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Fiber bundles and matrix models
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We investigate the relationship between a gauge theory on a principal bundle and that on its base space.
In the case where the principal bundle is itself a group manifold, we also study relations of those gauge
theories with a matrix model obtained by dimensionally reducing them to zero dimensions. First, we
develop the dimensional reduction of Yang-Mills (YM) theory on the total space to YM-Higgs theory on
the base space for a general principal bundle. Second, we show a relationship that YM on an SU(2) bundle
is equivalent to the theory around a certain background of YM-Higgs on its base space. This is an
extension of our previous work [T. Ishii, G. Ishiki, S. Shimasaki, and A. Tsuchiya, J. High Energy Phys. 05
(2007) 014.], in which the same relationship concerning a U(1) bundle is shown. We apply these results to
the case of SU(n + 1) as the total space. By dimensionally reducing YM on SU(n + 1), we obtain YM-
Higgs on SU(n + 1)/SU(n) = $>"*! and on SU(n + 1)/(SU(n) X U(1)) = CP" and a matrix model. We
show that the theory around each monopole vacuum of YM-Higgs on CP" is equivalent to the theory
around a certain vacuum of the matrix model in the commutative limit. By combining this with the
relationship concerning a U(1) bundle, we realize YM-Higgs on SU(n + 1)/SU(n) =~ $*"*! in the matrix
model. We see that the relationship concerning a U(1) bundle can be interpreted as Buscher’s T-duality.
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I. INTRODUCTION AND CONCLUSION

Emergence of space-time is one of the key concepts in
matrix models as a nonperturbative definition of super-
string [1-3]. This phenomenon was first observed in the
relationship between a gauge theory and a matrix model.
This is the so-called large N reduction [4]. It states that a
large N planar gauge theory is equivalent to the matrix
model that is its dimensional reduction to zero dimensions
unless the U(1)P symmetry is broken, where D denotes the
dimensionality of the original gauge theory. However, the
U(1)P? symmetry is in general spontaneously broken for
D > 2. There are two improved versions of the large N
reduced model that preserve the U(1)? symmetry. One is
the quenched reduced model [5—8]. The other is the twisted
reduced model [9], which was later rediscovered in the
context of the noncommutative field theories [10]. The
T-duality for D-brane effective theories [11], which we
call the matrix T-duality in this paper, share the same idea
with the large N reduced model. The statement of the
matrix T-duality is that U(N) Yang-Mills (YM) theory on
RP X S' is equivalent to U(N X o) YM-Higgs on R?
which is a dimensional reduction of U(N X 00) YM on
R? X S!if a periodicity (orbifolding) condition is imposed.
Also, deconstruction [12] and supersymmetric lattice
gauge theories inspired by it [13] are analogs of the matrix
T-duality. The above developments are all concerning
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gauge theories on flat space-time. It is important to under-
stand how gauge theories on curved space-time are realized
in matrix models or gauge theories in lower dimensions,
because it would lead us to gain some insights into how
curved space-time is realized in matrix models as a non-
perturbative definition of superstring. Note that an interest-
ing approach to the description of curved space-time by
matrices was proposed in [14].

In [15], Takayama and three of the present authors found
relationships among the SU(2[4) symmetric theories. Here
the SU(2|4) symmetric theories include N = 4 super
Yang-Mills (SYM) on R X $3/Z;,2+ 1 SYM on R X §?
[16] and the plane wave matrix model (PWMM) [17].
These theories are related by dimensional reductions and
possess common features: mass gap, discrete spectrum and
many discrete vacua. From the gravity duals of those vacua
proposed in [18], the following relations between these
theories are suggested: the theory around each vacuum of
2+ 1SYMon R X S? is equivalent to the theory around a
certain vacuum of PWMM, and the theory around each
vacuum of N = 4 SYM on R X §3/Z, is equivalent to the
theory around a certain vacuum of 2 + 1 SYM on R X §?
with the periodicity imposed. Combining these two equiv-
alences, we can say that the theory around each vacuum of
N =4SYMonR X §3/Z, isrealized in PWMM. In [15],
these equivalences were shown directly on the gauge the-
ory side. The results in [15] not only serve as a nontrivial
check of the gauge/gravity correspondence for the SU(2|4)
theories, but they are also interesting in the following
aspects. Much work has been already done on the realiza-
tion of the gauge theories on the fuzzy sphere [19-22] by
matrix models [23] and on the monopoles on the fuzzy
sphere [24-28]. Note that the realization of the fuzzy
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sphere by matrix models can be viewed as an extension of
the twisted reduced model to curved space. Here in the
relation between 2 + 1 SYM on R X S% and PWMM, it
was manifestly shown that the continuum limit of concen-
tric fuzzy spheres correspond to multi-monopoles. The
relation between N =4 SYM on R X $3/Z; and 2 + 1
SYM on R X §? can be regarded as an extension of the
matrix T-duality to that on a nontrivial U(1) bundle, $3/Z,,
whose base space is S2. Furthermore, in [29], we general-
ized the matrix T-duality to that on an arbitrary U(1)
bundle. As an application of these results, in [30], Ohta
and the present authors investigated relationships among
Chern-Simons theory on a U(1) bundle over a Riemann
surface, BF theory with a mass term on the Riemann
surface, which is equivalent to two-dimensional Yang-
Mills theory on the Riemann surface, and a matrix model.
It was discussed that the former two (topological) field
theories associated with topological strings can be realized
in the matrix model. The results in [15] also suggests an
interesting possibility of a nonperturbative formulation of
N =4SYMon R X §* by PWMM, which would lead to
a nonperturbative test of the AdS/CFT correspondence.

