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Response of quark condensate to the chemical potential
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In this paper we propose a new method for calculating the response of the quark condensate to the
chemical potential. Based on the method of calculating the dressed-quark propagator at finite chemical
potential in the framework of the rainbow-ladder approximation of the Dyson-Schwinger approach
proposed in [H.S. Zong, L. Chang, F. Y. Hou, W.M. Sun, and Y. X. Liu, Phys. Rev. C 71, 015205
(2005).] and adopting the meromorphic form of the quark propagator given in [R. Alkofer, W. Detmold,
C.S. Fischer, and P. Maris, Phys. Rev. D 70, 014014 (2004).][M. S. Bhagwat, M. A. Pichowsky, and P. C.
Tandy, Phys. Rev. D 67, 054019 (2003).], the quark condensate at finite chemical potential (Gg)[ u] is
calculated analytically. The obtained expression for (gg)[ u] is real, which is different from the results in
the previous literature. In addition, it is found that when the chemical potential u is less than a critical one
(Gg) m] is kept unchanged from its vacuum value. A comparison is made between this behavior of the
quark condensate and those reported in the previous literatures.
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It is well known that the quark condensate in medium
plays a key role in understanding the behavior of hadron
masses in medium and chiral symmetry restoration [1,2].
The previous calculations of the response of the quark
condensate to chemical potential [3—10] have shown that
the theoretical treatment of this quantity is subtle and
different treatments can give quite different results.
Therefore, the calculation of the quark condensate in me-
dium requires more elaborate analyses. In this paper we
shall study this problem in the framework of the rainbow-
ladder approximation of the Dyson-Schwinger (DS)
approach.

The quark condensate can be calculated from the
dressed-quark propagator. A direct approach for obtaining
the dressed-quark propagator is by solving the Dyson-
Schwinger equation (DSE) of the quark propagator. Over
the past few years, considerable progress has been made in
the framework of the rainbow-ladder approximation of the
DSEs [11-15], which provides a successful description of
various nonperturbative aspects of strong interaction phys-
ics at zero temperature (7)) and zero chemical potential
(m). Recently, the authors in Refs. [8,16,17] proposed a
new method for calculating the dressed-quark propagator
at finite w in the framework of the rainbow-ladder approxi-
mation of the DSEs. It has been shown there that under the
approximation of neglecting the u-dependence of the
dressed gluon propagator (We have assumed that the effect
of chemical potential on the gluon propagator arising
through quark loop insertions is small in comparison
with that on the quark propagator. This is a commonly
used approximation in calculating the dressed-quark
propagator at finite chemical potential [12]) and the as-
sumption that the dressed-quark propagator at finite u is
analytic in the neighborhood of © = 0, the dressed-quark
propagator at finite w is obtained from the one at © = 0 by
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a simple shift
Slullp) = S(p), (D

where S[](p) and S(p) denote the dressed-quark propa-
gator at finite p and zero wu, respectively, and p =
([3’ P4 + l,LL)

In the chiral limit, the gauge-invariant expression for the
renormalization-point-dependent vacuum quark conden-
sate is defined as [18]

4
— (Gq); = Zo(22 A f (% TiS(q. 0. (@)

Here ¢ is the renormalization point and A is the regulari-
zation mass scale. Z,(% A?) = Z,,({% A?)Z,(% A?)
with Z,,(£%, A?) being the mass renormalization constant
and Z,(Z?, A?) the quark wave function renormalization
constant.

In order to study chiral symmetry restoration at finite u,
one needs to generalize the above definition to finite w. In
the previous literature (see, for instance, Ref. [12]), the
following definition is adopted:

4
T TeSuda 0. 3)
p

~ @)l = 248 AR [ 5

In this definition of quark condensate one has taken the real
part. This is because previous numerical calculations show
that at finite u the integral appearing in the right-hand side
of Eq. (3) is complex. Physically it is hard to understand
that the quark condensate is complex. This is one reason
that stimulates us to study the quark condensate at finite w.
As will be shown below, if one adopts Eq. (1) and properly
considers the distribution of poles of TrS(g, {) in the upper
complex g, plane, the integral appearing in the right-hand
side of Eq. (3) is real. So in this paper we directly general-
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ize the definition (2) to finite u as follows without taking
the real part:

4
— (Ga) L] = Zy(2 AY) f T4 Teslullq. 2)

2m)*

4
~z@ew) [Shmsao @

(2m)*

where we have made use of Eq. (1). Making use of the
identity

[ dqsf(qs +ipn) = [ dqsf(qs),
o) a

where C( and C| are the two integration paths as defined in
Fig. 1, one can rewrite Eq. (4) as

4
(@@ p] = Zu(E2 AY) [ T4 1e8(40)

(277)4
= Z4({%, AZ)[@ g d(f: TtS(q. 0).

