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We study the QCD charge asymmetry in t�t production at the Tevatron. We investigate the role of higher

orders in perturbation theory by considering the resummation of potentially large logarithmic corrections

that arise near partonic threshold. This requires us to employ the rapidity-dependent anomalous dimension

matrices that describe color mixing due to soft-gluon emission in both quark- and gluon-initiated

processes. The charge asymmetry appears directly in the resummed cross section at next-to-leading

logarithm (NLL), and we find that the first-order expansion of the NLL-resummed charge asymmetry

reproduces the known fixed-order result for the asymmetry well. Beyond its lowest order, the asymmetric

component of the cross section is enhanced by the same leading-logarithmic threshold corrections as

the total cross section. As a result, the charge asymmetry is robust with respect to the higher-order

perturbative corrections generated by threshold resummation. We observe that the asymmetry increases

with pair mass and with scattering angle.
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I. INTRODUCTION

Heavy quark pair production in hadronic collisions is
important both for accurate tests of the standard model and
in searches for new physics. Thanks to the large scale set
by the mass of the heavy quark, one can often use QCD
perturbation theory in obtaining predictions for heavy-
flavor production, employing the factorization of the had-
ronic cross section into parton distribution functions and
perturbative short-distance cross sections.

Top-quark production may provide an arena for testing
possible extensions of the standard model [1–4]. One par-
ticularly interesting observable in t�t production that has
been considered in this context [5,6] is the charge asym-
metry (or, forward-backward asymmetry), which is ob-
tained by comparing the rate for producing a top quark at
a given angle to that for producing an antitop at the same
angle. Electroweak processes, as well as processes in many
extensions of the standard model, may produce a charge
asymmetry at Born level. QCD, on the other hand, being a
purely vector theory, does not produce a charge asymmetry
in the lowest-order (LO) processes q �q ! t�t and gg ! t�t.
The charge asymmetry thus has the potential of probing or
constraining possible tree-level axial couplings of the
gluon [5,6] at the Tevatron or the LHC (Large Hadron
Collider).

Starting at order �3
S, however, QCD itself contributes to

the charge asymmetry, through q �q annihilation q �q ! t�tðgÞ
and flavor excitation, qg ! qt�t [7]. This happens through
diagrams in which two separate fermion lines (one of them
the top-quark line) are connected by three gluons. This
phenomenon, which is also well known in QED [8], enters
with the combination dabcd

abc of the symmetric QCD
structure constants. The same mechanism for light flavors

has been found to generate a strange quark s� �s asymme-
try in the nucleon sea [9]. The charge-asymmetric part is
contained in the full next-to-leading order [NLO, Oð�3

SÞ]
calculations of the differential heavy-flavor production
cross section [10–12]. Since this is the order at which the
effect arises for the first time, we will usually refer to the
charge-asymmetric part arising at Oð�3

SÞ as LO. There

have been detailed calculations and phenomenological
studies of the QCD top-quark charge asymmetry at the
Tevatron (or the LHC), both for the inclusive case p �p !
t�tX [6,13] and for associated-jet final states p �p ! t�tjetX
[14,15]. In particular, Ref. [15] provides the full NLO
[Oð�4

SÞ] corrections to p �p ! t�tjetX.
Very recently, first measurements of top-quark charge

asymmetries have been reported by the Tevatron collabo-
rations [16,17]. In the inclusive case, asymmetries of 12�
8ðstatÞ � 1ðsystÞ% and 23� 12ðstatÞ � 6ðsystÞ% were
found by D0 [16] and CDF [17], respectively. Even though
experimental uncertainties are evidently still large, this is a
very encouraging first step that motivates further theoreti-
cal investigations. In the present paper we improve the
theoretical framework for the case of the inclusive charge
asymmetry by examining the effects of QCD threshold
resummation. This will provide insight into the important
question of how robust the asymmetry is with respect to
higher-order QCD corrections. Our study requires us to
implement NLL resummation in heavy quark production at
fixed angle and rapidity [18,19]. Earlier phenomenological
studies of the threshold-resummed t�t cross section, which
however did not focus on the charge asymmetry, may be
found in [20–24].
As is well known, when the initial partons have just

enough energy to produce a t�t pair, the phase space avail-
able for gluon bremsstrahlung nearly vanishes, giving rise
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to large logarithmic corrections to the partonic cross sec-
tion. For example, if we consider the cross section for
t�t production at fixed pair invariant mass, this partonic
threshold is reached when the pair invariant mass equals
the partonic center-of-mass (c.m.) energy M2

t�t ¼ s. At the
nth order of perturbation theory, the large threshold cor-
rections arise as �2þn

