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We have searched for bound states in the ��N system by solving the nonrelativistic Faddeev equations,

as well as a relativistic version, with input separable �N, ��, and �N interactions. A bound-state

solution, driven by the �ð1232Þ and the �ð1385Þ p-wave meson-baryon resonances, was found in the

channel ðI; JPÞ ¼ ð32 ; 2þÞ, provided the� laboratory momentum at which the�N 3S1 phase shift becomes

negative is larger than plab � 750–800 MeV=c. Other strange and charmed �BB0 systems that might have

bound states of a similar nature are listed.
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I. INTRODUCTION

Experimental searches for dibaryons have been incon-
clusive. In the nonstrange sector, pion-initiated reactions
and pion-production reactions were used to search for low-
lying narrow �NN resonances below the �N threshold,
aiming particularly at channels with quantum numbers
inaccessible to NN configurations [1]. Several broad NN
resonances are known near the �N and �� thresholds and
may be attributed to quasibound states in these channels, as
summarized recently [2]. In the strange sector, extensive
searches have been conducted [3–5] for the H dibaryon,
with strangeness S ¼ �2 and quantum numbers ðI; JPÞ ¼
ð0; 0þÞ, which originally was predicted to lie below the��
threshold [6]. Only few dedicated searches for S ¼ �1
dibaryons have been reported, for low-lying L ¼ 1 �N
resonances in singlet and triplet configurations that were
predicted in a quark-model study by Mulders et al. [7] near
the �N threshold, but negative results particularly for the
singlet resonance were reported in K�-initiated experi-
ments [8,9].

Here we look for low-lying S ¼ �1 dibaryons associ-
ated with a ‘‘molecular’’ ��N structure, by solving three-
body Faddeev equations with pairwise phenomenological
separable interactions. The �N system is known to be
unbound, with s-wave forces in both singlet and triplet
states that are overall attractive and which yield scattering
lengths of order �2 fm [10]. The question is whether or
not the pion is able to bind an s-wave �N pair within a
��N bound state, or a resonance. Since the s-wave �N
and �� forces are very weak [11], we consider the p-wave
resonances �ð1232Þ ð32 ; 32þÞ and �ð1385Þ ð1; 32þÞ, respec-
tively, thus studying the ��N three-body system with
s-wave baryons and a p-wave pion in a ð32 ; 2þÞ state, where
the �N subsystem is necessarily in the 3S1 configuration.
For first orientation we neglect the 3S1 � 3D1 channel

coupling which becomes important near and above the
�N threshold.
For all three partitions of this ð32 ; 2þÞ state of the ��N

system into an interacting pair and a spectator, the orbital
angular momenta, spins, and isospins couple to their maxi-
mal values and, therefore, the spin and isospin recoupling
coefficients are equal to one. This three-body state is likely
to represent a state with maximum possible attraction.
Furthermore, the fact that the spin and isospin recoupling
coefficients are equal to one allows for a formal reduction
of the present three-body problem to that of three spinless
(and isospinless) particles. We comment that a similar
choice of ðI; JPÞ ¼ ð2; 2þÞ for �NN, with each �N pair
interacting in the �ð1232Þ-resonance ð32 ; 32þÞ channel, is

impossible since a two-nucleon I ¼ 1, 3S1 state is forbid-
den by the Pauli principle.
Since we are interested in the bound-state region of the

��N system, it is justified in first approximation to neglect
the coupling to the higher-mass systems �KNN, ��N, and
K�N. The effect of the coupling to these higher-mass
channels will be partly taken into account by adjusting
the interactions within the ��N system to the available
experimental information on the two-body subsystems.
Less justified is the neglect of the coupling to the lower-
mass �N system, with a threshold about 60 MeV below
that of��N. This coupling renders��N bound states into
quasibound states through shifting and broadening the
zero-width bound states obtained when the coupling is
disregarded, unless the binding energy exceeds approxi-
mately 60 MeV and the ��N state is genuinely bound. In
the present, exploratory calculation we ignore the coupling
to �N. Potential models generally yield fairly weak �N
interaction in the relevant 1D2 and

3D2 configurations [10].