(&)

Letususe z, = x, + iw,(w, >0),n=1,2,... to de-
note the poles of the function F(gq,) = TrS(q, {) in the
upper complex ¢, plane. Then from Eq. (5) and Cauchy’s
theorem we obtain the following:

d
il =z N 48 [ sy
d“
~ 2 Y [ Gt = @)
X Res(F, z,,)
s
= o~ iz Y. [ oo
X 0(u — w,)Res(F, z,,). (6)
‘Im% |ﬂ
G & . X
Q
;CO » - »—-Reg,

FIG. 1. The integration paths in the complex g, plane.
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In order to calculate (7¢),[ u] using Eq. (6), one needs to
specify the form of the dressed-quark propagator at zero
chemical potential S(g, {). In Ref. [19], guided by the
solution of the coupled set of DSEs for the ghost, gluon,
and quark propagator in the Landau gauge, the following
meromorphic form of the renormalized quark propagator is
proposed:

S(q, ¢) = Z; (% A?) Z(m
rj
) "

where the renormalization scale is set to be (> = 16 GeV?>.
The propagator of this form has np pairs of complex
conjugate poles located at a; * ib;. When some b; is set
to zero, the pair of complex conjugate poles degenerates to
a real pole. The residues r; are real (note that a similar
meromorphic form of the quark propagator was previously
proposed in Ref. [20], in which the residues in the two
additive terms are complex conjugate of each other). In the
chiral limit, the requirement that the dressed-quark propa-
gator reduces to the free one in the large momentum limit
entails that

np

and Z ria; = 0. t))

Z -3
Then we have

F(gqy) = TrS(q, {)
=7Z; (&, AZ)ZNr [

a+ib
2-i—(a +1b)2

N a —lb :I
q2 + (Cl’ - lbj)z

np
— Z*l 2’ A2 N [ J
2 (¢ )g g q; + §* + (a; + ib))?

lb 9
q+q +(a—lb)2] ©)

where N = 4N N with N, and N, denoting the number of
colors and flavors, respectively. Each additive term in
F(q4) has two poles in the upper complex g, plane:

) 2 _ 2 2 2 _ 12\2 212
Y = g+ aj bj+\/(q + aj bj) +dazb;

J 2
(11)
ab;
x; = =21 (12)

014005-2



RESPONSE OF QUARK CONDENSATE TO THE CHEMICAL ...

Now let us analyze the #-function in Eq. (6). From Eq. (11)
we find that when u < |a;|, w; will always be larger than
u irrespective of ¢ and thus the contribution from the pole
is zero due to the #(u — w;) function. When u > a;l,
w; < pfor g <bj—a; + p?> — (a;bj/p?) and w; > u
for g > b7 — a3 + u?* — (a3b3/u?). Therefore we obtain
the following:

—Gay L] = —(agy — iZ2 A S 0 — la)
j=1
< [0 S A Res(F 2 )

+ Res(F, z;-)), (13)

where ¢, = \/bj2 — a3 + u? — (a7b7/p?). The residues
are easily calculated to be

Res(F, Zj+) + Res(F, Zj—)

a; +ib; a; —ib
2 AZ)N [ J J .J ]
2L 2x; tiw;) 2(—x; tiw))
Nriajw; — bix;)

=7, (%A%

i()(? + (ujz)
2 2
i(a?bjz- + w?)

=7, A?) (14)

Then Eq. (13) can be written as:

np N
~@DARr] = ~@a); ~ 2y A Y 0 ~ la) S
j=1
" o a%;; + b,

a?b? + (15)
i

J

Now let us calculate the integral in Eq. (15). First let us
introduce a new integration variable w; by Eq. (11):

(16)

dgl = ! do,
a)f\/(w% + b?)(wj — a?)

soan

Then we have the following:

a . G (07 + bYo;
dlgl = >
a;vj j

aj J

B fﬂ (@2 + b2 + b2 (w? — a?)
|
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We make a further change of variable 1 = (/w7 — a7 and

obtain

fﬂ (@2 + b2)f(@2 + b} (w? — a?)
|

aj| (1)

2_a!2 zz(z2 +a; + bz),/z2 +a; + b3

(l‘2 + a? )
272
e : i VP2 +ad+ b
t2 + a (t2 + a?)2 i J

— (1) + L) + LY,

jdo;

where

I(r)—],/t2+a2+b2dt

5,/ +a;+ b7+ (a +b7)
,/t2+a§+b§+t

X In , (19)

242
;,/tz +a? + bidi
aj
b2
b? — g?)arctany [———L ———
a; ( J ’) a?(tz-i-a?-i-b?)

