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We use effective magnetic SUðNÞ pure gauge theory with cutoff M and fixed gauge coupling gm to

calculate the nonperturbative magnetic response in the deconfined phase of SUðNÞ Yang-Mills theory. We

obtain the response to an external closed loop of electric current by reinterpreting and regulating the

calculation of the one loop effective potential in Yang-Mills theory. This effective potential gives rise to a

color magnetic charge density, the counterpart in the deconfined phase of color magnetic currents

introduced in effective dual superconductor theories of the confined phase via magnetically charged

Higgs fields. The resulting spatial Wilson loop has area law behavior. Using values of M and gm
determined in the confined phase, we find SUð3Þ spatial string tensions compatible with lattice simulations

in the temperature interval 1:5Tc < T < 2:5Tc. Use of the effective theory to analyze experiments on

heavy ion collisions will provide applications and further tests of these ideas.
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I. INTRODUCTION

The confined phase of SUðNÞ Yang-Mills theory can be
described by an effective theory coupling magnetic SUðNÞ
gauge potentials C� to three adjoint representation Higgs

fields [1]. The coupling of the potentials C� to the mag-

netically charged Higgs fields generates color magnetic
currents which, via a dual Meissner effect, confine ZN

electric flux to narrow tubes connecting a quark-antiquark
pair [2]. The dual gluon (quanta of the magnetic gauge
theory) acquires a massMg. For SUð3Þ,Mg � 1:95

ffiffiffiffi
�

p
[3].

The effective theory is applicable at distances greater than
the flux tube radius RFT � 1

Mg
� 0:3 fm. Since SUð3Þ lat-

tice simulations [4] yield a deconfinement temperature
Tc � 0:65

ffiffiffiffi
�

p
, the scale Mg � 3Tc. There is then a range

of temperatures within the interval Tc < T < 3Tc where
the effective theory should also be applicable in the de-
confined phase. We will use the theory in this temperature
range to calculate spatial Wilson loops, quantities that are
outside the perturbative realm of finite temperature Yang-
Mills theory.

In Sec. II we review the use of the effective theory in the
confined phase. In Sec. III we describe the deconfined
phase using the effective theory without Higgs fields, i.e.
pure magnetic SUðNÞ Yang-Mills theory with a cutoff Mg

and gauge coupling constant gm fixed by fits of heavy
quark potentials in the confined phase [3].

In Sec. IV we show that the spatial Wilson loop of Yang-
Mills theory is determined by the effective potential UðC0Þ
of the magnetic theory in the background of a static dual
scalar potential C0. We evaluate the one loop contribution
to UðC0Þ and use it to calculate spatial string tensions
�kðTÞ measuring magnetic flux with ZN quantum number
k passing through a large loop. We find that these string
tensions are proportional to kðN � kÞ (Casimir scaling),
and that the predicted SUð3Þ string tension is compatible

with the results of lattice simulations [5] in the temperature
range 1:5Tc < T < 2:5Tc.
In Sec. V we compare SUðNÞ lattice simulations of

string tensions with lattice simulations [6] of dual string
tensions ~�kðTÞ (measuring ZN electric flux) in the tem-
perature range Tc < T < 4:5Tc. We find that the tempera-
ture T � 1:5Tc marks a ‘‘transition’’ from a high
temperature perturbative regime having ~�kðTÞ>�kðTÞ to
a low temperature domain where �kðTÞ> ~�kðTÞ.
In Sec. VI we compare the spatial string tension, calcu-

lated in the effective magnetic gauge theory, with that
calculated [7] in the large N, large ’t Hooft coupling limit
of SUðNÞ N ¼ 4 super Yang-Mills theory.
In the final section we summarize the results, discuss the

significance of this work, and suggest extensions and fur-
ther tests.

II. EFFECTIVE THEORY OF THE CONFINED
PHASE

The effective theory describing the low energy excita-
tions of SUðNÞ Yang-Mills theory is a long distance dual
SUðNÞ Yang-Mills theory coupling non-Abelian magnetic
SUðNÞ gauge potentials C� to 3 scalar fields �i, each in

the adjoint representation of the magnetic gauge group.
The Lagrangian Leff has the form [1]

Leff ¼ 2 tr½�1
4G

��G�� þ 1
2ðD��iÞ2� � Vð�iÞ; (1)

where

G �� ¼ @�C� � @�C� � igm½C�; C��; (2)

and

D��i ¼ @��i � igm½C�;�i�: (3)

Vð�iÞ is a Higgs potential which has a minimum at non-
zero values of �i. It is chosen so that the Lagrangian (1)
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describes a dual superconductor on the border between
type I and type II.

In the confined phase the magnetic gauge symmetry is
completely broken via a dual Higgs mechanism in which
all particles become massive. (At least 3 adjoint scalars are
necessary to completely break the symmetry.) The value
�0 of the magnetic Higgs condensate is determined by the
location of the minimum in the Higgs potential, and the
dual (magnetic) gluon acquires a mass

Mg � gm�0 (4)

via the dual Higgs mechanism.
The simplest possibility for the vacuum condensate

h�ii � �i0 has the color structure [1]:

�10 ¼ �0ffiffiffiffiffiffiffi
2N

p Jx; �20 ¼ �0ffiffiffiffiffiffiffi
2N

p Jy; �30 ¼ �0ffiffiffiffiffiffiffi
2N

p Jz;

(5)

where Jx, Jy, and Jz are the three generators of the N

dimensional irreducible representation of the three dimen-
sional rotation group corresponding to angular momentum
J ¼ N�1

2 . Since any matrix which commutes with all three

generators must be a multiple of the unit matrix, there is no
SUðNÞ transformation which leaves all three �i invariant
and the dual gauge symmetry is completely broken.