S ½logmð1� �̂Þ=ð1� �̂Þ�þ with m �
2n� 1, where �̂ ¼ M2

t�t=s and the ‘‘þ’’ distribution will be

reviewed below. The maximum value, m ¼ 2n� 1 cor-
responds to the leading logarithms (LL), m ¼ 2n� 2
to next-to-leading logarithms (NLL), and so forth. Near
threshold, the perturbative calculation produces potentially
large corrections at all orders in the strong coupling �S.
These corrections are addressed by threshold resummation.
This is particularly relevant for the Tevatron case, where
the hadronic c.m. energy is not too much larger than twice
the top mass, 2mt, so that �̂ is on average rather close to
unity. Related considerations also apply at the LHC when
the pair is produced with M2

t�t � 4m2
t .

For heavy quark production, threshold resummation has
been derived to NLL accuracy [18,21], and recently to
next-to-next-to-leading logarithm [24]. The results of
[18] have been presented for an arbitrary c.m. scattering
angle of the produced top quark, which makes it possible to
obtain a resummed charge asymmetry from them. Among
the processes that contribute to the charge asymmetry, only
q �q annihilation contains threshold logarithms, while the
flavor excitation qg process is suppressed near threshold.
As we shall discuss in some detail, it turns out that the
leading logarithms in the charge-asymmetric part of q �q
annihilation cancel at Oð�3

sÞ. This is because the charge-
asymmetric part is a difference of cross sections with the
top or the antitop produced at a certain angle, and the
leading logarithms enter in association with the Oð�2

SÞ
q �q ! t�t Born process, which is charge symmetric. We
shall return to this point below and will find that beyond
Oð�2

SÞ the charge-asymmetric cross section is enhanced

by the same threshold logarithms as the symmetric one.
We also note that the gg fusion process is charge symmet-
ric to all orders; nonetheless its resummation can be rele-
vant also for the charge asymmetry as it contributes to
the denominator of the asymmetry and may thus dilute it
somewhat. This effect does not lead to significant suppres-
sion, however, because of the higher-order threshold en-
hancements to the asymmetric cross section, which we
will exhibit below.

The remainder of this paper is organized as follows. In
Sec. II we give the basic formulas associated with the
charge asymmetry and discuss the near-threshold behavior
atOð�2

SÞ. In Sec. III we present the relevant expressions for
the NLL-resummed t�t cross section as a function of the
t�t pair invariant mass and the top c.m. scattering angle.
Section IV presents our phenomenological results for
Tevatron kinematics, and we summarize our findings in
Sec. V.

II. PERTURBATIVE CROSS SECTION, CHARGE
ASYMMETRY, AND PARTONIC THRESHOLD

We consider inclusive t�t production in hadronic
collisions,

HAðPAÞ þHBðPBÞ ! tðptÞ�tðp�tÞ þ XðpXÞ; (1)

where we have indicated the momenta. We introduce the
invariant mass squared of the t�t pair:M2

t�t ¼ ðpt þ p�tÞ2, and
the variable � � M2

t�t=S with S ¼ ðPA þ PBÞ2. The factor-

ized cross section for the process is written in terms of

convolutions of parton distributions fHA
a and fHB

b for par-

tons a, b in hadronsHA,HB, respectively, with perturbative
partonic hard-scattering cross sections �̂ab:

d2�HAHB!t�tX

dM2
t�td cos�

¼ X
ab

Z 1

0
dxa

Z 1

0
dxbf

HA
a ðxa;�2ÞfHB

b ðxb; �2Þ

� 1

s

d2�̂abð�̂; cos�;�2=sÞ
d�̂d cos�

; (2)

where the sum runs over all partonic subprocesses that
produce top-quark pairs. We have introduced the partonic
variable �̂ ¼ M2