This paper is aimed at further investigation of the above
developments concerning the large N reduction and the
matrix T-duality on curved space. First, we develop a
dimensional reduction of YM on the total space to YM-
Higgs on the base space for a general principal bundle.
This also enables us to dimensionally reduce YM on a
group manifold to a matrix model. Second, as an extension
of the work [29], in the case in which the fiber is SU(2), we
show that YM on the total space is equivalent to a certain
vacuum' of YM-Higgs on the base space with the period-
icity imposed. This enables us to realize YM on an
SU(2)* x U(1)! bundle in YM-Higgs on its base space.
We apply the above results to the case of SU(n + 1) as the
total space. SU(n + 1) is viewed as SU(n) bundle over
SU(n + 1)/SU(n) = §?"*! or SU(n) X U(1) bundle over
SU(n+1)/(SUn) X U(1)) = CP", and SU(n +
1)/SU(n) = §>"*! is viewed as U(1) bundle over CP".
By the dimensional reduction, we obtain YM-Higgs on
§2"*1 and CP" and a matrix model. We find the commu-
tative (continuum) limit of gauge theory on fuzzy CP"
[28,31-35] realized in the matrix model coincides with
YM-Higgs on CP". Namely, we show that the theory
around each monopole vacuum of YM-Higgs on CP" is
equivalent to the theory around a certain vacuum of the
matrix model. By combing this with the extended matrix T-
duality, we realize YM-Higgs on SU(n + 1)/SU(n) =
§27*1 in the matrix model. We also show that the extended
matrix T-duality of the U(1) case developed in [29] can be
interpreted as Buscher’s T-duality [36].

"Throughout this paper, we consider gauge theories on mani-
folds with the Euclidean signature. Here ‘“‘vacuum’ represents a
configuration that gives the global minimum of the classical
action.
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In the remainder of this section, we describe the orga-
nization of the present paper, providing our results in de-
tail, and finally describe some outlook. From the same
reasoning as the case of the SU(2|4) symmetric theories,
the following relationships among YM on $3, YM-Higgs
on S? and a matrix model hold. These theories are related
to each other by dimensional reductions. The theory
around each vacuum of YM-Higgs on S? is equivalent to
the theory around a certain vacuum of the matrix model.
YM on $3 is equivalent to the theory around a certain
vacuum of YM-Higgs on S? with the periodicity imposed.
Eventually, YM on $° is realized in the matrix model. It
can be said that our results in this paper are an extension of
these relationships. In Sec. II, we show these relationships
in order to illustrate our basic ideas.

In Sec. III, we develop a dimensional reduction on a
general principal fiber bundle. We start with YM on the
total space, dimensionally reduce the fiber directions, and
obtain a YM-Higgs on the base space.

In Sec. IV, we examine a relationship between YM on
the total space and YM-Higgs on the base space obtained
in Sec. III. In Sec. IVA, we first examine the transforma-
tions of the fields from a local patch to another local patch
in YM-Higgs on the base space. In Sec. IV B, using the
observation in Sec. IVA, we show that when the fiber is
U(1) or SU(2), YM on the total space is equivalent to the
theory around a certain vacuum of YM-Higgs on the base
space with the periodicity imposed. This vacuum is given
by multimonopole configuration on the base space. We
already found the U(1) case of this equivalence in [29].
In the SU(2) case, we also use the result in section II that
YM on 3 is realized in the matrix model. As a general-
ization, we realize YM on SU(2)* X U(1)! bundle in YM-
Higgs on its base space. In Sec. IV C, as an example, we
consider §7 which is an SU(2) bundle over S*. In Fig. 1, we
summarize our results in Secs. III and IV.

In Sec. V, we examine a series of SU(n + 1) symmetric
theories. Figure 2 summarizes our findings in Sec. V and
their relation to other sections. The case of n = 1 is noth-
ing but the example discussed in Sec. II. In this case, YM
on SU(2) is the same as YM-Higgs on S° because SU(2) =
S3.In Sec. VA, as a special case of Sec. III, we consider a
dimensional reduction of YM on a group manifold G to a
coset space G/H where H is a subgroup of G. Namely, we
view G as an H bundle over G/H. By dimensionally
reducing the Killing vectors on G to those on G/H, we
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FIG. 1. Matrix T-duality for G = U(1), SU(2).
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FIG. 2. A series of theories studied in Sec. V.

obtain a theory on G/H expressed in terms of the Killing
vectors. Then, we show that this theory on G/ H is rewrit-
ten into YM-Higgs on G/H obtained in Sec. IIL. In
Sec. VB, we apply the results in Sec. VA to the case of
G = SU(n + 1) and obtain a series of theories in Fig. 2
which possess SU(n + 1) symmetry. If we take SU(n) as
H, we obtain YM-Higgs on $?**!. Note that the isometry
of this $2**! is not SO(2n + 2) but SU(n + 1). Forn = 2,
it is different from the ordinary $>"*! but homeomorphic to
the ordinary one, and is called a squashed S?**!. If we take
SU(n) X U(1) as H, we obtain YM-Higgs on CP". Finally
if we take SU(n + 1) itself as H, we obtain a matrix model
whose action is shown in Fig. 2, where f 5 is the structure
constant of the SU(n + 1) Lie algebra. As indicated in
Fig. 2, these dimensional reductions can also be performed
step by step: we obtain YM-Higgs on CP" from YM-Higgs
on $?"*1 and the matrix model from YM-Higgs on CP". In
the case of n =2, as an application of the result in
Sec. IV B, we see that YM on SU(3) is equivalent to the
theory around a vacuum of YM-Higgs on $° with the
periodicity imposed [(i) in Fig. 2]. Since $***! can be
viewed as a U(1) bundle over CP", in section VC, we
show as an application of the results in section IV B that the
theory around each vacuum of YM-Higgs on S?**! is
equivalent to the theory around a vacuum of YM-Higgs
on CP" with the periodicity imposed [(ii) in Fig. 2]. In
Sec. VC, we show that the theory around each Abelian
monopole vacuum of YM-Higgs on CP" is equivalent to a
certain vacuum of the matrix model [(iii)) in Fig. 2].
Combining these results, we also show that the theory
around the trivial vacuum of YM-Higgs on $?**! is real-
ized in the matrix model [(iv) in Fig. 2]. YM on SU(3) is
realized in YM-Higgs on CP? [(v) in Fig. 2]. Finally, we
make a comment: it follows from the result in Sec. IV that
YM on SU(n + 1) is realized in YM-Higgs on SU(n +
1)/(SUQ2)F X U(1)}).

