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We clarify the relation between the vertex operators in type IIB matrix model and superstring. Green-
Schwarz light-cone closed superstring theory is obtained from IIB matrix model on two-dimensional
noncommutative backgrounds. Superstring vertex operators should be reproduced from those of IIB ma-
trix model through this connection. Indeed, we confirm that supergravity vertex operators in I[IB matrix
model on the two-dimensional backgrounds reduce to those in superstring theory. Noncommutativity
plays an important role in our identification. Through this correspondence, we can reproduce superstring

scattering amplitudes from IIB matrix model.
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L. INTRODUCTION

String theory is perturbatively reproduced from type
IIB matrix model [1] via two-dimensional noncommuta-
tive (NC) N = 8 supersymmetric gauge theory [2—4] in
the IR limit [5]. The emergent string theory is Green-
Schwarz (GS) type IIA superstring theory with light-cone
gauge [6], which is also derived from commutative N = 8
super Yang-Mills [7].

In the two-dimensional gauge theory, the IR limit cor-
responds to the strong coupling limit since the gauge cou-
pling has dimension (length)~!. Dijkgraaf, Verlinde and
Verlinde have shown that the IR limit corresponds to the
free string limit. This logic is applicable to our case and
actually we have derived the free Green-Schwarz string
action from NC gauge theory by taking the strong coupling
limit [5]. We emphasize here that the strong coupling limit
(the IR limit) of NC gauge theory is the free string limit,
not the low-energy limit of Green-Schwarz string theory.

The winding number w is reinterpreted as a light-cone
momentum p, in a T-dual interpretation. In NC gauge
theory, such a duality is realized by identifying the mo-
mentum with the longitudinal coordinates. In our proce-
dure, noncommutativity € plays a crucial role to reproduce
the world-sheet action. It is identified with the string scale
o' in the process of derivation.

Noncommutativity in NC gauge theory gives rise to
various novel properties in comparison with the commu-
tative gauge theory. Among them, we quote the following
two aspects. The first property is the regularization of UV
divergence, which gives rise to the UV/IR mixing effect
[8]. The qualitative behavior of the correlation functions,
such as the power of the momentum dependence, is af-
fected by the existence of noncommutativity. The second
property is the introduction of the scale in the theory. Since
there are no scale parameters in the action of IIB matrix
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model, the noncommutativity could provide a fundamental
scale in the emergent theory. We have indeed identified
the scale in NC gauge theory with the string scale in the
previous paper [5]. Since the NC scale sets the eigenvalue
density of the matrices, our identification of the string scale
is consistent with [9].

In order to reveal the perturbative superstring picture in
IIB matrix model more explicitly, it is important to dem-
onstrate the procedure to calculate the superstring scatter-
ing amplitude from IIB matrix model. Since there is an
open/closed duality in string theory, closed string theory
will be naturally included in IIB matrix model. The mass-
less sector of type II closed superstring consists of the
supergravity multiplet. Supergravity controls the behavior
of long-range forces. The coupling between the fields in
the supergravity multiplet and the operators in IIB matrix
model has been clarified through the construction of the
relevant vertex operators. The vertex operators for the su-
pergravity multiplet are determined uniquely by the maxi-
mal N = 2 supersymmetry transformation in IIB matrix
model [10-12]. These operators are constructed in [10] in
the first study, where the wave functions are introduced as
the representations of the supergravity multiplet. In [11],
the vertex operators are investigated further by expanding
the supersymmetric Wilson loop operators [13]. In [12],
the vertex operators are constructed up to the sixth order of
Majorana-Weyl spinor A. Since the algebraic calculation
is very complicated, the complete structure of the vertex
operators is not yet determined, but the vertex operators for
the conjugate gravitino and 2-form antisymmetric field are
completely determined.

In this paper, we compare the IIB matrix model vertex
operators on the two-dimensional backgrounds with those
in superstring. As we have derived supersymmetry trans-
formation of GS light-cone superstring from IIB matrix
model on the two-dimensional backgrounds [5], we can
reconstruct the superstring vertex operators based on the
symmetry. In such a sense, this comparison can be re-
garded as a consistency check of the IIB matrix model
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vertex operator construction. Through this correspon-
dence, we can reproduce the physical superstring scatter-
ing amplitudes from IIB matrix model.

In Sec. IT A, we review the supergravity vertex operators
in IIB matrix model, which was constructed in [12]. In
Sec. II B, we review the closed superstring vertex operator
construction of GS light-cone superstring theory. In
Sec. ITC, we review the derivation of GS light-cone super-
string action from IIB matrix model, which is carried out in
the previous paper [5]. The derivation of supersymmetry
transformation for GS light-cone superstring from IIB ma-
trix model is also shown. The main investigation is carried
out in Sec. Il where the vertex operators of IIB matrix
model on the two-dimensional NC backgrounds are ana-
lyzed. We verify that these operators are equivalent to
superstring vertex operators. Section IV is devoted to the
conclusion. Light-cone open superstring vertex operators
are shown in Appendix A. In Appendix B, we construct
type IIA closed string states in a radial quantization pro-
cedure. By this construction, we can directly calculate the
scattering amplitude from IIB matrix model.