2 - dl 1/t2+a§+b§+t
+ In s
2 fPrad -

b;

(20)

232
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3 (2 + a2)? J J
J

[ arctan\l

\/a?b?tz(tz + a3 + b3)
(a? + b?)(z‘2 + ajz.) ]

b2s?

J
2(42 2 2
aj(t + aj +bj)

— (2 2 J

21

Thus we obtain
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2(w? + b?)a)j
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X In L4 -
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X | arctan M,
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(22)

and using this the quark condensate at finite w can be
expressed as

— G L] = G — Zu( A 0 — la)
j=1

Nra

f,( )-
(23)

From the above expression it can be seen that (g¢),[u] is
real, which is expected physically. Now it is interesting to
compare our result with the results obtained in the previous
literature. First, let us see the w-dependence of the quark
condensate. From Eq. (23) it can be seen that in our
approach, when w is less than the minimal one of |a;| (1 =
J = np), the quark condensate is kept unchanged from its
vacuum value. As was mentioned above, in the previous
literatures the calculated value of the quark condensate at
finite w is complex and in this case one regards its real part
as the chiral order parameter. So here we compare our
result with the real part of the value obtained there. In
Ref. [7], which employs the Nambu-Jona-Lasinio (NJL)
model, it is reported that at finite u the absolute value of
the quark condensate decreases with increasing u, while in
the nonlocal, covariant extension of the NJL model (see,
e.g., Ref. [21]), it is also reported that at 7 = 0 the quark
condensate is kept unchanged from its vacuum value when
M is below some critical value. In the review article [12] on
finite density and finite temperature Dyson-Schwinger
equations, it is pointed out that in all models that preserve
the momentum dependence of the dressed-quark self-
energies, the quark condensate increases with increasing
m [3-06].

In the above calculations we have employed the mero-
morphic quark propagator (7) with real residues. In prin-
ciple, we can do the same calculation for a more general
form of meromorphic quark propagator with complex res-
idues (see Ref. [20])
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S(q. ¢) =7, (& Az)Z(m

S

i ) (24)

In this case Eq. (9) changes into

F(q4) = TrS(q, {)
— (A A)S N
ey F

q; + @+ (a; —ib))* [

Obviously the location of poles does not change. The
residues are calculated to be

(a. +ib.
Res (F, z;4) + Res(F, z;-) = Z; (7, AZ)NI:rJ(a’—l])

2(x; +iw;)

— Z;\(& A2>[Re<r,->

]\,(0)2 + bz)aj j

z(a2b2+w)
(wz—az)bw
~ Im(r) i(a2b% + w?) ]

(26)

and the expression for the quark condensate is

— (G 1] = G — Zu( A 0 — la)
j=1

Na: am (0 + b)ow;
j > j /9
X [—277_2 Re(r;) d\q| —aflﬁ o
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_ J I ) d b J J J:I'
272 m(r])/;) 4l a?b? + wﬁ

27)

The integral involved can be readily calculated to be
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§*(w] — apw,
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and the final result is
np N
a9 dnl = ~(aad; = Zu(& A 3 0(p a5
Jj=1

X [Re(”j)ajfj(,u) - Im(rj)bjgj(ﬂ)]- (29)

From the above expression it can be seen that for the model
quark propagator (24) the calculated quark condensate still
has the two features found previously: (1) (g¢),[ u]is real;
(2) when pu is less than a critical value w,. (i.e., the minimal
one of |a;| (1 =j=np)), (Gg)/[n] is kept unchanged
from its vacuum value.

