physical intermediate
states. The low energy portions of these reactions can be
well predicted by chiral perturbation theory, in which one
has reasonable control over the quark mass dependence.

In general, an effective field theory prediction would be
expected to have the following structure. The high energy
end of a dispersion integral would be expected to depend
on the quark masses only weakly. This is known from the

dependence of hadron masses and couplings on the quark
mass parameters. For example, if the u, d masses were

doubled (keeping �ð0Þ
QCD fixed) the nucleon mass would

increase by about a half a percent. However, the low energy
portions of a dispersion integral can have a much greater
change. For example, the doubling of the u, d masses
would raise the energy threshold in the dispersion relation
by 40% and would forbid any contributions below this new
threshold. In this case, a reasonable first approximation to
an effective field theory calculation would be to treat the
high energy portion of the dispersive integral as being
independent of the masses and to calculate the low energy
effects using chiral perturbation theory. Any large depen-
dence on the light quark masses should come from the low
energy end. This is the result of our work.
The reasoning above suggests that the most important

effect is in the scalar channel. This is the only portion of the
central force that receives large effects from low energy, as
two-pion exchange is the most important contribution.2

This channel has been explored in great depth within the
context of chiral perturbation theory, including studies very
similar to the approach used in this paper [13]. One of the
authors has recently extended this work to include the
constraints of unitarity [10,12]. The result is a description
of two-pion exchange that carries the main properties
needed for the scalar central potential. We will employ
this work in our analysis below. In this work, we use chiral
perturbation theory at low energies and also attempt to
extend the description to high energy. The low energy
part is then model-independent while the high energy
portion is less rigorous. However the high energy portion
plays little role in our answer, since it conforms with the
expectation that it should be largely independent of the
quark masses. Moreover, we should note here that the
primary ingredient is independent of the details of this
calculation. The general trend is inescapable—as the
pion mass gets larger, the effect of two-pion exchange
must get smaller. In the chiral framework, the connection
of the quark masses to the two-pion threshold is well
defined, and as noted above, most of the effect found in
Ref. [10] is kinematic.
Let us summarize the results of [10] and extend them to

larger values of the pion mass. First, it was found that the
pion mass dependence of omega exchange (corresponding
to the vector channel) is of ‘‘normal’’ size, i.e.
Oðm2

�=ð1 GeVÞ2Þ. Such a normal sensitivity to m2
� (and

therefore to quark masses) leads to subleading corrections
compared to the effects linked to the m2

� sensitivity of the
scalar channel. Indeed, because of the dependence on the
two-pion threshold, the scalar contact interaction is much

1Though we shall use here for convenience the usual physical
units MeV (or GeV), one should think of these (when consider-
ing variations of the quark masses) as being defined as some pure
number times the chiral limit of the QCD confinement scale, say
�ð0Þ

QCD.

2The vector channel has also been explored in [10] but has
little low energy effect and only a very small mass dependence.
We will include it in our numerics below, while focusing, in the
text, on the dominant scalar-channel effects.
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more sensitive to the pion mass. In full generality, one has
the sum rule

GS ¼ 2

�

Z 1

2m�

d�

�
�Sð�Þ (6)

where �Sð�Þ is the spectral function that describes the
physical two-pion intermediate state at energy �. The
dependence of this spectral function on the quark masses
is explored in detail in Ref. [10]. The rise of the amplitudes
from the threshold value of � ¼ 2m� ¼ 270 MeV is tem-
pered at higher energy by unitarity effects such that the
main contributions come from energies near � ¼
500–600 MeV. When changing the quark masses, all in-
gredients change to some extent. However, the key effect is
the threshold behavior. In lowest order, the pion mass-
squared is proportional to the light up and down quark
masses

m2
� ¼ B0ðmu þmdÞ (7)

where B0 is a constant3 (proportional to �ð0Þ
QCD). The evi-

dence is that this relation holds throughout the region of
interest to us here [14]. The higher threshold then cuts off
the effect of two-pion exchange as the pion mass increases.