t�t=s ¼ �=xaxb. We define � as the produc-

tion angle of the top quark in the partonic center-of-mass
frame. We note from the outset that this is not the definition
adopted in the Tevatron experiments, where the asymmetry
is considered as a function of the rapidity difference �yt of
the t and �t. However, for LO kinematics, the two definitions
are directly related through [17] tanhð�y=2Þ ¼ � cos�,

with � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

t =s
p

the top-quark velocity. As the par-
tonic threshold regime is characterized by LO kinematics,
we expect our resummed results below to be very faithful
representations also of the effects expected for the Tevatron
definition (see also [6]). In fact, we have found that for
quantities integrated over angle, the charge asymmetries
for the two definitions agree at the level of about 2% or
better. The integration limits in Eq. (2) are determined
by the conditions [22] s � M2

t�t � 4m2
t =ð1� �2cos2�Þ.

Finally, the scale � denotes the factorization and renor-
malization scales, which we take to be equal throughout
this study.
We next define the charge-asymmetric and charge-

averaged cross sections:

d��

dM2
t�td cos�

� 1

2

�
d2�HAHB!t�tX

dM2
t�td cos�

� d2�HAHB!�ttX

dM2
t�td cos�

�
;

d ��

dM2
t�td cos�

� 1

2

�
d2�HAHB!t�tX

dM2
t�td cos�

þ d2�HAHB!�ttX

dM2
t�td cos�

�
;

and the corresponding charge asymmetry

AcðM2
t�t; cos�Þ �

d��

d�
: (3)

To lowest order (LO), t�t pairs are produced by the
processes q �q ! t�t and gg ! t�t. These produce the top
and the antitop evenly at a given production angle �, so
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that the charge asymmetry vanishes. Beyond LO, however,
q �q annihilation as well as the flavor excitation process
qg ! t�tq have charge-asymmetric contributions [13],
while gg scattering remains symmetric. For the q �q anni-
hilation process, the asymmetry arises from three gluons
connecting the light-quark and the top-quark lines. In the
case of inclusive t�t production, the asymmetry receives
contributions from real diagrams for q �q ! t�tg and from
virtual corrections in q �q ! t�t. The charge-asymmetric
pieces for the Oð�3

SÞ subprocesses have been computed

in detail in [13]; they are also included of course in the full
next-to-leading order (NLO) calculations of the top-quark
cross section [10–12].

As we discussed in the introduction, large double- and
single-logarithmic corrections arise at higher orders in the
partonic cross sections for q �q annihilation and gg fusion
when �̂ becomes large, that is, whenM2

t�t 	 s. The structure
of the NLO terms in the q �q annihilation cross section
becomes, for example,

d2�̂NLO
q �q ð�̂; cos�Þ
d�̂d cos�

¼ C1ð�Þ�ð1� �̂Þ þ C2ð�Þ
�

1

1� �̂

�
þ

þ C3ð�Þ
�
logð1� �̂Þ
1� �̂

�
þ
þ . . . ; (4)

where the ellipses denote terms that are finite near partonic
threshold. We have suppressed the dependence on the
factorization/renormalization scale, as we will often do in
the following. The ‘‘þ’’ distribution is defined as usual by

Z 1

x
dz½gðzÞ�þfðzÞ ¼

Z 1

x
dzgðzÞðfðzÞ � fð1ÞÞ

� fð1Þ
Z x

0
dzgðzÞ: (5)

The coefficients Ci may be found in Ref. [22]. It turns out
that only C1 and C2 possess charge-asymmetric pieces,
while the double-logarithmic part associated with C3 is
symmetric and thus cancels in the asymmetry at lowest or-
der. This is a result of the factorization of collinear loga-
rithms, which do not interfere with color flow in the hard
scattering [18]. As a result, the charge-asymmetric contri-
butions in q �q ! t�tg and q �q ! t�t each have an infrared (but
no collinear) singularity at Oð�3

sÞ [13], which cancels in
their sum and leaves behind a single logarithm, represented
by the term proportional to 1=ð1� �̂Þþ in Eq. (4). We will
see in the next section, however, that, starting with the next
order, leading logarithms contribute to the asymmetric
cross section as an overall factor.

