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We study the possible origin of Friedberg-Lee symmetry. First, we propose the generalized Friedberg-

Lee symmetry in the potential by including the scalar fields in the field transformations, which can be

broken down to the Friedberg-Lee symmetry spontaneously. We show that the generalized Friedberg-Lee

symmetry allows a typical form of Yukawa couplings, and the realistic neutrino masses and mixings can

be generated via the seesaw mechanism. If the right-handed neutrinos transform nontrivially under the

generalized Friedberg-Lee symmetry, we can have the testable TeV scale seesaw mechanism. Second, we

present two models with the SOð3Þ � Uð1Þ global flavor symmetry in the lepton sector. After the flavor

symmetry breaking, we can obtain the charged lepton masses, and explain the neutrino masses and

mixings via the seesaw mechanism. Interestingly, the complete neutrino mass matrices are similar to those

of the above models with generalized Friedberg-Lee symmetry. So the Friedberg-Lee symmetry is the

residual symmetry in the neutrino mass matrix after the SOð3Þ � Uð1Þ flavor symmetry breaking.
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I. INTRODUCTION

Recent developments in neutrino physics [1–6] have
stimulated many interesting new ideas [7–10]. One beau-
tiful approach towards understanding neutrino masses and
mixings was presented by Friedberg and Lee [10–12].
They showed that there may be a hidden symmetry in the
neutrino mass matrix with tri-bimaximal mixings, i.e., the
invariance under the translation in the space of Grassmann
number

�e;�;� ! �e;�;� þ �: (1)

The symmetry was later used to explain the quark masses
and mixings [11]. Instead of a universal translation for all
fermions, they introduced different coefficients in trans-
lation of different flavors of quarks

qi ! qi þ �i�: (2)

And this symmetry implies that one family of the standard
model (SM) fermions is massless. Explicit symmetry
breaking terms are introduced to reproduce the masses
for the light SM fermions. Research along this approach
has been performed by several groups [13,14].

On the other hand, it is generally acknowledged that the
seesaw mechanism [15–19] is a powerful method to under-
stand the tiny masses of the active neutrinos. The seesaw
mechanism needs a symmetry to guarantee the massless-
ness of the neutrinos at leading order. The masses of light

neutrinos are generated after symmetry breaking. In this
respect it is natural to ask what kind symmetry can imple-
ment the seesaw mechanism in such a way that the
Friedberg-Lee (FL) symmetry is the residual symmetry
hidden in the neutrino mass matrix.
In this article, we first generalize the FL symmetry in a

simple way by including the scalar fields in the left-handed
neutrino field transformations. The generalized Friedberg-
Lee (gFL) symmetry naturally incorporates the FL sym-
metry. And the FL symmetry of Eq. (1) or Eq. (2) is
obtained after the larger gFL symmetry breaking. The
masslessness of three light neutrinos is a direct conse-
quence of the gFL symmetry. After the gFL symmetry is
broken down to FL symmetry, the light neutrinos get
masses via the seesaw mechanism, and their masses and
mixings are intimately related to the residual FL symmetry.
We show that the observed neutrino masses and mixings
can be reproduced via the seesaw mechanism. Also, if the
transformations of the right-handed neutrinos under the
gFL symmetry is similar to those of the left-handed neu-
trinos, the testable TeV scale seesaw mechanism can be
realized. Moreover, we briefly discuss how to embed the
models with gFL symmetry into the extensions of the SM.
Second, we propose two models with the SOð3Þ �Uð1Þ
global flavor symmetry in the lepton sector. After the flavor
symmetry breaking, the charged lepton masses can be
obtained, and the neutrino masses and mixings can be
generated via the seesaw mechanism. Interestingly, the
complete neutrino mass matrices for the left-handed and
right-handed neutrinos are similar to those of the above
models with gFL symetry. So the FL symmetry is the
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residual symmetry in the neutrino mass matrix after the
SOð3Þ �Uð1Þ flavor symmetry breaking.

The content of this article is organized as follows. In
Sec. II we propose the gFL symmetry and study the models
with gFL symmetry. In Sec. III, we consider the models
with SOð3Þ �Uð1Þ flavor symmetry in the lepton sector.
Our conclusions and discussions are in Sec. IV.