II. VERTEX OPERATORS AND SUPERSYMMETRY
TRANSFORMATION

A. Vertex operators in type IIB matrix model

The Wilson loops are the vertex operators in IIB matrix
model [14]. The gauge invariant observables in non-
commutative gauge theory are the Wilson lines [15-17]
which are obtained from the Wilson loops in matrix
models. The behavior of closed string modes can be read
from the correlation functions between the Wilson lines.
The various properties of NC gauge theory are investigated
so far, especially on homogeneous spaces [18-20]. In
four-dimensional backgrounds, the behavior of graviton
propagators is investigated in detail through the vertex
operators [21].

The vertex operators for the supergravity multiplet are
constructed in [12]. These operators are linearly coupled to
the supergravity fields and related with each other through
the supersymmetry transformation. The result which has
been known up to now is summarized as follows. A, (u =
0,1,---,9)and ¢y are N X N Hermitian matrices and ¢ is a
ten-dimensional Majorana-Weyl spinor.

(i) Vertex operator for dilaton ®:

V® = Streik4, (2.1)
where the symmetric trace Str is defined as

, 1 . )
Str 0,0,¢™ = f da trO, el 0, eill=akA,
0
(2.2)
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(i) Vertex operator for dilatino ®:
V® = Streik 4y, 2.3)

(iii) Vertex operator for the second-rank antisymmetric
tensor field B,

A i
Vﬁ,, = Stre "A<E¢r . ](F#,,gb - iF’“’)’ 2.4)
where

F,,=[A,LA] (2.5)
(iv) Vertex operator for gravitino ¥ ,:
vy = Stre”"A<— é(& KT, 0) — 2FW) - gT.
(2.6)
(v) Vertex operator for graviton &,,,:
Vi = Stre (= G AT T, ) (- Toy)
- ikp‘/_/'rpb’(ud"Fv)'B

+

N = K

T lA,), y]+2F," - F,,,,). 2.7)

(vi) Vertex operator for the fourth-rank antisymmetric

tensor C, '

VC

nrpo

— Stre”"A< Kaky (- T, %)

1
g4l
- i -
: ($ : Fpg]ylﬁ) + g ¢ : F[Vp()’[¢’ A,u,]]
1 -
+>Zlﬁpy '(¢' rpg]y¢)ky
—iF(,, - FM]). 2.8)

(vii) Vertex operator for the conjugate gravitino W,:

- Stre””‘(— S KT, )

- - 1 -
: ('J[ ' ]'—‘VT(T(/l) : ‘/’FV + ﬁk)l(l// : F/\,u,vlwl’)
- 1 -
: ¢FVFPU - FP7 — gk)L(lﬂ : F)La,Bl//)
ylB - Fo, + iyl [A,, ¢yl
—iF,,  Fop IZIFVFPU). (2.9)
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(viii) Vertex operator for the conjugate antisymmetric tensor field B, ,:

v — Stre”"A<— e

16 4!

Fa[AV]’ l/f] 4,'—325/.“/0([3)/ : (%ﬁ

(iﬂ ](F[Iualp) (lz ' kraolp) ’ Fo'v] -

I - [‘ab’vlp)

o RRTRG T ) G T) - (T ) + - B ) - 2 KT 5,00

1 - - 1 -
3_2 lp : F[,U,[Aa-’ ¢] : (lp : ](F()'V]lp) - 6_4(¢ : kr[,u,a/w)

- 6L.4[Aw FaT] : (l} : FT,U,Vlr//) + é(lr& : F,u.l/p(r/\q'lél//)

. PO . FAT 4 %(& . Fp(,]ﬁﬂ) . PO . FRV %(1} . Fpgklﬁ) . FHP . FYO 4 %(lﬁ . F[;w]é‘ﬂ) . Foa . FW]

1 - . . .
__(¢'Fﬂvkw)'FpU'Fop+ilp'r,u.va[AB7¢]'FaB+§¢.Fpa[ﬂ[Av]’¢]'Fpg+iw

F(M[AP)’ ¥l FP, —

where

Lo}
—
o]

nrpoT

‘TolAp), ¢l FP* —iF,,

= {(pw ‘pﬁ}(ror,u VpG'T)Ol,B'

“FPTF,, +~F,

7 (2.10)

, - Fro . Fo’p):

@2.11)

The remaining vertex operators for the conjugate dilatino and dilaton are only partly known.

(ix) Vertex operator for the conjugate dilatino O°:

VI = Stre (TR - - Tk - (B TPH0) - T

841

(i - KT opip) - FP¥ - zﬂFW—iFW (- KT i) - FR7 - IT o+ e oo

“FPO-FM + it - F“”(FW

(x) Vertex operator for the conjugate dilaton ®¢:

Vo = St ik~A(
re FY

P (A B Ty T P F07 4 TR - (F,

1
- (FW CF' - Fpy Fo = 2Fpy  F - Fpy F"P)).

In these expressions, the Lorentz indices w, v, p, o, A, T,
a, B,y,0runover0,1,---,9.