The excitations above the classical vacuum of the effec-
tive theory are flux tubes connecting a quark-antiquark pair
in which ZN electric flux is confined to narrow tubes of
radius � 1

Mg
, at whose center the Higgs condensate van-

ishes. Explicit solutions have been obtained for SUð3Þ. The
scale of the energy distribution in these electric flux tubes
is determined by the dual gluon mass Mg. Since the effec-

tive theory describes fluctuations only at energy scales less
than Mg, there is no physical excitation with this mass.

The effective theory has two parameters; gm and Mg.

Their values, gm � 3:91 and Mg � 800 MeV, were deter-

mined [3] by comparing the predicted SUð3Þ static heavy
quark potential with lattice simulations. For distances R>
0:3 fm the lattice potential is well represented by the sum

of a term linear in R and a 1
R term, Alattice

R [8]. The value of gm
is obtained by writing the lattice 1

R potential in an effective

Coulomb form:

Alattice

R
¼ � 4

3

�

g2m

1

R
: (6)

The right-hand side of (6) is the potential obtained by
coupling magnetic gluons to a Dirac string connecting a
quark-antiquark pair with a strength 2�

gm
, which is the

perturbative result of the effective theory. The coefficient

of the linear potential is proportional to
M2

g

gm
2 and determines

the value of Mg in terms of � and gm.

The spin dependent and velocity dependent heavy quark
potentials calculated with the above values of gm and Mg

[3] are compatible with results obtained from SUð3Þ lattice
simulations [9]. Furthermore, predicted energy distribu-
tions in electric flux tubes are compatible with lattice
results for these distributions for values of R ranging
from 1.0 fm down to 0.25 fm [10].
The long wavelength fluctuations of the axis of the

electric flux tubes give rise to an effective bosonic string
theory governed by the Nambu-Goto action [11]. These
fluctuations are the low energy excitations of the effective
theory. The value of gm obtained from (6) includes the
energy, � �

12R , of the long wavelength oscillations of the

axis of the flux tube [12]. The value of gm � 3:91 is close
to 4, so that the main contribution to gm comes from
renormalization due to string fluctuations. Short distance
fluctuations at energy scales greater thanMg do not enter in

the effective theory, and gm is the coupling constant de-
fined at the fixed scale Mg.

III. THE EFFECTIVE THEORY IN THE
DECONFINED PHASE

An approximate one loop calculation [13] of the finite
temperature effective potential for the Higgs fields yielded
a potential whose minimum moved to h�ii ¼ 0 at a tem-
perature T ��0. The deconfinement temperature Tc is
then on the order of �0. Above Tc the Higgs condensate
vanishes, so the magnetic gluon becomes massless.
However, since the deconfinement transition for SUðNÞ
groups with N � 3 is first order [4,14], the Higgs particles
remain massive in the deconfined phase. (This first order
phase transition was not seen in the calculation [13] since it
did not include the contribution of a cubic term in the
Higgs potential.)
We assume that away from the transition region the

Higgs fields do not play an essential role in the deconfined
phase, and we neglect them. The effective theory then
reduces to a pure SUðNÞ Yang-Mills theory of magnetic

gauge potentials C� � ðC0; ~CÞ. We will see that in the

temperature interval 1:5Tc < T < 2:5Tc use of the pure
gauge sector of the effective theory provides an under-
standing of features of the deconfined phase which paral-
lels the use of the coupled gauge-Higgs theory to
understand the confined phase. The pure gauge description

breaks down at a temperature T � Mg

3 � Tc. This break-

down can be regarded as a signal for the transition to the
confined phase in the behavior of the pure gauge effective
theory as the temperature is lowered toward Tc.
This theory has the same form as the microscopic elec-

tric theory, but with a fixed gauge coupling constant gm and
fixed ultraviolet cutoff Mg. The values of these two pa-

rameters are determined by the effective theory description
of the confined phase. The magnetic gluons, which at T ¼
0 confine ZN electric flux, become the physical degrees of
freedom of the effective theory at T > Tc. These quanta are
‘‘strongly’’ interacting (gm � 3:91), but their interaction is
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cut off at distances less than 0.3 fm. Because of the duality
between the microscopic electric SUðNÞ Yang-Mills the-
ory and the effective long distance magnetic SUðNÞ gauge
theory, perturbative calculations of electric quantities in
the microscopic theory can be adapted to calculate mag-
netic quantities in the effective theory.