In detail, the framework of Ref. [10] includes all varia-
tions in the parameters governing two-pion exchange, in-
cluding gA, F� and the �� rescattering amplitude. While
that work was focused on the situations where the pion
mass was lighter than its physical value, the framework
also extends to larger values of the pion mass. For example,
the comparison of the result at the physical mass to the case
where the pion mass is 40% larger than the physical value
is shown in Fig. 1. The spectral integral will clearly show a
decrease when the pion mass is increased.

In [10] it was found that the scalar strength GS reached,
in the chiral limit, the larger4 value

GSjchiral
GSjphysical ¼ 1:37� 0:10: (8)

The error bar comes from the limitation of our understand-
ing of the dependence of various couplings on the pion
mass. This result could be used by itself to reasonably
extrapolate to larger values of the pion mass since the
extrapolation is almost linear in m2

�. However, there are
some nonlinear features. In practice, a more detailed cal-
culation, including required nonanalytic contributions
yields the result shown in Fig. 2 for �S, i.e. the value of
GS normalized to the physical value, as a function of the
pion mass. The estimates of these uncertainties are also
shown in Fig. 2. The error bars come from our lack of
understanding of the dependence of some of the pion and
nucleon parameters on the value of m�. The largest source

of uncertainty is the mass dependence of the axial coupling
gA. These uncertainties are discussed in more detail in [10].
In this calculation we have calculated the spectral inte-

gral up to an energy of 850 MeV. This includes some
energies above the scale where the chiral perturbation
theory description is valid—the upper end of this integral
is modeled by using the continuation of the unitarized
chiral amplitudes above the region where they are known
to be correct. However, because very little mass variation is
seen in the upper energy region, there is an alternate
procedure which does not make this model-dependent
assumption yet which yields essentially the same result.
In this procedure, one calculates the spectral integral only
in the region where the chiral expansion is valid, for
example, up to an energy of 600 MeV, and includes a short
distance contact interaction to account for the effects of
higher energy. (This rationale is described in more detail in
[10].) If one assumes that the mass dependence of the short
distance effect is of normal size (i.e. of order
m2
�=ð1 GeVÞ2), then essentially all the mass variation

comes from the low energy end, reproducing the result
quoted above within error bars.

FIG. 1. The scalar spectral function for three values of the pion
mass, m� ¼ 0, mphys, and

ffiffiffi
2

p
mphys, with thresholds starting at

� ¼ 2m�.

FIG. 2. The value of the scalar strength �S as a function of the
pion mass.

3The precise value of B0 depends on the renormalization scale
used to specify the quark masses.

4In absolute value; let us indeed recall that GS is negative.
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Because the effect of the scalar interaction is attractive
(GS < 0) while the effect of the vector interaction is re-
pulsive (GV > 0), there is a substantial cancellation be-
tween these two effects (see next section for an analytical
discussion exhibiting this cancellation). The mass depen-
dence of the vector interaction has also been estimated in
[10]. It has no significant threshold dependence because
the dominant feature—the!meson—is a narrow pole with
only a small dependence on the quark masses. We have
taken this into account in our numerics, but do not discuss
it further here.

Because the scalar strength has significant variation
while the vector one is less affected, the cancellation
between the two has an even larger percentage variation.
In particular, as the attractive scalar interaction becomes
weaker, it no longer dominates over the repulsive vector
interaction, and the binding energy can change sign (from
‘‘binding’’ to ‘‘unbinding’’) as m2

� increases above its
physical value. Using the results (3) and (4) quoted above,
we see that the binding energy vanishes for a scalar
strength only 10% smaller than the physical values

�Sjcritical ¼ 0:90 for 16O

�Sjcritical ¼ 0:89 for 208Pb:
(9)

Study of the general formula shows that these values are
typical of the whole range in A. As we have seen above,
increasing the pion mass will lead to a decrease in the
scalar strength. In Fig. 3 we show the resulting nuclear
binding for 16O as a function of the pion mass, including
the estimated error bar. In producing this figure we have
assumed that the other small contributions to the binding
formula do not have significant variations. We see that this
element becomes unbound when the pion mass-squared is
36� 14% larger than the physical value. This critical
value is almost independent of the value of A.