B. Vertex operators in superstring theory

We review the construction of the vertex operators for
Green-Schwarz light-cone superstring. In the early 1980s,
Green and Schwarz investigated the light-cone gauge
formalism of superstring theory. The vertex operators are
constructed in their formalism and the tree and one-loop
amplitudes are calculated [6,22-24].

The light-cone coordinates ¢;(7, o) decompose into the
sum of the right-moving and left-moving components
¢R(1 — o) + ¢E(7 + o). Since the two sectors separately

FHY - pU'(¢ FMVpUAan)k)\

1
-FPO-F,_ — prtr “F,, FM,,»

W -T,p) - (- Tyskip) - (- Tsphth) - (- Tophh) + -

Fra (- KT pth) - (- KTF ) - 4T,

_1F,ua
24

25'

JT = L - (- A7) - g

i -

ﬁ‘r/j ) I‘,U,Vp(r/\TFMV

2.12)

48 (l/_l ' F/U/p(r)n'klwb) e
1
CFP7 - Fyy = FPF oy FW)

(2.13)

|
describe the Fock space of open string states, closed string

states are given by the direct products of open string states.
Open string vertex operators are shown in Appendix A.
There are 16 X 16 = 256 massless states in type I[IA(IIB)
superstring theory. By the product of two SO(8) repre-
sentations, or two super Yang-Mills multiplets, they are
written as (left mover) X (right mover) = (8, + 8,.) X
(8, + 8,) in type ITA superstring and (8, + 8;) X (8, +
8,) in type IIB superstring. We focus on ITA superstring in
what follows.

8, X 8, sector

8, X 8, sector is decomposed into

8, X8, =[0]+[2]+ () =1+28+35, (2.14)
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where [2] denotes the second-rank antisymmetric tensor
field B;; and (2) denotes the symmetric traceless tensor 4;;.
[0] corresponds to the dilaton ®.

The vertex operator for the symmetric traceless tensor in
type IIA superstring theory is given by’

1
V) w=—, ( k- )Vf)(ik,rl—a)
o ol
Vit a b gt i) Vit ca oo gt 1)
_grabsRSRk L _grdb'sLst R
1 o
+ e rﬁj,ﬁs;gsgklrf;;sgs‘gkm)elkd’, (2.15)
where
(Ir=Cr—0), () =)+ o)
(2.16)

VB and VI (V1) denote the bosonic and fermionic vertex
operators. The explicit form of these operators is shown in
Appendix A. The indices i, j, [, m run over the transverse
directions 2, - --,9. The vertex operator for the second-
rank antisymmetric tensor is given by

(V)P = — 13k 7

4
- O')VB(Zk T+ 0')

The vertex operator for dilaton is given by

(2.17)

1 1
V(k) = — ! <fk, T— 0'>Vf3(fk, T+ 0')
2 2
- (qs;;czsz
rahSRs??qubL Fll SLSLkl¢R
2 FabsRSZle’m sstkm)eik¢. (2.18)
8. X 8, sector
The 8, X 8; sector is decomposed into
8, X8 =[1]+[3]=8, + 56, (2.19)

where [1] and [3] denote the 1-form field C’i and 3-form
antisymmetric tensor field C” !
The vertex operator for the third-rank antisymmetric

tensor is given by

"In order to distinguish the superstring vertex operators from
the vertex operators in IIB matrix model, we denote the closed
superstring vertex operators in calligraphic characters.
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1

(VIFa(E k, T

) F”;Vfb(lk,T-i- a> ) (2.20)
L

where F;j[f is inserted to construct the irreducible tensor.
The vertex operator for the R-R 1-form field is given by

1
(V{;(E k, T

- 0') abeb(;k T+ a')L). .21)

8, X 8, and 8, X §,, sectors
The representation 8, X 8; (8, X 8,) is decomposed
into

(Vijl)Q(k) ==

(V) = -

8, X 8, = [1]+[3] = 8. + 56,

(2.22)
8, X 8, =1[1]+[3]=8, + 56..
The vertex operator for gravitino is given by
1
VYW = - (vi(h 7
e 2
1
- 0') V?(—k, T+ a’) ),
R \2 L
1 1 (2.23)
(V¥ = - (ve(h 7
e 2
1
- cr) Vﬂ(ik, T+ 0') )
R L
The vertex operator for dilatino is given by
5 1
V) =~- (Vfa<—k, T
o 2
) yaaVB( k, T+ (r) )
2 L
! (2.24)
Ve(k) = - (ViB(E k, T

47Ta
i yr (]

— o) YuVis Ek,’T‘i‘O' .
R L

C. IIB matrix model and Green-Schwarz superstring

The action of IIB matrix model is written as

5 — —é Tr(i [4%, AT, 4,1+ S ITHA,, ¢]).
(2.25)
By expanding the matrices
Ay =puta, (2.26)
around the two-dimensional NC background,
[P Pyl =10, (2.27)
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we obtain two-dimensional noncommutative gauge theory

with N = 8 supersymmetry [2—4]

0 o
S= g f Px (D, D7I[D ;. D]
+2[D, ¢'IDs, d:] + (¢ 11 din &)

+ Z&Fﬂ[Dﬂ» {ﬁ] + Z&Fi[d)ir ‘,ﬂ)w

(2.28)

where g, =0, 1 and i, j=2,-- -,9.2 Trace of the
matrices is mapped into the integral of the functions as

0
Tr ﬁﬁtr[dzx,

where tr is a trace over U(n) gauge group. Noncom-
mutative parameter 6 is an off-diagonal matrix element
of the matrix 6 = 6.