We can regard the magnetic Yang-Mills Lagrangian as
the leading term in the long distance expansion of a dual
effective Lagrangian, which in principle includes all
powers of the magnetic gauge potentials C� that maintain

invariance under non-Abelian gauge transformations. This
Lagrangian, if known exactly, would be the magnetic dual
of the ‘‘electric’’ Yang-Mills Lagrangian. The infinite
number of parameters in the dual Lagrangian reflects the
fact that, in contrast with electrodynamics, where the dual
Lagrangian LðC�Þ is just the Maxwell Lagrangian, an

exact duality transformation from electric Yang-Mills po-
tentials A� to magnetic Yang-Mills potentials C� is not

known. In this paper we retain only the leading term in the
dual Lagrangian, pure magnetic Yang-Mills theory, as an
effective theory appropriate for calculating the long dis-
tance magnetic response in the deconfined phase of Yang-
Mills theory.

The massless excitations of magnetic Yang-Mills theory
having momenta less than the scale Mg must be integrated

out (as in any effective theory) to obtain an effective action.
We will see that the resulting one loop effective action Seff
generates a mass scale �gmT. If this mass scale is greater
than the cutoff Mg, higher loop corrections to Seff can be

neglected since there are no longer any propagating parti-
cles in the effective theory. Under such conditions we can
use the one loop effective action Seff at the classical level to
determine the leading long distance behavior of spatial
Wilson loops in the deconfined phase in the same manner
that the Lagrangian (1) was used to evaluate temporal
Wilson loops in the confined phase.

The ratio
Mg

gmT
plays the role of the expansion parameter in

the effective theory. At the highest temperature T �Mg

where the effective theory should be applicable this pa-
rameter is of order 1

gm
¼ 1

3:91 . (At T ¼ Tc it is close to

unity.) Thus because of the relatively ‘‘large’’ value of
gm there is a range of temperatures within the interval Tc <

T <Mg where, in the leading long distance approximation,

the one loop effective action can be treated at the classical
level. Extension of the effective theory to higher mass
scales would require calculating loop corrections to Seff
with the inclusion of additional interactions induced by the
higher powers of the magnetic gauge potentials in the dual
effective Lagrangian.

IV. THE SPATIALWILSON LOOP CALCULATED
IN THE MAGNETIC THEORY

To test the idea of using the effective theory to calculate
magnetic quantities in the deconfined phase, we calculate

spatial Wilson loops measuring magnetic flux with ZN

quantum number k passing through a loop L. (The spatial
Wilson loop has area law behavior both above and below
Tc.) The temporal Wilson loop of Yang-Mills theory de-
termining the static heavy quark potential is obtained from
the partition function of the effective dual theory in the
presence of a Dirac string connecting a static quark-
antiquark pair [1]. Similarly the spatial Wilson loop is
obtained from the partition function of the effective mag-
netic theory in the presence of a current of k quarks
circulating around the loop L. The current carried by the

quarks is the source of a color magnetic field ~Bk ¼ G0k,

the magnetic analogue of the color electric field ~E gener-
ated in the confined phase by the Dirac string [1]:

~B ¼ ~rC0 � igm½ ~C;C0� � @t ~C: (7)

To calculate the dual ’t Hooft loop, we mirror the
corresponding treatment [15–17] of the ’t Hooft loop of
Yang-Mills theory [18,19], replacing electric Yang-Mills
theory by effective magnetic Yang-Mills theory. The spa-
tial ’t Hooft loop operator creates a closed line of magnetic
flux along a loop L in Yang-Mills theory [18]. The corre-
sponding dual ’t Hooft operator creates a line of electric
flux along L by implementing a singular magnetic gauge

transformation U ¼ ei�ð ~xÞ which changes by a factor

e2�iðk=NÞ when ~x traverses a closed path encircling the
loop L. The expectation value of the dual ’t Hooft operator
measures the magnetic flux through L, and its effect on the
partition function of the magnetic theory is to add to C0 an
external potential CDirac

0 ¼ T
gm
�ð ~xÞ.

For a single circulating quark (labeled j) we can take

� ¼ �Sð ~xÞ
2 Yj

1, where �Sð ~xÞ is the solid angle subtended at

the point ~x by a surface S bounded by the loop L, and

where Yj
1 is a diagonal matrix whose jth diagonal element

is equal to � ðN�1Þ
N and whose remaining N � 1 elements

are equal to 1
N . For k circulating quarks there are many

representations of SUðNÞ which carry k units of ZN flux.
Following the corresponding treatment of the ’t Hooft loop
[16], we couple the quarks in the completely antisymmetric
representation. This yields [16]

�ð ~xÞ ¼ �Sð ~xÞ
2

Yk; (8)

where Yk �
P

k
j¼1 Y

j
1 is a diagonal matrix having its first k

elements equal to � ðN�kÞ
N and its remaining N � k ele-

ments equal to k
N .

Linear combinations of the N � 1 independent SUðNÞ
diagonal matrices could be used to construct corresponding
gauge transformations �. For example, the matrix Yk

could have been replaced by the matrix kY1. This would
yield an operator creating k lines of electric flux along L,
each containing one unit of ZN flux. Use of a single
configuration space function C0ð ~xÞ having this color de-
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pendence to search for a minimal action for the loop would
yield a string tension �k ¼ k�1, which is greater than the
tension (24) obtained by seeking minimal action configu-
rations proportional to Yk. This reflects the attraction
between fundamental quark loops [16]. The choice of the
antisymmetric representation in color space maximizes the
effect of this attraction.