The anthropic constraint on quark masses can be in-
ferred from these results. Using the basic relation (7)
between the pion mass and the quark masses, one obtains

the constraint

mu þmd

ðmu þmdÞphys < 1:36� 0:14 (10)

from the requirement that nuclear binding exist at all. To
the best of our present understanding of pion physics from
chiral studies and from lattice simulations, the corrections
to the basic relation between pion and quark masses are
negligible compared to the other uncertainties in the cal-
culation. If we had used the binding of 208Pb we would
have obtained essentially the same constraint on the pion
mass. The use of the semiempirical mass formula de-
scribed above says that this constraint is roughly indepen-
dent of the value of A. If we include the error bar and
convert to a 95% confidence level upper bound we con-
clude that

mu þmd

ðmu þmdÞphys < 1:64: (11)

We will use this as our final ‘‘atomic bound.’’

III. CONSTRAINTS USING A MODEL FOR
NUCLEAR MATTER

In this section we use a simple model for nuclear matter
to provide more physical insight into the sensitivity of
nuclear binding to the scalar strength and to reinforce the
results of the previous section. The model is a variant of the
description of nuclear matter discussed in Ref. [9] using
nucleonic and mesonic fields. It reproduces the dominant
contact interactions used above and also includes higher
order dependencies on the scalar couplings and the kinetic
energy. We will see that these higher order dependencies
increase the sensitivity to GS and hence to the quark
masses.
The starting Lagrangian is

L ¼ � ½i��@� � gVV��
� � ðM� gS�Þ� 

þ 1
2m

2
VV

2
0 � 1

2m
2
S�

2 (12)

where  is the nucleon field, � is a scalar, isoscalar field
(‘‘the sigma’’) and V� is an isoscalar-vector field (‘‘the

omega’’).
We now consider the effect of this Lagrangian in an

infinite nuclear medium. The nucleon field fills the avail-
able states up to the Fermi energy. The density of nucleons
is given by

�B ¼ �

ð2�Þ3
Z kF

0
d3k ¼ �k3F

6�2
(13)

where � is the number of degrees of freedom (� ¼ 4 for
isoscalar nuclear matter, which we will use in our numeri-
cal work) and kF is the Fermi momentum. The nucleon
field acts as the source of the scalar and vector fields.
Solving for the energy density of this uniform distribution,
one finds

FIG. 3. The binding energy per nucleon in 16O as a function of
the pion mass. The corresponding result in 210Pb is very similar.
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� ¼ 1

2

g2V
m2
V

�2
B þ

1

2

g2S
m2
S

�2
S þ

�

ð2�Þ3
Z kF

0
d3kE�ðkÞ (14)

where the scalar density is

�S ¼ �

ð2�Þ3
Z kF

0
d3k

M�
E� (15)

and

E� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2�

q
M� ¼ M� gs�S: (16)

We approximate this by nonrelativistic kinematics, which
is a reasonable approximation for nuclear matter. If we
then solve for the energy per baryon (E=A, which is �=�B)
we find

E

A
�M ¼ �

12�2
k3F

�
g2V
M2
V

� g2S
M2
S

�
þ 3

10

k2F

Mð1� �g2
S
k3F

6�2m2
S
M
Þ
:

(17)

Here in the first term we see the effects of the scalar and
vector contact interactions (withGS ¼ �g2S=m2

S andGV ¼
þg2V=m2

V), while the second term is the kinetic energy of
the nucleons propagating in the nuclear medium. In the
language of Ref. [7], these latter terms would be described
as higher order contributions in the kinetic energy term.

If the couplings are chosen appropriately, one reprodu-
ces the existence of nuclear matter. As the density ( / k3F)
increases, the kinetic energy initially gives a positive con-
tribution which is eventually overcome by the potential
energy (if g2V=M

2
V � g2S=M

2
S ¼ GV þGS is sufficiently

negative), with nuclear saturation seen in the existence of
a minimum in the potential energy function. Using appro-
priate values (GS ¼ �362 GeV�2 and GV ¼ 270 GeV�2)
an energy function very similar to that of [9] is shown as
the bottom curve in Fig. 4, reproducing the correct binding
energy and Fermi momentum.