The quark model of Ref. [7] does not have any ð32 ; 2þÞ S ¼
�1 dibaryon candidate in the vicinity of the ��N thresh-
old and below it.
The plan of this paper is as follows. In Sec. II we discuss

the choice of two-body interactions and the three-body
Faddeev equations solved in the nonrelativistic case, and
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report on the binding energies calculated for the ð32 ; 2þÞ
��N system. The corresponding analysis of, and the
binding energies calculated in a relativistic version of the
three-body model are discussed in Sec. III. The paper ends
with a brief summary and discussion in Sec. IV, where
additional strange and charmed �BB0 systems that might
admit bound states of a similar nature are listed.

II. A NONRELATIVISTIC MODEL

A. The two-body subsystems

Since both �� and �N subsystems are dominated by
p-wave resonances, we assumed a rank-one separable
meson-baryon interaction

Viðpi; p
0
iÞ ¼ �giðpiÞgiðp0

iÞ: (1)

The corresponding two-body t matrix is given by

tiðpi; p
0
i;EÞ ¼ �giðpiÞ�iðEÞgiðp0

iÞ; (2)

where E is the energy in the two-body center-of-mass
(c.m.) system and

��1
i ðEÞ ¼ 1þ

Z 1

0
p2
i dpi

g2i ðpiÞ
E� p2

i =2�i þ i�
; (3)

with �i ¼ mjmk=ðmj þmkÞ, where �ijk � 0. The form

factors giðpiÞ are chosen of the form,

giðpiÞ ¼ ffiffiffiffiffi
�i

p
pið1þ p2

i Þe�p2
i =�

2
i ; (4)

where the two parameters �i and �i were adjusted to the
position and width of the corresponding resonances, as
given by the Particle Data Group [12]. These parameters
are listed in Table I for the �N and �� subsystems. We
also constructed a second model of the �N interaction of
the form

giðpiÞ ¼ ffiffiffiffiffi
�i

p
pi½1þ ðpi=4:5Þ2 þ ðpi=1:35Þ4�e�p2

i =�
2
i ; (5)

which reproduces, in addition, the �N P33 scattering vol-
ume. The parameters of this model are also given in
Table I. Note that pi in Eqs. (4) and (5) assumes values
in fm�1 units.

For the 3S1 �N subsystem we assume a rank-two sepa-
rable potential consisting of both attractive and repulsive
terms:

Viðpi; p
0
iÞ ¼ �gai ðpiÞgai ðp0

iÞ þ gri ðpiÞgri ðp0
iÞ: (6)

The corresponding two-body t matrix is given by

tiðpi; p
0
i;EÞ ¼ � X

�¼a;r

X
�¼a;r

g�i ðpiÞ���i ðEÞg�i ðp0
iÞ; (7)

where

�ari ðEÞ ¼ �rai ðEÞ

¼ Gar
i ðEÞ

½1þGaa
i ðEÞ�½1�Grr

i ðEÞ� þ ½Gar
i ðEÞ�2 ; (8)

�aai ðEÞ ¼ 1�Grr
i ðEÞ

½1þGaa
i ðEÞ�½1�Grr

i ðEÞ� þ ½Gar
i ðEÞ�2 ; (9)

�rri ðEÞ ¼� 1þGaa
i ðEÞ

½1þGaa
i ðEÞ�½1�Grr

i ðEÞ�þ ½Gar
i ðEÞ�2 ; (10)

G��
i ðEÞ ¼

Z 1

0
p2
i dpi

g�i ðpiÞg�i ðpiÞ
E� p2

i =2�i þ i�
: (11)