Equation (8) gives

C Dirac
0 ð ~xÞ ¼ 2�T

gm

�Sð ~xÞ
4�

Yk; (9)

which is the magnetostatic scalar potential of a steady
current 2�T

gm
Yk. (The total color charge transported along

the loop L is 2�=gm and the total elapsed Euclidean time is

1=T.) The source of CDirac
0 is a dipole layer ~Mð ~xÞ of

magnetic charge lying in the surface S:

�r2CDirac
0 ¼ ~r � ~Mð ~xÞ; (10)

where

~Mð ~xÞ ¼ 2�T

gm

Z
S
d ~Sy�ð ~x� ~yÞYk: (11)

The gradient of CDirac
0 ð ~xÞ contains a term singular on the

surface S defining �S which is canceled by the contribu-

tion of ~M to the magnetic field. The remaining regular part

of ~rCDirac
0 ð ~xÞ gives the Biot-Savart magnetic field ~BBSð ~xÞ

of the current loop:

~rCDirac
0 ð ~xÞ þ ~M ¼ 2�T

gm

I
L

d ~y� ð ~x� ~yÞ
4�j ~x� ~yj3 Yk

� 2�T

gm
~BBSð ~xÞYk: (12)

The magnetic dipole layer ~M generates the Biot-Savart
field of a steady current, just as a Dirac string between
static quarks generates the Coulomb field.

The partition function determining the dual ’t Hooft loop

can thus be obtained by the replacement ~rC0 ! ~rC0 þ
~M in the vacuum partition function, since minimizing the
free action with this replacement yields both Poisson’s
equation (10) for CDirac

0 ð ~xÞ and the Biot-Savart magnetic

field (12). The spatial Wilson loop of Yang-Mills theory,
calculated in effective magnetic gauge theory, is then the
partition function of the magnetic theory in the presence of

the external source ~Mð ~xÞ, divided by the vacuum partition
function.

A. The effective potential UðC0Þ
To evaluate the partition function of the effective theory

in the deconfined phase, where there is no classical poten-
tial, we must calculate the one loop effective potential
UðC0Þ of magnetic Yang-Mills theory in the background
of a static magnetic scalar potential C0:

e�
R

d~xf½UðC0Þ�=TÞg � e�S1-loopðC0Þ ¼ detð�D2
adjðC0ÞÞ: (13)

The effective potential UðC0Þ is the counterpart in the
deconfined phase of the classical Higgs potential generat-
ing electric flux tube solutions in the confined phase. The
potentialUðC0Þ is a periodic function of the eigenvalues of
C0 in the adjoint representation with period 2�T, having
minima at values of C0 for which the magnetic Polyakov
loop is an element of ZN . This potential gives rise to the
spontaneous breakdown of the ZN symmetry of the effec-
tive magnetic gauge theory in the deconfined phase.
We have evaluated UðC0Þ integrating over the massless

modes of magnetic Yang-Mills theory, introducing a Pauli-
Villars regulator mass M to account for the short distance
cutoff of the effective theory. The regulator massM should
be approximately equal to the dual gluon mass Mg deter-

mining the maximum energy of the modes included in the
effective theory. Aside from the presence of the regulator,
the calculation of UðC0Þ mimics the calculation of the one
loop effective potential UðA0Þ in Yang-Mills theory
[20,21] used to evaluate the spatial ’t Hooft loop . We
assume that the background potential C0 has the same
Abelian color structure as CDirac

0 , i.e., C0 ¼ 2�T
gm

C0ð ~xÞYk.

The corresponding effective potential UðC0Þ is then a
periodic function of C0 with period 1. The resulting ex-
pression for the one loop effective action S1-loopðC0Þ is
given by

S1-loopðC0Þ ¼ kðN � kÞð2�TÞ2T2

3g2m

Z
d~x

UðC0Þ
T

; (14)

where

UðC0Þ ¼
�
½C0�2ð1� ½C0�Þ2 � 3

4�4
I

�
C0;

T

M

��
; (15)

and

I

�
C0;

T

M

�
¼

Z 1

0
dyy2 log

�cosh ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ ðMT Þ2

q
� cosð2�C0Þ

cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ ðMT Þ2

q
� 1

�
;

(16)

with ½C0� � jC0jmod 1. The factor 2kðN � kÞ is the number
of nonzero eigenvalues of the matrix Yk in the adjoint
representation [16]. The integral IðC0;

T
MÞ reflects the pres-

ence of the Pauli-Villars regulator in the functional deter-
minant (13), which suppresses the short distance
contribution to UðC0Þ.
The one loop effective potential is ultraviolet finite, so

that in the absence of a regulator (M ! 1), I ! 0. In this
limit the expression (15) reduces to UðA0Þ, with C0 re-
placed by A0 and gm replaced by the running Yang-Mills
coupling constant gðTÞ. In contrast with the effective the-
ory, the one loop expression for UðA0Þ contains modes of
all wavelengths and is applicable only at high temperatures
where gðTÞ ! 0 so that the contribution of higher order
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loops are small. In the magnetic theory there are no higher
loop corrections to UðC0Þ in the leading long distance
approximation, not because the coupling constant gm is
small, but because it is an effective theory in which only
modes having masses greater than the cutoff can
propagate.

