
Spin-statistics violations from heterotic string worldsheet instantons

Mark G. Jackson

Particle Astrophysics Center and Theory Group, Fermi National Accelerator Laboratory, Batavia Illinois 60510, USA
(Received 7 April 2008; published 26 June 2008)

In this paper, we consider the role that worldsheet instantons in the heterotic string could play in spin-

statistics violations. Such violations are nonperturbative in the string tension and so would not appear in

the spacetime effective action, producing a unique signature of string theory and the details of

compactification. By performing a Bogomol’nyi transformation it is shown that there are no instanton

solutions in the simplest model proposed by Harvey and Liu, but it is conjectured that more sophisticated

models may yield solutions. If such instantons do exist, their effect might be measured by upcoming

experiments.
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I. INTRODUCTION

Ever since its discovery, the Aharonov-Bohm Effect [1]
has fascinated physicists for its quantum-mechanical im-
plications, which are completely foreign to our classical
prejudices. It also has also proved useful in producing
fractional statistics for charged particles in 2þ 1 dimen-
sions [2]. As the particle completes a circuit around a
localized magnetic flux core as in Fig. 1(a), its wavefunc-
tion will pick up a phase, altering the naive expectation that
bosons (fermions) must always be in symmetric (antisym-
metric) wavefunctions. Similarly, in 3þ 1 dimensions, a
coupling of the form

R
B ^ dA would produce the same

type of effect, whereby a particle (coupled to A�) passing

through a closed loop (coupled to B��) acquires a statisti-

cal phase [3,4], as shown in Fig. 1(b).
An instantonlike mechanism to utilize this fact in heter-

otic superstring theory [5] (where such a BF coupling
arises naturally from anomaly cancellation) was proposed
by Harvey and Liu [6], whereby one string will momen-
tarily open up and pass over another string before collaps-
ing again, as shown in Fig. 2. The magnitude of this spin-
statistics-violating effect was estimated to be of order

e�1=�0E2
, assuming that one string must open up to at least

the de Broglie wavelength of the other. Naively, 1=
ffiffiffiffiffi
�0p �

1016 GeV, and so this is prohibitively too small to be

observed, but if 1=
ffiffiffiffiffi
�0p � TeV (as in some recent warped

models [7,8]) then perhaps this effect is observable at
achievable energies and worth revisiting. Note that this
intrinsically stringy effect would never show up in the
spacetime effective action, which is a perturbative expan-
sion in small �0.

In this paper, I attempt to explicitly construct these
worldsheet instantons, but find there are no solutions in
the model proposed by Harvey and Liu. I then consider
additional terms that may yield a solution but are consid-
erably more difficult to analyze. These solutions, if they
exist, would likely scale not with the energy but rather with
fixed parameters in the theory, making them easier to
detect with current experiments at low energy.

II. THE INSTANTON ACTION

We will assume that this instanton process happens in
3þ 1 Minkowski space after compactification. The action
for the first string with momentum k1 and coupled to the
Kalb-Ramond 2-form B is

S1 ¼ 1

2��0
Z

d2z½@X� �@X�ð��� þ 2��0B��Þ
þ 2��0�2ðz; �zÞk1 � X�:

Note that the term containing B is imaginary and thus
produces a phase in the path integral, and that we are
considering worldsheet instanton solutions so the momen-
tum k1 is real. The action for the second string (which we
approximate as a particle) with momentum k2 coupled with
charge q to the pseudoanomalous Uð1Þ gauge field A is

S2 ¼
Z

dl

�
1

2�0 _Y � _Y þ _Y � ðiqA� k2Þ
�
:

Again note that the term coupling to A is imaginary. The
spacetime action governing the gauge fields F ¼ dA and
~H ¼ dB� A ^ dA is