The form factors g�i ðpiÞ are chosen to be of the Yamaguchi
form

g�i ðpiÞ ¼
ffiffiffiffiffiffi
��

p
p2
i þ �2

�

ð� ¼ a; rÞ; (12)

where the parameters �a, �a, �r, and �r are adjusted to
reproduce given values of the�N 3S1 scattering length and
effective range for different values of the � laboratory

momentum pð0Þ
lab at which the 3S1 �N phase shift becomes

negative, changing sign from attraction at low momentum
to repulsion at high momentum (as discussed in Sec. II C).
The values of the scattering length and effective range
adopted here are a ¼ �1:86 fm and r0 ¼ 3:13 fm, respec-
tively, corresponding to model ESC04d of Ref. [10]. These
values are very close to those in models NSC97e,f [13]
which have been widely used in �-hypernuclear
calculations.

B. The three-body system

Since all the angular momenta, spins, and isospins are
coupled to their maximal values, the recoupling coeffi-
cients of spin and isospin are equal to one, and the
Faddeev equations depend only on the orbital angular

momenta ~‘, ~�, ~L, where ~L ¼ ~‘þ ~�, with L ¼ 1. The

values of ~‘ and ~� are ‘ ¼ 1, � ¼ 0 for configurations in
which the pion interacts with one of the baryons while the
other baryon is a spectator, and ‘ ¼ 0, � ¼ 1 for the
configuration in which the two baryons interact while the
pion is a spectator.
Below we denote the � hyperon as particle 1, the

nucleon as particle 2, and the pion as particle 3. Thus,
the Faddeev equations for the bound-state problem, using
the separable potentials (1) and (6), are

TABLE I. Parameters of the pion-baryon separable potentials
Eqs. (4) and (5), �i (in fm�1) and �i (in fm4), for the
nonrelativistic model.

��N ��N ��� ���

Eq. (4) 2.021 352 0.021 16 2.523 999 0.005 64

Eq. (5) 1.560 768 0.062 44 — —
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TiðqiÞ ¼ ��iðE� q2i =2	iÞ
X2
j¼1

Z 1

0
dq0jHijðqi; q0jÞTjðq0jÞ

ði ¼ 1; 2Þ; (13)

with 	i ¼ miðmj þmkÞ=ðmi þmj þmkÞ, where �ijk � 0,

and

Hijðqi; q0jÞ ¼ ð1� 
ijÞKijðqi; q0jÞ
� X

�¼a;r

X
�¼a;r

Z 1

0
dq3K

�
i3ðqi; q3Þ

� ���3 ðE� q23=2	3ÞK�
3jðq3; q0jÞ: (14)

The kernels in Eq. (14) are given by

K12ðq1; q2Þ ¼ 1

2
q1q2

Z 1

�1
d cos�

g1ðp1Þðp̂1 � p̂2Þg2ðp2Þ
E� p2

2=2�2 � q22=2	2

;

(15)

K�
31ðq3; q1Þ ¼

1

2
q1q3

Z 1

�1
d cos�

g�3 ðp3Þðq̂3 � p̂1Þg1ðp1Þ
E� p2

1=2�1 � q21=2	1

;

(16)

K�
23ðq2; q3Þ ¼

1

2
q2q3

Z 1

�1
d cos�

g2ðp2Þðp̂2 � q̂3Þg�3 ðp3Þ
E� p2

3=2�3 � q23=2	3

:

(17)

From the three previous expressions one obtains the other
three that correspond to Kjiðqj; qiÞ ¼ Kijðqi; qjÞ. One can
calculate pi, pj, (p̂1 � p̂2), (q̂3 � p̂1), and (p̂2 � q̂3) by using

~p i ¼ � ~qj � aij ~qi; ~pj ¼ ~qi þ aji ~qj; (18)

where ði; jÞ is a cyclic pair, cos� ¼ q̂i � q̂j, and
aij ¼ �i

mk

; aji ¼
�j

mk

: (19)

In order to find the bound-state solutions of Eq. (13),
integrals were replaced by sums applying numerical inte-
gration quadrature. In this way Eq. (13) becomes a set of
homogeneous linear equations. This set has solutions only
if the determinant of the matrix of its coefficients (the
Fredholm determinant) vanishes at certain energies.
Thus, the procedure to find the bound-state energies of
the three-body system simply consists of searching for
the zeros of the Fredholm determinant on the real energy
axis. Some limiting situations are discussed in the
appendix.