In the IR limit, we can identify the perturbative string
spectrum. First,

i) * product reduces to ordinary commutative product
since higher derivatives in the product can be neglected.
The action (2.28) becomes the commutative N = 8 U(n)
super Yang-Mills in this limit

(2.29)

0
- fdzx t(F3; + 2Dz, + (¢4, &)]

X (i, 1+ 20T2D 5 + 24T [ b, ).

S = —

(2.30)

This action includes eight matrix scalar fields ¢; and
16 matrix spinor fields ¢ = (s%, s%). These fields transform
in 8,, 8., and 8, representations of SO(8) group. The
perturbative vacua of this action are represented by the
diagonal matrices ¢; = (qﬁdiag)i, which form the moduli
space of this theory.

By assuming that all the eigenvalues of matrices do not
coincide with each other at any points on the world sheet,
all excitations of the off-diagonal modes become massive.
Then,

ii) only diagonal elements are relevant in the low-energy
limit since massless excitations come from the diagonal
elements. The interaction terms [} b;1ldi ¢;] and
2yT ;[ p;, ] vanish since the diagonal components com-
mute. The gauge fields on the world sheet decouple from
the other fields. It has been found that the IR limit corre-
sponds to the free string limit [7]. It is therefore consistent
to modify the short distance structure of their construction
as we have introduced the noncommutativity.

We transform the world-sheet coordinates from R? to
R' X S! as
‘r+i0’_

=X + ix1 =e (231)

>The metric is Wick rotated into the Euclidean signature in
order to make contact with NC gauge theory.
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By the rescaling

1 1
g — 721/11%, by — E U, (2.32)

we obtain an action for a single string with the winding
number w as a string may wind w times in the o direction

0

_ (=] 27w \2 \2
$= 4o [Tar [ aoto,00 + 0,80

+ (T o, +Ta_)).

(2.33)

Since the rank of the gauge group is related with the wind-
ing number of the strings as n = Y ;w;, multiple strings are
obtained in general. GS superstring action with light-cone
gauge is obtained by identifying # = ﬁ.

This action (2.33) is invariant under the supersymmetry
transformation with 32 supercharges of type IIA string the-
ory which originates from N = 2 supersymmetry trans-
formation in IIB matrix model as follows. Supersymmetry
transformation in IIB matrix model is written as

60y =2[A, AJve  80A, = iel,y,

50y = (2.34)

8?4, =0.

On the two-dimensional background, this transformation
reduces in the IR limit to

8(1)sa = _d)i')/imé‘a, S(I)Sd = _qzi,}/éaea’
S0, = 2Eyst + @iy, 8Os, =
8%, = —m,  8P¢; =0, (235)

where we have redefined ¢ — 7% + f¢, n¢ — % — Oe
to absorb the constant shift. The factors /z and /Z are
absorbed by the redefinition of € and 7. y!, are the
Clebsch-Gordan coefficients among three inequivalent
SO(8) representations. This transformation leaves the
Green-Schwarz light-cone string action (2.33) invariant.

III. SUPERSTRING VERTEX OPERATORS IN
TYPE IIB MATRIX MODEL

In this section, we derive superstring vertex operators
from those of IIB matrix model on two-dimensional back-
grounds in the IR limit. We verify the equivalence between
our construction and the light-cone formalism (except for
the dilaton and dilatino) in subsections III A, IIIB, and
III C,. For the dilaton and dilatino operators, we can find a
convincing correspondence between both constructions in
Sec. IIID.
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A. 8, X 8, sector

Graviton h;;
The vertex operators for graviton in IIB matrix model is
written as

, 1 _ _
vh, — Stre”"f‘(— oc KT TP - (5 o)

i 1.
— K Topth - F)P + 50 TlAy), ¥

+2F,P - FV,J>. 3.1

In the two-dimensional background (2.27), the vertex op-
erators are written in terms of the fields ¢‘, s* and s%.
Furthermore, only the diagonal components are relevant in
the IR limit. The symmetric trace Str is mapped into the
integral as

PHYSICAL REVIEW D 77, 126016 (2008)

V) 0 21
Str — — f dr do(- ). 3.5
27 Jo

T 0

In order to confirm that matrix model vertex operators are
equivalent to superstring vertex operators, we investigate
the IR limit of the graviton vertex operators term by term.
(a) F;# o term
The bosomc part of the graviton vertex operator is writ-
ten as
ik-A .
28tre™ 2 F - Fjy, 3.6)
where we can assume that the graviton has a transverse

polarization. In the two-dimensional background, leading
contribution in the low-energy limit gives