III. NLL RESUMMATION

The resummation of the soft-gluon contributions is or-
ganized in Mellin-N moment space. We take a moment of
the hadronic cross section with respect to the variable �:

d�N

d cos�
�
Z 1

0
d��N�1 d2�

d�d cos�
: (6)

Under Mellin moments, the convolutions in the factorized
cross section near threshold become products:

d�N

d cos�
¼ X

ab

fHA;N
a ð�2ÞfHB;N

b ð�2Þ�̂abðN; �Þ; (7)

where the fHA;N
a , fHB;N

b are the Mellin moments of the

parton distributions, defined by analogy to Eq. (6), and
where

�̂ abðN; �Þ ¼
Z 1

0
d�̂�̂N�1 d

2�̂abð�̂; cos�Þ
d�̂d cos�

: (8)

The threshold limit (�̂ ! 1) now corresponds to N ! 1 in
moment space.
Threshold resummation results in exponentiation of the

soft-gluon corrections in moment space. Unlike color sin-
glet cases like the Drell-Yan process, in heavy-flavor pro-
duction soft gluons emitted at large angles interfere with
the color structure of the underlying Born process. One
must then take into account all color structures and sum
over them. The details of this procedure were worked out
for scattering at fixed angles in [18,19,25]. For a given
partonic channel (ab ¼ q �q, gg), the resumed perturbative
cross section is given by1

�̂ ðresÞ
ab ðN; �Þ ¼ Cabð�Þ�aðNÞ�bðNÞTrfHð0Þ

ab ð�Þ
� ½SabðN; �Þ�ySð0ÞabSabðN; �Þg; (9)

where we have suppressed for simplicity the dependence of
the various functions on the pair mass Mt�t, but have kept
dependence on the scattering angle � wherever it occurs.
Even before defining the various factors in the resummed
cross section, we may note that it naturally gives rise to a
charge asymmetry. In Eq. (9), all dependence on the c.m.
scattering angle � resides in the color trace part and in the
coefficients Cab. Therefore, these generate the charge-
asymmetric part of the cross section near threshold:

��̂ðresÞ
q �q ðN; �Þ ¼ ð�qðNÞÞ2½Cq �qð�ÞTrfHð0Þ

ab ð�Þ
� ½SabðN; �Þ�ySð0ÞabSabðN; �Þg
� Cq �qð��ÞTrfHð0Þ

ab ð�Þ
� ½SabðN;��Þ�ySð0ÞabSabðN;��Þg�: (10)

It is the ratio of Eq. (10) and its charge-averaged counter-
part that defines the asymmetry. We anticipate that, when
expanding the resummed expression to next-to-leading
order, leading logarithms cancel and the C2 term in
Eq. (4) is reproduced.

1See, in particular, Eq. (50) of Ref. [19].
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Now let us review the elements of the resummed cross
sections. The trace in Eq. (9) is taken in a space of color

exchange operators [18,19]. At lowest order, Hð0Þ
ab and Sð0Þab

are the hard-scattering and the zeroth-order soft functions,
respectively. The factors Sab are also matrices in color
space and depend on the basis of color tensors used to
describe color exchange. Employing the s-channel singlet-
octet basis of [18], one has for the q �q subprocess, which we
are mostly interested in here,

Hð0Þ
q �q ¼ �2

S

0 0
0 2ðt2þu2

s2
þ 2

m2
t

s Þ=C2
A

 !
;

Sð0Þq �q ¼ C2
A 0
0 ðC2

A � 1Þ=4
� �

;

(11)

where t � ðpt � paÞ2 �m2
t ¼ �sð1� � cos�Þ=2, u �

ðp�t � paÞ2 �m2
t ¼ �sð1þ � cos�Þ=2, with pa the mo-

mentum of initial parton a, again � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

t =s
p

and
CA ¼ 3. The corresponding expressions for the soft anom-
alous dimension matrices of the gg-initiated subprocess
may be found in [18]. Note that the Born cross sections are

recovered by computing TrfHð0Þ
abS

ð0Þ
abg and that Hð0Þ

ab is sym-

metric under interchange of t and u and hence charge
symmetric.