II. GENERALIZED FRIEDBERG-LEE SYMMETRY

We consider two models with the generalization of FL
symmetry. One model has the usual seesaw mechanism
where only the left-handed neutrinos transform nontri-
vially under the gFL symmetry, and the other model has
the testable TeV scale seesawmechanism in which both the
left-handed and right-handed neutrinos transform nontri-
vially under the gFL symmetry.

A. Usual seesaw mechanism

We consider three families of the left-handed neutrinos
�Li, right-handed neutrinos �

c
Ri, and three SM singlet scalar

fields �i, where i ¼ 1, 2, 3. We introduce the generalized
Friedberg-Lee symmetry by including scalar fields in the
field transformations of �Li. We introduce the following
gFL symmetry transformation:

�Li ! �Li þ�i�; �c
Ri ! �c

Ri; �i ! �i; (3)

where � is a Grassmann number.1 We require that the
neutrino mass terms and Yukawa terms be invariant under
this symmetry transformation.

The FL symmetry is obtained after the gFL symmetry
breaks spontaneously. This can be achieved by assuming
that the potential of �i triggers the spontaneous symmetry
breaking. We assume �i to have a potential as follows:

��L ¼ �

�X3
i¼1

j�ij2 � v2

�
2
; (4)

where � > 0. Then, �i get the vacuum expectation values
(VEVs) at the minimum of the potential

h�ii ¼ vi; (5)

where v2 ¼ P3
i¼1 jvij2. The induced transformation is as

follows:

�Li ! �Li þ vi�; �c
Ri ! �c

Ri: (6)

Because the coefficients vi in the above equation are
space-time independent, we obtain the FL symmetry as a
residual symmetry.

The mass term and Yukawa terms invariant under the
gFL transformation are

��L ¼ 1
2ðm0Þij�cT

Ri i�2�
c
Rj þ �ijk�

cT
Ri i�2�Lj�k

þ 1
2	ijk�

cT
Ri i�2�

c
Rj�k þ 1

2	
0
ijk�

cT
Ri i�2�

c
Rj�

y
k

þ H:c:; (7)

where �ijk, 	ijk, and 	0
ijk are Yukawa couplings, and �T

means the transpose of �. Also, we have to impose

�ijk ¼ ��ikj; (8)

ðm0Þij ¼ ðm0Þji; 	ijk ¼ 	jik; 	0
ijk ¼ 	0

jik: (9)

The first, the third, and the fourth terms in Eq. (7) are
obviously invariant under the gFL transformation in
Eq. (3). Equation (8) is required to make the second term
invariant under the gFL transformation. Using Eq. (8), the
second term transforms to

�ijk�
cT
Ri i�2�Lj�k þ �ijk�

cT
Ri i�2��j�k

¼ �ijk�
cT
Ri i�2�Lj�k; (10)

so it is invariant under the gFL symmetry. However, the
other terms, e.g., �T

Lii�2�Lj and �
T
Lii�2�Lj�k, etc., are not

invariant under the gFL transformation and are killed by
the gFL symmetry.
We see that the mass term �T

Lii�2�Lj is killed by the gFL

symmetry defined in Eq. (3). If gFL symmetry is not
broken to the FL symmetry neutrinos, the �Li will not be
able to get masses. In this sense, the masslessness of the
three �Li is a direct consequence of the gFL symmetry.
Neutrinos �Li get seesaw type masses after �i get VEVs,
and gFL symmetry in Eq. (3) is broken to the residual FL
symmetry in Eq. (6). The generation of the seesaw masses
for �Li is shown in the following.
After the gFL symmetry is broken down to the FL

symmetry, we obtain the following neutrino mass terms:

��L ¼ 1
2ðmRÞij�cT

Ri i�2�
c
Rj þ�ij�

cT
Ri i�2�Lj þ H:c:;

(11)

where

ðmRÞij ¼ ðm0Þij þ
X
k

	ijkvk þ
X
k

	0
ijkv

�
k: (12)

�ij ¼
X
k

�ijkvk: (13)

It is obvious that Eq. (11) is invariant under the residual
FL symmetry transformation in Eq. (6). And we can write
the neutrino mass matrix in the basis ð�L; �

c
RÞT as follows:

M ¼ 03�3; �T

�; mR

� �
; (14)

where � and mR are 3� 3 matrices, and their matrix
elements are �ij and ðmRÞij, respectively.
Assuming the mass scale of� is much lower than that of

mR we get the seesaw mass matrix for the light neutrinos

1This gFL symmetry is introduced for neutrinos after electro-
weak breaking. One may consider that � carries an isospin
number. Extension to doublet is discussed in Sec. II D
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m� ¼ ��Tðm�1
R Þ�: (15)

Thus, using the gFL symmetry we have implemented the
seesaw mechanism. It is clear that the gFL symmetry
protects the masslessness of neutrinos �L. Right-handed
neutrinos �c

R are allowed to have masses and are heavy.
Only one typical form of the neutrino Dirac Yukawa cou-
plings is allowed by the gFL symmetry. This type of the
Yukawa couplings introduces the mixings of �L and �c

R.
After the gFL symmetry is spontaneously broken down to
the FL symmetry we get a seesaw type mass matrix for
ð�L; �

c
RÞT and the seesaw mass matrix for the light neutri-

nos, which are shown in Eqs. (14) and (15), respectively.

B. Neutrino masses and mixings

In this subsection, we give examples which can repro-
duce the realistic neutrino masses and mixings. For sim-
plicity, we assume vi are real, and � and mR are real
matrices. For illustration wewill try to obtain the following
tri-bimaximal neutrino mixing matrix [20–22]:

U ¼

ffiffi
2
3

q ffiffi
1
3

q
0

�
ffiffi
1
6

q ffiffi
1
3

q ffiffi
1
2

q
ffiffi
1
6

q
�

ffiffi
1
3

q ffiffi
1
2

q

0
BBBB@

1
CCCCA; (16)

which has �13 ¼ 0, �23 ¼ 
=4, and tan2�12 ¼ 0:5. More
realistic textures can be done by following the discussions
in this subsection.

A direct consequence of the residual FL symmetry in
Eq. (6) is that one light neutrino is massless. This can be
seen by noting that under the transformation �Li ! �Li þ
vi� the seesaw mass term of the light neutrinos is trans-
formed to (after rearrangement)

1
2ðm�Þij�T

Lii�2�Lj þ H:c: ! 1
2ðm�Þij½�T

Lii�2�Lj

þ 2vj�
T
Lii�2�þ vivj�

Ti�2��
þ H:c: (17)

The invariance under the FL symmetry transformation says
that the second term in the bracket of the right-hand side of
Eq. (17) gives zero. Hence we obtain

m�

v1

v2

v3

0
@

1
A ¼ 0: (18)

So neutrinos �Li have one eigenstate with zero mass. The
eigenvector is ðv1; v2; v3ÞT .2 Equation (18) can also be
obtained by using Eqs. (8), (13), and (15) directly.

We shall present two examples. The first example has
inverted hierarchy. For simplicity, we assume that mR is a
unit matrix, i.e., mR ¼ ms1. And we choose

ðv1; v2; v2ÞT ¼ vffiffiffi
2

p ð0; 1; 1ÞT: (19)

Using Eq. (19) we get

m� ¼ � v2

2ms

F2; F�; �F�

F�; �2; ��2

�F�; ��2; �2

0
@

1
A; (20)

where

F2 ¼
X
i

ð�i12 þ �i13Þ2; F� ¼ X
i

�i23ð�i12 þ �i13Þ;

�2 ¼
X
i

�2
i23: (21)

We find that m� is diagonalized by U

UTm�U ¼ � v2

2ms

diagfF2 � F�; F2 þ 2F�; 0g; (22)

provided that the following condition is satisfied

F2 þ F� ¼ 2�2: (23)

And we get

�m2
21 ¼ 3F�ð2F2 þ F�Þ v4

4m2
s

;

�m2
31 ¼ �ðF2 � F�Þ2 v4

4m2
s

:

(24)

The realistic neutrino mass square differences can be ob-
tained since we have enough independent parameters to fit
two �m2.
The second example has normal hierarchy; we take �

antisymmetric and mR diagonal

mR ¼ diagfmr1; mr2; mr3g: (25)

We choose

ðv1; v2; v3ÞT ¼ vffiffiffi
6

p ð2;�1; 1ÞT: (26)

