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We discuss a dynamical matrix model by which probability distribution is associated with Gaussian

ensembles from random matrix theory. We interpret the matrix M as a Hamiltonian representing

interaction of a bosonic system with a single fermion. We show that a system of second-quantized

fermions influences the ground state of the whole system by producing a gap between the highest occupied

eigenvalue and the lowest unoccupied eigenvalue.
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Introduction.—Random matrices [1] first studied by
Wigner [2] have applications in many branches of
(many-body) physics, e.g., nuclear and molecular physics.
The matrix elements are considered statistical variables
and take random values. On the other hand, one can con-
sider a dynamical matrix model in which the matrix ele-
ments are dynamical variables so that the whole matrix has
become a mechanical system, which may even be quan-
tized and corresponding quantum field theory may be
formulated. Such dynamical matrices have found use in
description of disordered system and in string theory [3].

In the present work, we treat a dynamical matrix model
by which probability distribution in the ground state is
associated with Gaussian ensembles from random matrix
theory. We interpret the matrix M as a Hamiltonian repre-
senting interaction of a ‘‘bosonic’’ system, such as, for
example, the nuclei in a molecule, with a single fermion,
e.g., a single electron in a molecule. In particular, an
eigenvalue of the matrix corresponds to an eigenenergy
of a fermion. Without going into a lot of detail about the
single fermion interaction, we consider a backreaction
from the system of the second-quantized fermions. A
characteristic effect of such a backreaction is to drive the
matrix in the direction of lowering the energy of the
eigenstates occupied by fermions. In the case of a mole-
cule, this backreaction is the force from the electrons
pushing on the nuclei seeking to drive them into such a
position so as to lower the filled single electronic orbit
energy eigenvalues. Since a similar push to lower the
unoccupied levels is absent, or even has the opposite
sign, as will be argued later, hereby a gap can easily arise
between the highest occupied eigenvalue (homo, where mo
stands for molecular orbit) and the lowest unoccupied
eigenvalue (lumo). The gap is what is called the homolumo
gap [4]. The interest in the homolumo gap steams from the
fact that the details of the model seem very unimportant.

You should get it whenever you have a system of bosonic
variables interacting with the fermions, provided that the
bosonic variables are sufficiently soft as to yield to the
pressure from the fermions.
The purpose of this paper is to evaluate how distribution

of eigenvalues of the matrix adjust to produce a homolumo
gap in a quite general setting. First, we formulate field
theory corresponding to the large N limit of the random
(N � N) matrix. Then, we introduce the dynamical matrix
model by which the probability distribution in the ground
state coincides with the large N limit of the ‘‘free’’
Gaussian ensemble from the random matrix theory. The
notion of the dynamical model enables us to model the
interaction potential, which arose as a consequence of the
backreaction of the second-quantized fermions. Finally,
exploring the effect of adding this interaction potential to
the free matrix model, we obtain characteristic homolumo
gap.
Field theory formulation of the random matrix model.—

The field theory we discuss is defined by the following
functional integral

Z½��¼
Z
D�exp

�
ð��1Þ

Z
dx�ðxÞln�ðxÞ

þ�
Z
dxdy�ðxÞlnðx�yÞ�ðyÞ�

Z
dx�ðxÞPðxÞ

�
; (1)

for some (polynomial) function PðxÞ and a dimensionless
parameter �. The integral (1) corresponds to the large N
limit of the matrix integral from random matrix theory

Z ¼
Z

dMe�TrPðMÞ; (2)

where PðMÞ is a polynomial in N � N matrix M. In terms
of eigenvalues xi of the matrix M, the matrix integral (2)
can be expressed as

Z ¼
Z Y

i

dxi
Y
i<j

ðxi � xjÞ2�e�
P

i
PðxiÞ: (3)

Here, the parameter � ¼ 1=2, 1, 2 for real-symmetric,
Hermitian and quaternionic-real matrix M, respectively.*On leave of absence to CERN until May 31, 2008.
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The origin of the first two terms in (1) is the new invariant
measure resulting from changing the variables from xi to
�ðxÞ (see Refs. [5,6]),Y

i<j

ðxi � xjÞ2� ! exp

�
�
Z

dx�ðxÞ ln�ðxÞ

þ �
Z

dxdy�ðxÞ lnðx� yÞ�ðyÞ
�
; (4)