Each of the functions �a;bðNÞ and SabðN; �Þ is an ex-

ponential. �aðNÞ represents the effects of soft-gluon radia-
tion collinear to initial parton a and in the MS scheme is
given by

ln�aðNÞ ¼
Z 1

0

zN�1 � 1

1� z

Z ð1�zÞ2M2
t�t

�2

dq2

q2
Aað�Sðq2ÞÞ;

(12)

and similarly for �bðNÞ. The function Aa is a perturbative
series in �S,

Aað�SÞ ¼ �S

�
Að1Þ
a þ

�
�S

�

�
2
Að2Þ
a þ . . . ; (13)

with [26]

Að1Þ
a ¼ Ca; Að2Þ

a ¼ 1

2
Ca

�
CA

�
67

18
� �2

6

�
� 5

9
Nf

�
;

(14)

where Nf is the number of flavors, and

Cq ¼ CF ¼ ðN2
c � 1Þ=2Nc ¼ 4=3;

Cg ¼ CA ¼ Nc ¼ 3:
(15)

The factors �a;bðNÞ generate leading threshold enhance-

ments, due to soft-collinear radiation, as the same overall
factors in the charge symmetric and antisymmetric cross
sections.

The large-angle soft-gluon exponentials SabðN; �Þ are
dependent on the process and mix the color structure.
One has

S abðN; �Þ ¼ P exp

�
1

2

Z M2
t�t
=N2

M2
t�t

dq2

q2
�S
abð�Sðq2Þ; �Þ

�
;

(16)

where P denotes path ordering and where �S
ab are soft

anomalous dimensions, which are also matrices in a given
color basis. They are perturbative; for the resummation at
NLL one only needs the first-order term and path ordering
becomes irrelevant. For the q �q subprocess, the first-order
anomalous dimension matrix can be represented, in the
s-channel singlet-octet basis, as

�S;ð1Þ
q �q ¼ �S

�

�q �q
11 �q �q

12

�q �q
21 �q �q

22

 !
; (17)

with matrix elements [18]2

�q �q
11 ¼ �CF½L� þ 1þ i��; �q �q

21 ¼ 2 ln

�
t

u

�
;

�q �q
12 ¼ CF

CA

ln

�
t

u

�
;

�q �q
22 ¼ CF

�
4 ln

�
t

u

�
� L� � 1� i�

�
þ CA

2

�
�3 ln

�
t

u

�

� ln

�
m2

t s

tu

�
þ L� þ 1þ i�

�
; (18)

where

L� ¼ 1� 2m2
t =s

�

�
ln
1� �

1þ �
þ i�

�
: (19)

Finally, the coefficients Cabð�Þ contain N-independent
hard contributions arising from one-loop virtual cor-
rections. They are perturbative as well, and have the
expansion

Cabð�Þ ¼ 1þ �S

�
Cð1Þ
abð�Þ þOð�2

SÞ: (20)

The coefficientsCð1Þ
ab may be obtained by comparison of the

resummed formula to the full NLO calculation. We note
that they contain the Coulomb corrections which diverge as

1=� at s	 4m2
t . As indicated, the Cð1Þ

ab depend on the

scattering angle �, and in fact for the q �q subprocess they
also contain a charge-asymmetric part. The full coeffi-
cients have been derived in Ref. [22] and are given by
very lengthy expressions. Starting from slightly corrected
versions3 of the expressions given in [22], we have been
able to verify that the charge-asymmetric part of the result-
ing coefficient for the q �q process reproduces the corre-
sponding result given in [13].

2Note that for our definition of the charge asymmetry we need
to interchange t and u in the results of [18].

3Specifically, we use Eq. (A.19) of Ref. [27] in the second and
third integral in (A.20) of Ref. [28] and in Eqs. (A.9) and (A.11)
of the first paper of Ref. [22].
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We now give explicit formulas for the expansions of the
resummed exponents to NLL accuracy following the gen-
eral approach of [29]. The functions �a;bðNÞ become

ln�aðN;�Sð�2Þ;M2
t�t=�

2Þ ¼ ln �Nhð1Þa ð	Þ
þ hð2Þa ð	;M2

t�t=�
2Þ

þOð�Sð�S lnNÞkÞ: (21)