Having obtained the analytic expression for the quark
condensate at finite chemical potential, now let us analyze
the range of applicability of this expression. From our
calculation, it can be seen that the behavior of the quark
condensate at finite x4 depends strongly on the form of the
dressed-quark propagator at zero w. It is well known that
the nonperturbative quark propagator is a result of the self-
consistent solution of QCD DSEs, which reflects the dy-
namical chiral symmetry breaking of QCD vacuum with
the quark condensate being the corresponding order pa-
rameter. The excitation of dynamical quarks leads to a
melting of the quark condensate and therefore to a change
of the QCD vacuum structure [22]. However, the approach
in the present paper does not take into account such a
change in the QCD vacuum structure. Therefore, one ex-
pects that the propagator S[u](g, {) adopted in this paper
is applicable at best for u < p.. As a consequence, the
obtained expression for the quark condensate is also only
applicable for pu < u..

In order to give a prediction of the critical chemical
potential w. at zero temperature for a given parametriza-
tion of the model quark propagator (24), we need to specify
its parameters. For definiteness we use three sets of pa-
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rameters given in Ref. [19], which represent three forms of
the propagator: three real poles (3R), two pairs of complex
conjugate poles (2CC), and one real pole and one pair of
complex conjugate poles (1R1CC). These parameters are
listed in Table I.

From Eq. (2), in order to evaluate the vacuum quark
condensate (Gq),/[u = 0], we have to know the mass re-
normalization constant Z,,(£?, A?). For the mass renormal-
ization constant Z, we take the one-loop perturbative
result [12]

. a(A?)Tvm
Zn(% AY) [a(g2>]
with
a(f?) = ‘
(&%) — 381 1n[{?/Adcp]

being the running strong coupling constant (in this paper,
following Ref. [19], we choose Agcp = 0.5 GeV) and
¥Ym = 12/(33 — 2N;) the mass anomalous dimension. In
our numerical calculation the renormalization point is set
to be {2 = 16 GeV? and the regularization mass scale A2
is also set to be this value, which is large enough. So we
have Z,,(£?, A?) = 1. The value of the vacuum condensate
—{Gq)"*[ = 0] and the critical chemical potential u,
calculated using the three sets of parameters are given
below 10 cm Table II. The quark condensate at u = 0
and critical chemical potential ..

The values of the vacuum quark condensate given in
Table II can be directly compared with the value of the
quark condensate employed in the contemporary phe-
nomenological studies [23]: (0.236 = 0.008 GeV). The
critical chemical potential given in Table II is somewhat
larger than the value obtained in Ref. [21] using a nonlocal,
covariant extension of the NJL model (about 278 MeV).

To summarize, based on the method of calculating the
dressed-quark propagator at finite chemical potential in the
framework of the rainbow-ladder approximation of the
Dyson-Schwinger approach proposed in Ref. [8] and
adopting the meromorphic form of the quark propagator
proposed in Refs. [19,20], an analytic expression for the
quark condensate at finite chemical potential {(Gg)[ u] is
obtained. In this model (Gg)[u] is totally determined by
the distribution of poles of TrS(g) in the upper complex g4
plane. It is found that when the chemical potential u is less
than a critical one w., the quark condensate is kept un-
changed from its vacuum value. This behavior of the quark

TABLE I. The parameters used to calculate the quark condensate. These parameters are taken directly from Table II of Ref. [19].
Parametrization r| a; (GeV) b, (GeV) ) a, (GeV) b, (GeV) r az (GeV)
2CC 0.360 0.351 0.08 0.140 —0.899 0.463 — —
IR1CC 0.354 0.377 — 0.146 —0.91 0.45 — —
3R 0.365 0.341 — —1.31 — —1.06 —1.40
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TABLE II. The quark condensate at & = 0 and critical chemi-
cal potential ..

Parametrization —(Gg)"*[n = 0] (GeV) u. (GeV)
2CC 0.30 0.351
1R1CC 0.30 0.377
3R 0.32 0.341

condensate at finite w is compared with those reported in
previous literatures [3—10]. In our analytic calculation, the
distribution of poles of TrS(g) is properly considered and
the resultant expression of {(Gg)[ u] is real without the need
of taking the real part. The range of applicability of the
obtained analytic expression for (Gg)[ u] is discussed, and
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we argue that it is only applicable for u < u.. For three
different parametrizations of the model quark propagator
given in Ref. [19] (three real poles (3R), two pairs of
complex conjugate poles (2CC), and one real pole and
one pair of complex conjugate poles (1R1CC)) the critical
chemical potential is found to be 351 MeV, 377 MeV, and
341 MeV, respectively, which is somewhat larger than the
value obtained in Ref. [21] using a nonlocal, covariant
extension of the NJL model (about 275 MeV).
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