Z YN
i

dxi !
Z

D� exp

�
�
Z

dx�ðxÞ ln�ðxÞ
�
: (5)

While in (3) the statistical variables are the eigenvalues xi,
in the large N limit, one introduces the density field �ðxÞ,
which then by itself becomes a statistical variable. In
parallel with Ref. [7], we interpret (1) as a quantum field
theory describing statistical random matrix model (2). By
varying (1) with respect to � and taking the derivative with
respect to x, we find that the most probable configuration
satisfies following equation:

ð�� 1Þ @x�
�

� 2���H ¼ @xP; (6)

where fH denotes the Hilbert transform of the function f.
From (6), we obtain the Riccati differential equation for the
new field W ¼ �H þ i� in analogy with [8]

ð��1Þ@xW���W2�W@xP¼ð�@xPÞH��H@xP (7)

This equation corresponds to the usual Riccati equation for
the resolvent function in the random matrix theory, except
that here the first term vanishes exactly for the Hermitian
matrix model (� ¼ 1). The difference comes from the
additional term in measure (5).

Before introducing the matrix model that describes in-
teraction of fermions and bosons, we need the notion of
dynamical system to be able to define and model the
potential, and also, to be able to interpret the integrand in
(1) as a probability density functional in the ground state of
this dynamical model. This requirement is satisfied by the
following Hamiltonian (see [8] for details):

H ¼ 1

2

Z
dx�ðxÞAyðxÞAðxÞ þ E0; (8)

where AðxÞ is given by

AðxÞ ¼ @x�ðxÞ þ i@x
� ln�

��ðxÞ ; (9)

for � being the ground-state functional [i.e., the square
root of the integrand in (1)] and �ðxÞ the canonical mo-
mentum satisfying ½@x�ðxÞ; �ðyÞ� ¼ �i@x�ðx� yÞ. Now,
we interpret Eq. (6) as a BPS equation of motion. Let us
consider a simple example of the free Gaussian ensemble
defined by (3) with PðxÞ ¼ x2. The operator AðxÞ of the
corresponding dynamical model is

AðxÞ ¼ @x�ðxÞ þ i

�
�� 1

2

@x�ðxÞ
�ðxÞ ����HðxÞ � x

�
; (10)

and the Hamiltonian can be written as

H ¼ 1

2

Z
dx�ðxÞð@x�ðxÞÞ2 þ 1

2

Z
dx�ðxÞ

�
�
�� 1

2

@x�ðxÞ
�ðxÞ � ���HðxÞ � x

�
2 þ E0; (11)

The second term is called effective potential Veff and
represents the physical potential for the dynamical model
in question. The ground-state functional satisfying
AðxÞ� ¼ 0 is

� ¼ exp

�ð�� 1Þ
2

Z
dx�ðxÞ ln�ðxÞ þ �

2

Z
dxdy�ðxÞ

� lnðx� yÞ�ðyÞ � 1

2

Z
dx�ðxÞx2

�
; (12)

giving the integrand of the (1) as a probability density
functional in the ground state. The semiclassical solution
is given by the solution of the Eq. (6), which in the case of
� ¼ 1 reads ���HðxÞ ¼ x and gives the usual Wigner
semicircle law for the distribution of eigenvalues for the
Hermitian Gaussian ensemble. In the rest of the paper, we
restrict ourselves to the � ¼ 1 case.
Interaction with fermions.—It is simply the idea of the

interaction of the already described dynamical matrix
model with the system of fermions that we postulate that
the dynamical matrix itself is the Hamiltonian for a single
fermion. Then on top of that, we second quantize the
fermions, so that it becomes possible to have filled or
emptied all the (basis) states for this matrix. If we espe-
cially seek the ground state of the whole system—dynami-
cal matrix plus fermions—we shall be interested in the case
when the eigenstates of the dynamical matrix are filled
below a certain value xF, the Fermi surface (value), while
the ones above xF are empty. In the case where we can
ignore that this Fermi surface (energy) depends on the
(dynamical) state of the matrix, the interaction with the
fermions simply gives an extra potential

VfermionðxÞ ¼ x�ðxF � xÞ: (13)

At this point, we introduce the zero-point energy for
fermion modes. If we want to write a Hermitian
Hamiltonian contribution from a single particle state as a
bilinear expression in the annihilation a and creation ay
operators and symmetrized in taking the product, we must
take the commutator expression

H ¼ !