Here 	 ¼ b0�Sð�2Þ ln �N with �N ¼ Ne
E , where 
E is the

Euler constant. The functions hð1;2Þ are given by

hð1Þa ð	Þ ¼ Að1Þ
a

2�b0	
½2	þ ð1� 2	Þ lnð1� 2	Þ�; (22)

hð2Þa ð	;M2
t�t=�

2Þ ¼ � Að2Þ
a

2�2b20
½2	þ lnð1� 2	Þ� þ Að1Þ

a

2�b0

� lnð1� 2	Þ lnM
2
t�t

�2
þ Að1Þ

a b1
2�b30

�
�
2	þ lnð1� 2	Þ þ 1

2
ln2ð1� 2	Þ

�
;

(23)

where b0 ¼ ð11CA � 2NfÞ=12� and

b1 ¼ 1

24�2
ð17C2

A � 5CANf � 3CFNfÞ: (24)

The function hð1Þa above contains all LL terms in the per-

turbative series, while hð2Þa is of NLL only. For a complete
NLL resummation one also needs the expansion of the
integral in Eq. (16), given by

lnSabðN; �Þ ¼ lnð1� 2	Þ
2�b0

�S;ð1Þ
q �q ð�Þ: (25)

While the full structure of the resummed expressions is
rather long and complicated, a major simplification occurs
when one expands it for small� and ignores the coefficient
Cab. One finds in this case

�̂ðresÞ
q �q ðN; �Þ ¼ �̂ðBornÞ

q �q ð�Þð�qðNÞÞ2

�
�
1þ � cos�ð8CF � 3CAÞ lnð1� 2	Þ

�b0

�

� e�ðCA=2�b0Þ lnð1�2	Þ: (26)

Here, the factor 8CF � 3CA is the typical color factor
associated with the QCD charge asymmetry [13]. One
can see how the single threshold logarithm arises at the
first order in�S in the charge-asymmetric part. The charge-
asymmetric piece is suppressed by the factor �, but en-
hanced by the term lnð1� 2	Þ. All factors outside the
curly brackets are common to the charge-asymmetric and
the charge-summed parts and are expected to largely can-
cel in the charge asymmetry at hadron level. We note that
in the limit � ! 0 our formulas above reproduce the

moment-space expressions for the resummed total heavy-
flavor cross section derived in [21].
In our discussion below, we use the full formula (10)

when calculating the charge asymmetry. Since the matrices
involved for the q �q subprocess are two-dimensional, it is
straightforward to perform the required exponentiations
and other manipulations, explicitly employing a diago-
nal color basis for these 2� 2 matrices [18]. For the
(charge-symmetric) gg subprocess, the matrices are three-
dimensional, and this procedure becomes more com-
plicated. We found it simpler here to do the matrix
manipulations numerically, calculating, in particular, the
matrix exponentials by expanding the exponential series to
the tenth order. We emphasize again that the gg process is
charge symmetric. Thus, it only contributes to the denomi-
nator of the charge asymmetry, diluting the asymmetry
somewhat, because the effects of threshold resummation
can be larger for gluons than for quarks.

IV. PHENOMENOLOGICAL RESULTS

We will now investigate the numerical size of the
QCD charge asymmetry for top-quark production at the
Tevatron, making use of the resummation formulas pre-
sented above. In order to do this, we first need to specify
the inverse Mellin transform. This requires a prescription
for dealing with the singularity in the perturbative strong
coupling constant in the resummed exponent. We will use
the minimal prescription developed in Ref. [29], which
relies on the use of the NLL expanded forms Eqs. (21)–
(23) and on choosing a Mellin contour in complex-N space
that lies to the left of the poles at 	 ¼ 1=2 in the Mellin
integrand:

d2�

dM2
t�td cos�

¼
Z CMPþi1

CMP�i1
dN

2�i
��N�ðresÞðNÞ; (27)

where b0�Sð�2Þ lnCMP < 1=2, but all other poles in the
integrand are as usual to the left of the contour. The result
defined by the minimal prescription has the property that
its perturbative expansion is an asymptotic series that has
no factorial divergence and therefore no ‘‘built-in’’ power-
like ambiguities. Power corrections may then be added, as
phenomenologically required.
For our calculations we use the CTEQ6M parton dis-

tributions [30]. To obtain these in Mellin-moment space,
we follow [31] and perform a simple fit to each parton
distribution at each scale needed, using a functional form
that allows Mellin moments to be taken analytically. We
note that for the Tevatron case considered here, t�t pairs
are largely produced in valence-valence scattering, for
which the parton distributions are rather well known. The
higher-order and resummation effects will be very simi-
lar for other sets of parton distributions. We use mt ¼
170:9 GeV [32],