Using �ijk ¼ ��ijk we get

� ¼ vffiffiffi
6

p
0 � �
�� 0 2�
�� �2� 0

0
@

1
A: (27)

And we find

m� ¼ ��2v2

6

1
mr2

þ 1
mr3

; 2
mr3

; � 2
mr2

2
mr3

; 1
mr1

þ 4
mr3

; 1
mr1

� 2
mr2

; 1
mr1

; 1
mr1

þ 4
mr2

0
BB@

1
CCA:
(28)

If the condition

2A difference between the gFL symmetry and the FL symme-
try is that the coefficients�i in the transformation law of the gFL
symmetry (hence the coefficients in the eigenvector) can take
arbitrary values instead of fixed constants vi in the FL trans-
formation. So gFL symmetry makes three neutrinos massless
and the FL symmetry only guarantees one neutrino massless.
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mr2 ¼ mr3 (29)

is satisfied, we find

UTm�U ¼ ��2v2

3
diag

�
0;

3

mr2

;
1

mr1

þ 2

mr2

�
: (30)

Hence we get

�m2
21 ¼

�4v4

m2
r2

; �m2
31 ¼

�4v4

9

�
1

mr1

þ 2

mr2

�
2
: (31)

Using the hierarchy in neutrino mass �m2
31 � 25�m2

21, we

find

mr2 � 13mr1: (32)

C. Testable TeV scale seesaw mechanism

In recent years, there has been some interest in the TeV
scale seesaw mechanism [23,24]. The mechanism suggests
that the mixings of the left-handed and right-handed neu-
trinos are independent of the hierarchy in the Dirac-type
and Majorana-type masses. This makes the seesaw mecha-
nism testable at the future colliders or in rare decay pro-
cesses. In this subsection, we show that we can also realize
the testable TeV scale seesaw mechanism via the general-
ized Friedberg-Lee symmetry.

Instead of Eq. (3), we introduce the following gFL
symmetry transformation under which the right-handed
neutrinos transform nontrivially as well:

�Li ! �Li þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j�ij2

p �i�; (33)

�c
Ri ! �c

Ri þ
�iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ j�ij2
p �i�; (34)

�i ! �i; (35)

where �iði ¼ 1; 2; 3Þ are complex numbers.
We introduce neutrinos �? and �> in an orthogonal

basis

�?i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j�ij2

p ð�Li þ ��
i �

c
RiÞ; (36)

�>i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j�ij2

p ð��i�Li þ �c
RiÞ: (37)

It is easy to see that under Eqs. (33) and (34) we have

�?i ! �?i þ�i�; �>i ! �>i: (38)

Thus, in the new basis the Eq. (3) is reproduced. Then the
discussions on the seesaw mechanism and the neutrino
masses and mixings are similar to those in Secs. II A and
II B. The only difference with the previous case is that the
mixings between the left-handed and right-handed neutri-
nos are no longer suppressed by the mass hierarchy in the

seesaw type mass matrix in Eq. (14). Denoting the neutrino
mass eigenstates as ð�; �HÞT , we can find that

�L

�c
R

� �
� A0; �Ay

1

A1; A0

 !
U; 0
0; UH

� �
�
�H

� �

¼ A0U; �Ay
1UH

A1U; A0UH

 !
�
�H

� �
; (39)

whereU is the mixing matrix of the light neutrinos �,UH is
the mixing matrix of heavy neutrinos �H, and

A 0 ¼ diag

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ j�1j2
p ;

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j�2j2

p ;
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ j�3j2
p

�
;

(40)

A 1 ¼ diag

�
�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ j�1j2
p ;

�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j�2j2

p ;
�3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ j�3j2
p

�
:

(41)

We find that the mixings of the left-handed and right-
handed neutrinos are determined by �i which is indepen-
dent of the mass hierarchy between the Dirac-type and
Majorana-type masses. A1 determines the strength of uni-
tarity violation of the mixings of light neutrinos [25]. This
kind of scenario may possibly be tested at the future
colliders [26] and neutrino oscillation experiments [27].