2
½ay; a� ¼ !aya�!

2
: (14)

The extra term �!=2 compared to the pure number op-
erator term, !N ¼ !aya, is analogous to the zero-point
energy term !=2 for a boson model

H ¼ !

2
fay; ag ¼ !ayaþ!

2
: (15)

With this analogy between bosons and fermions in mind,
we can claim that there is a zero-point energy�!=2 for the
fermion mode, meaning that the energy of an empty level is
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indeed �!=2, rather than the naive zero. Then of course
the energy of the filled level should be !=2.

The system which we consider is of a dynamical matrix
M interacting with a system of second-quantized fermions

described by annihilation ai and creation ayj operators

denoted by the same indices fi; jg as the columns and
rows in the dynamical matrix M. This means—with the
convention of inclusion of the zero-point energy—that the
energy term for the interaction of the dynamical matrix M
with the fermions, and that includes actually all energy of
the fermions, becomes

Hint:fermion ¼ 1

2

2
66664ðay1 ; ay2 ; ; ayNÞ;MðtÞ

a1
a2
..
.

aN

0
BBBB@

1
CCCCA
3
77775: (16)

If we let ai and ayi be annihilation and creation operators
for the eigenstate of matrix M instead of for the original
basis vectors, Hamiltonian (16) would reduce to

Hint:fermion ¼
X
i

1

2
xi½ayi ; ai� ¼

X
i

xi

�
ayi ai �

1

2

�
: (17)

In the following, it is understood that the energy eigenval-
ues have been enumerated in increasing order, so that x1 �
x2 � . . . � xi�1 � xi � xiþ1 � . . . � xN . We can of
course consider any energy number xF obeying xnf �
xF � xnfþ1 the Fermi surface (energy), nf being the num-

ber of fermions. Instead of keeping the number of fermions
fixed to nf, we include a chemical potential term in the

Hamiltonian,

Hch ¼ �xF � #fermions ¼ �xF � nf ¼ �xF
X
i

ayi ai: (18)

With such a term one arranges the minimal energy situ-
ation to have precisely the (wanted) value xF for the
fermisurface. Analogously to the fermion interaction
term (17), we shall also for this chemical potential term

choose symmetrized expression ½ayi ; ai� in the annihilation
and creation operators. If we consider the situation in
which the fermions for a given state of the dynamical
matrix M had adjusted to lower the energy most possible
(for fixed M), then we would have the nf lowest eigenval-

ues xi filled and remaining N � nf eigenenergy levels

empty. Including zero-point energy the value of the
Hint:fermion part of the Hamiltonian would be

Hint:fermionjminimal ¼
Xnf
i¼1

1

2
xi �

XN
i¼nfþ1

1

2
xi

! 1

2

Z
dx�ðxÞxsignðxF � xÞ; (19)

and the chemical potential term would give

Hchjminimal ¼ �Xnf
i¼1

1

2
xF þ XN

i¼nfþ1

1

2
xF

! � xF
2

Z
dx�ðxÞsignðxF � xÞ: (20)

Ground state and the spectrum distribution.—The full
Hamiltonian for the system would contain additional terms
coming from fermion interaction and chemical potential
terms

Hfull ¼ H þHint:fermionjminimal þHchjminimal: (21)

Properly it should, however, be stressed that although we
shall formally use this expression, it is in fact only physi-
cally justified when one seeks the ground state. If the
system gets excited, we also expect the fermion part of it
to get excited, and then one should in principle treat the
fermionic part of the system as a properly second-
quantized system.
In seeking the minimum of effective potential of our

dynamical model

Veff ¼ 1

2

Z
dx

�
�2

3
�3ðxÞ þ!2x2�ðxÞ ���ðxÞ

� ðxF � xÞsignðxF � xÞ�ðxÞ
�
; (22)

and in solving �Veff=�� ¼ 0, one obtains the semiclassical
ground-state eigenvalue density

�ðxÞ ¼ 1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ ðxF � xÞsignðxF � xÞ �!2x2

q
: (23)

For x < xF, i.e., for filled states, we have

�ðxÞ ¼ !