Str e AR Fpy = [ dxe*?a_$4ia, o), 3.7

/] 0 27w
Str ﬁ—[ drf dolz|*(- - ). (3.2)
27 Jo 0 where
By the field redefinition 0+ =0, X i0,. (3.8)
. - 1 s - 1 S 3.3) Thus, the operator (3.6) reduces to the first term in (2.15).
a wz @ a wz @ ’ (b) —ikplﬂrpﬁ(,lﬁF/)ﬂ term
Since I' . and I'_ act on the fermion as
and the scaling B
Rl ijihg = F;JhSRSz’ el g = 0, (3.9)
T WT, o= wo, (G.4) ¢Lr+ij¢L = ¢ T —ijr = F” SLSZ
we obtain the correspondence we obtain
i . - i . - . - iy
- ZStre’kAk”l//Fpﬁ(il//Fﬁ = ga [deO'elk(b(kll//rl,(id/d)jk) + kllllrlJr(ll//(ﬁi))
0 . ;
- f drdoe (T} sashklo., ¢f) + TV sdstkla_ ), (3.10)
a

by the field redefinition (3.3). Thus, this term is equivalent to the second and third terms in (2.15).
(©) - %kpk”(’ﬁripﬁ'/’)(‘ﬂrjglgl//) term

This term reduces to

! i I I o i Tt 7 - m(JT — 7 +
~ 105 Stre Kk WL PO PT jopth) = — 30— j drdoe™ (KK (JT )T, =) + KT =) T, )
+ klkm(lzr(,lnlp)(‘zrj)mnlp) + k_k_('yzr([fnw)(l/_jrj)*nw))

T fdeae’k¢(2F(’lsRs?eklI‘])msstk’"

+ 4F(z{nsRsZk1F1)mnsngkm + k kT o SaSpI s 8 4)

[deae’k¢F(’lsRs§k1F’)m st km, (3.11)

6477
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which is equivalent to the last term in (2.15).

(d) 3¢ - T[A)), ¢] term

This term vanishes in the IR limit.

Next, let us consider the light-cone momentum in
the exponential factor k- ¢ = k;p; — k- p* —k* ™2
Gauge fields exist in this factor as

kT +ktd =k (pt+a")+ kT (p” +a).
(3.12)

The correlation function between the gauge fields is
given by

(e (z)) - e 0)(2y)) ~ |7y — 27| "M 3

where o/ = g2/#. If we put together the correlation func-
tions between the gauge fields and scalar fields, the mo-
mentum dependent power of (3.13) is summed up in the
covariant form. It is because we started with the covariant
IIB matrix model action.

On the other hand, in the light-cone gauge formalism,
k- ¢ = ki¢i - k_¢+ = ki¢i - k_al(p+7' + )C+) where
k™ = 0. After rotating 7 — —i7, the light-cone momen-
tum in the vertex operator gives a factor

(3.13)

e*a’kl’erT, |k2> — e*a’r,k;k;|k2> — |Z1 _ Zzlfa’k;kglkﬁ
(3.14)

to the scattering amplitude. This factor is also summed up
in the covariant form if we put together the contribution
from the transverse and longitudinal modes. Thus, the
light-cone momentum contributes consistently to the am-
plitude in the formalism.

In this way, through the calculations (a), (b), (c), and (d),
we have verified that the graviton vertex operator in IIB
matrix model (2.7) reduces in the IR limit to

. 1 . . Lol
Vi = Stre’k'A(— %kpk”(lff T P) - (- Tjopth) = kal’[/

1-
Loty Fj)P + 54 TulAj g1+ 2F - Fjp)
2 f de doe ¢(¢(l¢1) (lll)sa bkl(f)i)
a
- gf‘%sislzkl ' 4Fg£sRstlF])m ﬁk'")
= (Vij)h,
which is the graviton vertex operator in type IIA super-
string theory.
Second-rank antisymmetric tensor B;;
The vertex operator for B;; in type IIB matrix model is
shown in (2.4) and (2.10). We will verify that (2.10) in the

two-dimensional background is equivalent to (2.17), which
is the B;; type superstring vertex operator. For the graviton

(3.15)

*In the light-cone gauge evaluations, we put k* = 0 except for
the initial and final states.
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vertex operators, we have explicitly checked the equiva-
lence term by term. But since (2.10) consists of many terms
compared to (2.7), we verify the equality in a systema-
tic way.

