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The staid subject of exact static spherically symmetric perfect fluid solutions of Einstein’s equations has

been reinvigorated in the last decade. We now have several solution generating techniques which give rise

to new exact solutions. Here the Einstein static universe is transformed into a physically acceptable

solution the properties of which are examined in detail. The emphasis here is on the importance of the

integration constants that these generating techniques introduce.
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I. INTRODUCTION

A decade ago, as a demonstration of the use of computer
algebra [1], it was shown that few of the alleged exact static
spherically symmetric perfect fluid solutions of Einstein’s
equations were in fact correct and even fewer made physi-
cal sense [2]. Since then this field of study has been
reinvigorated with the development of several solution
generating techniques which give rise to new exact solu-
tions. These techniques are based on the pressure isotropy
condition, either looked at as a differential equation, fol-
lowing Wyman [3], or by way of invariance properties,
following Buchdahl [4]. For example, following the work
of Rahman and Visser [5], I showed that several of the
acceptable solutions given in [1] follow from a simple
algorithm [6] which in fact generates an infinite number
of physically acceptable solutions. Since then several
works of interest have appeared such as [7–13]. It is
remarkable that such a staid old subject has bounced
back to life.

Here I do not add to these generating techniques but
rather make use of one of them to dowhat they are intended
to do: generate a new physically interesting exact solution
of Einstein’s equations. The example provided serves to
emphasize the importance of the integration constant that
the generating technique introduces.

II. GENERATING TECHNIQUE

Every spacetime M with metric [14]

ds2M ¼ dr2

1� 2mðrÞ
r

þ r2d�2 � e2ð�ðrÞþ�ðrÞÞdt2; (1)

where d�2 � d�2 þ sinð�Þ2d�2, is an exact perfect fluid
solution of Einstein’s equations as long as

m ¼
R
bðrÞe

R
aðrÞdrdrþ C1

e
R
aðrÞdr (2)

and

� ¼ ln

�
C2

Z
e�AðrÞdrþ C3

�
(3)

where

A �
Z cðrÞdr
r�0 þ 1

�
Z dr

ðr�0 þ 1Þð1� 2m
r Þr

; (4)

where 0 � d
dr and the Cn are constants. The functions aðrÞ,

bðrÞ and cðrÞ are given by

a � 2r2ð�00 þ�02Þ � 3ðr�0 þ 1Þ
rðr�0 þ 1Þ ; (5)

b � rðrð�00 þ�02Þ ��0Þ
r�0 þ 1

; (6)

and

c � �r�00 þ r�02 þ 2�0: (7)

The algorithm can be executed subject to the specification
of the function � (as well as smoothness and boundary
conditions [6]) and the constants Cn [15].
The procedure I consider here will assume

C2 ¼ 0 and so C3 is disposable (it can be absorbed into
the scale of t). Call these spacetimes N . Further, I will
write the spacetimes in the form

ds2O ¼ e2�ðrÞ
�

dr2

1� 2MðrÞ
r

þ r2d�2 � e2�ðrÞdt2
�

(8)

whereM, as withm inM, is constructed so as to makeO a
perfect fluid. That is, for M, (5) is replaced by

~a¼ 2r2ð�00 þ�02Þ� 3ðr�0 þ 1Þþ 4r2ð�00 ��02Þ� 6r�0

rðr�0 þ 1þ 2r�0Þ
(9)

and (6) by

~b ¼ rðrð�00 þ�02Þ ��0 þ 2ðr�00 � r�02 � �0ÞÞ
r�0 þ 1þ 2r�0 (10)

in (2). Unlike m however, M is no longer the effective
gravitational mass [6].*lake@astro.queensu.ca
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It is important to note that O is not a conformal trans-
formation of N (due to the restrictions on M) and it is
no more general than N as it is merely a coordinate
transformation of N [16]. We refer to the case � ¼ 0 as
the ‘‘seed’’ of the spacetimesO. The usefulness of the form
(8) derives from the fact that we can clearly recognize
the seed.

III. � ¼ 0

The simplest seed for O is � ¼ C where C is a constant
which, by choice of scale for t, we can set to zero. It
follows that m ¼ C1r3 and the seed is simply the Einstein
static universe. (A cosmological constant � ¼ 2C1 can
be introduced to give zero pressure, but this is not done
here [17].) Given this seed, the regularity conditions on �
are [1]

j�ð0Þj<1; �0ð0Þ ¼ 0 (11)

and so the simplest nontrivial form of � satisfying these
conditions is

� ¼ C4 þ C5r2; (12)

where C4 and C5 � 0 are constants [18]. Since the constant
C4 simply scales the energy density and pressure by 1=e2C4 ,
without loss in physical generality we set C4 ¼ 0. Since C5
can be absorbed into a redefinition of r (and a rescaling of
the as yet to be chosen constant C1) we set C5 ¼ 1 so that
without any loss in physical generality we take � ¼ r2. We
now have

M ¼ r3

R2

�
2þ e2r

2

R

�
C1 �

ffiffiffiffiffiffiffiffiffi
2�e

p
erf

�
R
ffiffiffi
2

p
���

(13)

where R �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4r2

p
and ‘‘erf’’ is the error function.