C. Results

In the last column of Table II, we list the calculated
binding energies B��N of the ��N system in the ðI; JPÞ ¼
ð32 ; 2þÞ channel, for the �� and �N interactions recorded

in Table I and the various models of the �N interaction
also listed in Table II. Most of the results are given for the

choice Eq. (4) of the �N form factor, except for the �a ¼
1:8 fm�1 runs for which listed in parentheses are also the
binding energies obtained using the other choice Eq. (5).
The dependence on the type of�N form factor is seen to be
rather weak. We also checked the sensitivity to the strength
parameter ���; for example, the ��N bound state for the
case B��N ¼ 51 MeV listed in the table disappears as soon
as the standard value ��� ¼ 0:005 64 fm4 from Table I is
decreased to 0:005 24 fm4. The dependence on the �N
interaction is shown in detail in Table II. Essentially, the
various�N models differ from each other by the amount of
repulsion they contain. For a given value of range parame-
ter ��1

a for the attractive �N component, the calculated
binding energy decreases as the repulsive component gets
pushed inside and requires a larger strength. For a given
value of range parameter ��1

r for the repulsive component,
the calculated binding energy decreases as the attractive
component gets pushed inside, or equivalently as one low-
ers the momentum where the �N 3S1 phase shift changes
sign from positive (attraction) to negative (repulsion)
values. It is seen that the bound state persists as long as

this � laboratory momentum pð0Þ
lab is larger than about

750–800 MeV=c. Incidentally, this is precisely the range
of momenta at which the �N 3S1 phase shift goes through
zero in Nijmegen YN potential models that relegate the
3S1 � 3D1 attraction near and above the �N threshold to

the 3D1 channel [13].

TABLE II. Parameters of the �N 3S1 potentials (12) �� (in
fm�1), �� (in fm�2) in the nonrelativistic model for a ¼
�1:86 fm, r0 ¼ 3:13 fm, and the binding energies B��N (in
MeV) of the three-body ��N system calculated using the �N
and �� potential parameters listed in Table I, Eq. (4) [the B��N

values in parentheses correspond to the �N parameters listed in

Table I, Eq. (5)]. The momentum pð0Þ
lab (in MeV/c) is the

laboratory � momentum at which the �N 3S1 phase shift

becomes negative.

�a �a �r �r pð0Þ
lab B��N

1.437 0.4179 — — — 140

1.6 0.8118 4.0 5.54 1184 111

1.6 0.8053 6.0 26.0 1069 96

1.6 0.8064 8.0 86.0 1045 86

1.7 1.195 4.0 10.0 975 92

1.7 1.186 6.0 51.0 910 66

1.7 1.190 8.0 190.0 899 52

1.8 1.735 4.0 15.5 877 72 (67)

1.8 1.718 6.0 86.0 834 38 (37)

1.8 1.745 8.0 405.0 826 21 (23)

1.9 2.513 4.0 22.7 814 51

1.9 2.501 6.0 145.0 784 9

1.9 2.573 8.0 1150.0 779 unbound

2.0 3.588 4.0 31.4 777 31

2.0 3.602 6.0 244.0 753 unbound

2.1 5.125 4.0 42.9 748 10

2.2 7.311 4.0 58.0 728 unbound
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III. A RELATIVISTIC MODEL

Since the binding energies calculated nonrelativistically,
for some of the cases listed in Table II are a sizable fraction
of the pion mass, it appears necessary to take into account
relativistic effects. Therefore, we will reformulate our
model in terms of a relativistic on-mass-shell-spectator
formalism [14–16]. In this formalism one starts with the
Bethe-Salpeter equation for three particles which is set in a
Faddeev form. The four-vector equations are then reduced
to three-vector equations similar to the nonrelativistic
Faddeev equations by putting all the spectator particles
on the mass shell [15].