It is convenient to separate the background scalar po-

tential C0 into the contribution �S

4� of the external source

and a remaining contribution c0 whose sources are the
magnetic charges of the plasma:

C0 ¼ c0 þ�S

4�
: (17)

Then making the replacement (17) in S1-loop and adding the
classical action using (12) gives the effective action
Seffðc0Þ:

Seffðc0Þ ¼ 4�2TkðN � kÞ
Ng2m

Z
d~x

�
ð ~rc0 þ ~BBSÞ2

þU

�
c0 þ�S

4�

�
Ng2mT

2

3

�
: (18)

The scalar potential c0 is subject to the conditions c0ð ~xÞ !
0 for ~x on L, and c0ð ~xÞ ! ��Sð ~xÞ

4� as ~x ! 1. The latter

condition means that the total magnetic field ~Bð ~xÞ ¼
~rc0 þ ~BBS is short range, decaying to its vacuum value
at large distances from the loop. SeffðLÞ, the minimum
value of Seffðc0Þ, determines the spatial Wilson loop,

e�Seff ðLÞ, as calculated in the effective theory.

The term in (18) linear in ~BBS is a surface term which,
because of the boundary condition that c0 vanishes on L,

gives no contribution to Seff . The term quadratic in ~BBS, the
magnetic energy of a current loop, diverges logarithmically
as the thickness of the wire goes to zero. (For a thin wire of
radius a this energy is proportional to L logLa .) After sep-

arating off this Biot-Savart energy, the first term in (18)

becomes simply ð ~rc0Þ2. Then only the second term in (18)
along with the boundary at large distances involve the
external potential explicitly.

Because of the periodicity property of the effective

potential, UðC0Þ ¼ UðC0 þ 1Þ, the value of Uðc0 þ �S

4�Þ is
independent of the choice of the surface S defining the
solid angle �Sð ~xÞ, and we can choose S to be the plane
surface bounded by the loop L. For a square loop of side L
in the xy plane centered at the origin

�Sðx; y; zÞ ¼ �
Z L=2

�ðL=2Þ
dx0

Z L=2

�ðL=2Þ
dy0

� z

½ðx� x0Þ2 þ ðy� y0Þ2 þ z2�3=2 : (19)

Since Uð�C0Þ ¼ UðC0Þ and �Sðx; y;�zÞ ¼ ��Sðx; y; zÞ,
in minimizing (18) we can consider configurations
c0ðx; y; zÞ which are odd functions of z so that c0 ¼ 0 at

z ¼ 0 for all x and y and the boundary condition on the
loop is then automatically satisfied.
The minimization of Seffðc0Þ yields ‘‘Poisson’s equa-

tion’’ for c0:

�r2c0ð ~xÞ ¼ �magð ~xÞ; (20)

where

�magð ~xÞ � � 1

2

Ngm
2T2

3

dUðc0 þ �S

4�Þ
dc0

(21)

is the color magnetic charge density induced in the vacuum
by the current loop. This charge produces a field screening
~BBS, so that the total field ~Bð ~xÞ has an exponential falloff
determined by the ‘‘Debye’’ screening massmmagðTÞ of the
magnetic theory:

m2
magðTÞ ¼ 1

2

d2UðC0Þ
dC2

0

��������C0¼0

�
Ng2mT

2

3

�
: (22)

The dual screening mass mmagðTÞ determines both the

width of the magnetic energy profile surrounding a large
spatial Wilson loop in the deconfined phase and the long
distance behavior of magnetic charge density correlators.
(Since there is no local relation between electric and
magnetic variables in non-Abelian gauge theory, the mag-
netic charge density (21) should correspond to an extended
quantity in Yang-Mills theory.)

Using Eqs. (15), (16), and (22), we plot
mmagðTÞ

M in Fig. 1

as a function of T
Tc

for SUð3Þ. We note that for T > Tc,

mmagðTÞ>M, so that mmagðTÞ is not a physical excitation
of the effective theory in the deconfined phase just asMg is

not a physical excitation in the confined phase. Thus for
T > Tc, in the leading long distance approximation there
are no propagating particles present in the effective theory
to correct the effective action and the classical field distri-

bution ~Bð ~xÞ obtained from the one loop effective potential.
However, as T is lowered to temperatures below M

3 ,

where the width 1
mmagðTÞ of the magnetic profile function

FIG. 1. Ratio of dual screening mass to the regulator mass M
as a function of T

Tc
for SUð3Þ, with Tc ¼ M

3 and gm ¼ 3:91.
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becomes larger than the minimum wavelength 1
M of the

fluctuations included in the effective theory, the classical
solution is no longer valid. This breakdown of the pure
gauge effective theory at lower temperatures is a signal for
the transition to the confined phase for which the Higgs
fields play an essential role.

B. Spatial string tension: Comparison with SUð3Þ
lattice simulations

For large L the effective action of the dual theory has
area law behavior determining the spatial string tension
�kðTÞ:

SeffðLÞ ! L2�kðTÞ; as L ! 1: (23)

The spatial string tension is the interface energy separating
two vacua of magnetic SUðNÞ gauge theory differing by k
units of ZN charge. The calculation of �kðTÞ follows
closely the corresponding calculation [21] of the dual
spatial string tension ~�kðTÞ, the interface energy in Yang-
Mills theory.