Sgauge ¼
Z

d4x

�
3�0

32g2
~H2 þ 1

4g2
F2

�
þ �

Z
B ^ F;

where g2 and � are the dimensionless effective 4D cou-
plings after compactification. This spacetime action is
introduced as

a

ei

b

ei

FIG. 1 (color online). (a) In 2þ 1 dimensions a charged
particle’s wavefunction will acquire a phase after a circuit
around a flux tube, (b) A similar phase can be acquired in 3þ
1 dimensions for a particle passing through a loop.
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Z
½DA�½DB�eiSgauge ;

meaning the imaginary string source terms for B and A are
real source terms from the perspective of the spacetime
action. The worldsheet and worldline then produce, re-

spectively, F and ~H flux tubes with width � ffiffiffiffiffi
�0p
=�g2

(this is reversed from the usual case due to the �B ^ F
term). If we approximate these as infinitesimally thin, we
may neglect the gauge kinetic terms and integrate the fields
out, resulting in the effective action equal to

Seff �� iq

�

����	

4�2

Z
d���ðXÞ

Z
dY�

ðX � YÞ	
jX � Yj4 : (1)

Thus, the phase shift of the wavefunction will be propor-
tional to this ‘‘linking number,’’ a topological quantity
equal to the number of times the worldline Y will pass
through the worldsheet �ðXÞ. We will now attempt to
construct solutions whereby this happens dynamically.

III. BPS TRANSFORMATION

In the heterotic string theory, with different compactifi-
cations we can get different values of � ¼ c=32�2, where c
is determined by the massless fermion content of the
theory. In the case of compactification on a Calabi-Yau

manifold [9] we break SOð32Þ ! SUð3Þ � SOð26Þ �Uð1Þ
and then embed the spin connection in the gauge group.
This yields c ¼ � 3

2
, where 
 is the Euler number of the

Calabi-Yau, and the fermion charges are q ¼ �1, �2.
Rather than simply look for generic solutions to the

equations of motion, we look for solutions, which mini-
mize the action for a given value of the linking number. To
facilitate this, let us repeat the previous derivation of the
phase shift more explicitly. By taking the strong coupling
limit �g2 ! 1 for fixed � as above, we can neglect the
gauge kinetic terms and so easily obtain exact solutions

B��ðxÞ ¼
q����	

�

Z
dl@½�Gðx� YÞ _Y	�;

A�ðxÞ ¼
i����	

2�

Z
d2z@½�Gðx� XÞ@X� �@X	�;

where Gðx� yÞ is the 4D Green’s function

Gðx� yÞ ¼ � 1

2�2

1

jx� yj2 :

Substituting these back into the action produces a world-
sheet path integral with topological phase factor �

R
B ^ F,

which is proportional to the linking number N ¼
����	

R
d���ðXÞ

R
dY�@	GðX � YÞ,

Z
½DX�½DY�e�ð1=2��0Þ

R
d2zj@ðX��0k1 lnjzjÞj2�ð1=2�0Þ

R
dlj _Y��0k2j2�iðqN=�Þ: (2)

The path integrals over X and Y will select trajectories
such that the strings will take the least action path to
produce the linking. For the zero-modes x0, y0 this is
trivial, as can be seen by momentarily considering the first
string to also be pointlike. By choosing x0 ¼ y0 ¼ 0, the
strings will both simply travel along straight lines in the
direction of their respective momenta until they intersect at
Xðz; �zÞ ¼ YðlÞ ¼ 0, then a linking is obtained by briefly
expanding the first string’s worldsheet. Any other choice of
x0 or y0 would require the strings to either ‘‘swerve’’ or
else further enlarge the worldsheet, both of which increase
the action. We can then perform a Bogomol’nyi trans-

formation and express the (real part of the) action as a
sum of squares plus a topological term

S ¼ 1

2��0
Z

d2zj@ðX� � �0k�1 lnjzjÞ

þ i
�qC�0

�
����	@ðX� þ �0k�1 lnjzjÞ

�
Z

dY�@	GðX � YÞj2 þ 1

2�0
Z

dlj _Y � �0k2j2

þ CqN

�
:

The constant C is yet to be determined.