D. Embedding into the extensions of the SM

We can embed the above models into the extensions of
the SM. Let us denote the SM lepton doublets as Li, and the
SM Higgs field as H. Also, we introduce three SM singlet
scalar fields �i. By the way, the following discussions can
be easily generated to the supersymmetric standard models
by changing

H ! Hu; ~H ! Hd; (42)

where ~H ¼ i�2H
�, and Hu and Hd are one pair of the

Higgs doublets in the supersymmetric standard models.
(A) For the usual seesaw mechanism, we introduce the

following gFL symmetry:

Li ! Li þ�i
; �c
Ri ! �c

Ri;

�i ! �i; H ! H;
(43)

where 
 is an SUð2ÞL doublet and has two compo-
nents of Grassmann constant. And the relevant
neutrino Lagrangian is

��L ¼ 1

2
ðm0Þij�cT

Ri i�2�
c
Rj þ �ijk ��RiLj

�k

M�
H

þ 1

2
	ijk�

cT
Ri i�2�

c
Rj�k

þ 1

2
	0
ijk�

cT
Ri i�2�

c
Rj�

y
k þ H:c:; (44)
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where �ijk ¼ ��ikj, and ðm0Þij, 	ijk, and 	0
ijk are

symmetric for i and j, and M� is the cutoff scale of
the gFL symmetry. Because the Lagrangian in
Eq. (44) is similar to that in Eq. (7), we can embed
the model with the usual seesaw mechanism into
the extension of the SM.
As a remark, the most naive approach is that we
introduce three Higgs doublets Hi, and define the
following gFL symmetry:

Li ! Li þ ~Hi�; �c
Ri ! �c

Ri; Hi ! Hi;

(45)

where ~Hi ¼ i�2H
�
i . However, the neutrino Dirac

Yukawa couplings ��RiLjHk are not invariant under

the above gFL symmetry. And then we can not
explain the neutrino masses and mixings via the
seesaw mechanism. In short, this approach does not
work.

(B) For the testable TeV scale seesaw mechanism, we
have to embed the three right-handed neutrinos into
three fermionic doublets L0

i. To cancel the anomaly,
we introduce three fermionic doublets ~L0

i which are
the Hermitian conjugate of L0

i. And we introduce
the gFL symmetry transformation as follows:

Li ! Li þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j�ij2

p �i
; (46)

L0
i ! L0

i þ
�iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ j�ij2
p �i
; (47)

�i ! �i; H ! H; ~L0
i ! ~L0

i: (48)

And we define

L?i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j�ij2

p ðLi þ ��
i L

0
iÞ; (49)

L>i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j�ij2

p ð��iLi þ L0
iÞ: (50)

It is easy to see that under the above gFL symmetry
we have

L?i ! L?i þ�i
; L>i ! L>i: (51)

And then we obtain the major relevant neutrino
Lagrangian

� �L ¼ 1

MI

�
��
ijklL?iL?j

�k

M�
�l

M�
H2

þ y�ijkL>iL?j

�k

M�
H2 þ �ij

~L0
i
~L0
j
~H ~H

�

þMijL>i
~L0
j þ yLijkL>i

~L0
j�l þ H:c:;

(52)

where MI is an intermediate scale and the Yukawa
couplings ��

ijkl satisfy ��
ijkl ¼ ���

kjil ¼ ���
ilkj or

��
ijkl ¼ ���

ljki ¼ ���
ikjl, and the Yukawa coupling

y�ijk is antisymmetric for j and k. Interestingly, the

neutrino mass matrix proposed by Friedberg and
Lee can be generated by the first term in Eq. (52).
Even if this term is zero, i.e., ��

ijkl ¼ 0, the observed

neutrino masses and mixings can be generated by
the double seesaw mechanim [28,29]. Here, we
emphasize that we neglect the other high-
dimensional operators that are not important in the
discussions of the neutrino masses and mixings.

In addition, the first three terms in Eq. (52) are non-
renormalizable and can be obtained by the seesaw mecha-
nism. For example, if we introduce three SM singlet
fermions Ni, the first three terms can be obtained due to
the following Lagrangian via the seesaw mechanism:

��L ¼ 1

2
ðMNÞij �Nc

i Nj þ �li
�NlL>iH þ 	ljk

�NlL?j

�k

M�
H

þ �liNl
~L0
i
~H þ H:c:; (53)

where ðMNÞij is symmetric, and 	ljk ¼ �	lkj. MI is

around the mass scales of Ni.