In Sec. VI, we discuss how the extended matrix T-
dulaity found in [29] and reviewed in Sec. IV B is inter-
preted as Buscher’s T-duality. In appendices A, B, C, and
D, we describe some details.
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It is an open problem whether YM on SU(n + 1) with
n = 2 isrealized in the matrix model. Presumably, we need
to construct noncommutative counterparts of non-Abelian
monopoles of YM-Higgs on $?"*! or CP" in the matrix
model. Realization of YM on SU(n + 1) in the matrix
model should enable us to extend the matrix T-duality to
the case of G = SU(n + 1). Of course, the matrix T-
duality for a general G should still be investigated. It is
important to see whether the matrix T-duality in the SU(2)
case is associated with the non-Abelian T-duality discussed
within the nonlinear sigma models [37]. It is also relevant
to identify the commutative limit of the matrix model
consisting of the square of the commutators and the gen-
eralized Myers term with the SU(n + 1) structure constant
which has been examined in [33,38] and find its higher-
dimensional origin. Analysis in this paper is classical.
Whether the relationships among the gauge theories we
found hold quantum mechanically is a nontrivial and im-
portant problem. It should be noted that in the quantum
correspondence no orbifolding condition is needed in the
matrix T-duality as far as the planar limit is concerned.
This is nothing but the large N reduction and enables us to
make the size of matrices become finite and play a role of
the ultraviolet cutoff. In particular, we expect to give a
nonperturbative definition of N' =4 SYM on R X S in
the planar limit in terms of PWMM [39].

II. TYPICAL RELATIONSHIPS

In this section, to illustrate our ideas, we describe rela-
tionships among YM on S°, YM-Higgs on S? and a matrix
model. These relationships are essentially the same as
those among the SU(2|4) symmetric theories found in [15].

We consider S* with radius 2/ u and regard it as the U(1)
(S") Hopf bundle on $? with radius 1/u. S* with radius
2/ u is defined by

{wy, wa) € Cllw1? + |wy|? = 4/ u?}. 2.1
The Hopf map 7: S° — CP'(S?) is defined by
(Wi, wy) = [(wy, wy)] = {A(wy, wy)ld € C\{0}}.  (2.2)

Two patches are introduced on CP!: the patch I (w; # 0)
and the patch II (w, # 0). On the patch I the local trivial-
ization is given by

(W, wy) — <&ﬂ> € (patch ) X U(1),  (2.3)
Wi |W1|

while on the patch II the local trivialization is given by

(wy, wy) — (ﬂﬁ) € (patch I) X U(1).  (2.4)
W2 |W2|

The Eq. (2.1) is solved as

6 . 0 .
w, = — COSE 6”71, Wy = ; Sil’lz e’”z, (25)

where 0 = 0 = 7w and 0 = o, 0, <27. We put
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¢ =01~ 0y '70 = 0 + T, (26)

and can change the ranges of ¢ and ¢y to 0 = ¢ <27 and
0 = ¢ < 4m. The periodicity is expressed as

0, o, ) ~ (0, 0 + 27, + 2m) ~ (0, @, ¥ + 411).
2.7

From the local trivializations (2.3) and (2.4), one can see
that @ and ¢ are regarded as the angular coordinates of the
base space S? through the stereographic projection. The
patch I corresponds to 0 = @ < 77, while the patch II cor-
responds to 0 <6 =< 7r. The metric of S* is given as
follows:

ds; = ldw > + ldw,|?
1
= — (d6? + sin’0d@* + (dif + cosfdp)?). (2.8)
m

In the remainder of this section, the upper sign is taken
in the patch I and the lower sign in the patch II. From (2.3),
(2.4), and (2.8), one sees that the fiber S! is parametrized by
y = i(gb * ¢) and its radius is given by 2/u. The con-
nection 1-form is given by

=
2

1
1) (dy + —(cosf F l)dgo).
o

2.9)
The connection 1-form provides the vertical-horizontal
decomposition by determining the inverse of the dreibein
EM through w(EY) =0, Ef = 0 and E} = 1, where A =
1,2,3,a=1,2,M =0, ¢,y and u = 6, ¢. The inverse
of the dreibein is determined as

0x1
£ — e M g — 0
PR 2 sinb’ 27 R e
Ey =1, others = 0. (2.10)
The dreibein are given by
1 1
El=el=—, E2 = ¢ = — sind,
o
1
E} = —(cosf + 1), E3=1, others = 0,
P )
2.11)
where ey, are the zweibein of S2.
We start with YM on S°
1 dQ
S 20 tr(FypFap). (2.12)

" 482 ) w2y

The vertical-horizontal decomposition tells us how to re-
late the gauge field on S to the gauge field and the Higgs
field on S%:

(2.13)

Or equivalently
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1
Ap = ay, A,=a, + ;(cos& F1)o, A, = ¢.

(2.14)

In (2.13) and (2.14), in order to make a dimensional reduc-
tion, we assume that the both sides are independent of y.
Then, substituting (2.13) into (2.12) yields a YM-Higgs on
s2,

1 dQ) 1 1
Sg2 = —- [—22 tr(—(flz + p)? + _(Da¢)2)’
(2.15)
where g3, = 4= g2 It is convenient for us to rewrite (2.15)

using the three-dimensional flat space notation. We define
a three-dimensional vector field in terms of a, and ¢ [16]:

X = ¢gr + (llé)gp - azé)(,, (216)
> . . . > __ 08,
where ¢é, = (sinf cosg, sinf sing, cosd) and ¢é, = T
é, = =L %% We also introduce the angular momentum
sinf d¢

operator in three-dimensional flat space,

. 1
LO = —igya, + i€y (2.17)
Then, (2.15) is rewritten as
1 dQ, 1 )
Sep=— | — =zt uX, +i Ly’ X
52 g§2 [ w2 2 f(M A T IML€sgclp Ac
i 2
+ EEABC[XB’ Xc]) . (2.18)

By dropping all the derivatives, we dimensionally reduce
(2.18) to zero dimensions to obtain a matrix model:

2

Smm = ’

1 i
5 tr(MXA + 3 €apcl X XC]) (2.19)

Som 2
where g2, = ff—; géz. The cross term in the above action is
nothing but the Myers term [40]. It was first found in [41]
that (2.19) is obtained from (2.12) through the dimensional
reduction.

