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A comprehensive study is made for the magnetic moments of octet baryons in the method of QCD sum

rules. A complete set of QCD sum rules is derived using the external-field method and generalized

interpolating fields. For each member, three sum rules are constructed from three independent tensor

structures. They are analyzed in conjunction with the corresponding mass sum rules. The performance of

each of the sum rules is examined using the criteria of operator product expansion convergence and

ground-state dominance, along with the role of the transitions in intermediate states. Individual con-

tributions from the u, d, and s quarks are isolated and their implications in the underlying dynamics are

explored. Valid sum rules are identified and their predictions are obtained. The results are compared with

experiment and previous calculations.
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I. INTRODUCTION

The QCD sum rule method is a nonperturbative analytic
formalism firmly entrenched in QCD with minimal mod-
eling. The field remains active judging by the 3000 and
growing references to the seminal paper of Shifman,
Vainshtein, and Zakharov [1] that introduced the method.
The approach provides a general way of linking hadron
phenomenology with the interactions of quarks and gluons
via only a few parameters: the QCD vacuum condensates
and susceptibilities. The studies give a unique perspective
on how the properties of hadrons arise from nonperturba-
tive interactions in the QCD vacuum and how QCD works
in this context. It has been successfully applied in almost
every aspect of strong-interaction physics.

Calculations of the magnetic moment were carried out
soon after the method was introduced for the proton,
neutron [2,3], and hyperons [4] in the external-field
method. In this method, a static magnetic field is intro-
duced that couples to the quarks and polarizes the QCD
vacuum. Magnetic moments can be extracted from the
linear response to this field. The results of the studies
validated the external-field method as a way of probing
hadron properties other than the mass, such as magnetic
moments, form factors, axial charge, or isospin breakings.
Later, a more systematic study was made for the magnetic
moments of octet baryons [5–8]. Calculations were also
carried out for decuplet baryons [9–12] and the rho meson
[13]. There are other studies of magnetic moments using
the light-cone QCD sum rule method [14–17] which will
not be discussed here.

In this work, we carry out a comprehensive, independent
calculation of the magnetic moments of the octet baryons
in the external-field method. It can be considered as an
update over the previous calculations [5–7] which were
done more than 20 years ago. There are a number of things
we do differently. First, we employ generalized interpolat-
ing fields which allow us to use the optimal mixing of

interpolating fields to achieve the best match. Second, we
derive a new, complete set of QCD sum rules at all three
tensor structures and analyze all of them. The previous sum
rules, which were mostly limited to one of the tensor
structures, correspond to a special case of the mixing in
our sum rules. In this way, we provide an independent
check of the previous sum rules. Third, we perform a
Monte Carlo analysis which has become standard nowa-
days. The advantage of such an analysis is explained later.
Fourth, we use a different procedure to extract the mag-
netic moments and to treat the transition terms in the
intermediate states. Our results show that these transitions
simply cannot be ignored. Fifth, we isolate the individual
quark contributions to the magnetic moments and discuss
their implications in the underlying quark-gluon dynamics
in the baryons.
The paper is organized as follows. In Sec. II, the method

of QCD sum rules is introduced. Using the interpolating
fields for the octet baryons, master formulas are calculated.
Then both the phenomenological representation and QCD
side are derived. Section III will list the sum rules we
derived for the octet baryon family, followed by the analy-
sis to extract the magnetic moments in Sec. IV. Section V
summarizes the results and gives a comparison of our
results with experiment and previous calculations, fol-
lowed by an in-depth discussion of our findings. Our con-
clusions are given in Sec. VI.

II. METHOD

The starting point is the time-ordered correlation func-
tion in the QCD vacuum in the presence of a constant
background electromagnetic field F��:

�ðpÞ ¼ i
Z

d4xeip�xh0jTf�ðxÞ ��ð0Þgj0iF: (1)

The QCD sum rule approach is to evaluate this correlation
at two different levels. On the quark level, it describes a
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hadron as quarks and gluons interacting in the QCD vac-
uum. On the phenomenological level, it is saturated by a
tower of hadronic intermediate states with the same quan-
tum numbers. This way, a connection can be established
between a description in terms of hadronic degrees of
freedom and one based on the underlying quark and gluon
degrees of freedom governed by QCD. Here � is the
interpolating field (or hadron current) with the quantum
numbers of the hadron under consideration. The subscript
F means that the correlation function is to be evaluated
with an electromagnetic interaction term added to the QCD
Lagrangian:

L I ¼ �A�J
�; (2)

where A� is the external electromagnetic potential and

J� ¼ eq �q�
�q is the quark electromagnetic current.

Since the external field can be made arbitrarily small,
one can expand the correlation function

�ðpÞ ¼ �ð0ÞðpÞ þ�ð1ÞðpÞ þ � � � ; (3)

where �ð0ÞðpÞ is the correlation function in the absence of
the field, and gives rise to the mass sum rules of the
baryons. The magnetic moments will be extracted from
the QCD sum rules obtained from the linear response

function �ð1ÞðpÞ.
The action of the external electromagnetic field is two-

fold: it couples directly to the quarks in the baryon inter-
polating fields, and it also polarizes the QCD vacuum. The
latter can be described by introducing new parameters
called vacuum susceptibilities.

The interpolating field is constructed from quark fields
with the quantum number of baryon under consideration
and it is not unique. We consider a linear combination of
the two standard local interpolating fields. They read for
the baryon octet family:

�pðuudÞ ¼ �2�abc½ðuaTC�5d
bÞuc þ �ðuaTCdbÞ�5u

c�;
�nðdduÞ ¼ �2�abc½ðdaTC�5u

bÞdc þ �ðdaTCubÞ�5d
c�;

��ðudsÞ ¼ �2

ffiffiffi
1

6

s
�abc½2ðuaTC�5d

bÞsc þ ðuaTC�5s
bÞdc

� ðdaTC�5s
bÞuc þ �ð2ðuaTCdbÞ�5s

c

þ ðuaTCsbÞ�5d
c � ðdaTCsbÞ�5u

cÞ�;
���ðddsÞ ¼ �2�abc½ðdaTC�5s

bÞdc þ �ðdaTCsbÞ�5d
c�;

��0ðudsÞ ¼ � ffiffiffi
2

p
�abc½ðuaTC�5s

bÞdc þ ðdaTC�5s
bÞuc

þ �ððuaTCsbÞ�5d
c þ ðdaTCsbÞ�5u

cÞ�;
��þðuusÞ ¼ �2�abc½ðuaTC�5s

bÞuc þ �ðuaTCsbÞ�5u
c�;

���ðssdÞ ¼ �2�abc½ðsaTC�5d
bÞsc þ �ðsaTCdbÞ�5s

c�;
��0ðssuÞ ¼ �2�abc½ðsaTC�5u

bÞsc þ �ðsaTCubÞ�5s
c�:
(4)

Here u and d are up-quark and down-quark field operators,
C is the charge conjugation operator, the superscript T
means transpose, and �abc makes it a color singlet. The
normalization factors are chosen so that correlation func-
tions of these interpolating fields coincide with each other
under SU(3)-flavor symmetry. The real parameter � allows
for the mixture of the two independent currents. The choice
advocated by Ioffe [18] and often used in QCD sum rule
studies corresponds to � ¼ �1. We will take advantage of
this freedom to achieve optimal matching in the sum rule
analysis.

A. Phenomenological representation

We start with the structure of the two-point correlation
function in the presence of the electromagnetic vertex to
first order

�ðpÞ ¼ i
Z

d4xeipxh0j�ðxÞ

�
�
�i

Z
d4yA�ðyÞJ�ðyÞ

�
��ð0Þj0i: (5)

Inserting two complete sets of physical intermediate states,
we restrict our attention only to the positive energy ones
and write

�ðpÞ ¼
Z

d4xd4y
d4k0

ð2�Þ4
d4k

ð2�Þ4
X
N0N

X
s0s

�i

k02 �m2
N0 � i"

� �i

k2 �m2
N � i"

eipxA�ðyÞh0j�ðxÞjN0k0s0i

� hN0k0s0jJ�ðyÞjNksihNksj ��ð0Þj0i: (6)

We can use the translation invariance to express �ðxÞ in
terms of �ð0Þ

h0j�ðxÞjN0k0s0i ¼ h0j�ð0ÞjN0k0s0ie�ik0x: (7)

The interpolating field excites (or annihilates) the ground
state as well as the excited states of the baryon from the
QCD vacuum. The ability to do so is described by a
phenomenological parameter �N (called current coupling
or pole residue), defined by the overlap for the ground state

h0j�ð0ÞjNksi ¼ �Nuðk; sÞ; (8)

where u is the Dirac spinor.
Translation invariance on J�ðyÞ gives

hN0k0s0jJ�ðyÞjNksi ¼ eiqyhN0k0s0jJ�ð0ÞjNksi; (9)

where q ¼ k0 � k is the momentum transfer and Q2 ¼
�q2.
The matrix element of the electromagnetic current has

the general form
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hk0s0jJ�ð0Þjksi ¼ �uðk0; s0Þ
�
F1ðQ2Þ��

þ F2ðQ2Þi	�� q�

2mN

�
uðk; sÞ; (10)

where the Dirac form factors F1 and F2 are related to the
Sachs form factors by

GEðQ2Þ ¼ F1ðQ2Þ � Q2

ð2mNÞ2
F2ðQ2Þ;

GMðQ2Þ ¼ F1ðQ2Þ þ F2ðQ2Þ:
(11)

At Q2 ¼ 0, F1ð0Þ ¼ 1, and F2ð0Þ ¼ �a which is the
anomalous magnetic moment, and GMð0Þ ¼ F1ð0Þ þ
F2ð0Þ ¼ � which is the total magnetic moment.
Writing out explicitly only the contribution of the

ground-state nucleon and denoting the excited-state con-
tribution by ESC, we have

�ðpÞ ¼ ��2
N

Z
d4xd4y

d4k0

ð2�Þ4
d4k

ð2�Þ4 ½k
02 �m2

N � i"��1½k2 �m2
N � i"��1A�ðyÞeiðp�k0Þxeiqy

X
s0
uðk0; s0Þ �uðk0; s0Þ

�
�
F1ðQ2Þ�� þ F2ðQ2Þi	�� q�

2mN

�X
s

uðk; sÞ �uðk; sÞ þ ESC: (12)