In order to reach a relativistic generalization of Eq. (13)
we make two approximations. First, the negative-energy
components of the fermion propagators are neglected; and
second, the spin degrees of freedom are treated nonrelativ-
istically by means of Racah coefficients (which are equal to
one, as pointed out above). These two approximations are
reasonable since the two fermions � and N are very heavy
compared with the pion. Thus, as pointed out in the in-
troduction, our model formally reduces to that of three
spinless (and isospinless) particles interacting by pairwise
separable interactions.

A. The two-body subsystems

In order to fit the p-wave resonance energy and width in
the �� and �N subsystems we considered the two-body
Bethe-Salpeter equation for the pair jkwith particle j (here
the pion) on the mass shell interacting through a rank-one
separable interaction defined by Eqs. (1) and (4). Recall
that pi, the magnitude of the relative three-momentum of
the pair in the c.m. system, is Lorentz invariant since it is
expressible in terms of the invariant mass of the relative
momentum four-vector. The corresponding two-body t
matrix in the c.m. system is given by

tiðpi; p
0
i;!0Þ ¼ �giðpiÞ�ið!0Þgiðp0

iÞ; (20)

where !0 is the invariant mass of the two-body subsystem
and

��1
i ð!0Þ ¼ 1þ

Z 1

0

p2
i dpi

2!j

g2i ðpiÞ
ð!0 �!jÞ2 �!2

k þ i�
; (21)

with !j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

j þ p2
i

q
and !k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

k þ p2
i

q
. The parame-

ters of these separable potentials are given in Table III. We
did not pursue the option of keeping the respective baryon
on-mass-shell, with an off-shell pion, because of the ap-

pearance of a persistent unphysical two-body bound state
for this choice.
For the �N subsystem we again used a rank-two sepa-

rable potential defined by Eqs. (6) and (12) so that the two-
body t matrix is given by Eqs. (7)–(10) with E replaced by

!0 and G��
i ðEÞ of Eq. (11) replaced by

G��
i ð!0Þ ¼

Z 1

0

p2
i dpi

2!j

g�i ðpiÞg�i ðpiÞ
ð!0 �!jÞ2 �!2

k þ i�
: (22)

The parameters of these separable potentials are listed
below in Sec. III C.

B. The three-body system

The integral equations for the three-body problem are
given by

TiðqiÞ ¼ ��iðW0; qiÞ
X2
j¼1

Z qðjÞmax

0
dq0jHijðqi; q0jÞTjðq0jÞ

ði ¼ 1; 2Þ; (23)

where W0 is the invariant mass of the three-body system.
The upper limit of integration

qðjÞmax ¼
W2

0 �m2
j

2W0

; (24)

is the momentum at which the invariant mass of the two-
body subsystem j is equal to zero so that it then recoils with
the speed of light [16]. The entity �iðW0;qiÞ corresponds to
the t matrix (20) and (21) in an arbitrary frame where the
spectator particle i (which is on-mass-shell) has momen-
tum ~qi, particle j (which has also been put on-mass-shell)
has momentum ~qj and particle k (which is off the mass

shell) has momentum � ~qi � ~qj. It is given by

��1
i ðW0;qiÞ ¼ 1þ 1

2

Z 1

�1
d cos�

Z 1

0

q2jdqj

2!j

� g2i ðpiÞ
ðW0 �!i �!jÞ2 �!2

k þ i�
; (25)

with

!i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ q2i

q
; !j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

j þ q2j

q
; (26)

!k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

k þ q2i þ q2j þ 2qiqj cos�
q

: (27)

The magnitude of the relative three-momentum ~pi is a
Lorentz invariant given by

p2
i ¼

ðP2
jk þm2

j � k2kÞ2
4P2

jk

�m2
j ; (28)

where Pjk ¼ kj þ kk is the total four momentum of the

pair jk and kk is the four momentum of particle k, i.e.,

TABLE III. Parameters of the pion-baryon separable potential
Eq. (4), �i (in fm�1) and �i (in fm2), for the relativistic model
with on-mass-shell � meson.