We can obtain (2.18) and (2.19) directly from (2.12) in
the following way. We parametrize the gauge field on S* as
A = X,E* [18], where E4 is the right-invariant 1-form
defined in appendix A. Then, by using the Maurer-Cartan
equation (A4), we evaluate the curvature 2-form as

F=dA+iAANA

= leapclipecpe LpXp + uXc

+ iECDEXDXE)EA A EB, (220)

where L, are the Killing vector dual to E*, the explicit
form of which is given in (A7). Noting that L, reduces to
Lgo) when X, is independent of y, one can easily see that
(2.12) is dimensionally reduced to (2.18). Moreover, if we
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assume that X, is independent of all coordinates, we obtain
the matrix model (2.19) directly from (2.12).

The theories (2.15) and (2.19) possess many nontrivial
vacua. Let us see how those vacua are described. First, the
vacuum configurations of (2.15) with the gauge group
U(M) are determined by

fiot ud =0,
In the gauge in which ¢ is diagonal, (2.21) is solved as

D,¢ = 0. 2.21)

a,; =0,
. cosf + 1 -~
a, = .
2 siné
A M
¢ __dlag( yRg—1, " **, Ng—1, Ny, , Mg,
2 —_——— —
Nx*l Ns
X Mgty t ot Mg, 0 0), (2.22)
Nyt

where the gauge field takes the configurations of Dirac’s
monopoles, so that n, must be integers due to Dirac’s
quantization condition. Note also that Y N, = M. Thus
the vacua of YM-Higgs on S? are classified by the mono-
pole charges n,/2 and their degeneracies N,. Next, the
vacuum configurations of (2.19) with the gauge group
U(M) are determined by?

[X4 Xp] = ipespcXc. (2.23)

(2.23) is solved as

Xa = pLy, (2.24)
where L, are the representation matrices of the SU(2)
generators which are in general reducible, and are decom-
posed into irreducible representations:

(2.25)

There is a solution to the equations of motion of the matrix
model (2.19), X, = %LA, which does not satisfy (2.23). It turns
out that the theory around this solution is unstable.
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where LE"] are the spin j representation matrices of SU(2)
and 3 N,(2j, + 1) = M. The vacua of the matrix model
are classified by the SU(2) representations [j,] and their
degeneracies N,. represents concentric fuzzy spheres with
different radii.

In the remainder of this section, we show relationships
among the theories (2.12), (2.15), and (2.19). First, we
show that the theory around the vacuum (2.22) of YM-
Higgs on S is equivalent to the theory around the vacuum
(2.24) of the matrix model if one puts 2j, + 1 = Ny + n,
and takes the Ny — oo limit with g7, /Ny fixed to g5, u”.
We decompose the fields into the background correspond-
ing (222) and the fluctuation as X0 — X0 + x(0,
where (s, 1) label the (off-diagonal) blocks. Then, (2.18)
is expanded around (2.22) as

1 dQ)
Sg = _[ : Zt (e X(S )+ ipeapc L(q”)X(S )
gSZ M’
+le [Xp X 10N (X% + ipe,ppL'd x 00
5 €ascldp Ac nA L Me€apelp AE
+ %EADE[XDr Xp]+9)] (2.26)
where g,, = (n, — n,)/2. L'? is the angular momentum

operator in the presence of a monopole with the magnetic
charge ¢ at the origin, which takes the form [42]

5 S cosf + 1
[@=70_ """ "5 _ 2.27

Sind €y~ qé,. (2.27)
We make a harmonic expansion of (2.26) by expanding the
fluctuation in terms of the monopole vector spherical har-

monics ¥/ 44 defined in appendix A as

[Y

=3y Z X500 o (2.28)
p:O,il Qzqurl m=-

where Q0 = J + % and O =J — (172’3)”. Substituting

(2.28) into (2.26) yields

1
e L S+ XX
gSZ
. (s,1)
+ WZPI(JI + l)gllmlq.xtplJZqut1«p213m3qu.x'p3 Jymyp,

s,tu

X(t u) (u s)

Jamy py /zm3P3

Z( lm qeut1

stuv

X gf—m%sﬂ]l myqsp1Jamagu, pa gjm%uPJ3m3<qu103J4m4<1u.‘P4

(s,1) (t,u) (u,v) (v,s)
X X-Ilmlpl Xsz2P2X13"13P3XJ4m4P4 ]’ (2.29)
where & . o1 Lmyguprdsmyqups 18 defined in (A40) and we

have used (A37). Similarly we decompose the matrices
into the background given by (2.24) and the fluctuation as
X; — X, + X, and obtain the theory around (2.24):
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11 s . 5
Smm = —g2 EZU’[(MX‘(AJ) + l/*LGABCLB o X(C’t)
mm s,t

i , .
+ 3 €apclXp, Xc](“’t))(,U«XX’s) + ip€sppLlp © ng“)

i
+ 3 €apelXp, XE](I'S))], (2.30)
where L, o is defined by
Ly o Xy" = LUdxit — x0 Ui, (2.31)

We make a harmonic expansion for (2.30) by expanding
the fluctuation in terms of the fuzzy vector spherical har-

. Ap . .
monics Y75 . defined in appendix A as

Jsti

0
(s,0) _ (s,1) op
X=X e
p=0.=1g=|j,—j| m=—0

(2.32)

Since j, + j, = Ny + "S;’"’ — 1, Ny plays a role of the

ultraviolet cutoff. Note also that j, — j, = (n, — n,)/2 =
g.,. Substituting (2.32) into (2.30) yields

Ny [ u? 2 w5, 1 (s,1)
Spm = —5—r 7Z,o(J + 12X X
mm 5.t

+ip Y p1(1+ DE s m o smsGinpsdsmues

s,thu

X Xm0 X X,

- %S%U(_ D" E g pim )it
X E i j o rimGuinorlsmstiai o X0 X
xxpw x| ] (2.33)

where <S‘/1 mi(jsiprdama(Geju)padsms (fujs)ps is  defined in
(A40) and we have used (A37). In the Ny— o0
limit, the ultraviolet cutoff goes to infinity and

511"11(/sjr)ﬂ]szz(jrju)ﬂzhmﬂjujs)m reduces to
EJimigupramyaupalsmsgnps S shown in  appendix A.
Namely, this limit corresponds to the commutative (con-
tinuum) limit of the fuzzy spheres. Hence, in the limit in
which Ny — o0 and g,,,,, — oo such that g,,,/No = g5 u*,
(2.33) agrees with (2.29). We have proven our statement.