The spin sums are of the form X
s

uðk; sÞ �uðk; sÞ ¼ k̂þmN: (13)

QCD sum rule calculations are most conveniently done in the fixed-point gauge. For the electromagnetic field, it is defined
by x�A�ðxÞ ¼ 0. In this gauge, the electromagnetic potential is given by

A�ðyÞ ¼ �1
2F��y

�: (14)

Changing variables from k to q ¼ k0 � k, then d4k ¼ �d4q, we have

�ðpÞ ¼ ��2
N

2
F��

Z
d4xd4y

d4k0

ð2�Þ4
d4q

ð2�Þ4 ½k
02 �m2

N � i"��1½ðq� k0Þ2 �m2
N � i"��1eiðp�k0Þx

�
�i

@

@q�
eiq�y

�
ðp̂þmNÞ

�
�
F1ðQ2Þ�� þ F2ðQ2Þi	�� q�

2mN

�
ðk̂0 � q̂þmNÞ þ ESC: (15)

Integrating over x, we get a delta functionZ
d4x

1

ð2�Þ4 e
iðp�k0Þx ¼ 
4ðp� k0Þ: (16)

Integrating @=@q� by parts, then doing
R
d4y, we can get

another delta function 
ðqÞ. Since we have a 
ðqÞ, when
doing @=@q� only terms linear in q� contribute. We have
F1ðQ2Þjq¼0 ¼ 1, F2ðQ2Þjq¼0 ¼ �a ¼ �� 1, and
@=@q�F1;2ðQ2Þjq¼0 ¼ 0, so derivatives of the structure
functions do not enter. Finally, we arrive at

�ðpÞ ¼ i

2
�2
NF��½p2 �m2

N � i"��2ðp̂þmNÞ

�
�
ið�N � 1Þ

2mN

	��ðp̂þmNÞ þ i	��

� ðp��� � p���Þðp̂þmNÞ½p2 �m2
N � i"��1

�
þ ESC: (17)

Examination of its tensor structure reveals that it has
three independent combinations: F��ðp̂	�� þ 	��p̂Þ,

F��iðp��� � p���Þp̂, and F��	��. The momentum-
space correlation function in the above equation can be
written in terms of these three structures:

�ðpÞ ¼ � 1

4

�2
NF��

½p2 �m2
N � i"�2

�
½	���

�
2mN�N

þ�N � 1

mN

ðp2 �m2
NÞ
�
þ�N½p̂	�� þ 	��p̂�

þ 2ð�N � 1Þ
mN

½iðp��� � p���Þ�p̂
�
þ ESC; (18)

where we have used the following identities:

FIG. 1. The three kinds of contributions to the spectral func-
tion in the presence of an external field: ground state, transitions
between ground state and excited states, and pure excited states.
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ðp̂þmNÞ	�� ¼ mN	
�� þ 1

2ðp̂	�� þ 	��p̂Þ þ iðp��� � p���Þ;
ðp̂þmNÞ	��ðp̂þmNÞ ¼ 	��ðp2 þm2

NÞ þmNðp̂	�� þ 	��p̂Þ þ 2iðp��� � p���Þp̂;
ðp̂þmNÞðp��� � p���Þðp̂þmNÞ ¼ �ðp2 �m2

NÞðp��� � p���Þ:
(19)

The next step is to perform the Borel transform defined by

B̂½fðp2Þ� ¼ lim
�p2 ;n!1
�p2=n¼M2

1

n!
ð�p2Þnþ1

�
d

dp2

�
n
fðp2Þ: (20)

Upon Borel transform the ground state takes the form

B̂½�ðpÞ� ¼ � �2
N

4M2
e�m2

N=M
2

�
1

mN

ð2m2
N�N

�M2ð�N � 1ÞÞ½F��	
���

þ�N½F��ðp̂	�� þ 	��p̂Þ�

þ 2ð�N � 1Þ
mN

½F��iðp��� � p���Þp̂�
�
; (21)

where M is the Borel mass, not to be confused with the
nucleon mass mN .

Here we must treat the excited states with care. For a
generic invariant function, the pole structure can be written
as

C2
N$N

ðp2 �m2
NÞ2

þX
N�

C2
N$N�

ðp2 �m2
NÞðp2 �m2

N� Þ

þX
N�

C2
N�$N�

ðp2 �m2
N� Þ2 ; (22)

where CN$N , CN$N� , and CN�$N� are constants. The first
term is the ground-state pole which contains the desired
magnetic moment �N . The second term represents the
nondiagonal transitions between the ground state and the
excited states caused by the external field. The third term is
pure excited-state contributions. These different contribu-

tions can be represented by the diagrams in Fig. 1. Upon
Borel transform, it takes the form

�2
N�N

M2
e�m2

N=M
2 þ e�m2

N=M
2

�X
N�

C2
N$N�

m2
N� �m2

N

ð1

� e�ðm2
N��m2

NÞ=M2Þ
�
þX

N�

C2
N�$N�

M2
e�m2

N�=M2

: (23)

The important point is that the transitions give rise to a
contribution that is not exponentially suppressed relative to
the ground state. This is a general feature of the external-
field technique. The strength of such transitions at each
structure is a priori unknown and is an additional source of
contamination in the determination of the magnetic mo-
ment �N . The standard treatment of the transitions is to
approximate the quantity in the square brackets by a con-
stant, which is to be extracted from the sum rule along with
the ground-state property of interest. Inclusion of such
contributions is necessary for the correct extraction of the
magnetic moments. The pure excited-state contributions
are exponentially suppressed relative to the ground state
and can be modeled in the usual way by introducing a
continuum model and threshold parameter.

B. Calculation of the QCD side

We start by contracting out the quark pairs in Eq. (1)
using Wick’s theorem, resulting in the so-called master
formula in terms of quark propagators. The master formula
for the proton (with uud quark content) is

h�jTf�NðxÞ ��Nð0Þj�i ¼ �4�abc�a
0b0c0 fSaa0u �5CS

cc0T
d C�5S

bb0
u þ Saa

0
u TrðCScc0Td C�5S

bb0
u �5Þ þ ��5S

aa0
u �5CS

cc0T
d CSbb

0
u

þ ��5S
aa0
u TrðCScc0Tu CSbb

0
d �5Þ þ �Saa

0
u CScc

0T
d C�5S

bb0
u �5 þ �Saa

0
u �5 TrðCScc0Tu C�5S

bb0
d Þ

þ �2�5S
aa0
u CScc

0T
d CSbb

0
u �5 þ �2�5S

aa0
u �5 TrðCScc0Td CSbb

0
u Þg: (24)

The master formula for the neutron (with ddu quark content) can be obtained by exchanging the d quark with a u quark
from Eq. (24). By replacing the d quark with a s quark, one can get the master formula for �þ (with uus quark content),
while the master formula for�� (with uus quark content) can be obtained by replacing the u quark with a d quark from the
�þ master formula. By exchanging the u quarks and s quarks in the �þ master formula, the master formula for �0 (with
ssu quark content) can be obtained. Likewise, by replacing the u quark with a d quark, one can get the master formula for
�þ (with ssd quark content).

The master formulas for �0 and � (uds quark content) have a more complicated structure. They can be written in a
combined way as
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h�jTf�ðxÞ ��ð0Þgj�i ¼ �f�abc�a
0b0c0 ff1f2Saa0s �5CS

cc0T
u C�5S

bb0
d � f1f3S

aa0
s �5CS

cc0T
d C�5S

bb0
u

þ f1f1S
aa0
s TrðCScc0Tu C�5S

bb0
d �5Þ þ f2f1S

aa0
d �5CS

cc0T
u C�5S

bb0
s þ f2f3S

aa0
d �5CS

cc0T
s C�5S

bb0
u

þ f2f2S
aa0
d TrðCScc0Ts C�5S

bb0
u �5Þ � f3f1S

aa0
u �5CS

cc0T
d C�5S

bb0
s þ f3f2S

aa0
u �5CS

cc0T
s C�5S

bb0
d

þ f3f3S
aa0
u TrðCScc0Ts C�5S

bb0
d �5Þ þ f1f5�S

aa0
s CScc

0T
u C�5S

bb0
d �5 � f1f6�S

aa0
s CScc

0T
d C�5S

bb0
u �5

þ f1f4�S
aa0
s �5 TrðCScc0Td C�5S

bb0
u Þ þ f2f4�S

aa0
d CScc

0T
u C�5S

bb0
s �5 þ f2f6�S

aa0
d CScc

0T
s C�5S

bb0
u �5

þ f2f5�S
aa0
d �5 TrðCScc0Ts C�5S

bb0
u Þ � f3f4�S

aa0
u CScc

0T
d C�5S

bb0
s �5 þ f3f5�S

aa0
u CScc

0T
s C�5S

bb0
d �5

þ f3f6�S
aa0
u �5 TrðCScc0Ts C�5S

bb0
d Þ þ f4f2��5S

aa0
s �5CS

cc0T
u CSbb

0
d � f4f3��5S

aa0
s �5CS

cc0T
d CSbb

0
u

þ f4f1��5S
aa0
s TrðCScc0Td CSbb

0
u �5Þ þ f5f1��5S

aa0
d �5CS

cc0T
u CSbb

0
s þ f5f3��5S

aa0
d �5CS

cc0T
s CSbb

0
u

þ f5f2��5S
aa0
d TrðCScc0Ts CSbb

0
u �5Þ � f6f1��5S

aa0
u �5CS

cc0T
d CSbb

0
s þ f6f2��5S

aa0
u �5CS

cc0T
s CSbb

0
d

þ f6f3��5S
aa0
u TrðCScc0Ts CSbb

0
d �5Þ þ f4f5�

2�5S
aa0
s CScc

0T
u CSbb

0
d �5 � f4f6�

2�5S
aa0
s CScc

0T
d CSbb

0
u �5

þ f4f4�
2�5S

aa0
s �5 TrðCScc0Tu CSbb

0
d Þ þ f5f4�

2�5S
aa0
d CScc

0T
u CSbb

0
s �5 þ f5f6�

2�5S
aa0
d CScc

0T
s CSbb

0
u �5

þ f5f5�
2�5S

aa0
d �5 TrðCScc0Ts CSbb

0
u Þ � f6f4�

2�5S
aa0
u CScc

0T
d CSbb

0
s �5 þ f6f5�

2�5S
aa0
u CScc

0T
s CSbb

0
d �5

þ 4f6f6�
2�5S

aa0
u �5 TrðCScc0Ts CSbb

0
d Þg; (25)

where the various factors are as follows: for �0, f ¼ 2, f1 ¼ 0, f2 ¼ 1, f3 ¼ 1, f4 ¼ 0, f5 ¼ 1, f6 ¼ 1; and for �, f ¼
2=3, f1 ¼ 2, f2 ¼ 1, f3 ¼ �1, f4 ¼ 2, f5 ¼ 1, f6 ¼ �1.