The operator in IIB matrix model which reduces to B;;
type (1,1) operator should be either of the following four
forms:

(7 TA (7 N PR
(Fr)t WL ),

WL ) (Fi g,

(FI)L(F,)R e
(3.16)

They should not contain extradimensionful operators. The
terms in (2.10) which are of the forms (3.16) are only the
following three terms:

. - - 1 -
Stte (L 0 KT ath) - PP K + (0 )
S FO% - Fop, — iF,, - FP7- F,,,,). (3.17)

Other terms do not reduce to the (1,1) operators and do not
give any contributions to the amplitude in the IR limit. By
the field redefinition (3.3) and the scaling (3.4), we find that
these terms are equivalent to

—fdrda'e’k‘f’(a (l)

- gfggs,‘ia,gbgsikl + argésﬁs?eklri];"szsﬁkm),

_F%S%SR ko ‘f’i]

(3.18)

which is indeed the B;; superstring vertex operator (2.17).
Thus, we have verlﬁed that, in the two-dimensional back-
ground, the antisymmetric 2-form vertex operator in 1B
matrix model (2.10) reduces to

0VB‘ ——fdrdae’k¢(a d)[’ (;S’]

— —FE:[I)SRSR 8+¢£] — grggsﬁa_qbgsﬁkl

+ ar{;;sngklrf]"’sLstm) (3.19)

Dilaton &

Although the dilaton vertex operators in IIB matrix
model are not completely determined yet, we can find a
convincing correspondence between the matrix model ver-
tex operators and the superstring vertex operators. We will
discuss this consistency in Sec. III D.

B. 8, X §; sector

Since we start from the type IIB supergravity multiplet,
the R-R sector includes 2-form and 4-form fields. From
them, we can obtain 1-form and 3-form fields by singling
out the light-cone (—) direction.
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The third-rank antisymmetric tensor C;j
Vertex operator for the 4-form field in IIB matrix model
is present in (2.8) as

VC

nrpo

= Stre”"A(8 .14! kok, (i - F[Myalﬁ) (g FpU]y¢)

i - 1 -
+ glﬁ ’ F[Vpo'[{lb’ A,u]] + ZF[,U,V ! ($ ! Fpg]ylp)k'y
—iFu, Fpg]).

We can obtain the operators for 4-form, 3-form, and 2-form
fields from the vertex operator (3.20) as

(3.20)

(Vijim)C, (3.21)
V=S (3.22)
(V*)S, (3.23)
(V)< (3.24)

We will show that only the 3-form (3.22) survives in the
IR limit.

First of all, we discuss the 4-form vertex operator (3.21).
The first term in the operator (3.21) is decomposed into

Stretk4

8 -l4z Kok (@ - Ty 0) - (- Ty P) + kky (4
Ty W) - @ T 0) + ke (- Ty~ )
(TP ) + Kk - Ty ") - (- L0 W)
+ kok_ (- T ) - (- Ty ™) + 2k k_(
L) (23 YO

The first term and the last term in (3.25) vanish because i, J,
I/, and m are antisymmetric. Other terms do not contain
(1,1) operators in the IR limit. Thus, this term does not
contribute to the amplitude. The second term in the 4-form
(3.21) vanishes in the IR limit since ¢ and A; commute.
The third and fourth terms in (3.21) apparently do not con-
tain (1,1) operator in the IR limit. Thus, we have confirmed
that 4-form (3.21) does not contribute to the amplitude.

In order to obtain the 3-form field, we put w direction
with the (—) direction. Then, the first, third, and fourth
terms in (3.22) vanish from the condition that the indices i,
J, and [ are antisymmetrized. By redefining the field as
(3.3) and (3.4), the third term in (3.22) reduces to

(3.25)

(Viijl

N
)C4 = Streik ¢ §¢, . F[iﬂ][iﬁ,A*]
0 ) N ~
= 31—77_ fdrda'e’k‘ﬁsﬁl‘%l]sf|WZ|[k¢,p 1

_,- 9 el b g 1P
=k g deO'SRrab spe T (326)
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In the last line, we use the canonical commutation relation
[p*, p~] = 6. The initial state can be represented by a
coherent state exp(k* p7)|0). Since wz* = p*/6 on a
NC plane, wz' is fixed to be wz™ = |p™|/6. Semi-
classically we also find that wz~ = |[p*|/60 since |p™]|
is real. In this way, we have obtained the 3-form field in
8. X 8, sector. Thus, we have verified that the vertex
operator (3.22) reduces to the superstring vertex operator
(2.20). In this reduction, fermions have dimension (},1
and the background A~ — p~ is interpreted to have di-
mension (3, 3).

If we single out the opposite direction +, we obtain the
3-form field (V* ;). This operator vanishes

. i -
(V+iﬂ)c4 = Streit ¢ 5 ¢ . F[iﬂ][lﬁ, A*]

0 . N
= ;_77 fdeaelkqss%Fg;l]S[[i|WZ|[k¢, p*1. =0,
(3.27)

since kT = 0.

Finally, by the properties that Lorentz indices are anti-
symmetric, one can confirm that 2-form (3.24) does not
contribute to the amplitude.

In this way, we have verified that the 4-form matrix
model vertex operator (2.10) reduces to the 3-form super-
string vertex operator (2.20) by singling out the (—)
direction.