Now let us consider variations in the scalar coupling.
Various other values of GS are also shown in Fig. 4. We

observe that the binding is highly sensitive to the scalar
coupling. In particular, nuclear matter disappears for a
critical value of GS only 10% smaller than the physical
value

�Sjcrit ¼ GSjcrit
GSjphys ¼ 0:904: (18)

This confirms the sensitivity to this parameter found in
finite nuclei by Ref. [7]. In fact, we can see from both the
formula and the numerics that higher order effectsGS have
the effect of making the sensitivity greater.
Finally let us translate this into a constraint on the quark

masses. Using the calculation of GS as our guide, the
binding energy of nuclear matter as a function of the
pion mass is shown in Fig. 5. We see that the central value
of the constraint satisfies

mu þmd

ðmu þmdÞphys < 1:28� 0:14: (19)

This is completely consistent with, and slightly stronger
than, the bound quoted in the previous section. Because the
two constraints overlap, to be conservative we will use the
upper bound of the previous section as our final constraint.

IV. SUMMARY OF QUARK AND LEPTON MASS
CONSTRAINTS

In this section, we display the anthropically allowed
range of the masses of the first generation of quarks and
leptons, mu, md, me updating Ref. [15]. There are two
primary constraints. One is a bound on the sum of quark
masses mu þmd derived above. If this combination be-
comes too large, all nuclei fall apart because the attractive
central potential becomes too weak. The other bound fol-
lows from the constraint that if the neutron mass is lighter
than the sum of the masses of the proton and electron,
hydrogen will be unstable through the capture of electrons

FIG. 4. The binding energy, B, per nucleon in nuclear matter
as a function of the Fermi momentum for various values of the
scalar strength GS. From bottom to top in the figure, the values
of �GS are ð362; 340; 328; 315Þ GeV�2.

FIG. 5. The binding energy, B, per nucleon in nuclear matter
as a function of the pion mass.
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e� þ p! nþ 	, such that a hydrogen atom will decay.5

In practice, these two constraints suffice to provide tight
bounds on these three masses.

For the first constraint due to our bound following from
the binding of nuclei, we need to express this in terms of
absolute masses. While our constraint, Eq. (11), involves
the ratio of masses, which is scale independent, the abso-
lute masses depend on the scale that they are specified at.
The most canonical values of the quark masses md �
7 MeV and mu � 4 MeV are typically taken to apply at a
scale of 1 GeV, and we will use this prescription. In this
case, the bound on the ratio, Eq. (11), implies that

mu þmd � 18 MeV: (20)

The second constraint—that hydrogen exists—involves
a bound on the physical masses

mP þme � mN: (21)

If this relation is violated, the electron in the hydrogen
atom will be captured by the proton.6 To convert this
relation to the quark level we need to estimate both the
quark contribution to the neutron-proton mass difference
and the electromagnetic contributions. Let us parametrize
these by

mN �mP ¼ Z0ðmd �muÞ � �EM: (22)

Here the first term on the right-hand side is the contribution
due to the differences in quark masses, while the second
part is the electromagnetic contribution to the mass differ-
ence. Since the quark masses are scale dependent, so also is
Z0, such that the product is scale independent. Both poten-
tial models [17] and bag models [18] yield remarkably
similar values for the electromagnetic contribution, �EM �
0:5 MeV. The use of the canonical values of the masses at
a scale of 1 GeV then implies that Z0 ¼ 0:6 in order to
obtain the correct neutron-proton mass difference. This is a
very reasonable value and we will adopt it in our numerics.
Using these values, we find that the difference in quark
masses is also bounded

md �mu � me þ �EM
Z0

(23)

or

md �mu � 1:67me � 0:83 MeV: (24)

The right-hand side of this latter constraint is evaluated at
the physical value of the fine structure constant and the
QCD scale. It is linear in both of these quantities.
The constraints (20) and (24) are plotted in Fig. 6, which

shows a 3D plot listing the allowed values of each combi-
nation of mass. The important point is that the two con-
straints manage to provide bounds on all three of the
masses. Note that mu and me have no lower anthropic
bounds, while md is constrained to be nonzero.
We can also take projections into various two-

dimensional subsections. The constraints on various com-
binations of the masses are shown in Fig. 7. In each case,
the outer range is shown allowing the third mass parameter
to take on any allowed value. Also marked by a dashed line
on these plots is the overall range of the masses when the
third mass parameter takes on its physical value.
We see that if there were quite small changes in the

quark masses, atoms would not exist.
These ranges for the masses can be converted to an

allowed range for the Higgs vacuum expectation value,
under the additional assumption that the other parameters
of the standard model (Yukawa and gauge couplings) are
held fixed. From our work above on the binding of nuclei
we would then find

v

vphys
< 1:64 (25)

at 95% confidence. This constraint is both stronger than
and independent from the final result of ABDS [3]. The
latter was based on the fact that as the quark masses

FIG. 6 (color online). The anthropic constraints on md, mu,
me in MeV units.