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�þ xF
!2

�
�
xþ 1

2!2

�
2

s
; (24)

and for empty states, x > xF, we have

�ðxÞ ¼ !

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�� xF
!2

�
�
x� 1

2!2

�
2

s
: (25)

Pictorially, we obtained semicircle law for both, filled and
empty states, separated by the gap, when the chemical
potential ~� ¼ �þ ð2!Þ�2 satisfies xF < ~�< xF þ
1=!2, and 0< xF < 1 (see Fig. 1).
Notice that the term ðx� xFÞsignðx� xFÞ in Veff has a

constant derivative, corresponding to a constant ‘‘electric
field,’’ on each side of the Fermi surface xF. This electric
field pulls the energy levels away from xF, producing the
homolumo gap. If we did not symmetrize the interaction
with respect to filled and empty states, we would have
�ðx� xFÞ instead of signðx� xFÞ, i.e., we would still
obtain the gap, only it would not be symmetric with respect
to xF.
A more intuitive physical picture could be, however,

obtained in the following way. As we are interested only
in the ground state, we approximate the fermionic interac-
tion with a smooth polynomial expression, as depicted in
Fig. 2. Choosing fðxÞ ¼ ax6 � bx4 � cx2, we obtain for
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the ground-state functional

� ¼ exp

�
1

2

Z
dxdy�ðxÞ lnðx� yÞ�ðyÞ

� 1

2

Z
dx�ðxÞðfx4 � gx2Þ

�
: (26)

This corresponds to

Z ¼
Z Y

i

dxi
Y
i<j

ðxi � xjÞ2e
�f
P
i

x4iþg
P
i

x2i
; (27)

giving, for deep enough wells, the two-cut solution. This
shows that a homolumo gap can appear in a very generic
system. Maybe even too generic, as it is basically just a
two-cut solution of a Hermitean matrix model. However,
the physical interpretation and field-theory formulation
that we presented enables one to go beyond the ground
state using rather standard techniques. Remember that it
has been shown [1] that there are a few eigenvalues left
outside of the semicircle, meaning that there are few states
left in the gap. Thinking of our model as a field-theoretical
model, one can look for the instanton contributions [9] that
are expected to give strongly reduced but nonzero level
density near the Fermi surface. Detailed analysis of these
effects is left for further investigation.

One purpose of the presented studies in a very general
setting is the application of the homolumo gap effect in the
of Random Dynamics project [10]. There, one starts from
the observation that at the present the energies at our
disposal are extremely low, compared with the supposed

fundamental energy scale, presumably to be identified with
the Planck scale. Thus, the ‘‘poor physicist’’ can only hope
to bring say a fermion from just below the Fermi energy to
just above it from the fundamental scale point of view.
Obviously, the appearance of a homolumo gap of the
fundamental energy scale order of magnitude would pre-
vent creation of any fermion whatsoever. What we are
really interested in is obtaining strong reduction of level
density near the Fermi surface, instead of a genuine ho-
molumo gap. Namely, if the level density in the energy
range we consider is especially low, then whenever a
potential scattering from one momentum eigenstate to
one with a different eigen momentum should take place,
there will be an especially small phase space available for
it. That is to say there would be very few states to scatter
into, and thus we expect much fewer such momentum
violating scatterings would take place. This strong en-
hancement in the accuracy of momentum conservation
would be interpreted as a random dynamics spirit deriva-
tion of momentum conservation.
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[8] I. Andrić, L. Jonke, and D. Jurman, J. High Energy Phys.

12 (2006) 006.
[9] R. de Mello Koch, A. Jevicki, and J. P. Rodrigues, J. High

Energy Phys. 04 (2005) 011.
[10] C. D. Froggatt and H. B. Nielsen, Ann. Phys. (Leipzig) 14,

115 (2005), and references therein.

FIG. 1. On the left, we have filled levels, and on the right,
empty ones.

FIG. 2. Smoothing the potential: The upper graph is fðxÞ ¼
x2 � jxj, and the lower graph is fðxÞ ¼ �x2 � x4 þ 2x6.
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