Next, we show that the theory around a certain vacuum
of UMM = N X o) YM-Higgs on S?> with a periodicity
condition imposed is equivalent to U(N) YM on $°. This
is an extension of the matrix T-duality to a nontrivial fiber
bundle. The vacuum of YM-Higgs on S? we take is given
by (2.22) with s running from —oo to 00, n;, = s and N, =
N. We decompose the fields on S? into the background and
the fluctuation,

a, — a, +a,, b—d+ o, (2.34)
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and impose the periodicity (orbifolding) condition on the
fluctuation,

+1,t+1 1) — (st
QLD 0 <

i

(2.35)
¢(s+1,t+1) — ¢(s,t) = ¢(s—t)'

The fluctuations are gauge transformed from the patch I to
the patch II as [29]

alo(ts—t) — e—i(s—t)d)ag—f), ¢l(s—t) — e—i(s—t)d)d)(s—t)'

(2.36)

We make the Fourier transformation for the fluctuations on
each patch to construct the gauge field on the total space
from the fields on the base space:

Aa(g, @, 1,[1) = Zagv)(ey (P)efi(,u,/Z)wy’

(2.37)
Ay(0, @, ) = > ™6, p)e /2,
w

We see from (2.36) that the left-hand sides of (2.37) are
indeed independent of the patches. We substitute (2.37)
into (2.26) and divide an overall factor Y, to extract a
single period. Then, we obtain U(N) YM on S3. The details
of this calculation are given as a special case of (4.13) and
(4.14).

Finally, combining the above two statements, we see that
the theory around (2.24) of the matrix model where s runs
from —oo to oo, 2j, + 1 = N, + s is equivalent to U(N)
YM on §3 if the Ny — oo limit is taken with g2,,,/N, fixed

2 3

to ‘fﬂ , the periodicity condition is imposed on the fluc-

tuation on S? and the overall factor X is divided. In this
way, S? is realized in terms of the three matrices X, X,, X;.

In Secs. III, IV, and V, we generalize the results in this
section. We set u =1 and set all other dimensionful
parameters to a certain constant value.

II1. DIMENSIONAL REDUCTION ON A PRINCIPAL
BUNDLE

In this section, we provide the dimensional reduction of
YM on a principal G bundle to its base space. The case of
principal U(1) bundles was already given in [29]. Here we
consider the case where G is non-Abelian.

First, we give a metric and a vielbein of a fiber bundle on
which pure YM is defined. We consider a principal
G-bundle P on a manifold M. The base space M has a
covering S, and the total space has a covering
{m=1(U)|U € S}. 7~ '(U) is diffeomorphic to U X G by
the local trivialization. Thus it is parametrized by z” =
(x*, y" Y =1,---,dimM;m =1, - - -, dimG), where x*
parametrize the local patch U and y™ parametrize an
element of G. We assume that the connection of P is
expressed as

w =g ' (Nbx)g(y) —ig ' (y)dg(y). (3.1)
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where g(y) € G, b(x) = b4, (x)T*dx* and T* are the gen-
erators of the Lie group G.

The transition functions of a principal bundle act on
fibers by left multiplication. If there is overlap between
U and U’, the relation between fiber coordinates, g(y) on U
and g(y') on U’, is given by

gy = k(x)g(y)

where k(x) € G. In the overlapping region UNU’, b(x)
must transform as

3.2)

b'(x') = k(x)b(x)k~(x) + idk(x)k ™ (x). (3.3)
Indeed, by using (3.3), we can show
w = g(y)'b(x)g(y) — ig(y)'dg(y)
= g() 10/ (x)g(y) — ig(y")~'dg(y). (3.4)

We assume that the total space is endowed with a metric
that has the fibered structure determined by the connection
(3.1) and the isometry. As shown in [43], such metric can
be locally expressed as®

ds* = GyndMdz" = g, (x)dx*dx" + 2 Trw?
= gur()dxtdx” + {eq(y)dy™ — b4 (x)dxt}2. (3.5)

Here g, is a metric on the base space and ey, (y)(a =

dimM + 1, - -+, dimP) are the components of the right-
invariant Maurer-Cartan 1-form of G, which is defined by
dg(y)g(y)™' = —ieq, (y)Tdy™. (3.6)

We have assumed that the coefficient of the second term in
(3.5) is just &, so that the resultant dimensionally reduced
theory is simple, although it is allowed to take y indepen-
dent function &,;,(x). The Maurer-Cartan 1-form satisfies
the Maurer-Cartan equation
1

de® — Ef“h"e” Aet =0, 3.7

where f¥¢ is the structure constant of the Lie algebra of G,

and is regarded as the vielbein of the Cartan-Killing metric
on G defined by

By ()dy™dy"™ = —=2Tr(dgg ") = ed,(y)ea(y)dy™dy".
(3.8)

Note that e%(y) and b(x) in the metric (3.5) are defined
locally on U and must be transformed from U to U’: the
transformation of e%(y) is determined by (3.2) and an
equality

dg(yNg(y) ' = —ies(y)Tdy"™,

while the transformation of b(x) is given in (3.3). By

(3.9)

3Throughout of this paper, we use the following normaliza-
tions for the traces: Tr(T*T?) = %Bab for the structure group of
the fiber bundle and tr(T¢T?) = &, for the gauge group.
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introducing a vielbein on the base space, ef(x)X
(¢ =1,-+,dimM), one can write a vielbein and its in-
verse on the total space as follows:

B = (_egé,&) )

et (x) 0 )
ez Mbg(x) e () )

(3.10)
EM(z) = (

where ely and e’ are the inverse of ey, and ey, respectively,
and b4 (x) = e4 (x)b4 (x). The local Lorentz frame defined
by (3.10) gives the vertical-horizontal decomposition of
vectors and 1-forms on the total space. Namely, o =
I, - -+, dimM correspond to the directions to those of the
base space and a = dimM + 1, - - -, dimP correspond of
the fiber space. Again, we remark that these expressions
are defined locally on U. From (3.3) and (3.9), we can
obtain relationships of the vielbeins between on U and on
U’ as

E'® = E°, E'“ = Ad(k)*’E". (3.11)
where Ad(k) is the adjoint representation of k(x). (2.8) is a
counterpart of (3.5), (2.10), and (2.11) are a counterpart of
(3.10).