5We assume throughout that the neutrino mass, if it is indeed
allowed to also vary, remains negligibly small. There is, more-
over, an anthropic constraint that ensures this result [16].

6The violation of this relation will also cause important
modifications in heavy nuclei. However, bound protons can still
exist in heavy atoms if they are sufficiently more deeply bound
than neutrons, such that the Pauli principle blocks the proton to
neutron conversion. We do not attempt to analyze this situation
in detail, using instead the simpler constraint on hydrogen as the
main anthropic bound.
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increases, at fixed Yukawa couplings, the neutron-proton
mass difference increases until eventually all bound neu-
trons decay and only protons exist. Thus, that bound con-
strains md �mu, while ours constrains md þmu.
Moreover, our present bound is tight enough that it super-
sedes the bound on the mass difference, because md �mu

can never be greater than md þmu. The lower constraint
comes from the other process discussed in this section—
the stability of hydrogen atoms against the reaction pþ
e! nþ 	. If the Higgs vev becomes too small, the proton
becomes heavier than the neutron due to electromagnetic
interactions and this reaction occurs. Since the up, down,
and electron masses are all proportional to v, one finds that
this constraint is

v

vphys
� 0:39: (26)

When combined one finds a very restricted range for the
vev, under the stated assumptions:

0:39 � v

vphys
� 1:64 (27)

which is especially tight if one considers it in the context of
theories beyond the standard model, where the natural
range for the vev could extend up to the GUT or Planck
scales.

Of course, it is also possible that the extra assumption
about the constancy of the Yukawa couplings is not correct.
In the discussions of the string landscape, there are so
many possible vacua that others with different values of
the Yukawa couplings should be possible. However, our
quark mass constraints should still be relevant for describ-
ing the likely values of the Higgs vev [19]. Even though
extreme cases with disparate scales may be possible [20], it
is plausible that the need for light quarks makes it likely
that the Higgs vev is close to the scale of the strong
interactions [19]. Moreover, in theories such as supersym-

metry which use dynamics to stabilize the fine-tuning
problem, the anthropic constraint could be an explanation
of the overall scale of supersymmetry breaking.
It may be possible to provide tighter bounds on the

masses by considering more specific constraints. One that
has been discussed in the literature is the bound following
from the stability of deuterium [3,21]. The deuteron is very
weakly bound and small changes in the masses will suffice
to unbind it.7 This happens for more modest changes than
is required for the unbinding of the rest of the elements.
Since deuterium is involved in the standard mechanisms of
nucleosynthesis in the early universe and in stars, the lack
of a stable deuteron could be the obstacle to the formation
of the heavier elements. However, this bound is less robust
that considered above. On the one hand, there may be
alternate pathways to the production of the heavier ele-
ments. In addition, Weinberg estimates that even an un-
stable deuteron could live long enough to generate the
elements [1]. Moreover, there are extra subtleties in esti-
mating the quark-mass sensitivity of the various two-
nucleon systems [23–25]. For all these reasons, we con-
sider only the most robust of constraints, as discussed
above. These strong constraints already provide very
strong bounds on the masses, as summarized above.
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FIG. 7. The projection of the anthropic constraints of Fig. 6 into the planes of each pair of masses. The solid lines denote the total
allowed region, while the dashed line shows the remaining area if the third mass takes on its physical value. The dot shows the physical
values of the masses.

7For example Eugene Golowich (private communication) [22]
has estimated that if the scalar coupling is decreased by 5.2%, the
deuteron will be unbound. This is half the variation that we
showed was needed to unbind the heavy elements, and would
lead to a tighter bound of 1.33 for the ratio of Eq. (11).
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