In the above equations,

Sabq ðx; 0;FÞ � h0jTfqaðxÞ �qbð0Þgj0iF; q ¼ u; d; s; (26)

is the fully interacting quark propagator in the presence of the electromagnetic field. To first order in F�� and mq (assume
mu ¼ md ¼ 0, ms � 0), and order x4, it is given by the operator product expansion (OPE) [3,6,7]:

Sabq ðx; 0;ZÞ � i

2�2

x̂

x4

ab � mq

4�2x2

ab � 1

12
h �qqi
ab þ imq

48
h �qqix̂
ab þ 1

192
h �qgc	 � Gqix2
ab

� imq

1152
h �qgc	 �Gqix̂x2
ab � 1

33210
h �qqihg2cG2ix4
ab þ i

32�2
ðgcGn

��Þ
x̂	�� þ 	��x̂

x2

�
�n

2

�
ab

þ 1

48

i

32�2
hg2cG2i x̂	

�� þ 	��x̂

x2

�
�n

2

�
ab þ 1

32210
h �qqihg2cG2ix2	��

�
�n

2

�
ab � 1

192
h �qgc	 �Gqi	��

�
�n

2

�
ab

þ imq

768
h �qgc	 �Gqiðx̂	�� þ 	��x̂Þ

�
�n

2

�
ab þ ieq

32�2
F��

x̂	�� þ 	��x̂

x2

ab � eq

24
�h �qqiF��	

��
ab

þ ieqmq

96
�h �qqiF��ðx̂	�� þ 	��x̂Þ
ab þ eq

288
h �qqiF��ðx2	�� � 2xx

�	��Þ
ab

þ eq
576

h �qqiF��½x2ð�þ �Þ	�� � xx
�ð2�� �Þ	���
ab � eq

16
h �qqi

�
�F�� � i

4
������F

��

��
�n

2

�
ab

þ higher order terms: (27)

We use the convention �0123 ¼ þ1 in this work.
In addition to the standard vacuum condensates, the

vacuum susceptibilities induced by the external field are
defined by

h �q	��qiF � eq�h �qqiF��;

h �qgcG��qiF � eq�h �qqiF��;

h �qgc����G
��5qiF � ieq�h �qqiF��:

(28)

Note that � has the dimension ofGeV�2, while � and � are
dimensionless.
With the above elements in hand, it is straightforward to

evaluate the correlation function by substituting the quark
propagator into the various master formulas. We keep
terms to first order in the external field and in the strange
quark mass. Terms up to dimension 8 are considered. The
algebra is extremely tedious. Each term in the master
formula is a product of three copies of the quark propa-
gator. There are hundreds of such terms over various color
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permutations. The calculation can be organized by dia-
grams (similar to Feynmann diagrams) in Figs. 2 and 3.
Note that each diagram is only generic and all possible
color permutations are understood. The QCD side has the
same tensor structure as the phenomenological side and the
results can be organized according to the same three inde-
pendent structures.

III. QCD SUM RULES

Once we have both the QCD side [left-hand side (LHS)]
and the phenomenological side [right-hand side (RHS)],
we can derive the sum rules by matching both sides. Since
there are three independent tensor structures, three sum
rules can be constructed. We denote these tensor structures
by the following shorthand notation

WE1 ¼ F��ðp̂	�� þ 	��p̂Þ; (29)

WO1 ¼ F��	��; (30)

WO2 ¼ F��iðp��� � p���Þp̂: (31)

The sum rule from WE1 involves only dimension-even
condensates, so we call this sum rule chiral even. The
sum rule from both WO1 and WO2 involves only
dimension-odd condensates, so we call them chiral odd.
Note that in previous works [3,5] the dimension of the
tensor structures, rather than the dimension of the conden-
sates, was used to refer to the sum rules. The two names are
opposite.
Nowwe are ready to collect all of the QCD sum rules. At

the structure WE1, all of the sum rules can be expressed in
the following form:

c1L
�4=9E2ðwÞM4 þ c2ms�aL

�26=27E1ðwÞM2

þ c3�a
2L�4=27E0ðwÞ þ c4bL

�4=9E0ðwÞ
þ ðc5 þ c6ÞmsaL

�4=9E0ðwÞ þ ðc7 þ c8Þa2L4=9 1

M2

þ c9�m
2
0a

2L�18=27 1

M2
þ c10msm

2
0aL

�26=27 1

M2

¼ �~�2
N

�
�N

M2
þ A

�
e�m2

N=M
2
; (32)

FIG. 2. Nonmass diagrams considered for the octet baryon
magnetic moments.

FIG. 3. Diagrams considered for the strange quark mass cor-
rections to the octet baryon magnetic moments.
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where the coefficients differ from member to member, and

the current coupling is rescaled as ~�2
N � ð2�Þ4�2

N to re-
move factors of � in the sum rule. The quark condensate,
gluon condensate, and the mixed condensate are

a ¼ �ð2�Þ2h �uui; b ¼ hg2cG2i;
h �ugc	 �Gui ¼ �m2

0h �uui:
(33)

The quark charge factors eq are given in units of electric

charge

eu ¼ 2=3; ed ¼ �1=3; es ¼ �1=3: (34)

Note that we choose to keep the quark charge factors
explicit in the sum rules. The advantage is that it can
facilitate the study of individual quark contribution to the
magnetic moments. The parameters f and � account for
the flavor-symmetry breaking of the strange quark in the
condensates and susceptibilities:

f ¼ h �ssi
h �uui ¼

h�sgc	 � Gsi
h �ugc	 � Gui ; � ¼ �s

�
¼ �s

�
¼ �s

�
:

(35)

The anomalous dimension corrections of the interpolating
fields and the various operators are taken into account in

the leading logarithmic approximation via the factor

L� ¼
�
�sð�2Þ
�sðM2Þ

�
� ¼

�lnðM2=�2
QCDÞ

lnð�2=�2
QCDÞ

�
�
; (36)

where � ¼ 500 MeV is the renormalization scale and
�QCD is the QCD scale parameter. As usual, the pure

excited-state contributions are modeled using terms on
the OPE side surviving M2 ! 1 under the assumption of
duality, and are represented by the factors

EnðwÞ ¼ 1� e�w2=M2
X
n

ðw2=M2Þn
n!

; (37)

where w is an effective continuum threshold, and it is in
principle different for different sum rules. We will treat it
as a free parameter in the analysis.
Now we are ready to present the coefficients defined in

Eq. (32). We did eight separate computations, one for each
member of the octet. But, we only need to give the coef-
ficients for �þðuusÞ, �0ðssuÞ, and �ðudsÞ. The coeffi-
cients for the other members can be obtained from these
three by making appropriate substitutions to be specified
below.
For �þ at WE1:

c1 ¼ 1

16
½ð1þ �Þ2es � 2ð3þ 2�þ 3�2Þeu�;

c2 ¼ 1

16
ð1þ �Þ½ð�1þ 3�Þesfs�� 2ð1þ 3�Þeu�;

c3 ¼ 1

12
ð�1þ �Þ½ð1þ �Þesfs�� 2euð1� �þ fs þ �fsÞ�;

c4 ¼ � 1

384
½ð3� 2�þ 3�2Þes þ 2ð11þ 6�þ 11�2Þeu�;

c5 ¼ 1

24
½ð3� 18�þ 3�2 � 2fs þ 2�2fsÞes þ ð�5þ 2�þ 27�2 � 9fs þ 6�fs þ 27�2fsÞeu�;

c6 ¼ � 1

24
ð�1þ �Þ½ð1þ �Þesfs�ð8�� �Þ þ 2euð4�þ 6��þ �Þ�;

c7 ¼ 1

72
ð�1þ �Þ½esð�3þ 3�þ 2fs þ 2�fsÞ þ 2euð�1þ �þ 8fs þ 8�fsÞ�;

c8 ¼ � 1

72
ð�1þ �Þ½ð1þ �Þesfs�ð8�� �Þ þ euð�2�þ 2��þ 10fs�þ 10�fs�þ �� ��þ fs�þ �fs�Þ�;

c9 ¼ � 1

288
½ð7ð1þ �Þesfs�� euð3� 3�þ fs þ �fsÞ�;

c10 ¼ � 1

96
½ð1� 14�þ �2Þes þ ð�23� 2�þ 13�2Þeuð1þ fsÞ�:

(38)

For �0 at WE1:
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c1 ¼ 1

16
½ð1þ �Þ2eu � 2ð3þ 2�þ 3�2Þes�;

c2 ¼ 1

16
ð1þ �Þ½ð�1þ 3�Þeu � 2ð1þ 3�Þesfs��;

c3 ¼ 1

12
ð�1þ �Þ½ð1þ �Þeufs � 2esfs�ðfs � �fs þ 1þ �Þ�;

c4 ¼ � 1

384
½ð3� 2�þ 3�2Þeu þ 2ð11þ 6�þ 11�2Þes�;

c5 ¼ 1

24
½ðð3� 18�þ 3�2Þfs � 2þ 2�2Þes þ ðð�5þ 2�þ 27�2Þfs � 9þ 6�þ 27�2Þes�;

c6 ¼ � 1

24
ð�1þ �Þ½ð1þ �Þeuð8�� �Þ þ 2esfs�ð4�þ 6��þ �Þ�;

c7 ¼ 1

72
ð�1þ �Þ½eufsðð�3þ 3�Þfs þ 2þ 2�Þ þ 2esfsðð�1þ �Þfs þ 8þ 8�Þ�;

c8 ¼ � 1

72
ð�1þ �Þ½ð1þ �Þeufsð8�� �Þ þ esfs�ð�2�fs þ 2��fs þ 10�þ 10��þ �� �fs�þ fs�þ ��Þ�;

c9 ¼ � 1

288
½ð7ð1þ �Þeufs � esfs�ðð3� 3�Þfs þ 1þ �Þ�;

c10 ¼ � 1

96
½ð1� 14�þ �2Þeu þ ð�23� 2�þ 13�2Þesð1þ fsÞ�:

(39)

For � at WE1:

c1 ¼ � 1

48
ðð�1þ �Þ2ðed þ euÞ þ ð13þ 10�þ 13�2ÞesÞ;

c2 ¼ 1

16
ð1þ �Þðð�1þ �Þðed þ euÞ � ð1þ 5�Þesfs�Þ;

c3 ¼ 1

72
ð�1þ �Þððed þ euÞð1� �þ fs þ 5�fsÞ � 2ð5þ �Þesfs�Þ;

c4 ¼ � 1

1152
ðð17þ 2�þ 17�2Þðed þ euÞ þ ð41þ 26�þ 41�2ÞesÞ;

c5 ¼ 1

144
ðesð�78þ �ð84� 16fsÞ þ �2ð210� 4fsÞ þ 20fsÞ þ ð�1þ �Þðed þ euÞð7þ 3fs þ �ð41þ 33fsÞÞÞ;

c6 ¼ � 1

72
ð�1þ �Þðesfs�ð8ð1þ 2�Þ�þ ð5þ �Þ�Þ þ ðed þ euÞðð20þ 22�Þ�� ð1þ 2�Þ�ÞÞ;

c7 ¼ 1

216
ð�1þ �Þðesð39þ 33�� 10fs � 2�fsÞ þ ðed þ euÞð1� �þ 4fs þ 20�fsÞÞ;

c8 ¼ � 1

432
ð�1þ �Þð2esfs�ð8ð1þ 2�Þ�þ ð5þ �Þ�Þ þ ðed þ euÞð2ð19þ 17�þ fs þ 5�fsÞ�

� ð1� �þ fs þ 5�fsÞ�ÞÞ;
c9 ¼ � 1

576
ð�1þ �Þððed þ euÞð5þ 3�þ 3fs þ 7�fsÞ � 2ð5þ �Þesfs�Þ;

c10 ¼ 1

192
ðð62� 4�� 34�2Þes � ð�7� 10�þ 5�2Þðed þ euÞð1þ fsÞÞ:

(40)

At the structure WO1, the sum rules can be expressed in the following form:

c1msL
�8=9E2ðwÞM4 þ c2�aL

�16=27E2ðwÞM4 þ ðc3 þ c4ÞaE1ðwÞM2 þ c5ms�a
2L�16=27E0ðwÞ þ c6�abL

�16=27E0ðwÞ
þ ðc7 þ c8Þmsa

2 1

M2
þ c9ab

1

M2
¼ �~�2

NmN

�
2�N

M2
þ�N � 1

m2
N

þ A

�
e�m2

N=M
2
: (41)
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For �þ at WO1:

c1 ¼ � 1

2
ð�1þ �Þðð1þ �Þes � 2euÞ;

c2 ¼ � 1

24
ð�1þ �Þ½ð�1þ �Þesfs�þ 18ð1þ �Þeu�;

c3 ¼ 1

24
ð�1þ �Þ½esð�6� 6�� fs þ �fsÞ � 6euð2þ 2�� fs þ �fsÞ�;

c4 ¼ 1

96
ð�1þ �Þ½ð�1þ �Þesfs�ð14�� 13�Þ � 18ð1þ �Þeuð2�þ �Þ�;

c5 ¼ � 1

12
½ð3þ 2�þ 3�2Þesfs�� ð3þ 4�þ 9�2Þeuð1þ fsÞ�;

c6 ¼ 1

576
ð�1þ �Þ½ð�1þ �Þesfs�� 18ð1þ �Þeu�;

c7 ¼ � 1

36
½esð�3þ 3�2 þ 5fs � 2�fs þ 5�2fsÞ � euð3þ 4�þ 9�2 � 3fs þ 10�fs þ 9�2fsÞ�;

c8 ¼ � 1

144
½esfs�ð4�þ 8��þ 4�2�þ �� 10��þ �2�Þ � euð�ð3þ 4�þ 9�2Þð1þ fsÞ�

þ 4ð2�þ 6�2 þ 3fs þ 2�fs þ 3�2fsÞ�Þ�;
c9 ¼ � 1

576
½3es � euð�3þ 3�2 � fs þ 2�fsÞ�:

(42)

For �0 at WO1:

c1 ¼ � 1

2
ð�1þ �Þðð1þ �Þeu � 2esÞ;

c2 ¼ � 1

24
ð�1þ �Þ½ð�1þ �Þeu þ 18ð1þ �Þesfs��;

c3 ¼ 1

24
ð�1þ �Þ½euðð�6� 6�Þfs � 1þ �Þ � 6esðð2þ 2�Þfs � 1þ �Þ�;

c4 ¼ 1

96
ð�1þ �Þ½ð�1þ �Þeuð14�� 13�Þ � 18ð1þ �Þesfs�ð2�þ �Þ�;

c5 ¼ � 1

12
½ð3þ 2�þ 3�2Þeu � ð3þ 4�þ 9�2Þesfs�ð1þ fsÞ�;

c6 ¼ 1

576
ð�1þ �Þ½ð�1þ �Þeu � 18ð1þ �Þesfs��;

c7 ¼ � 1

36
½eufsðð�3þ 3�2Þfs þ 5� 2�þ 5�2Þ � esfsðð3þ 4�þ 9�2Þfs � 3þ 10�þ 9�2Þ�;

c8 ¼ � 1

144
½eufsð4�þ 8��þ 4�2�þ �� 10��þ �2�Þ � esfs�ð�ð3þ 4�þ 9�2Þð1þ fsÞ�

þ 4ðð2�þ 6�2Þfs þ 3þ 2�þ 3�2Þ�Þ�;
c9 ¼ � 1

576
½3eu � esðð�3þ 3�2Þfs � 1þ 2�Þ�:

(43)

For � at WO1:
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c1 ¼ � 1

6
ð�1þ �Þððed þ euÞð1þ 2�Þ � ð5þ �ÞesÞ;

c2 ¼ � 1

72
ð�1þ �Þðð7þ 11�Þðed þ euÞ þ ð37þ 35�Þesfs�Þ;

c3 ¼ � 1

72
ð�1þ �Þððed þ euÞð14þ �ð22� 3fsÞ þ 3fsÞ þ esð�30� 6�þ 35fs þ 37�fsÞÞ;

c4 ¼ 1

288
ð�1þ �Þððed þ euÞð2ð�23þ 5�Þ�þ ð17� 35�Þ�Þ � esfs�ð58�þ 86��þ 49�þ 23��ÞÞ;

c5 ¼ 1

24
ðð�1þ �2Þðed þ euÞð1þ fsÞ þ 2ð5þ 6�þ 13�2Þesfs�Þ;

c6 ¼ � 1

1728
ðð�1þ �Þðð11þ 7�Þðed þ euÞ þ ð35þ 37�Þesfs�ÞÞ;

c7 ¼ 1

216
ð�ð�1þ �Þðed þ euÞð�7þ �� fs þ 13�fsÞ þ esð�30þ 34fs þ 4�ð6þ 7fsÞ þ �2ð6þ 82fsÞÞÞ;

c8 ¼ 1

864
ð2esfs�ð4ð7þ 10�þ 19�2Þ�� ð11þ 26�þ 35�2Þ�Þ þ ð�1þ �Þðed þ euÞð4ð�4� 2�þ 5fs þ 7�fsÞ�

� ð�5þ 11�Þð1þ fsÞ�ÞÞ;
c9 ¼ 1

3456
ðð�1þ �Þð2ð5þ �Þes þ ðed þ euÞð5þ �þ 11fs þ 13�fsÞÞÞ:

(44)

At the structure WO2, the sum rules can be expressed in the following form:

c1msL
�8=9E1ðwÞM2 þ c2�aL

�16=27E1ðwÞM2 þ ðc3 þ c4ÞaE0ðwÞ þ c5ms�a
2L�16=27E0ðwÞ þ c6m

2
0aL

�4=9 1

M2

þ c7�abL
�16=27 1

M2
þ ðc8 þ c9Þmsa

2 1

M4
þ c10ab

1

M4
¼ �

~�2
N

mN

�
2ð�N � 1Þ

M2
þ A

�
e�m2

N=M
2
: (45)

For �þ at WO2:

c1 ¼ � 1

2
ð�1þ �Þ½ð1þ �Þes � 2eu�;

c2 ¼ � 1

6
ð�1þ �Þ2esfs�;

c3 ¼ � 1

4
ð�1þ �Þ½esð2þ 2�� fs þ �fsÞ þ 2euð�2� 2�� fs þ �fsÞ�;

c4 ¼ 1

16
ð�1þ �Þ½esfs�þ 2ð1þ �Þeu�ð2�� �Þ;

c5 ¼ � 1

3
ð�1þ �Þ½2esfs�þ euð�1� �� fs þ �fsÞ�;

c6 ¼ 1

24
ð�1þ �Þ½7ð1þ �Þes þ euð�1� �� 3fs þ 3�fsÞ�;

c7 ¼ � 1

144
ð�1þ �Þ2esfs�;

c8 ¼ 1

18
½esð�3þ 3�2 þ 5fs � 2�fs þ 5�2fsÞ � euð3þ 4�þ 9�2 � 3fs þ 10�fs þ 9�2fsÞ�;

c9 ¼ 1

72
½esfs�ðð1� 10�þ �2Þ�þ 4ð1þ �Þ2�Þ � euð4ð2�þ 6�2 þ 3fs þ 2�fs þ 3�2fsÞ�

� ð3þ 4�þ 9�2Þð1þ fsÞ�Þ�;
c10 ¼ � 1

288
ð�1þ �Þðð1þ �Þes � euð�3� 3�� fs þ �fsÞ�:

(46)
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For �0 at WO2:

c1 ¼ � 1

2
ð�1þ �Þ½ð1þ �Þeu � 2es�;

c2 ¼ � 1

6
ð�1þ �Þ2eu;

c3 ¼ � 1

4
ð�1þ �Þ½eufsðð2þ 2�Þfs � 1þ �Þ þ 2esfsð�ð2þ 2�Þfs � 1þ �Þ�;

c4 ¼ 1

16
ð�1þ �Þ½esfs�þ 2ð1þ �Þeu�ð2�� �Þ;

c5 ¼ � 1

3
ð�1þ �Þ½2eufs þ esfs�ð�ð1þ �Þfs � 1þ �Þ�;

c6 ¼ 1

24
ð�1þ �Þ½7ð1þ �Þeufs þ esð�ð1þ �Þfs � 3þ 3�Þ�;

c7 ¼ � 1

144
ð�1þ �Þ2eu;

c8 ¼ 1

18
½eufsðð�3þ 3�2Þfs þ 5� 2�þ 5�2Þ � esfsðð3þ 4�þ 9�2Þfs � 3þ 10�þ 9�2Þ�;

c9 ¼ 1

72
½eufsðð1� 10�þ �2Þ�þ 4ð1þ �Þ2�Þ � esfsð4ðð2�þ 6�2Þfs þ 3þ 2�þ 3�2Þ�

� ð3þ 4�þ 9�2Þð1þ fsÞ�Þ�;
c10 ¼ � 1

288
ð�1þ �Þðð1þ �Þeu � esð�ð3þ 3�Þfs � 1þ �Þ�:

(47)

For � at WO2:

c1 ¼ � 1

12
ð�1þ �Þððed þ euÞð1þ 2�Þ � ð5þ �ÞesÞ;

c2 ¼ � 1

36
ð�1þ �Þ2ð2ðed þ euÞ � esfs�Þ;

c3 ¼ 1

24
ð�1þ �Þððed þ euÞð2þ �ð�6þ fsÞ � fsÞ þ þesð10þ 3fs þ �ð2þ 5fsÞÞÞ;

c4 ¼ 1

96
ð�1þ �Þðð�1þ 3�Þðed þ euÞ þ ð5þ 3�Þesfs�Þð2�� �Þ;

c5 ¼ 1

12
ð�1þ �Þððed þ euÞð�1þ �ð�1þ fsÞ � fsÞ þ 4esfs�Þ;

c6 ¼ 1

96
ð�1þ �Þð�2ð5þ �Þes þ ðed þ euÞð3þ 7�þ 5fs þ 3�fsÞÞ;

c7 ¼ � 1

864
ð�1þ �Þ2ð2ðed þ euÞ � esfs�Þ;

c8 ¼ 1

216
ðð�1þ �Þðed þ euÞð�7þ �� fs þ 13�fsÞ � 2esð�15þ 17fs þ 2�ð6þ 7fsÞ þ �2ð3þ 41fsÞÞÞ;

c9 ¼ 1

864
ð2esfs�ð�4ð7þ 10�þ 19�2Þ�þ ð11þ 26�þ 35�2Þ�Þ � ð�1þ �Þðed þ euÞð4ð�4� 2�þ 5fs þ 7�fsÞ�

� ð�5þ 11�Þð1þ fsÞ�ÞÞ;
c10 ¼ � 1

3456
ðð�1þ �Þð2ð5þ �Þes þ ðed þ euÞð5þ �þ 11fs þ 13�fsÞÞ:

(48)

The coefficients for the other five members of the octet
family can be obtained from them in the following way:

(i) For proton p, replace the s quark by the d quark in
�þ.

(ii) For neutron n, exchange the d quark with the u
quark in proton p.

(iii) For ��, replace the u quark by the d quark in �þ.
(iv) For ��, replace the u quark by the d quark in �0.
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(v) For �0, they can be obtained through the relation
[19] cð�0Þ ¼ 2

3 cð�d$sÞ þ 2
3 cð�u$sÞ � 1

3 cð�Þ in

each coefficient.

Here the conversions between u and d quarks are achieved
by simply switching their charge factors eu and ed. The
conversions from s quark to u or d quarks involve setting
ms ¼ 0, f ¼ � ¼ 1, in addition to the switching of charge
factors. These relations are inherent in the master formulas
Eqs. (24) and (25). We have used our eight separate cal-
culations to check that these rules indeed work. They also
provide nontrivial checks of our algebra.

At this point, we can make some comparisons with
previous calculations in Refs. [5–7]. First, we use general
interpolating fields where we can vary� to achieve the best
match in the sum rules. The previous calculations corre-
spond to a fixed value of � ¼ �1. This effect was studied
in detail in Ref. [20], and it was found that � ¼ �1:2 is the
optimal value. Most of our results are at � ¼ �1:2.
Second, we have checked that our sum rules agree with
those in the previous calculations for the most part. For
example, for the proton at WE1, we completely agree
except for the �� 2� term in Eq. (2.16) in Ref. [5]. In
all of our sum rules, we have the combination 2�� �
instead of �� 2�. For the strange members ð�;�;�Þ,
they have eight terms in the OPE, while we have 10 terms.
For the sum rules at structure WO1, they have only three
terms, while we have nine terms. For the sum rules at
structure WO2, they have only four terms, while we have
10 terms. Third, they only analyzed the sum rules at
structure WE1, while we will examine all the structures.
Fourth, we use a completely different analysis method.

Before going into the analysis, we would like to point
out some relations among the correlation functions (or
OPE) based on symmetries, which lead to the same rela-
tions in the magnetic moments. In exact SU(3)-flavor
symmetry, it is known that the magnetic moments of the
octet family are related by (see, for example, Ref. [21])

��þ ¼ �p; 2�� ¼ �n; ��� þ�n ¼ ��p;

��� ¼ ��� ; ��0 ¼ �n: (49)

These relations are borne out in the OPE of our sum rules if
SU(3)-flavor symmetry is enforced. They are only approxi-
mately true since SU(3)-flavor symmetry is broken by the
strange quark. Here we have the advantage of studying the
symmetry-breaking effects since the terms are explicit in
our QCD sum rules.

IV. SUM RULE ANALYSIS

The sum rules for magnetic moments have the generic
form of OPE-ESC ¼ poleþ transition, or

�magðQCD; �; w;M2Þ ¼ ~�2
N

�
�N

M2
þ A

�
e�m2

N=M
2
; (50)

where QCD represents all the QCD input parameters. The
task then becomes, given the function �mag with known

QCD input parameters and the ability to vary �, find the
phenomenological parameters (magnetic moment �N,

transition strength A, coupling strength ~�2
N , and continuum

thresholdw) by matching the two sides over some region in
the Borel massM. A �2 minimization is best suited for this
purpose. It turns out that there are too many fit parameters
for this procedure to be successful in general. To alleviate
the situation, we employ the corresponding mass sum rules
which have a similar generic form of OPE-ESC ¼ pole, or

�massðQCD; �; w1;M
2Þ ¼ ~�2

Ne
�m2

N=M
2
; (51)

which shares some of the common parameters. Note that
the continuum threshold may not be the same in the two
sum rules. By taking the ratio of the two equations, we are
left with

�magðQCD; �; w;M2Þ
�massðQCD; �; w1;M

2Þ ¼ �N

M2
þ A: (52)

This is the form we are going to implement. By plotting the
two sides as a function of 1=M2, the slope will be the
magnetic moment and the intercept the transition strength.
The linearity (or deviation from it) of the left-hand side
gives an indication of OPE convergence and the role of
excited states. The two sides are expected to match for a
good sum rule. This way of matching the sum rules has two
advantages. First, the slope, which is the magnetic moment
of interest, is usually better determined than the intercept.
Second, by allowing the possibility of different continuum
thresholds, we ensure that both sum rules stay in their valid
regimes.
We use the chiral-even mass sum rules in Ref. [22]

which are listed here in the same notation,

p1L
�4=9E3ðw1ÞM6 þ p2bL

�4=9E1ðw1ÞM2 þ p3msaL
4=9

þ p4a
2L4=9 þ p5a

2kvL
4=9 þ p6m

2
0a

2L�2=27 1

M2

¼ ~�2
Ne

�m2
N=M

2
: (53)

The coefficients for N are

p1 ¼ 1

64
ð5þ �þ 5�2Þ; p2 ¼ 1

256
ð5þ �þ 5�2Þ;

p3 ¼ 0; p4 ¼ 1

24
ð7� 2�� 5�Þ; p5 ¼ 0;

p6 ¼ � 1

96
ð13� 2�� 11�2Þ:

(54)

For �:
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p1 ¼ 1

64
ð5þ 2�þ 5�2Þ;

p2 ¼ 1

256
ð5þ 2�þ 5�2Þ;

p3 ¼ 1

96
ðð20� 15fsÞ � ð16þ 6fsÞ�� ð4þ 15fsÞ�2Þ;

p4 ¼ 1

96
ðð4fs � 5� 6tÞ þ ð4þ 4fsÞ�þ ð4fs þ 1

þ 6tÞ�2Þ;

p5 ¼ 1

72
ðð10fs þ 11Þ þ ð2� 8fsÞ�� ð2fs þ 13Þ�2Þ;

p6 ¼ 1

288
ðð�16fs � 23Þ þ ð8fs � 2Þ�þ ð8fs þ 25Þ�2Þ:

(55)

For �:

p1 ¼ 1

64
ð5þ 2�þ 5�2Þ;

p2 ¼ 1

256
ð5þ 2�þ 5�2Þ;

p3 ¼ 1

32
ðð12� 5fsÞ � 2fs�� ð12þ 5fsÞ�2Þ;

p4 ¼ � 1

94
ðð4fs þ 21þ 18tÞ þ 4fs�þ ð4fs � 21

� 18tÞ�2Þ;

p5 ¼ 1

24
ðð6fs þ 1Þ � 2�� ð6fs � 1Þ�2Þ;

p6 ¼ � 1

96
ðð12fs þ 1Þ � 2�� ð12fs � 1Þ�2Þ:

(56)

For �:

p1 ¼ 1

64
ð5þ 2�þ 5�2Þ;

p2 ¼ 1

256
ð5þ 2�þ 5�2Þ;

p3 ¼ 3

16
ðð2� fsÞ � 2fs�� ð2þ fsÞ�2Þ;

p4 ¼ � 1

96
ðð15� fs þ 18tÞ � 10fs�� ð15þ fs

þ 18tÞ�2Þ;

p5 ¼ 1

24
fsððfs þ 6Þ � 2fs�þ ðfs � 6Þ�2Þ;

p6 ¼ � 1

94
fsððfs þ 12Þ � 2fs�þ ðfs � 12Þ�2Þ:

(57)

The function t is defined as t � lnM
2

�2 � �EM with �EM �
0:577 as the Euler-Mascheroni constant.