We next consider a gauge theory on the total space and
make a dimensional reduction of the fiber direction to
obtain a gauge theory on the base space. We start with
U(N) YM on the total space:

Sp= iz dDz\/EtrGFMNFMN). (3.12)
8p 4

Where D = dlmP and FMN = GMAN - BNAM +

ilAy, Ay]. In order to make the reduction, we perform

the vertical-horizontal decomposition for the gauge field

Ay(z) and the derivatives 9,, according to (3.10). The

gauge field is decomposed as

Ay(z) = AL()ES(x) + A, (2 Ef,(2). (3.13)

After the reduction, horizontal components A, and vertical
components A, of the gauge field will be naturally identi-
fied with the gauge field and the Higgs fields on the base
space, respectively. The field strength in the local Lorentz
frame is rewritten as follows:
Fop=VaP45 = VA, + ilAL Ag] — b 44,
+ ibﬁ;ﬁaAB - ib%ﬁaAa,
Foo = €ad, A, + i[Ag Ap] — fPDLA. — iL,A,
+ibb L, A,

F,, = f%A, + i[A, A+ iL,A, — iL,A,. (3.14)

Here we have defined the following quantities:
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bl g = ehienla, b — 9,b% — frebh b,

VA = eli(0,Ap + w, A,  L,=—ield,,
(3.15)

Y
uB

where w is the spin connection on the base space defined
by ef, and L, are the right-invariant Killing vectors on the
total space, which represent the isometry. Note that our
calculations have been performed on U so far. When it is
performed on U’, the quantities on U’ must be used. The
transformation of b%(x) between on U and on U’ is given
by (3.3), so that that of bgﬁ(x) is given by
bg‘ﬂ(x’) = Ad(k)“"b';ﬁ(x). (3.24)
The gauge field with the local Lorentz index must be
transformed according to (3.11) as
Al,=A,, Al = Ad(k)®A,. (3.17)
In order to make the dimensional reduction, we relate
the fields on the total space to those on the base space as

Aa = ¢a!

where a, are the gauge field in the local Lorentz frame and
¢, are Higgs fields on the base space. We assume the both
sides in (3.18) are independent of y™. Using subscript of
curved space, we can write (3.18) equivalently as

Ay = en

Here (3.18) and (3.19) are a generalization of (2.13) and
(2.14), respectively. Substituting (3.14) and (3.18) into
(3.12) and using JG = \/§\/iz—, we obtain YM-Higgs on
the base space:

(3.18)

A, = ag,,

A, =a, —bjd, (3.19)

1 1 1
SM = 2 ’[ddx\/gtr{z (faﬁ - b?yﬁd’a)z + E(ng(f)a
Em
t ilag bol — fbL)? + th(fabcqsc

+ilda 9117} (3:20)
where g3, = (fdyvh)~'g3 = Vel &7 d = dimM and
fap = V(aM)aB - V%w)aa + ila,, ag]. Note that the con-
nection in the fiber bundle can generate nontrivial mass

terms of the Higgs fields. This is reminiscent of the flux
compactification in string theory.

IV. EXTENSION OF THE MATRIX T-DUALITY

In this section, we extend the matrix T-duality on non-
trivial U(1) bundles developed in [29] to that on nontrivial
SU(2) bundles.
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A. Nontrivial vacua and transformation between
patches

As in the example in Sec. I, the theory on the base space
(3.20) has monopolelike vacua, which are in general patch
dependent if the principal bundle we consider is nontrivial.
Here we describe the vacua and their patch dependence.
We also consider how the fields of the theory are trans-
formed from a patch to another. We examine, in particular,
the transformation properties of fluctuations around the
vacua.

It is seen from (3.20) that the condition for the vacua is
given by

faﬁ - biﬂd’a = O’
Vb, + ilag, b — fbhd, =0,

4.1)
f¢e +ilda ¢p]1 = 0.
They are satisfied by the following configurations:
a,(x) = bs() s = b4(ILe by =L, (42)

where L, are the generators of the Lie algebra of G
satisfying [L,, L,] = if*°L¢ and generally reducible.
Note that as mentioned in Sec. III, b%(x) are generally
patch-dependent quantities. The vacua are, therefore, also
patch dependent. From (3.3) and (4.2), we can read off the
transformation properties for the vacua between patches:

a'(x) = Kx)ax)Kx) ™! + idK(x)K(x)™ !,
bl = Ad(k(x) o K(x) b, K() ! = &,

where K(x) is obtained by replacing 7¢ in k(x) in (3.2) by
¢?a = L,. Note that this is the gauge transformation by
K(x) except for the rotation of ¢, by Ad(k(x)), which
comes from (3.17).

Let us consider the theory around the vacua (4.2) and
decompose the fields into the backgrounds and fluctua-
tions:

4.3)

ba(0) = by + $a(x).
(4.4)

aq(x) = a,(x) + dy(x),

The fluctuations are transformed between patches as
a4 (x) = K(x)aq(x)Kx)™,
bu(x) = Ad(k(x)) K (x) b (x) K ()"

One can easily see that the action (3.20) is indeed invariant
under the transformation (4.3) and (4.5).

4.5)

B.G =U(Q), SU(2)

In this subsection, we consider the case in which the
fiber is U(1) or SU(2). In the case of G = U(1), the matrix
T-duality indeed works as shown in [29] and its typical
example was given in Sec. II. We extend the matrix T-
duality to the case of G = SU(2) by applying the fact
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described in Sec. II that YM on S is realized in the matrix
model.