1-form field C;

From (2.10), we can obtain the operators for 2-form,
1-form, and scalar fields as

(V;j)®, (3.28)
(V=)P, (3.29)
(V)P (3.30)
(V)= (3.31)

2-form (3.28) reduces to B;; superstring vertex operator

(2.17) as we have verified in the previous section.
1-form (3.29) and (3.30) reduce to

i _ -1 ik-A T — a
g (V7 = 5y Sue A T [Ag y] - Fo8

; . o
=5 /drdoe’kd’s%y;ksflwzl[p*, ko],

— 1Y [ dracerosgy 58107 332
=k o Tdoe™ S} Yy SL g (3.32)

Lvr)E=o. (3.33)
6

Other terms in (3.29) do not contribute to the amplitude in
the IR limit. One can also confirm that O-form (3.31) does
not contribute to the amplitude. The operators in (2.4) do
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not contribute or they have the dimension (3,3), (1,0),
or (0,1).

Thus, we have verified that matrix model vertex operator
(2.10) reduces to the superstring vertex operator (2.21) by
singling out the (—) direction.

C. 8, X8 (8, X8,) sector

Gravitino V;

The vertex operator for gravitino W, in IIB matrix
model is shown in (2.6) and (2.9). The vertex operator
(2.6) is

vy = Streik'A(— %2(& KL, ) — 2FW) -yT”. (3.34)

By the field redefinition (3.3) and the scaling (3.4), it
reduces to

0 . . A
Vi =—-— j drdae’k¢<<—2¢’ + —rgj,,sasW) siwz
27T 4 R

A
+ \/w_zs;g(—zd)’ + ngbsasbk’) )
L

0 , o1 o
= [deaelk¢((¢’ - grifbs“sbk[)R"%si
+
A SYREE T
+ "7SR(¢ —gféfbs sbkl)L).

In this way, we have shown that (2.6) is equivalent to the
superstring vertex operator in (2.23). One can check that
the matrix model vertex operators for the conjugate gravi-
tino (2.9) do not contribute to the amplitude in the IR limit.

(3.35)

D. Dilaton and dilatino

Dilaton ®
The dilaton vertex operator in IIB matrix model is shown

in (2.1)
Stre'k4, (3.36)

and (2.13)

Ve = Stre”"A<% (¢ - THVKap) - (FW “Fr7-F,,

1
— ZFptf “Fyp- FM,,> — <F;w “F" - F,, - F7¥

1
F . FYH. Fpg_ . Fﬂ'ﬂ) + .. ) (337)

=2 Fur
In the two-dimensional background, by the field redefini-

tion (3.3) and the scaling (3.4), the explicitly written terms
in (3.37) reduce to

. 1. .
%[drdoe’k¢<—gfifbs%s,bek’&rqﬁi

1 R A :
- ga_d)}ergbsﬁsfkl + a_¢;a+¢1). (3.38)
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These terms are present in (2.18) and the relative numerical
coefficients also agree. But the last term in the superstring
vertex operator (2.18) is missing. This term may come
from the undetermined terms in (2.13), for example,

Stre™ A - Ty k) - T k) - FFVF,y. (3.39)

We also need to examine the other terms, that is, (- -) in
(3.37). Explicitly determined terms in the (conjugate) di-
laton vertex operators in the paper [12] are (3.37) and

. 1
sue (g

i 0 TR - (- Ty - (- Toghih)

: (lz : Faﬁ]&p) + é(& : F;U/pa')n'kw) A ad

“FM 4 [A ] T, Fr e F”‘T>. (3.40)
Therefore, we should check the behavior of these terms.
Since the total dimension of the first term in (3.40) is four,
there are no (1,1) operators in this term. In order to obtain
(1,1) operators from the second term in (3.40), we need
to fix F#” = FP? = F*~, Apparently, this term does not
contribute to the amplitude since it vanishes by the I, _, _
projection. The last term in (3.40) does not survive by the
similar reason. Unless at least two of p, o, and v are
transverse indices, we cannot find the (1,1) operator. But if
we choose p and o to be the transverse directions as p = i
and o = j, total dimension of the operator becomes three.
Thus, we have confirmed that the terms other than (3.37)
which are explicitly constructed in [12] do not contribute to
the amplitude. Although there are many unknown terms in
the matrix model vertex operators (2.13), such operators
should reduce to the (1,1) operators in (2.18). We thus
believe that all the terms boil down to the superstring
vertex operators (2.18).

Dilatino @

The vertex operator for ¥, in type IIB matrix model is
shown in (2.3) and (2.12). The dilatino vertex operator in
(2.12) reduces to that in superstring as
LRV S iStreik'A<— L pua g, (i - KT )

0° 62 12 “p

Yyl ,, + i F/”(FM, -FP7-F,,

1
3P Fon )

0 . + 1 ... L
= j.dea'e’k‘b‘,%(—grzjcszs%kfrﬁmsz

+ ppliysé + R L). (3.41)
Other known terms do not contribute to the amplitude as
they are not (1,1) operators. In the same reasoning, matrix
model vertex operator (2.3) does not contribute to the
amplitude. Although there remain undetermined terms in
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dilatino vertex operators in IIB matrix model, we believe
that the complete set of the operators is equivalent to those
in type IIA superstring theory.