1 2 3 4

FIG. 2 (color online). Worldsheet instantonlike process whereby one string momentarily expands sufficiently to envelop another,
producing a phase in the string path integral.
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Aminimal-action solution is then obtained by setting the
two squared terms to zero. The one for Y is trivial and
yields YðlÞ ¼ k2l as expected. To solve the one for X, first
integrate the Green’s function over Y,

Z
dY�

Z d4p

ð2�Þ4
eip�½X�YðlÞ�

p2

¼ �0k�2
Z d4p

ð2�Þ3
eip�X

p2
�ð�0k2 � pÞ

¼ � k̂�2
4�jX?j ;

where X? is the component of X transverse to k2. Since
both strings couple to gauge fields, they cannot be massless
and so X? is spacelike. The BPS (Bogomol’nyi-Prasad-
Sommerfield) equation for Xðz; �zÞ can then be written as

z@X� ¼ �0
�
��

� þ i
qC�0

4�
�
�
s
X�
?k̂

	
2

jX?j3
��1

�
�
��

� � i
qC�0

4�
����

X�
?k̂


2

jX?j3
�
k�1 : (3)

To solve this we decompose X into a complete basis,

beginning with (timelike) k̂2 and then defining the three
spacelike unit vectors x̂, ŷ, ẑ as transverse to this, such that

x̂, ŷ are also transverse to k̂1. The ansatz then consists of a
complex function f ( �f) representing the positive (negative)
chirality in the x̂-ŷ plane and a real function h in the ẑ
direction

Xðz; �zÞ ¼ �0ðk1 � k̂2Þk̂2 lnjzj þ fðz; �zÞ
�
x̂� iŷ

2

�

þ �fðz; �zÞ
�
x̂þ iŷ

2

�
þ hðz; �zÞẑ: (4)

Then jX?j2 ¼ jfj2 þ h2. Choosing the convention
�k̂2x̂ ŷ ẑ ¼ 1, we can substitute (4) into (3) to see that the

k̂2 component is trivially satisfied, whereas f and h must
obey the relations

z@f ¼ Nf

�
qC�0h
4�jX?j3

þ 1

�
;

z@ �f ¼ N �f

�
qC�0h
4�jX?j3

� 1

�
;

z@h ¼ �0k1 � ẑ
�1þ ð qC�0

4�jX?j3Þ2ðjfj2 � h2Þ
1� ð qC�0

4�jX?j3Þ2ðjfj2 þ h2Þ
�
;

(5)

where the (suggestively named) real function Nðz; �zÞ is

N ¼
�0k1 � ẑð qC�0

2�jX?j3Þ
1� ð qC�0

4�jX?j3Þ2ðjfj2 þ h2Þ :

We now switch to ð�; Þ coordinates such that z ¼ e�þi.
Inspection of the real and imaginary parts of the equations

in (5) implies that h ¼ hð�Þ, N is a constant, and f is of the
form

fð�; Þ ¼ f0 exp

�
N

�Z
d�

qC�0hð�Þ
4�jX?j3

þ i

��
:

This identifies N as the linking number. For N to be
constant places an algebraic constraint on jX?j,
4�ðjfj2 þ h2Þ3=2

qC�0 ¼ �0k1 � ẑ
N

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�0k1 � ẑ

N

�
2 þ jfj2 þ h2

s
:

This is inconsistent except in the trivial cases f ¼ h ¼ 0 or
C ¼ N ¼ 0. Therefore, no instantons exist in this
formalism.