We first take the limit L ! 1 in (20) and (21). In this
limit the scalar potential c0 ¼ c0ðzÞ and the magnetic field
~B ¼ ~BðzÞ are functions only of the distance z from the
loop. Furthermore, the solid angle �S ¼ �2� for z > 0
and 2� for z < 0, so that the boundary condition C0 ! 0 at
large distances becomes c0ðzÞ ! 	 1

2 as z ! 	1. In Fig. 2

we plot ~B2ðzÞ at T ¼ M
3 , obtained by solving (20) with

these boundary conditions.
Evaluating Seffðc0Þ at the ‘‘classical’’ solution c0ðzÞ

yields

�kðTÞ
T2

¼ 4�2kðN � kÞFðTMÞ
3gm

ffiffiffiffiffiffiffi
3N

p ; (24)

where

F

�
T

M

�
� 6

Z 1=2

�ð1=2Þ
dc0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U

�
c0 þ 1

2

�s
: (25)

Equation (24) is applicable for any SUðNÞ group, but the
values of gm and M have been determined only for SUð3Þ
where the effective theory has been applied in the confined
phase. The function FðTMÞ, plotted in Fig. 3, is the ratio of

the action with regulator massM to the unregulated action.

The temperature dependence of the ratio �kðTÞ
T2 comes from

the Pauli-Villars cutoff, which suppresses the contributions
of momenta greater than M to �kðTÞ. Since the Pauli-
Villars regulator is rather ‘‘soft,’’ allowing substantial con-
tributions from momenta greater than M, we have also
evaluated the string tension using values of M smaller
than Mg.

In Fig. 4 we plot Tffiffiffiffiffiffiffiffi
�ðTÞ

p for SUð3Þ (k ¼ 1, �k � �) as a

function of T
Tc
for Pauli-Villars masses M ¼ 800, 700, and

600 MeV, and compare with the results of 4D lattice

FIG. 2 (color online). Magnetic energy density profile ~B2ðzÞ at
T ¼ Tc as a function of distance z from L.

FIG. 3. Function FðTMÞ, defined in (25), arising from a Pauli-
Villars regulator mass M, suppressing short distance contribu-
tions to the string tensions �kðTÞ.

FIG. 4 (color online). Comparison of SUð3Þ 4D lattice data
(dots) [5,22] for the spatial string tension �ðTÞ with the
prediction (24) of the effective magnetic Yang-Mills theory,
for three values of the Pauli-Villars regulator mass M.
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simulations [5,22]. We note the following features of these
curves:

(i) At T � Tc the predicted values of Tffiffiffiffiffiffiffiffi
�ðTÞ

p lie close to

the lattice result, and they increase as the tempera-
ture increases, reflecting the decrease with tempera-
ture of the function FðTMÞ due to the Pauli-Villars

regulator.
(ii) M ¼ 600 MeV gives the best fit to the SUð3Þ lattice

data in the temperature interval 1:5Tc < T < 2:5Tc

where the effective theory should be applicable.
(iii) The value of the string tension does not depend

strongly on the Pauli-Villars mass. (This reflects the
ultraviolet finiteness of the one loop effective
potential.)

(iv) The lattice data in Fig. 4 are fit very well almost
down to Tc by combining the nonperturbative value
of the string tension of 3D SUð3ÞYang-Mills theory
(determining the high temperature limit of the 4D
string tension) with the 2-loop calculation of the
running of the coupling constant gEðTÞ of a three-
dimensional effective theory (EQCD) determining
the change in the spatial string tension as the tem-
perature is lowered [22]. By contrast, the effective
dual theory determines the string tension in the
deconfined phase only in a limited low temperature
range, but uses parameters already determined in
the confined phase. The values of the intercepts of
the curves in Fig. 4, which are determined primarily
by the value gm � 3:91, are predictions of the
effective theory. For example, for SUð8Þ and k ¼
1, Eq. (24) with M ! 1 gives

ffiffiffiffiffi
�1

p
T � 1:72, while

SUð8Þ lattice simulations close to T ¼ Tc [14] giveffiffiffiffiffi
�1

p
T � 1:63.

C. Spatial string tension �kðTÞ: Casimir scaling

We note from (24) that�kðTÞ is proportional to kðN � kÞ
(Casimir scaling). This dependence on the quantum num-
ber k of spatial string tensions in the deconfined phase is
consistent with the results of lattice simulations of SUð4Þ,
SUð6Þ, and SUð8Þ gauge theories [14,23]. [In the confined
phase only the SUð3Þ string tension was calculated in the
effective theory, so that no prediction regarding Casimir
scaling can be made.]

Casimir scaling of the spatial string tension has also
been obtained in a model of the deconfined phase as a
gas of non-Abelian monopoles in the adjoint representation
[23,24].

V. SPATIAL STRING TENSIONS AND DUAL
STRING TENSIONS COMPARED

In Fig. 5 we compare the SUð3Þ lattice data for the string
tension with data for dual string tensions ~�kðTÞ measured
in lattice simulations of SUð3Þ, SUð4Þ, SUð6Þ, and SUð8Þ
gauge theory in the temperature range Tc < T < 4:5Tc [6].