III. SOð3Þ � Uð1Þ FLAVOR SYMMETRY IN THE
LEPTON SECTOR

To explain the SM fermion masses and mixings, we
usually use the Froggatt-Nielsen mechanism [30] by in-
troducing the global flavor symmetry. Thus, the FL sym-
metry could also be a residual symmetry after the flavor
symmetry breaking. In this section, we consider the
SOð3Þ �Uð1Þ flavor symmtry in the lepton sector.
Let us explain the convention in detail. We denote the

SM Higgs doublet as H, the left-handed lepton doublets as
Li, and the right-handed charged leptons as Ei. To break
the SOð3Þ �Uð1Þ flavor symmetry, we also introduce three
Higgs doublets Hi, and nine SM singlet scalar field �, �i,
and �ij. We assume that the Li, Ei, Hi, and �i form the

fundamental representation of SOð3Þ, and �ij form the

symmetric representation of SOð3Þ. We shall present two
concrete models in the following subsections: In Model I,
�Ri are singlets under SOð3Þ, while in Model II, �Ri form
the fundamental representation of SOð3Þ and we do not
need the �i fields.

A. FL symmetry with seesaw mechanism

Before we study the SOð3Þ �Uð1Þ flavor symmetry, let
us consider the FL model with the seesaw mechanism. We
consider the FL symmetry as follows:

Li ! Li þ �i
; �Ri ! �Ri; H ! H; (54)

where we obtain the original FL symmetry by choosing
�1 ¼ �2 ¼ �3. The neutrino Lagrangian, which is invari-
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ant under above FL symmetry, is

� �L ¼ 1
2ðm0

0Þij ��c
Ri�Rj þ yijk ��Rið�kLj � �jLkÞH: (55)

Following the usual procedure [15–19], we realize the
seesaw mechanism with FL symmetry in the light neutrino
mass matrix. Therefore, in order to generalize the FL
symmetry, we need to construct the models that can repro-
duce the above Lagrangian in Eq. (55) after the generalized
symmetry breaking. As an example to explain the main
idea, we introduce three SM Higgs doublets and consider
�iH as Hi. Then the above neutrino Lagrangian becomes

��L ¼ 1
2ðm0

0Þij ��c
Ri�Rj þ 1

2ðm0
0Þij ��c

Ri�Rj

þ yijk ��RiðLjHk �HjLkÞ: (56)

Therefore, we can obtain the neutrino mass matrix with FL
symmetry if the neutrino Dirac Yukawa couplings yijk are

antisymmetric for the lepton doublet indices j and Higgs
field indices k, i.e., yijk ¼ �yikj.

B. Model I

We assume that under the Uð1Þ symmetry, �Ri has
charge 0, Li has charge 1, Ei has charge �1=2, H has
charge 1=2, Hi has charge 2,�i has charge�3, and� and
�ij have charges �1. The SOð3Þ �Uð1Þ invariant

Lagrangian is

��L ¼ 1

2
ðm0

0Þij ��c
Ri�Rj þ 1

MPl

ðy�ijkl ��RiLjHk�l

þ �E �EiLi
~H�þ yEij �EiLj

~H�ijÞ þ H:c:; (57)

where the Yukawa couplings y�ijkl are antisymmetric for

their indices j, k, and l due to the SOð3Þ invariance. For
simplicity, we assume that the SM Higgs fieldH has VEVs
close to 174 GeV, while the Higgs fields Hi have small
VEVs, for example, a few GeVs. In addition, we assume
that �, �i, and �ij have VEVs around the grand unifica-

tion scale 2:4� 1016 or higher, so that the dimension-5
operators can generate the masses for the charged leptons
and neutrinos. It is not difficult to show that we do have
enough degrees of freedom to explain the charged lepton
masses, and the neutrino masses and mixings.

After the SOð3Þ �Uð1Þ flavor symmetry breaking, we
obtain that the neutrino mass matrix for the left-handed and
right-handed neutrinos from the Lagrangian in Eq. (57) is
the same as that from the Lagrangian in Eq. (7) by choos-
ing the following relations:

ðm0Þij þ 	ijkh�ki þ 	0
ijkh��

ki ¼ ðm0
0Þij;

�ijkh�ii ¼ 1

MPl

y�ijklhHkih�li: (58)