ffiffiffi
S

p ¼ 1:96 TeV, and our default choice
for the factorization/renormalization scale is � ¼ Mt�t.
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The lower set of lines in Fig. 1 shows our results for the
charge-asymmetric cross section d��=dMt�t as a function
of the t�t pair mass, while the upper set presents the charge-
averaged one, d ��=dMt�t. We show here the cross sections
integrated over 0 � cos� � 1. In both cases, we show by
the dotted lines the lowest-order result, which is Oð�2

SÞ in
the charge-averaged case, and Oð�3

SÞ in the asymmetric

part. In the former case, this result is just based on the usual
Born cross processes, q �q ! t�t and gg ! t�t. For the
charge-asymmetric part, we make use of the expressions
given in the appendix of [13]. This includes the small
contribution by the quark-gluon flavor excitation process
qg ! t�tq. Next in Fig. 1 we show the first-order expansion
of the resummed cross sections (dashed lines), which are
approximations to the full NLO result. In case of the
charge-asymmetric piece, which only starts at NLO, we
can check the quality of this approximation by comparing
the dotted and dashed lines. One can see that the two re-
sults agree very well in this case, implying that the thresh-
old corrections addressed by resummation dominate.4

For the charge-asymmetric part, we also show (dashed-
dotted lines) the second-order expansion of the resummed
cross section, which is of Oð�4

SÞ, because this contains the
first nontrivial QCD correction in this case. The solid lines
finally show the full NLL-resummed result. One can see

that resummation has a very significant impact on the
predicted cross sections, in particular, for the charge-
asymmetric part at high Mt�t. Note that for the resummed
curve for this part we have performed a matching to the full
Oð�3

SÞ result of [13] by correcting it by the difference

between the dotted and dashed lines. In this way, the
Oð�3

SÞ is taken into account in full, and the soft-gluon

contributions beyond NLO are resummed to NLL.
In Fig. 2 we analyze the scale dependence of the results,

for both the charge-asymmetric and averaged parts. The
dashed-dotted lines correspond to a variation of Mt�t=2 �
� � 2Mt�t, with the central lines (dotted) the ones for � ¼
Mt�t already shown in Fig. 1. The higher results are obtained
for the lower choice of scale. The dashed and solid lines
display the same for the resummed cross sections. One can
see a very significant reduction of scale dependence, in
particular, for the charge-averaged cross section. This im-
provement in scale dependence due to threshold resumma-
tion is in line with similar findings in the literature for other
cross sections [21–23,33,34]. We note that the fact that
t�t production at the Tevatron proceeds primarily through
q �q valence-valence annihilation helps here, since only the
flavor-diagonal nonsinglet evolution matters, which is part
of the resummation formula [21,33].
Figure 3 shows the charge asymmetries Ac ¼ d��=d ��

corresponding to the various curves in Fig. 1, as functions
of the pair mass. As before, the dotted line shows the LO
result, the solid represents the full resummed result, and the
dashed one is the expansion of the resummed cross section.
For the latter we expand the cross section to Oð�4

SÞ in the

numerator of the asymmetry, and to Oð�3
SÞ in the denomi-

nator, thus taking into account the first nontrivial QCD
correction in both cases. Had we expanded both numerator
and denominator toOð�3

SÞ, the numerator would be at LO,

and an artificially small asymmetry would result. One can
see that the various results are rather close, implying that

FIG. 1 (color online). Charge-asymmetric and charge-
averaged cross sections d��=dMt�t and d ��=dMt�t as func-
tions of the t�t pair mass, integrated over 0 � cos� � 1.
Dotted lines are LO, dashed lines include the first-order correc-
tions generated by resummation, and solid lines show the full
resummed result. For the charge-asymmetric part, we also show
the second-order expansion of the resummed cross section,
which is of Oð�4

SÞ, because this contains the first nontrivial

QCD correction in this case.

FIG. 2 (color online). Scale dependence of the LO (dotted and
dashed-dotted lines) and NLL-resummed (solid and dashed
lines) cross sections, for a scale variation Mt�t=2 � � � 2Mt�t.