We use the Monte Carlo procedure first introduced in
Ref. [20] to carry out the search which allows a rigorous
error analysis. In this method, the entire phase space of the

input QCD parameters is explored simultaneously and is
mapped into uncertainties in the phenomenological pa-
rameters. This leads to more realistic uncertainty estimates
than traditional approaches.
First, a set of randomly selected, Gaussianly distributed

condensates are generated with assigned uncertainties.
Here we give 10% for the uncertainties of input parameters,
and this number can be adjusted to test the sensitivity of the
QCD parameters. Then the OPE is constructed in the Borel
window with evenly distributed points Mj. Note that the

uncertainties in the OPE are not uniform throughout the
Borel window. They are larger at the lower end where
uncertainties in the higher-dimensional condensates domi-
nate. Thus, it is crucial that the appropriate weight is used
in the calculation of �2. For the OPE obtained from the kth
set of QCD parameters, the �2 per degree of freedom is

�2
k

NDF

¼ XnB
j¼1

½�OPE
k ðM2

j ; �; w;w1Þ ��Phen
k ðM2

j ; �; AÞ�2
ðnB � npÞ	2

OPEðMjÞ
;

(58)

where �OPE refers to the LHS of Eq. (52) and �Phen its
RHS. The integer np is the number of phenomenological

search parameters. In this work, nB ¼ 51 points were used
along the Borel axis. The procedure is repeated for many
QCD parameter sets, resulting in distributions for phe-
nomenological fit parameters, from which errors are de-
rived. In practice, 200 configurations are sufficient for
getting stable uncertainties. We used about 2000 sets to
resolve more subtle correlations among the QCD parame-
ters and the phenomenological fit parameters. This means
that each sum rule is fitted 2000 times to arrive at the final
results.
The QCD input parameters are given as follows. The

condensates are taken as a ¼ 0:52 GeV3, b ¼ 1:2 GeV4,
and m2

0 ¼ 0:72 GeV2. For the factorization violation pa-

rameter, we use �v ¼ 2:0. The QCD scale parameter is
restricted to �QCD ¼ 0:15 GeV. The vacuum susceptibili-

ties have been estimated in studies of nucleon magnetic
moments [3,5,9,12], but the values vary depending on the
method used. We use � ¼ �6:0 GeV�2 and � ¼ 0:75,
� ¼ �1:5. Note that � is almost an order of magnitude
larger than � and � and is the most important of the three.
The strange quark parameters are placed at ms ¼
0:15 GeV, f ¼ 0:83, and � ¼ 0:60 [6,9]. These input
parameters are just central values. We will explore sensi-
tivity to these parameters by assigning uncertainties to
them in the Monte Carlo analysis.

V. RESULTS AND DISCUSSION

We have 24 sum rules in total to analyze: three for each
member of the octet. For each sum rule, we have in
principle five parameters to determine: �, A, w, w1, and
�. But a search treating all five parameters as free does not
work because there is not enough information in the OPE.
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In fact, the freedom to vary � can be used as an advantage
to yield the optimal match. We find that � ¼ �1:2 gives
the best match in most cases. This agrees with the value
suggested in Ref. [20]. One exception is the proton: we
found a better solution at � ¼ �0:4 than at � ¼ �1:2.
Another parameter that can be used to our advantage is the
continuum threshold w1 for the corresponding mass sum
rule. We fix it to the value that gives the best solution to the
mass sum rule independently. The following values for w1

are used: for the nucleon, w1 ¼ 1:44 GeV; for �, w1 ¼
1:60 GeV; for�, w1 ¼ 1:66 GeV; for�, w1 ¼ 1:82 GeV.
In this way the magnetic moment sum rule and the mass
sum rule can stay in their respective valid Borel regimes.
This leaves us with three parameters: �, A, and w.
Unfortunately, a three-parameter search is either unstable
or returns values for w smaller than the particle mass, an
unphysical situation. Again we think this is a symptom of
insufficient information in the OPE. So we are forced to fix
the continuum threshold w that corresponds to the best
match for the central values of the QCD parameters.

A. The sum rule at WE1

The results determined this way at theWE1 structure are
displayed in Table I. The Borel window is determined by
the following two criteria: OPE convergence which gives
the lower bound, and ground-state dominance which gives
the upper bound. It is done iteratively. For each value of �,
we adjust the Borel window until the best solution is found.
We see that our calculated magnetic moments agree with
experiment fairly well within error bars.

We stress that the errors are derived from Monte Carlo
distributions which give the most realistic estimation of the
uncertainties. An example of such distributions is given in
Fig. 4. We see that they are roughly Gaussian distributions.
The central value is taken as the average, and the error is

1 standard deviation of the distribution. We found about
10% accuracy for the magnetic moments in our
Monte Carlo analysis, resulting from 10% uniform uncer-
tainty in all the QCD input parameters. Of course, the
uncertainties in the QCD parameters can be nonuniform.
For example, we tried the uncertainty assignments (which
are quite conservative) in Ref. [20], and found about 30%
uncertainties in our output.
To gain a better appreciation on how the QCD sum rules

produce the results, we show Fig. 5, using the proton as an
example. There are three graphs in this figure to give three
different aspects of the analysis. The first graph shows how
the two sides of Eq. (52) match over the Borel window,
which should be linear as a function of 1=M2 according to
the right-hand side of this equation. Indeed, we observe
excellent linear behavior from the OPE side (LHS). The
match is almost perfect (barely distinguishable between the
solid and dotted lines). The slope gives the magnetic mo-
ment �, and the intercept gives the transition contribution
A. We find that the inclusion of A is important in producing
the best match. Also plotted are the individual contribu-
tions from u and d quarks. We see that for the proton, the
u-quark contribution is the dominant one, which is ex-
pected because it is doubled represented in the proton
(uud). We define the slope from an individual quark con-
tribution as the effective magnetic moment of that quark in
the particle.
The second graph in Fig. 5 shows how the various terms

in the OPE contribute to the determination of magnetic
moments. The M0 term, which contains the contributions
from the condensates �a2 and b, plays an important role. It
is the leading contribution in the region below M2 <
1:2 GeV2. For this reason, the sum rule atWE1 is expected
to have good spectral properties. Indeed this is confirmed
in the third graph where we plot the three terms in the
phenomenological side (pole, transition, and excited) as a

TABLE I. Results for the magnetic moment of octet baryons from the QCD sum rule in
Eq. (32) (structure WE1). The seven columns correspond to, from left to right: particle, � value,
Borel region in which the two sides of the QCD sum rule are matched, continuum threshold,
transition strength, extracted magnetic moment in unit of nuclear magnetons, and experimental
value. The errors are derived from 2000 samples in the Monte Carlo analysis with 10%
uncertainty on all QCD input parameters.

� Region w A �B Exp.

(GeV) (GeV) (GeV�2) (�N) (�N)

p �1:2 0.7–0.9 1.40 1:46� 0:34 3:01� 0:24 2.79

�0:4 0.8–1.2 1.60 0:74� 0:13 2:82� 0:26 2.79

n �1:2 0.7–1.1 1.40 �0:19� 0:09 �1:97� 0:15 �1:91
� �1:2 1.1–1.2 1.60 �0:45� 0:05 �0:56� 0:15 �0:61
�þ �1:2 1.1–1.3 1.85 0:56� 0:06 2:31� 0:25 2.45

�0 �1:2 1.0–1.6 1.80 0:07� 0:02 0:69� 0:07 0.65

�� �1:2 1.3–1.8 1.80 �0:08� 0:01 �1:16� 0:10 �1:16
�0 �1:2 1.6–1.9 2.15 �0:16� 0:01 �1:15� 0:05 �1:25
�� �1:2 1.1–1.4 2.00 �0:34� 0:02 �0:64� 0:06 �0:65
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function of M2. The ground-state pole is dominant (over
70% of the RHS at the low end of the Borel window). The
excited-state contribution starts small, then grows withM2,
as expected from the continuum model. The transition
contribution is small in this sum rule. It is consistently
smaller than the excited-state contribution and has a weak
dependence on the Borel mass.

B. The sum rule at WO1

Next, we analyze the sum rule in Eq. (41) at the structure
WO1, using the same procedure. Table II displays the
results extracted from this sum rule. The magnetic mo-
ments have larger errors than those from WE1: about 15%
as opposed to 10%. The agreement with experiment is
reasonable (with the exception of ��), but not as good as
those from WE1. We had to search a wider region in � to
find the best match. The transition contribution (A) is larger
for the strange particles, as well as their errors.

FIG. 4. Histogram for the proton magnetic moment (top panel)
and transition amplitude (bottom panel) obtained from
Monte Carlo fits of Eq. (32) at WE1 for 2000 QCD parameter
sets. They are based on 10% uncertainty given to all the QCD
input parameters.

FIG. 5 (color online). Analysis of the QCD sum rule in
Eq. (32) (structure WE1) for the proton at � ¼ �0:4 according
to Eq. (52). In the top panel, the pole plus transition terms (solid
lines) are compared against the OPE minus the excited-state
contributions (dashed lines) as a function of 1=M2 (the two
should match for an ideal sum rule). Also plotted are the
individual contributions from u (long-dashed lines) and d
(dot-dashed lines) quarks. In the middle panel, the total in the
OPE side and its various terms are plotted as a function of M2.
In the bottom panel, the three terms in the phenomenological
side: pole (solid line), transition (long-dashed line), and excited
(dot-dashed line) are plotted as a function of M2.
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Figure 6 shows the details of the analysis in the case of
the proton. The matching is very good, as indicated in the
top graph. The middle graphs shows that the leading con-
tribution in the OPE (M4 term) is �a, followed by the
quark condensate a (M2 term). The condensate �ab (M0

term) and ab (M�2 term) are very small in this sum rule.
The bottom graph reveals a surprising result: the excited-
state dominates over the pole and the transition. As a result,
this sum rule is less reliable. This is the reason why the
results from this sum rule are not as good as those from
WE1. This sum rule also shows the importance of checking
the individual terms in the phenomenological side, in
addition to looking at the best match of the two sides. In
this case, there is no pole dominance, even though the
leading term is nonperturbative and the match is almost
perfect.