��N ��N ��� ���

Eq. (4) 2.231 357 0.219 260 2.720 821 0.083 916
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P2
jk ¼ ðW0 �!iÞ2 � q2i ; (29)

k2k ¼ ðW0 �!i �!jÞ2 � q2i � q2j � 2qiqj cos�: (30)

Equation (25) reduces to Eq. (21) when qi ¼ 0. Similar
expressions apply to the relativistic version of the �N t

matrix in an arbitrary frame ���3 ðW0; q3Þ.
The kernel of Eq. (23) is given by Eqs. (14)–(17), where

the upper limit 1 in the integral of Eq. (14) is replaced by

qð3Þmax, and the following substitutions are made:

1

E� p2
j=2�j � q2j=2	j

! 1

2!j

1

ðW0 �!i �!jÞ2 �!2
k

;

(31)

aij !
W2

i � q2i þm2
j � k2k þ 2!j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

i � q2i

q

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

i � q2i

q
ðWi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

i � q2i

q
Þ

; (32)

aji !
W2

j � q2j þm2
i � k2k þ 2!i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

j � q2j

q

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

j � q2j

q
ðWj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

j � q2j

q
Þ

; (33)

Wi ¼ W0 �!i; Wj ¼ W0 �!j: (34)

Equation (31) is the propagator when the spectator parti-
cles i and j are on-mass-shell and the exchanged particle k
is off-mass-shell. Equations (32)–(34) correspond to the
relativitistic kinematics with particle k off the mass shell.

C. Results

In the last column of Table IV, we list the calculated
binding energies B��N of the ��N system in the ðI; JPÞ ¼
ð32 ; 2þÞ channel, for the �� and �N interactions recorded

in Table III and the various models of the �N interaction
listed also in Table IV. The dependence of the calculated
binding energies on the ranges of the repulsive and attrac-
tive components of the �N interaction is similar to that
found in the nonrelativistic calculations. A bound state in
the relativistic model persists as long as the � laboratory
momentum at which the�N phase shift becomes negative,

pð0Þ
lab, is larger than about 750 MeV=c. A comparison be-

tween Tables II and IV reveals that the relativistic model
provides more attraction than the nonrelativistic one, in
agreement with the slower increase of kinetic energy with
momentum when relativistic kinematics is applied.

IV. SUMMARYAND DISCUSSION

We have used a nonrelativistic separable potential model
and a relativistic version of it, solving three-body Faddeev
equations, to search for ��N bound states. In both models
we found that a ðI; JPÞ ¼ ð32 ; 2þÞ bound state is likely to

exist, provided the � laboratory momentum pð0Þ
lab at which

the 3S1 �N phase shift becomes negative is larger than
about 750–800 MeV=c. This agrees with the range of
momenta at which Nijmegen YN potential models, where
applicable [13], predict that the 3S1 �N phase shift goes
through zero. The Jülich ’04 model [17] and the recent

chiral EFT approach [18] predict that pð0Þ
lab > 900 MeV=c,

so that the existence of a ��N bound state in these models
appears robust. The Nijmegen and Jülich YN potential
models differ considerably from each other within the
�N JP ¼ 1þ coupled channels also in the behavior of
the 3D1 phase shift. The

3S1 � 3D1 coupling was neglected
in the present exploratory three-body calculation, a neglect
that might be justified in applications of the Jülich models
where both the coupling and the size of the 3D1 phase shift
that builds up above the �N threshold at plab �
630 MeV=c are weaker than in the Nijmegen models.
However, all these YN models have been constructed to
fit primarily low-energy scattering data which do not un-
ambiguously constrain the short-range behavior of the 3S1
�N system. The extent to which the two-body short-range
repulsion varies between ‘‘soft’’ to ‘‘hard’’ is crucial for the
three-body system’s ability to bind, with the p-wave pion
maximizing its attraction to each one of the baryons
simultaneously.
More realistic three-body calculations will have to in-

clude � hyperons, extending the �N channel into 3S1 �
3D1 �N ��N coupled channels, and the �� channel into
��� �� coupled channels. Although the I ¼ 1 �KN
channel also couples to these �Y coupled channels, in first
approximation the three-body �KNN channel is decoupled
from the �YN coupled channels for ðI; JPÞ ¼ ð32 ; 2þÞ ow-