Similar to the discussions in Sec. II B, we can explain the
realistic neutrino masses and mixings. Interestingly, the
SOð3Þ �Uð1Þ flavor symmetry is broken down to the FL

symmetry. In other words, the FL symmetry is the residual
symmetry in the neutrino mass matrix from the flavor
symmetry breaking.
Moreover, the FL symmetry can be broken only by the

dimension-7 or higher operators. And the dimension-7
operators that break the FL symmetry are

��L ¼ 1

M3
Pl

��RiLjHkð�3�jk þ�2�jk þ�jl�lm�mk

þ�jk�lm�lmÞ þ H:c:; (59)

where, for simplicity, we neglect the Yukawa couplings.
Thus, the FL symmetry is a very good approximate sym-
metry in the neutrino mass matrix.
By the way, the VEVs of �, �i, and �ij break the Uð1Þ

symmetry down to the Z2 symmetry. Under this Z2 sym-
metry, Ei and H are odd while the other fields are even.
This Z2 symmetry forbids the Dirac Yukawa couplings
between H and neutrinos. Otherwise, the discussions will
become very complicated because the VEVs of H are
much larger than those of Hi while the VEVs of �, �i,
and �ij are close to the Planck scale. Also, this Uð1Þ
symmetry will not affect the quark Yukawa couplings if
we assign the Uð1Þ charges 1=2 and �1=2 to the right-
handed up-type and down-type quarks, respectively.

C. Model II

We assume that under the Uð1Þ symmetry, �Ri has
charge �1, Li has charge 1, Ei has charge �3=2, H has
charge 1=2,Hi has charge�2, and� and�ij have charges

�2. The SOð3Þ �Uð1Þ invariant Lagrangian is

� �L ¼ 1

2
�N ��c

Ri�Ri�
y þ 1

2
yNij ��

c
Ri�Rj�

y
ij þ y�ijk ��RiLjHk

þ 1

MPl

ð�E �EiLi
~H�þ yEij �EiLj

~H�ijÞ þ H:c:;

(60)

where the Yukawa coupling y�ijk is antisymmetric for their

indices i, j, and k. Similar to the above subsection, we have
enough degrees of freedom to explain the charged lepton
masses.
After the SOð3Þ �Uð1Þ flavor symmetry breaking, we

obtain that the neutrino mass matrix for the left-handed and
right-handed neutrinos from the Lagrangian in Eq. (60) is a
special case of that from the Lagrangian in Eq. (7) by
choosing the following relations:

ðm0Þij þ 	ijkh�ki þ 	0
ijkh��

ki ¼ �Nh�yi�ij þ yNijh�y
iji;

�ijkh�ii ¼ y�ijkhHki: (61)

The point is that the Yukawa coupling y�ijk is antisymmetric

for i, j, and k while �ijk is only antisymmetric for j and k.

Similar to the second example in Sec. II B, we can explain
the observed neutrino masses and mixings. And the FL
symmetry is the residual symmetry from the SOð3Þ �Uð1Þ
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flavor symmetry breaking as well. Unlike Model I, it is
very difficult to break the FL symmetry via the higher
dimensional operators, so the FL symmetry may be a
symmetry in the neutrino mass matrix.

IV. CONCLUSIONS AND DISCUSSIONS

In summary, we study the possible origin of the FL
symmetry. First, we generalize the FL symmetry to the
gFL symmetry by including the scalar fields in the field
transformations. The FL symmetry is the residual symme-
try after the larger gFL symmetry breaking. A direct con-
sequence of the gFL symmetry is the masslessness of three
light neutrinos, which obtain masses via the seesawmecha-
nism after the gFL symmetry breaking. We also show that
the observed neutrino masses and mixings can be gener-
ated. Also, if the transformations of the right-handed neu-
trinos under the gFL symmetry are similar to those of the
left-handed neutrinos, we can have the testable TeV scale

seesaw mechanism. Moreover, the models with gFL sym-
metry can be embedded into the extensions of the SM.
Second, we propose two models with the SOð3Þ �Uð1Þ
global flavor symmetry in the lepton sector. After the flavor
symmetry breaking, we can obtain the charged lepton
masses, and explain the neutrino masses and mixings via
the seesaw mechanism. In particular, the complete neutrino
mass matrices are similar to those of the above models with
gFL symetry. So, the SOð3Þ �Uð1Þ flavor symmetry is
broken down to the FL symmetry which is the residual
symmetry in the neutrino mass matrix.
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