Whereas we could of course continue our discussion in
terms of the coordinates used in (8), we now revert to more
traditional coordinates.

Under the coordinate transformation er
2
r ¼ r we now

have

ds2 ¼ F ðrÞdr2 þ r2d�2 � 2r2

H ðrÞ dt
2 (14)

where

F ¼ J 3

ðJ þ 2r2ð ffiffiffiffiffiffiffiffiffi
2�e

p
E � C1ÞÞð1þH Þ2 (15)

with

J �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2H

p
; (16)

E � erf

�
J
ffiffiffi
2

p
�

(17)

and

H � W ð2r2Þ (18)

where W is the Lambert W function [19]. As shown in
Fig. 1, the constant C1 plays the central role regarding the
physical acceptability of these solutions. For

C 1 <
ffiffiffiffiffiffiffiffiffi
2�e

p
(19)

� vanishes while p > 0 which is physically unaccept-
able. For

C 1 ¼
ffiffiffiffiffiffiffiffiffi
2�e

p
(20)

the solution is global, not isolated, and � and p! 0 only
as r ! 1. Finally, for

ffiffiffiffiffiffiffiffiffi
2�e

p
< C1 < 2þ ffiffiffiffiffiffiffiffiffi

2�e
p

erf

�
1
ffiffiffi
2

p
�

(21)

the pressure p vanishes at finite r> 0 and the solutions
match onto a vacuum exterior by way of continuity of the
effective gravitational mass. The density contrast at the
boundary increases as C1 increases. Throughout the physi-
cally acceptable distributions � and p are monotone de-
creasing and the adiabatic sound speed vs is subluminal.
Some properties are shown in Fig. 2.
We record here in explicit form the essential physical

elements of the solutions: The effective gravitational mass
is given by

FIG. 1. The abscissa is r and the ordinate is C1. From the
top down the curves show �0 ¼ 0, p ¼ 0, � ¼ 0 and p0 ¼ 0.

The curves p ¼ 0 and � ¼ 0 intersect the ordinate at 2þ
ffiffiffiffiffiffiffiffiffi
2�e

p
erfð 1ffiffi

2
p Þ and ffiffiffiffiffiffiffiffiffi

2�e
p

erfð 1ffiffi
2

p Þ, respectively. They are both

asymptotic to C1 ¼
ffiffiffiffiffiffiffiffiffi
2�e

p
.
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~M ¼ r

2

�
F � 1

F

�
(22)

with F given by (15), the energy density is given by

8�� ¼ 2Kr2ðC1 �
ffiffiffiffiffiffiffiffiffi
2�e

p
EÞ � 3L

4J 5r2
(23)

where

K � 3J 6 þ 8J 4 � 5J 2 þ 6 (24)

and

L � ðJ 2 þ 2ÞðJ � 1Þ2ðJ þ 1Þ2J ; (25)

and the isotropic pressure is given by

8�p ¼ 2P r2ð ffiffiffiffiffiffiffiffiffi
2�e

p
E � C1Þ þQ

4J 3r2
(26)

where

P � ð3J 2 � 1ÞðJ 2 þ 1Þ (27)

and

Q � ð3J 2 þ 1ÞðJ � 1ÞðJ þ 1ÞJ : (28)

Finally, the square of the adiabatic sound speed is given by

v2s ¼ J 2 2Rr2ð ffiffiffiffiffiffiffiffiffi
2�e

p
E � C1Þ þ S

2T r2ðC1 �
ffiffiffiffiffiffiffiffiffi
2�e

p
EÞ þU

(29)

where

R � ðJ 2 � 3ÞðJ � 1ÞðJ þ 1ÞJ ; (30)

S � 3J 4 � 2J 2 þ 3; (31)

T � ðJ 4 � J 2 þ 6ÞðJ � 1ÞðJ þ 1ÞJ ; (32)

and

U � �3J 6 þ 8J 4 � 15J 2 þ 30: (33)

IV. DISCUSSION

The Einstein static universe has been transformed into a
class of physically acceptable static fluid spheres whose
physical properties have been written out in explicit form.
The technique is but a coordinate transformation of one
discussed previously [6] but it allows a clear understanding
how various spacetimes can be interrelated [20].
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