TABLE IV. Parameters of the �N 3S1 potentials (12) �� (in
fm�1), �� (in fm�4) in the relativistic model with on-mass-shell

nucleon, for a ¼ �1:86 fm, r0 ¼ 3:13 fm, and the binding
energies B��N (in MeV) of the three-body ��N system
calculated using the �N and �� potential parameters listed

in Table III. The momentum pð0Þ
lab (in MeV/c) is the laboratory �

momentum at which the �N 3S1 phase shift becomes negative.

�a �a �r �r pð0Þ
lab B��N

2.0 318.2 4.0 2270 866 152

2.0 309.2 6.0 12 100 823 93

2.0 313.0 8.0 54 500 813 69

2.1 446.9 4.0 3080 823 121

2.1 434.3 6.0 18 000 788 59

2.1 440.8 8.0 105 000 783 35

2.2 626.6 4.0 4100 791 94

2.2 599.1 6.0 25 800 768 31

2.2 632.5 8.0 350 000 756 unbound

2.3 878.5 4.0 5400 766 69

2.3 845.8 6.0 40 700 746 unbound

2.4 1217 4.0 6930 750 48

2.4 1189 6.0 68 000 733 unbound

2.5 1728 4.0 9200 730 21

2.6 2354 4.0 11 400 728 6
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ing to the restrictions imposed by the Pauli principle on the
two nucleons.

To search experimentally for a possible I ¼ 3
2 , J

P ¼ 2þ

��N dibaryon bound state or resonance, which we denote
by D, one could try in-flight ðK�; �þÞ or ð��; KþÞ reac-
tions on a deuteron target

K� þ d ! D� þ �þ; (35)

�� þ d ! D� þ Kþ: (36)

These reactions lead automatically to the required value of
isospin I ¼ 3

2 for the D dibaryon. The values required for

spin-parity, JP ¼ 2þ, are also allowed. In terms of a
coupled ��n system, the orbital angular momentum and
Pauli spin are approximately conserved, resulting in two
possibilities: 3D2 and 1D2. These could be explored by
choosing an incident momentum and a meson scattering
angle where the K� þ p ! �� þ �þ or �� þ p !
�� þ Kþ underlying reactions are largely non-spin-flip
( ! 3D2) or have a nonnegligible spin-flip component
( ! 1D2). These experiments would be feasible at J-PARC.

The three-body calculations reported here for the S ¼
�1 ��N system may be extended to other three-body
systems of the type �B1B2, with J

P ¼ 2þ and a maximum
value of isospin, consisting of a p-wave pion and 1

2
þ

baryons in a relative s-wave state. This precludes identical
baryons: B1 � B2. Candidates may be classified as fol-
lows:

(i) S ¼ �2, �3 strange systems obtained by substitut-
ing the SU(3)-octet � hyperon for the � hyperon or
for the nucleon in the ��N three-body system,
leading to ��N and ���, respectively. The new
�� p-wave resonance here is the 3

2
þ �ð1530Þ be-

longing to the same SU(3) decuplet which contains
the �ð1232Þ and the �ð1385Þ considered in the
present work.