The lattice data for ~�kðTÞ
T2 for all these SUðNÞ groups and for

all possible values of k, when scaled by the Casimir factor

kðN � kÞ, all collapse on a single curve ~�ðTÞ
T2 shown by the

large dots in Fig. 5 . This approximate Casimir scaling of
dual string tensions agrees with the two loop perturbative
prediction [16]. (The Casimir scaling of this two loop
result holds approximately for the three loop calculation
[17], where it is violated by a small amount.)
At T � 4:5Tc the magnitude ~�ðTÞ of the dual string

tension agrees with the two loop perturbative prediction,
but at lower temperatures it is suppressed [6] relative to this
prediction. This temperature range, where nonperturbative
effects on dual string tensions becomes significant, closely
corresponds to the temperature range where the spatial
string tension becomes comparable to the dual string ten-

sion. To show this, in Fig. 5 we also plot �ðTÞ
2T2 , using the

SUð3Þ string tension lattice data in Fig. 4. We see that at
T � 4:5Tc the string tension �ðTÞ � 0:2 ~�ðTÞ and that, as

the temperature decreases, �ðTÞ
T2 increases, becoming greater

than ~�ðTÞ
T2 for temperatures less than T � 1:25Tc.

We can then identify three temperature intervals in the
deconfined phase, each having distinctly different electric
and magnetic responses according to the value of the ratio
�ðTÞ:

�ðTÞ ¼ �kðTÞ
~�kðTÞ : (26)

(i) T > 4:5Tc, �ðTÞ< 1: The dual string tension is
perturbatively calculable, and the effective magnetic
theory cannot be used to calculate the string tension
(T � M).

FIG. 5 (color online). Comparison of dual string tension and
string tension lattice data. Large dots: SUðNÞ data (N ¼ 3, 4, 6,
and 8) for dual string tensions ~�k

T2 , divided by the Casimir factor

kðN � kÞ, as a function of T
Tc

[19]. Small dots: Same plot of

SUð3Þ data for �
2T2 [5].
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(ii) 1:5Tc < T < 2:5Tc, �ðTÞ � 1: The dual string ten-
sion is suppressed relative to its perturbative value,
and the spatial string tension is calculable via the
effective magnetic theory [T <M<mmagðTÞ].

(iii) Tc < T < 1:5Tc, �ðTÞ> 1: Neither perturbation
theory nor the effective magnetic theory are appli-
cable. In this temperature range mmagðTÞ �M,

which is a signal for the transition to the confined
phase.

VI. SPATIAL STRING TENSION: COMPARISON
WITH N ¼ 4 SUPER YANG-MILLS THEORY

In this section we compare the string tension predicted
by the effective magnetic theory with the expression
�SYMðTÞ for the spatial string tension of SUðNÞ N ¼ 4
super Yang-Mills theory, calculated in the largeN limit and
in the limit of large ’t Hooft coupling 	 � g2SYMN, where

the gravity-conformal field theory correspondence is ap-
plicable [7]:

�SYMðTÞ ¼ �

2

ffiffiffiffi
	

p
T2: (27)

There is no scale in N ¼ 4 SYM theory, 	 is a free
parameter, and the theory remains in the deconfined phase

at all temperatures with �SYM

T2 ¼ �
2

ffiffiffiffi
	

p
.

In the scale free limit,M ! 1, the one loop result of the

effective magnetic theory �kðTÞ
T2 is also constant. In this limit

FðTMÞ ¼ 1 and (24) becomes

�kðTÞ ¼ 4

3
ffiffiffi
3

p �

2

ffiffiffiffiffiffiffi
	m

p kðN � kÞ
N

T2; (28)

where

	m �
�
2�

gm

�
2
N (29)

is the ’t Hooft coupling of the effective magnetic theory.
Equation (28) is applicable for any SUðNÞ, but the value of
	m is known only for SUð3Þ where gm ¼ 3:91 givesffiffiffiffiffiffiffi
	m

p ¼ 2:78.
The factor

ffiffiffiffiffiffiffi
	m

p
in (28), determining �kðTÞ in magnetic

SUðNÞ Yang-Mills theory, is proportional to the width
1

mmagðTÞ of the magnetic profile multiplied by the number

N of unit ZN charges in the large N limit. The factor
ffiffiffiffi
	

p
in

(27), determining �SYM, arises from the relation between
the ’t Hooft coupling and the fundamental string scale via
the AdS/CFT correspondence.

The limit N ! 1 of (28) gives the factorized form:

�kðTÞ ! k�1ðTÞ ¼ k
4

3
ffiffiffi
3

p �

2

ffiffiffiffiffiffiffi
	m

p
T2: (30)

Since the string tensions �SYMðTÞ and �1ðTÞ [(27) and
(30)] have the same dependence on the ’t Hooft couplings
of the two theories, the corresponding string tensions will
be equal if these two constants are related by a numerical

factor of order unity. That is, imposing the relation

gSYM ¼ 4

3
ffiffiffi
3

p 2�

gm
; (31)

between the coupling constants gm and gSYM of the two
theories, we obtain the equality of the two string tensions:

�SYMðTÞ ¼ �1ðTÞ: (32)

That is, with the correspondence (31) the spatial string
tension �SYMðTÞ is equal to the interface tension �1ðTÞ
of magnetic SUðNÞ gauge theory calculated with the one
loop effective potential. This correspondence provides a
link between effective magnetic Yang-Mills theory and
N ¼ 4 supersymmetric Yang-Mills theory.