4In principle, one may carry out the same check for the charge-
symmetric cross section at fixed Mt�t and � by comparing to the
full NLO calculations of [10,11]. Such a study is unlikely to
change our results here qualitatively and would go beyond the
scope of this work.
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the net effect of resummation on the charge asymmetry
is not large. This is related to the fact that the double-
logarithmic factors / ð�qðNÞÞ2 in the resummation for-

mula are the same for the charge-asymmetric and averaged
parts. Towards lowerMt�t, where the speed of the produced
top quark becomes small, all asymmetries become small on
account of Eq. (26). At large pair masses, the additional
single threshold logarithm enhances the asymmetry.

In Fig. 4 we consider the asymmetry as a function of
cos�, with Mt�t integrated over the allowed kinematic re-
gion. Again the net effect of resummation on the asym-
metry is relatively moderate. Integration over Mt�t leads
generally to a smaller asymmetry, because lower pair
masses, at which the asymmetry decreases when going
from the LO to the resummed case (see Fig. 3), dominate
the cross section. As Figs. 3 and 4 show, the resummed
asymmetries grow substantially with both pair mass, when

integrated over rapidity, and with the relative rapidity of
the pair. Interestingly, these results are consistent with the
explicit NLO results presented in Refs. [14,15], which
indicate a decrease in the charge asymmetry, and even a
reversal of its sign, for top pair plus jet cross sections. In
such final states, the NLO virtual corrections to inclusive
pair production are absent, and it is the latter corrections
that determine the sign of the asymmetry itself.
We finally turn to the total charge asymmetry Atot

c ,
integrated over Mt�t and 0 � cos� � 1. At LO, using the
scale � ¼ Mt�t=2, we find Atot

c ¼ 6:7%. Resummation re-
sults in only a small change, Atot

c ¼ 6:6%. We note that
when varying the scale over the range mt � � � Mt�t, the
LO charge-symmetric part of the cross section varies by
about �20% around its central value, which is improved
by resummation to a variation of about �3%. The scale
dependence of the asymmetric part of the cross section
improves from �28% to �13%. The resummed asymme-
try shows a variation over this range of scales of about
�12%. Thus our results for the higher-order corrections to
Atot
c are well consistent with the estimate of a 	30%

uncertainty made in Ref. [6].

V. CONCLUSIONS AND OUTLOOK

We have presented a study of the next-to-leading-
logarithmic QCD threshold resummation effects on the
charge asymmetry in inclusive t�t production at the
Tevatron. We have found that the asymmetry is stable
with respect to the higher-order corrections generated by
threshold resummation. We have also found that resumma-
tion significantly decreases the dependence of the results
on the factorization and renormalization scales, thus mak-
ing the standard model prediction for the asymmetry more
reliable.
It will be interesting to extend these studies to the case of

t�tjet production, for which sizable negative NLO correc-
tions have been found [15]. Also, there will be interesting
applications at the LHC in situations near partonic thresh-
old, i.e., when the t�t pair mass becomes of the order of
1 TeVor larger. Because the initial pp state is symmetric,
one needs to apply additional cuts (for example, on the
t�t pair rapidity) here in order to generate a nonvanishing
charge asymmetry [13].
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FIG. 3. Charge asymmetry corresponding to the curves in
Fig. 1.

FIG. 4. Same as Fig. 3, but as a function of cos�, integrated
over the t�t pair mass.

THRESHOLD RESUMMATION FOR THE TOP QUARK . . . PHYSICAL REVIEW D 78, 014008 (2008)

014008-7



[1] K. D. Lane, Phys. Rev. D 52, 1546 (1995).
[2] For recent work, see contribution of D. G. E. Walker in

New Physics at the LHC: A Les Houches Report. Physics
at Tev Colliders 2007—New Physics Working Group,
edited by G. Brooijmans et al. arXiv:0802.3715.

[3] D. Atwood, S. Bar-Shalom, G. Eilam, and A. Soni, Phys.
Rep. 347, 1 (2001).

[4] For review, see, W. Bernreuther, arXiv:0805.1333.
[5] L.M. Sehgal and M. Wanninger, Phys. Lett. B 200, 211

(1988); J. Bagger, C. Schmidt, and S. King, Phys. Rev. D
37, 1188 (1988).
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