C. The sum rule at WO2

Finally, we present the results from the sum rule in
Eq. (45) at the structure WO2 in Table III. The agreement
with experiment is not as good as the other two sum rules.
For example, �� and �� have the wrong sign. Figure 7
shows the details of the analysis for the proton. The match-
ing is very good, as indicated in the top graph. The middle
graph shows that the leading contribution in the OPE isM2

with a coefficient of �a, followed by the M0 term. The
1=M2 term is slightly negative, while the 1=M4 term is very
small. The bottom graph shows that the excited state
dominates over the pole and the transition, like the sum
rule from WO1, but the relative size of the pole is much
larger. Since theWO2 sum rule has power corrections up to
1=M4, it is expected to be more reliable than theWO1 sum
rule. But our analysis shows that this advantage is offset by
the smallness of the 1=M2 and 1=M4 terms. As a result, the
reliability of the WO2 sum rule is about the same as the
WO1 sum rule.
We have performed the same analysis for all the mem-

bers and all three structures. Figure 8 shows the graphs for
the neutron. In this case, the slope is negative. Again, the
sum rule atWE1 has excellent convergence properties. The
WO1 sum rule has a good match, but the pole is less than

TABLE II. Similar to Table I, but for the QCD sum rule in Eq. (41) (structure WO1).

� Region w A �B Exp.

(GeV) (GeV) (GeV�1) (�N) (�N)

p �0:8 1.4–1.6 1.50 1:03� 0:16 2:67� 0:16 2.79

n �1:2 1.2–1.4 1.40 �0:54� 0:11 �1:70� 0:11 �1:91
� �1:2 1.0–1.3 1.60 �2:3� 0:31 �0:62� 0:17 �0:61
�þ �0:6 1.5–1.7 1.60 1:60� 0:50 2:46� 0:40 2.45

�0 �1:0 1.4–1.6 1.70 0:23� 0:11 0:58� 0:09 0.65

�� �0:6 1.2–1.5 1.60 �2:04� 0:34 �0:57� 0:26 �1:16
�0 �1:2 1.2–1.4 2.10 �1:52� 0:21 �1:27� 0:15 �1:25
�� �0:2 1.7–1.8 1.90 �0:4� 0:41 �0:49� 0:29 �0:65

FIG. 6 (color online). Similar to Fig. 5, but at structure WO1

and � ¼ �1:2.
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the excited state. The WO2 sum rule does not have a good
match. Figure 9 shows the case for the �0, which has all
three quark contributions (u, d, and s).
Overall, based on the quality of the match, the broadness

of the Borel window and its reach into the lower end in the
Borel mass, the size of the continuum contribution, and the
OPE convergence, we find that the sum rule at WE1 is the
most reliable of the three sum rules.

D. Some physics discussions

Based on the results of our comprehensive analysis, we
conclude that the QCD sum rules atWE1 in Eq. (5) are the
most reliable. Here we discuss some physics implications
of the results extracted from them (Table I). First we look at
some ratios of magnetic moments listed in Table IV. Here
we compare our results with those from the SU(6) sym-
metry, lattice calculations [23], and experiment. From the
table, we see that the QCD sum rule results compare well
against other approaches and experiment. They agree a
little better with experiment than the lattice results.
Furthermore, our QCD rum rule results are an improve-
ment over the ratios from previous QCD sum rule calcu-
lations in Ref. [5].
Next, we consider a few sum rules among magnetic

moments that have been discussed in the literature. They
reveal interesting quark dynamics in the baryons. They are
mostly based on SU(6)-symmetry considerations in the
quark model. We begin with the sum rule [24]

3ðp��þÞ
�� ��0

¼ ðpþ 3�Þ
p

: (59)

It assumed ‘‘baryon independence’’ of quark moments: the
independence of which baryon the same quark is in, a
concept first mentioned by Franklin [25]. In other words,
each quark is not sensitive to the environment it resides in
and quarks in different spin states had the same effective
moments. In this sum rule, it also assumed that the s quark
moment in the � is the same as in the � and �, even
though the spin states are different. This rum rule is vio-
lated the most (by a factor of 5) using present values of
magnetic moments. This large violation is mostly due to

TABLE III. Similar to Table I, but for the QCD sum rule in Eq. (45) (structure WO2).

� Region w A �B Exp.

(GeV) (GeV) (GeV�2) (�N) (�N)

p �1:2 1.3–1.4 1.60 0:42� 0:07 2:53� 0:13 2.79

n �1:2 1.7–1.9 1.60 0:26� 0:03 �1:73� 0:28 �1:91
� �1:2 1.3–1.4 1.90 �0:85� 0:22 �0:53� 0:17 �0:61
�þ �1:0 1.2–1.4 1.70 0:21� 0:05 1:50� 0:11 2.45

�0 �1:2 1.0–1.6 1.60 �0:02� 0:02 1:04� 0:07 0.65

�� �1:2 1.4–1.6 1.65 0:0� 0:01 0:61� 0:06 �1:16
�0 �1:2 1.6–2.0 2.1 �0:08� 0:03 �1:20� 0:23 �1:25
�� �1:2 1.4–1.5 2.2 0:22� 0:09 0:80� 0:21 �0:65

FIG. 7 (color online). Similar to Fig. 5, but at structure WO2

and � ¼ �1:2.
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the small difference in the denominator �� ��0 which
magnifies the apparent discrepancy. So this is not a good
way of testing baryon independence. Our determination of
the ratio of the left-hand side over the right-hand side
(LHS/RHS) is 7.4(1.0), compared to the experimental
value of 5.7(4) and the lattice calculation of 4.1(1.5). The
errors are added in quadrature in forming these ratios.

One interesting sum rule [26] which is fairly accurately
satisfied is

pþ n ¼ 3�þ 1
2ð�þ þ ��Þ � ð�0 þ��Þ: (60)

It is derived using SU(3)-flavor symmetry to characterize
the � wave function. Our determination of the LHS/RHS
ratio is 1.24(79), compared to the experimental values of
1.22(5) and the lattice calculation of 1.45(27).

Another sum rule, first derived by Franklin [25],

p� n ¼ �þ ��� þ�� ��0; (61)

is another test of baryon independence of the quark mo-
ments. The strange quarks approximately cancel, leaving
only u and d quarks. We give the ratio of 1.20(0.68), while
the experimental measurements give 1.133(10) and the
lattice results are 1.07(8) for this ratio.

Finally, the Sachs sum rule [27]

3ðpþ nÞ ¼ �þ ��� ��� þ�0 (62)

is satisfied by the more general extension of SU(6) sym-
metry and is another test of baryon independence of quark
moments. This sum rule is just the sum of the two separate
sum rules proposed earlier by Franklin [28]. Our result
gives the ratio of 0.86(35) which is in agreement with the
experimental measurements of 0.881(11). Whereas it
yields an opposite violation with a ratio of 1.29(20) from
lattice moments. This contradiction is possibly because the
Sachs sum rule may be sensitive to dynamics not included
in the lattice calculation.

E. Individual quark contributions

To gain a deeper understanding of the dynamics, it is
useful to consider the individual quark sector contributions
to the magnetic moment. In our approach, we can easily
dial individual quark contributions to the QCD sum rules.
For example, to turn off all u-quark contributions, we set
the charge factor eu ¼ 0. To turn off all s-quark contribu-
tions, we set es ¼ 0, ms ¼ 0, f ¼ 1, and � ¼ 1. We can
extract a number corresponding to each quark contribution
from the slope of Eq. (52) as a function of 1=M2. We call

FIG. 8 (color online). Similar to Fig. 5, but for the neutron at all three structures: WE1 (left panels), WE1 (middle panels), WE1

(right panels).
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this the raw individual quark contributions to the magnetic
moments.

Table V gives the result of raw individual u, d, and s
quark sector contributions to the magnetic moments from
the QCD sum rules at WE1. It is compared with the lattice
QCD result in [23]. The lattice results were rescaled later in
[29] and we use the rescaled results for the comparison.
Our results agree with the lattice results reasonably well.
The biggest discrepancy is that our light quark moments in
�0 and �� are small. In �0 and �, the total of u and d
quark moments agrees very well with lattice data for light
quark moments. Note that only a combined number for
light quark (�l ¼ �u þ�d) was given on the lattice [23].
To compare with our separated u and d quark numbers, we

break up the lattice number by using the relation �u ¼
�2�d.
In the simple quark model [30], the magnetic moment of

the proton is given by p ¼ 4
3�u � 1

3�d. In the SU(2) limit,

there is the relation�u ¼ �2�d. Our results for�
0 and�,

the two uds structure baryons, agree with this very well.
This relation also suggests that the ratio of the u quark and
d quark contributions in proton is 4

3�u=ð� 3
4�dÞ ¼ 8. Our

QCD sum rule ratio is 10.6 for � ¼ �1:2, which agrees
with the lattice ratio of 10.3(7) at �1. For the neutron the
quark model ratio is 4

3�d=ð� 1
3�uÞ ¼ 2, and our result is

3.64(40) for this ratio, which differs from the SU(6) spin-
flavor symmetry prediction. The lattice ratio is 2.6. The
bigger ratio represents an enhancement of the doubly

TABLE IV. A comparison of selected ratios of magnetic moments.

Ratio Sum rule result SU(6) symmetry Lattice results Exp.

n=p �0:70ð9Þ �2=3 �0:63ð5Þ �0:68
��=�þ �0:50ð7Þ �1=3 �0:37ð3Þ �0:47
��=�0 0.56(6) 1=2 0.58(5) 0.52

�0=� 2.05(56) 2 2.4(5) 2.04

��=� 1.14(32) 1 1.0(2) 1.13

FIG. 9 (color online). Similar to Fig. 8, but for �0.

OCTET BARYON MAGNETIC MOMENTS FROM QCD SUM RULES PHYSICAL REVIEW D 78, 013003 (2008)

013003-19



represented quark contribution. These results suggest that
although the total magnetic moments ratios agree with SU
(6) ratios (see Table IV), the underlying quark dynamics
are really quite different from different individual quark
contributions.