First, we review the matrix T-duality in the case of G =
U(1), which is a generalization of the relationship between
YM on S* and YM-Higgs on S? in Sec. II. In this case, the
metric (3.5) reduces to the following form:

ds* = g, (x)dx*dx" + (dy — b, (x)dx")>, (4.6)

where y represents the fiber direction and 0 = y < 27. We
put dimM = d. (2.8) indeed takes the form of (4.6). YM-
Higgs on the base space obtained from YM on the total
space is given as the U(1) case of (3.20):

1 1
Su= [ dixguly (Fup ~ bupd?
8m

+ %(vz‘% + i[a,, ¢])2}. 4.7)

(2.15) is a special case of (4.7). We show that we obtain the
U(N) YM on the total space from the U(N X o0) YM-
Higgs on the base space through the following procedure:
we choose a certain background of the U(N X o0) YM-
Higgs on the base space, expand the theory around the
background and impose a periodicity condition.

Note, first, that a general background of (4.7) is given by

&a = ba$’
b= —diag(- -+, ny_y, -, gy, ng 0Ny,
%,—J
Ns*l Ns
4.8)

anﬂ’...’nsﬂ’...)’
~—

Nyt
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which is a counterpart of (2.22). We decompose the fields
into the backgrounds and the fluctuations as

Ay = dy +a,,  ¢— b+ . (4.9)
In particular, we take the following background: s running
from —oo to o0, ng =5 and N, = N. We label the (off-
diagonal) blocks by (s, £) and impose the periodicity (orbi-
folding) condition on the fluctuations as in (2.35):

ag+1,t+1) _ ll(as't) = ag_t)

‘ ‘ ’ (4.10)
¢(A+l,l+l) — ¢(A,I) = ¢(s—t).

The fluctuations are gauge-transformed from U to U’ as

a/éb‘_l) — e*i(sfz)v(x)a(al"_f)’ ¢/(S*l) — e*i(S*t)v(x)ql)(s*I))

“4.11)

where e~ is a transition function; e~ = ¢~ ?We=iy,
(2.36) is a special case of (4.11). We make the Fourier
transformation for the fluctuations on each patch to con-
struct the gauge field on the total space:

Aylxy) = Za?.l”(x)e*””,
Y I (4.12)
Agii(ny) =Y ¢M(x)e ™.

w

We can see from (4.11) that the left-hand sides in the above
equations are indeed invariant under the transformation
between patches. Using (4.9) and (4.12), we can rewrite
each term in (4.7) as

(faﬁ - baﬁ(ﬁ)(&t) - (V(Ciu)aﬂ - V(B]W)aa + i[&a: a,B] + i[aar aﬁ] + i[aa; aﬂ] - baﬁd))(s’t)
= (V(ciu)a(g_t) — V(émag_’) + ila,, aﬁ](“'_” —i(s — t)baa(g_’) +i(s — t)bﬂagf_t) — ba/;d)(“‘_’))

_ | (M) My 4 .
= ﬁ fdy(va Alg - Vﬁ Aa + l[Aa, A.B] - baﬂAd+l + baayAB - bBG),AQ)el(s 0y

1 .
- dvF L(s—t)y’
27 [ Yy aﬁe

(V"¢ + flag oD — (V"¢ + ilag, ¢l + ilag ]+ flag ¢)”
= V((fw)d)(“’) + ila,, ¢1970 —i(s — )b, dp"~" + i(s — t)agfft)

1 .
= 5 [dy(VS%Adﬂ +i[Agy Agi] — 9,4, + baayAd+1)et(S7t)y
T s

1 i(s—1)y
:EfdyFa(d+l)el(s .,

Then (4.7) becomes

(4.13)
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S = iz [ dx gl fup = g + 5 (T80, + ila, 917}

== [ N tr[ { (fap = bap®) " (fap — bapd)™ + %(Vﬁﬂ% + ilag, DV b + ila, qb])w}]

5 %%[dDZ\/—G—LI. tr(FABFAB).

By dividing an overall factor Y, in the last line in (4.14) to
extract a single period, we obtain Yang-Mills theory on the
total space.

Next we consider the case where fiber is SU(2). In this
case, YM-Higgs on the base space takes the form

1 1
M= fddx\/'g'tr{z (fap — bigda)’
Em

1

+ 5 (Ve + ilag, d] = €D

1 . ,

+ e g, + i, )7} @15
We show that we can obtain the U(N) YM on the total
space of a nontrivial SU(2)-bundle from the YM with three
Higgs on its base space in a way similar to the case of G =
u(l).

The vacuum of YM-Higgs is given by (4.2) with L,
satisfying the SU(2) algebra, [L,, L,] = i€ L., and L,
generically take a reducible representation (2.25). We ex-
pand the fields around this background,
$a(x) = by + b ().

(4.16)

aq(X) = Aa(x) + a,(x),

We label the (off-diagonal) blocks of the fluctuations by
(s, ), which is (N,(2j, + 1)) X (N,(2j, + 1)) matrix, and
expand them by the fuzzy spherical harmonics:

Jstii

Z Z “S?m(x) ® ¥ i i

J=lj—jl m==J

a$(x) =
. 4.17)

5.0 Jstie J (5.0 N
") =" Y pan )@V -

J=ljs=jdm==J

We verify from (4.5), (4.17), and (A26) that the modes are
gauge-transformed from U to U’ as

aim () = Y ImlkIm"yal) (x),
o " . (4.18)
B (x) = 3 Ad(K) (Tl KTy ) (),

where k7] is the spin J representation of SU(2) for k(x).

(4.14)

In what follows, we assume that as a background we set
2j, + 1= Ny + s with s running from —7 to T in (2.25)
and take the limit of Ny, — o0 and T — 0 in order. For the
modes, we impose the periodicity condition:

(tLetl) _ ) = (g,)
a,Jm aJm - aa Jm>

(s+Li+1) _ (5,0 ) (@.19)
s S, = st

¢a Jm ¢a Jm ¢aq1m’

where g,, = *5'. By using these modes and the spherical

harmonics on S3, we make Fourier transformation on each
patch to construct the gauge field on the total space:

Aa(z) Zagxmj)m(x)yjmm )

i (4.20)
A =Y ¢ (Y ().