IV. CONCLUSION

We have constructed type IIA closed string vertex
operators directly from IIB matrix model on the two-
dimensional noncommutative backgrounds. The vertex op-
erators which couple to the supergravity multiplet were
determined up to the sixth order of Majorana-Weyl spinor
A in IIB matrix model [12]. In our analysis, gravitino,
graviton, the fourth-rank antisymmetric tensor field, and
the second-rank antisymmetric tensor fields which con-
tains up to six A’s, show the perfect agreement with the
corresponding superstring vertex operators. In this com-
parison, the identification of noncommutative scale é with
string scale o' has played an important role, which we
have adopted in the process of deriving the action [5].
Originally, the scale in NC gauge theory is identified with
string scale in the dual supergravity description [20,25,26].
Since we take the commutative limit in our formulation,
the direct relation between UV finiteness of string scatter-
ing amplitude and the regularization of UV divergence
which give rise to UV/IR mixing effect in noncommutative
gauge theory is unclear. It is interesting to investigate the
relation between them in our formulation. The results in
this paper and the previous paper [5] are summarized in
Fig. 1. The process (1) + (2) is described in [5]. In this
paper, the relation (4) is explicitly demonstrated, which
can be regarded as the confirmation of the other process,
especially process (3). At tfirst sight, on two-dimensional
backgrounds of IIB matrix model, the vertex operators are
extremely complicated. But supersymmetry restricts the
possible terms, and the operators relevant to the amplitudes
become the same as the vertex operators in superstring
theory. After identifying the physical states, we can calcu-
late the multipoint scattering amplitude in a standard way.

We have not yet reproduced the complete vertex opera-
tors in IIB matrix model due to algebraic complexity. Since
the complete forms of the conjugate dilatino and dilaton
vertex operators are not yet known, we cannot compare
these operators. However, we have found all the necessary
pieces of each GS superstring vertex operator in IIB matrix
model vertex operators even in those cases.

IIB matrix model —— vertex operators in lIB matrix model
| () | @

Lightcone GS superstring action (E;v.o. of GS superstring

FIG. 1. Vertex operators for Green-Schwarz light-cone super-
string are derived from IIB matrix model. The constructions
(1) + (2) and (3) + (4) should give the same result.
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APPENDIX A: OPEN SUPERSTRING
VERTEX OPERATORS

The bosonic (vector) and fermionic (spinor) vertex op-
erators of light-cone open superstring are written as

V(4 k) = {#VE(k) = ({'B' — {"B*)e'?,

Vie(u, k) = uVE (k) + utVE (k) = WF§ + uFi)e'* 9,
(A1)

where B', B*, F¢, and F4 are written in terms of ¢; and

s as

B* = p¥, B' = (¢' — R;;K),

Fy=p) - g ORI o
+
F{ = (%)1/28“.

5% belong to 8, representation in our convention. RY(7) is
defined by

Ri(7) = %Fst“(T)s”(T), (A3)

where

I ;o
oo =5 VYo = YaaVao) (A4)
The matrices I are represented in the 16-dimensional
(8, + 8,) representation of spin (8) as

I‘i — ( ? yéld )
Yip

We consider the operators which carry the momentum k*
with k* =0, (k')> = 0. ({*, {7, (') represents the wave
function for the vector state, and (u¢, u%) represents the
wave function for the spinor state.

(A5)

APPENDIX B: TYPE ITA CLOSED STRING STATES
IN TYPE IIB MATRIX MODEL

In order to calculate the multipoint superstring ampli-
tude, we have to identify closed string states. Closed string
states are constructed by the direct products of the left-
movers and right-movers in string theory. In IIB matrix
model on the two-dimensional background, we can also
construct closed string states in a radial quantization as the
product of the separate states corresponding to the left-
movers and right-movers, respectively.
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Since the origin in the coordinate system z becomes the
infinite past in the conformal mapping (2.31), we can insert
a local operator at the origin and obtain its charges by the
appropriate contour integrals around the origin. The
asymptotic states correspond to the local operators.”*

Before we define the massless ground states of closed
strings, we define the massless ground states of open
strings

i, la),

as the states in the 8,(8,) representation of spin (8). They
are normalized as

(ilj) = 8

Any physical states |A, k) are obtained by inserting the
vertex operators in the far past as

(BI)

(alby = 8, (B2)

A, k) = lim e "Vy(k)[0, 0). (B3)
It is because zero mode operator Z, acts as
Zl0, 0y = e*¢ZkP*10, 0) = £]0, k),
1 (B4)

(0,01Zy = (0, 0l2F7~ et = =0, k|.
z

“They become fuzzy at the NC scale.
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The massless vector states transform as
R{lk) = ZSSF;’bS’éI/O = &/iy — 8™j),  (B5)

where s is the zero mode of s. R is the zero mode helicity
operator. The massless spinor states transform as

RN
Rilay = =317 1b). (B6)

The ground states are mapped to each other by the fermi-
onic zero mode as

1 . | -
sglay = —=T" 1), sgliy = —=I",la). B7
()l > \/z gal > 0| > \/E | > ( )
A vector state |{) is defined by
£y = D¢, (B8)
and a spinor state |u) is defined by
u (k)
luy = la) : (B9)
/k+

Closed string states are constructed by the direct product of
the left-movers and right-movers.
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