To include the possible nonstatic effect, Franklin [26]
proposed a generalization of SU(6) results so that nonstatic
components are the same for each octet baryon:

p ¼ 4
3�u � 1

3�
0
d; n ¼ 4

3�d � 1
3�

0
u;

�þ ¼ 4
3�u � 1

3�
0
s; �� ¼ 4

3�d � 1
3�

0
s;

�0 ¼ 4
3�s � 1

3�
0
u; �� ¼ 4

3�s � 1
3�

0
d;

�0 ¼ 2
3�u þ 2

3�d � 1
3�

0
s; � ¼ �00

s ;

(63)

where quark symbols refer to quark moment contributions
including nonstatic effect. The magnetic moment contri-
bution of the unlike quark in the baryon is primed.

In order to compare with the effective quark moments
defined in the quark model, we convert our raw quark
moments in Table V quark in a similar fashion. Take the
proton, for example, we define effective quark moments
�u and �0

d from QCD sum rules by uSR ¼ 4
3�u, dSR ¼

1
3�

0
d. One can define effective moments for quarks in other

baryons in a similar manner.
In the proton, �u is 1.84(18) while in �þ 1.54(18), and

in�0 is 1.63(18). The magnetic moments listed here are all
in units of �N . In the neutron, �0

u is 1.25(27), which is
smaller than�u. This is an example that the effective quark
magnetic moment is sensitive to the environment the quark
resides in. We find the following relation from our results:

�p
u < ��0

u < ��þ
u : (64)

For �d, in n it is �1:15ð11Þ, while for �0 it is �0:82ð8Þ,
and for �� it is �0:93ð8Þ. From p we can get �0

d ¼
�1:15ð12Þ. It has a similar relation for the absolute value

�n
d < ��0

d < ���
d : (65)

For �s, it is �0:81ð6Þ in �0 and �0:50ð5Þ in ��. For
�0

s, it is �0:45ð5Þ, �0:42ð5Þ and �0:30ð5Þ in �þ, �0, and
��, respectively. From � we can get �00

s about�0:63ð15Þ.

For these individual quark effective moments, we notice
that in general we have the following relation:

�s < �d < �u: (66)

It is expected because of the quark mass effects, which is
analogous to those seen in the electric properties.
Another way of looking at the individual effective quark

moments is by expressing them in terms of baryon mag-
netic moments using Eq. (63) and isospin symmetry. For
example, the d-quark effective moment can be expressed
as

�d ¼ �1
4ð2pþ nÞ ¼ 1

4ð�� � �þÞ: (67)

Our result indicates �d ¼ �0:92ð14Þ<�0:86ð7Þ using
the baryon moments in Table V or in Table I. It agrees
well with the experimental moments �d ¼ �0:918<
�0:894ð7Þ and the lattice result of �d ¼ �1:00ð5Þ<
�0:86ð6Þ.
Similarly the d0 quark effective moment is

�0
d ¼ pþ 2n ¼ �0 ���: (68)

We have �0
d ¼ �1:12ð39Þ<�0:51ð8Þ. It also agrees very

well with the experimental moments �0
d ¼ �1:003<

�0:578ð26Þ although the two sides of this sum do not agree
well.
The strange quark can be isolated as

�s ¼ 1

4
ð�0 þ 2��Þ; �0

s ¼ ��þ � 2��;

�00
s ¼ �� 
:

(69)

Our results are compared with experiment and lattice
calculation in Table VI. Not only do the results agree
with the experiment and lattice calculation, they also
roughly agree with the strange quark moments from indi-
vidual quark moments.
Now, we can look at the quark moment difference such

as �0
s ��0

d and �s ��d. According to a simple quark

model, the difference should be the same and approxi-
mately as 0.36. In fact, from

TABLE V. Individual quark contributions and total magnetic moments in units of nuclear magnetons extracted from the QCD sum
rules at WE1 (denoted by the subscript SR) are compared with those from a lattice QCD calculation (denoted by the subscript LAT)
[23,29].

�u
SR �u

LAT �d
SR �d

LAT �s
SR �s

LAT �Total
SR �Total

LAT

p 2.46(25) 2.59(24) 0.38(4) 0.15(9) 0 0 2.82(26) 2.79

n �0:42ð9Þ �0:31ð20Þ �1:53ð13Þ �1:32ð14Þ 0 0 �1:97ð15Þ �1:60ð21Þ
� 0.18(7) 0.09(6) �0:09ð4Þ �0:03ð2Þ �0:63ð15Þ �0:54ð7Þ �0:56ð15Þ �0:50ð7Þ
�þ 2.06(25) 2.33(29) 0 0 0.15(2) 0.08(5) 2.31(25) 2.37(18)

�0 1.09(12) 0.87(9) �0:54ð6Þ �0:29ð3Þ 0.14(2) 0.08(5) 0.69(7) 0.65(6)

�� 0 0 �1:25ð10Þ �1:14ð14Þ 0.10(2) 0.08(5) �1:16ð10Þ �1:08ð10Þ
�0 0.02(2) �0:44ð6Þ 0 0 �1:08ð7Þ �0:73ð6Þ �1:15ð5Þ �1:17ð9Þ
�� 0 0 0.03(2) 0.22(3) �0:67ð6Þ �0:73ð6Þ �0:64ð6Þ �0:51ð7Þ
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�0
s ��0

d ¼ 3ðp��þÞ; (70)

�s ��d ¼ 3

4
ð�0 � nÞ; (71)

QCD sum rules give 1.53(8) and 0.61(12). The experiment
gives 1.12(7) and 0.495(11), while lattice calculation gives
1.3(5) and 0.32(17), respectively. The large result of �0

s �
�0

d is difficult to reconcile with any simple model. And

Eq. (70) is a poor way to measure the difference of s and d
quark contributions.

F. Correlations

Our Monte Carlo analysis affords the opportunity to
study the correlations between any two parameters since
the entire QCD input phase space is mapped into the
phenomenological output space. This correlation can be
explored by a scatter plot of the two parameters of interest.
Figure 10 shows the scatter plots for the proton magnetic

moment at structure WE1. We see that the magnetic mo-
ment has a strong correlation with the vacuum susceptibil-
ity �. It is a negative correlation meaning larger � (in
absolute terms since � is negative) leads to smaller �B.
A slight negative correlation with the mixed condensate
and a slight positive correlation with another vacuum
susceptibility � are also observed. Precise determination
of the QCD parameters, especially for those that have
strong correlations to the output parameters, is crucial for
keeping the uncertainties in the spectral parameters under
control.
Figure 11 shows a similar plot for the �0 at structure

WE1. Here we focus on the three vacuum susceptibilities
and the three parameters that define the strange quark (ms,
f, and �). The correlations with the other condensates are

TABLE VI. The results for s s0, and s00 quark effective
moments from QCD sum rule, experiment, and lattice calcula-
tion.

�s �00
s �0

s

SR �0:61ð3Þ <�0:60ð15Þ <0:01ð32Þ
Exp. �0:651ð12Þ <�0:57ð4Þ <�0:107ð36Þ
LAT. �0:55ð4Þ ��0:54ð4Þ <�0:24ð17Þ

FIG. 10 (color online). Scatter plots showing correlations between the magnetic moment and the QCD parameters for the proton at
structure WE1. They are obtained from 2000 Monte Carlo samples with 10% uncertainty on all the QCD parameters.
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similar to the proton and are not shown. A negative corre-
lation with � exists, but not as strong as that for the proton.
A slight positive correlation withms and f is also observed.

VI. CONCLUSION

We have carried out a comprehensive study of the mag-
netic moment of octet baryons using the method of QCD
sum rules. We derived a new, complete set of QCD sum
rules using generalized interpolating fields and examined
them by a Monte Carlo analysis. Here is a summary of our
findings.

We proposed a new way of determining the magnetic
moments from the slope of straight lines. We find this
method more robust than from the normalization (inter-
cept) or from looking for ‘‘flatness’’ as a function of Borel
mass. The linearity displayed from the OPE side matches
almost perfectly with the phenomenological side in most
cases. The method also demonstrates clearly that the tran-
sition terms caused by the external field in the intermediate
terms cannot be ignored. They are needed to make the two
sides of a QCD sum rule match.

Out of the three independent structures, we find that the
sum rules from the WE1 structure are the most reliable

based on OPE convergence and ground-state pole domi-
nance. The QCD sum rules from this structure are in
Eq. (32); its predictions are found in Table I, and conver-
gence properties are displayed in Fig. 5. They should be
considered as the best results in this work. The extracted
magnetic moments are in good agreement with experi-
ment. These results are used to shed light on a variety of
magnetic moment sum rules based on SU(6) spin-flavor
symmetries in the quark model, along with experiment
and lattice QCD. Reasonable results from the other two
structures (WO1 and WO2) are obtained for the first time,
but they are less reliable due to poor convergence
properties.
Our Monte Carlo analysis revealed that there is an

uncertainty on the level of 10% in the magnetic moments
if we assign 10% uncertainty in the QCD input parameters.
It goes up to about 30% if we adopt the conservative
assignments that have a wide range of uncertainties in
Ref. [20]. The Monte Carlo analysis also revealed some
correlations between the input and output parameters. The
most sensitive is the vacuum susceptibility �. So a better
determination of this parameter can help improve the
accuracy on the magnetic moments and other quantities
computed from the same method.

FIG. 11 (color online). Similar to Fig. 10, but for the �0 and a different set of QCD parameters.

LAI WANG AND FRANK X. LEE PHYSICAL REVIEW D 78, 013003 (2008)

013003-22



We also isolated the individual quark contributions to
the magnetic moments. These contributions provide in-
sight into the rich dynamics in the baryons. By comparing
them with the simple quark model and lattice QCD results,
we reveal the effects of SU(3)-flavor symmetry breakings
in the strange quark, the environment sensitivity of quarks
in different baryons.

Taken together, this work can be considered an updated
and improved determination of the magnetic moments of
octet baryons, bringing it to the same level of sophistica-

tion as the decuplet baryons [9]. One possible extension
along this line is a calculation of the N to � electromag-
netic transition amplitudes which to our knowledge have
not been studied in this method.
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