VII. SUMMARY

We have shown that effective magnetic SUðNÞ Yang-
Mills theory can be used in the one loop approximation to
calculate long distance magnetic properties of the decon-
fined phase, in analogy to the use of the effective magnetic
theory in the classical approximation to describe the con-
fined phase.
Calculating the one loop effective potential for C0 with

an ultraviolet cutoff M, we find:
(i) At T ¼ M

3 � Tc the width of the magnetic energy

profile (Fig. 2) is approximately equal to the radius
of the T ¼ 0 electric flux tube.

(ii) In the temperature interval 1:5Tc < T < 2:5Tc the
predicted SUð3Þ spatial string tension is compatible
with lattice simulations (Fig. 4).

(iii) In this temperature interval the values of the string
tension and the dual string tension obtained from
lattice simulations (Fig. 5) approach each other and
become equal as the temperature is lowered to
about 1:25Tc. Roughly speaking, the temperature
scaleM� 3Tc marks a transition in the behavior of
the deconfined phase; the high temperature domain
is described by perturbative Yang-Mills theory and
the low temperature interval by the effective mag-
netic gauge theory.

(iv) For SUðNÞ groups with N � 3 the string tensions
�kðTÞ satisfy Casimir scaling.

(v) With the duality correspondence (31) the spatial
string tension �SYMðTÞ, calculated in N ¼ 4
SYM theory, is equal to string tension �1ðTÞ, calcu-
lated in the effective magnetic theory in the scale
free limit.

VIII. DISCUSSION

The formation of the magnetic energy profile around a
spatial Wilson loop in the deconfined phase parallels for-
mation of an electric flux tube in the confined phase.
In the confined phase a Dirac string connecting a quark-

antiquark pair couples to the magnetic vector potential ~C
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and induces a magnetic color current density brought about
by the interaction of the gauge potentials with the mag-
netically charged Higgs fields. Via the dual of Ampere’s

law, this current density gives rise to an electric field ~E ¼
� ~r� ~C which screens the external Coulomb field gener-
ated by the Dirac string, so that the total color electric field
decays exponentially with the energy profile of an electric
flux tube.

In the deconfined phase a magnetic dipole layer couples
to the magnetic scalar potential C0 and induces a magnetic
color charge density (21) generated by the one loop effec-
tive UðC0Þ. Via the dual of Gauss’s law, this magnetic

charge density gives rise to a magnetic field ~B ¼ ~rc0
which screens the external Biot-Savart magnetic field gen-
erated by the dipole layer, so that the total magnetic field
decays exponentially at large distances and has the energy
profile shown in Fig. 2.

We thus gain an understanding of confinement by study-
ing the deconfined phase. The magnetic currents confining
electric flux, introduced at the classical level via Higgs
fields, are the counterparts in the confined phase of mag-
netic charges, generated in the deconfined phase by inte-
grating out the long distance quantum fluctuations of the
non-Abelian magnetic degrees of freedom. As the tempera-
ture is lowered toward Tc, the classical magnetic energy
profile resulting from the one loop pure gauge effective
action becomes unstable, signaling the transition to the
confined phase where the Higgs fields must be taken into
account.

In the confined phase the long wavelength fluctuations
of the axis of the flux tubes give rise to an effective bosonic
string theory and consequently to the � �

12R Lüscher cor-

rection to the area law behavior of Wilson loops. In con-
trast, in the deconfined phase there is no Higgs condensate
whose zeros locate the position of the string, and conse-
quently no effective string theory. Instead, in order to
calculate the corrections to the area law behavior of spatial
Wilson loops in the deconfined phase in the temperature
range where the effective theory is applicable, we must
solve (20) for finite values of L and evaluate the corre-

sponding effective action (18). This calculation will be
described in a separate paper.

IX. FURTHER INVESTIGATIONS

Finally, we suggest the following tests and applications
of the effective magnetic gauge theory.
(i) According to our picture, the magnetic response of

the plasma phase of SUðNÞ Yang-Mills theory in the
temperature interval 1:5Tc < T < 2:5Tc is described
by effective magnetic SUðNÞ gauge theory. In this
temperature range the deconfined phase contains
magnetic charges interacting strongly (gm � 3:91)
over distances greater than 0.3 fm, according to the
effective action (18). Since such temperatures are
accessible in heavy ion collisions, calculations of
nonequilibrium quantities in the effective theory
would make it possible to use the magnetic descrip-
tion of the long distance properties of the plasma
phase of Yang-Mills theory to analyze these
experiments.

(ii) Evidence for the magnetic quanta of the effective
theory should be sought in lattice simulations of
Yang-Mills theory in the deconfined phase. We
could make use of the recent proposal [25] to iden-
tify the magnetic component of the plasma phase of
Yang-Mills theory with monopole currents which
wind around the temperature direction and whose
density can be extracted from lattice simulations
[26–28]. Spatial correlations of these wrapped
monopoles [28] could then be compared with cor-
relators of the magnetic charge density (21) deter-
mined by the effective theory.
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