IV. DISCUSSION AND POSSIBLE RESOLUTIONS

The lack of instanton solutions should have been antici-
pated from the action in (2), which shows that there is no
interaction between the two strings, merely a phase. With
nothing to set a lower bound on how close the strings may
approach, all paths are smoothly contractable to the trivial
solution. The intuition of [6] that a distance cutoff is fixed
via the de Broglie wavelength fails because the linking
number projects onto the transverse worldsheet-worldline
separation and so is not aware of their respective momen-
tum eigenstates.
One may try to remedy the situation by relaxing the

assumption of infinite coupling and instead consider a
finite value of �g2. Such an approach would modify the
Green’s function to give the flux tubes widths and so might

seem to provide a distance cutoff �x� ffiffiffiffiffi
�0p
=�g2.

Unfortunately, this would still not produce an interaction
term in the worldsheet action, merely change the action’s
topological term from the linking number into a finite-
width-version of the linking number.
The most natural way to produce a valid interaction is to

recall that the (left-moving component of the) first string
may also carry a charge Q under the pseudoanomalous
Uð1Þ gauge field,

�S1 ¼ 1

2�

Z
d2zJðzÞA�

�@X�; (6)

where J is the holomorphicUð1Þ current normalized so thatH
dzJðzÞ ¼ 2�iQ. Were we to also approximate this string

as infinitesimally thin, a Kaluza-Klein reduction of the
worldsheet would result in the purely imaginary term

1

2�

Z
d2zJðzÞA�

�@X� � iQ
Z

d�A�
_X�

just like the analogous term in S2, which contributes only a
path integral phase, but at nonzero string size this also
contains a real component, which affects the worldsheet
dynamics. At infinite coupling �g2 ! 1 this additional
term produces only worldsheet self-interactions, so we
must go to finite coupling to yield an interaction between
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the two strings. The maximal radius R of the worldsheet
should be where the tension of the string �1=�0 is bal-
anced by the force of electrostatic repulsion�g2qQ=R2, so
there is an equilibrium reached at roughly

R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2qQ�0

q
:

The addition of (6) to the action for strings with qQ> 0
could then plausibly produce instanton solutions, and could
be analyzed using techniques similar to those employed
here. Unfortunately, explicit solutions for this model are
likely much more difficult to construct due to the necessity
of finite coupling.

V. EXPERIMENTAL BOUNDS

If such instantons did exist, they would produce phases
in the path integral leading to small violations of spin
statistics, most noticeably the Pauli exclusion principle
(PEP) for fermions. Depending on whether they scaled
with energy or fixed parameters in the theory, observing
these violations could either come from high-energy or
high-precision experiments. Energy scales of order
14 TeV will soon be available from the Large Hadron
Collider, though it is uncertain to what extent it would be
sensitive to extremely small phases in scattering ampli-
tudes. The first precision test of the Pauli exclusion prin-
ciple was performed by Ramberg and Snow [10] by
running current through a copper cylinder and looking
for forbidden x-ray transitions. A similar technique used
by the ongoing violations of the Pauli exclusion principle
experiment [11] has thus far constrained the deviation
away from Fermi statistics in terms of the Greenberg and

Mohapatra � parameter [12,13] as

�2

2
� 4:5� 10�28:

This bound is expected to improve another 2 orders of
magnitude over the next few years due to larger integrated
currents. Though the energy scale is low at only 8 keV, the
incredible precision means this might be a viable way of
detecting superstring-motivated violations.

VI. CONCLUSION

In this paper, we have examined heterotic string world-
sheet instantons, which could potentially produce a statis-
tical phase and violate spin statistics. They are found to not
exist in the simplest case considered here but more general
models may produce solutions. Unfortunately, the analysis
of such generalizations is beyond the scope of this paper,
requiring explicit solutions to gauge theories at finite cou-
pling. In the auspicious case in which there is a measurable
effect, this could be an experimentally viable way of test-
ing string theory and could provide detailed information
about the microscopic parameters. It would also be inter-
esting to include the effects of extra dimensions rather than
a simple compactification. The violation of spin statistics,
even if slightly, could have dramatic physical and even
cosmological [14] consequences.
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