(ii) C ¼ þ1 charmed systems made out of a pion,
SU(3)-octet baryon (excluding the � hyperon) and
1
2
þ charmed baryon (of the lowest mass for a given

strangeness)

�N�cð2286Þ; �N�cð2470Þ;
�N�cð2700Þ;

(37)

���cð2286Þ; ���cð2470Þ;
���cð2700Þ;

(38)

���cð2286Þ; ���cð2470Þ;
���cð2700Þ:

(39)

(iii) C ¼ þ2 charmed systems made out of a pion and
two 1

2
þ singly charmed baryons, each of the lowest

mass for a given strangeness

��cð2286Þ�cð2470Þ; ��cð2286Þ�cð2700Þ;
��cð2470Þ�cð2700Þ: (40)

Note the appearance of the 1
2
þ �c baryon, of quark struc-

ture ssc. In the case of charmed baryons, the p-wave
noncharmed SU(3)-decuplet 3

2
þ resonances are replaced

by charmed SU(3)-sextet members of the same extended
SU(4) 20-plet

�ð1385Þ ! �cð2520Þ; �ð1530Þ ! �cð2645Þ;
�ð1670Þ ! �cð2770Þ:

(41)

Here we limited listing to singly charmed baryons. The
only observation we wish to make on a future charmed
bound-state study is that the �N�cð2286Þ threshold lies
below N�cð2455Þ, where �cð2455Þ is the lowest lying
known �c, with assumed JP ¼ 1

2
þ. Therefore, if

�N�cð2286Þ is bound, it will decay only by weak inter-
actions. Hopefully, the study of these, and other charmed
dibaryons will become feasible in due course.
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APPENDIX: LIMITING FADDEEV SOLUTIONS
FOR ��N, �NN AND ���

It is interesting to solve the coupled Faddeev Eqs. (13) in

the limit of vanishing baryon-baryon interaction, ���3 ¼ 0.
Equation (14) reduces then to Hij ¼ ð1� 
ijÞKij, for i,

j ¼ 1, 2, so that Eqs. (13) become

Ti ¼ ��iKij � Tj; ði � jÞ; (A1)

where the asterisk stands for convolution. Bound states are
obtained by searching for zeros of the Fredholm determi-
nant corresponding to the operator ð1� �1K12�2K21Þ.
Using �N and �� interaction parameters from Table I,
Eq. (4), a robust bound state is found at B��N ¼ 110 MeV.
From Table II we learn that a fully attractive �N interac-
tion leads to a higher value of B��N , and that the intro-
duction of a repulsive component quickly lowers the
calculated B��N values below that for a noninteracting
�N pair.
Next, let’s make the two baryons identical as far as their

mass, spin-parity 1
2
þ, and interaction with the pion are

concerned. Then, �1 ¼ �2 � � and K12 ¼ K21 � K.
Since one is looking for a symmetric spatial configuration
for these two s-wave baryons, it is the symmetric combi-
nation of the Ti’s that is required:
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ðT1 þ T2Þ ¼ ��K � ðT1 þ T2Þ; (A2)

and the requirement of vanishing Fredholm determinant at
bound-state energies becomes equivalent to searching for
zeros of the operator (1þ �K). The operator � is positive
definite for the attractive meson-baryon interactions con-
sidered in the present work, and the operator K is negative
definite at energies below threshold. Thus, if the meson-
baryon interaction is sufficiently strong, the operator (1þ
�K) will have a zero at a subthreshold energy. Indeed for
such a fictitious ðI; JPÞ ¼ ð2; 2þÞ�NN system excluded by
the Pauli principle, and using �N interaction parameters
from Table I, Eq. (4), we get a bound state with binding
energy B�NN ¼ 29 MeV.

For physical �NN and ��� systems, with symmetric
spin-isospin configurations chosen, the Pauli exclusion
principle requires that the spatial configuration be antisym-
metric, leading to the requirement of finding zeros of the
operator (1� �K). Since �K, for the meson-baryon inter-
actions considered here, is negative definite below thresh-
old, this means that the operator (1� �K) assumes values
higher than one below threshold, which is commonly in-
terpreted in terms of three-body repulsion. It is unlikely
that adding secondary interaction channels into this sche-
matic calculation will change the conclusion that no bound
states are expected for �BB systems with two identical 12

þ

baryons.
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