Jmim

Its inverse is
aQ
a0 = [ ALY},
4.21)

Ezmj)m( )_ j.dQSA ( ) Jmm(y)-

From (4.18) and (AR8), it is verified that the left-hand sides
in (4.20) are indeed transformed between patches as the
gauge field on the total space (3.17).

Using (4.17) and (4.21), we can obtain the following
equalities:

) dQ) A
(Lo ag(0)]) = [ EB (LAY, @ Vs

QO
[han b)) — [ 9N 4 D, AV ) ® T
(4.22)

The derivation of the above equalities is given in
appendix B. Substituting these into (4.15), we obtain
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1o 1
SM:_2 dx\/gtr—(faﬁ

_ L f ddxftr[ { (fap = bopd) Fap

PHYSICAL REVIEW D 77, 126015 (2008)

D50 ST, 4 ilan 8, € Hb ) + (D + b0 0117

1 .
— bigd) + 5 (Vb + ilag, b]

- eabcbzgéc)(x’t)(v%l)(ﬁa + i[aw d)a] - eahcbg(bc)(t’S) + %(eahcd)c + i[¢w ¢h])(s,t)(€abc¢c + i[¢a: d)h])(”)}]

1
_2
& 2
1
2

1
_2
&M

= 7 ZZfdd+lZJ_tr( FABFAB)

By dividing an overall factor Y, in the last line in (4.23) to
extract a single period, we obtain Yang-Mills theory on the
total space.

We can easily extend the above matrix T-duality to the
case in which the fiber is SU(2)* X U(1)!. As an example,
we consider an SU(2) X U(1) bundle, P. Let a, b, ¢ in
(3.20) run 0, 1, 2, 3 such that “0” corresponds to the U(1)
direction and “1, 2, 3” correspond to the SU(2) direction.
We assign i, j, k to the SU(2) direction. We can consider
YM-Higgs on the U(1) bundle on M, M’, which is obtained
by making the dimensional reduction of the SU(2) fiber
direction for YM on the SU(2) X U(1) bundle. We realize
the theory around an SU(2) multimonopole background of
YM-Higgs on M’ by taking the following background in
YM-Higgs on M (3.20) and imposing the periodicity con-
dition to the fluctuations:

—Ltt+1,--)81

do = b

~ 1 .. A
bo= —Edlag(“-,t w T bod,

b; = 1, ® (L;in(2.25)),
(4.24)

where b¥, represents the U(1) monopole and b, represents
the SU(2) monopole. R is a certain constant depending on
the fiber structure. By setting 2j, + 1 = Ny + s with s
running from —7 to T, taking the limit of Ny — o0 and
T — oo in order and imposing the periodicity condition to
the fluctuations again, we realize YM on P in YM-Higgs
on M. In a similar way, we can realize YM on an SU(2)* X
U(1)! in YM-Higgs on its base space.

C. Example: §7 — $4

We present an example of our findings in the previous
subsection: we consider S7 with radius 2 and regard it as
SU(2) = S$° Hopf bundle on S* with radius 1.

In order to describe S7 as SU(2) bundle on $%, it is
convenient to introduce the quaternion H (see for example
[44-46]). The quaternion algebra is defined by

1 . . .
02 Z f dPz\/G tr{Z (V&Ag = VOVA, + i[An Agl — blgA, + ib4 L Ag — ib% LA,

+ (V™A +i[A,, Ay] — fbLA, — iL, A, + ib2 L A,)? + (f"”CA +i[A, Ay + iL,A, — iLbAa)z}

(4.23)
il=j=kK=-1, ij=—ji =k, (4.25)
jk=—kj=1i, ki = —ik =j. (4.26)

An arbitrary element of H is written as
q=a+bi+cj+dk. 4.27)

where a, b, ¢, d € R. Its conjugation ¢g* is defined by

q"=a—bi —cj— dk. (4.28)
The absolute value is given by
lgl =g g =V +b* + 2+ d® =0. (4.29)

S7 with radius 2 is expressed by using quaternions as
follows:

{(q1, ¢2) € H?|lq1 1> + |ga|* = 4}
The Hopf map 7: §7 — S$* is defined by
m:(q1, 42) = [(q1, 92)]1 = {(q1, g2)9lq € H\{0}}. (4.31)

In order to introduce local coordinates one needs to divide

§* in two patches: U, (¢; # 0) and U, (g, # 0). The local

trivialization is given on each patch by

7 YUy 3 (91, 92) = (9297 " q11q:17") € U, X SU(2),

7' (U2) 3 (91, 92) = (9193 ", ¢21q2171) € Uy X SU(2).
(4.32)

We parametrize (g, ¢,) by using a matrix representation of
quaternions as

(4.30)

g = 2cos§ A gy = 2sin§ KA. (4.33)
where k, A € SU(2) are defined by using Pauli matrices

c(a=1,273)as

K = 0D Gik(@)2) yillo*[2)

L (4.34)
A = o iU [2) p=iB(0?/2) y=id(c/2).
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The ranges of variables in the above equations are

0=y=m, 0=é=m, 0=n<2m,
0={¢<A4m, 0=0=m, (4.35)
0= ¢ <2m, 0=y <A4m.

In particular, [A|?> = detA = 1 and |«|*> = detk = 1 hold.
One can easily see from (4.32) and (4.33) that on U, the
fiber space SU(2) is described by A while on U, that is
described by A’ = kA. In the following, we restrict our-
selves to the region U;. We denote sets of coordinates as
xt = (x, & n ) = (x, x*) and y" = (6, ¢, ). x* are co-
ordinates of S*, x# are those of S3 inside of $* and y™ are
those of SU(2) of fiber. In order to describe a metric of S’
explicitly, we introduce the Maurer-Cartan 1-forms for «
and A

K@ di() = i25(0 % doF,
~ (4.36)
AAAWT = —ief, () = dy",

where X represents the set of {x#}. Then we define the
metric of S7 as

ds§7 = det(dq,) + det(dg,), 4.37)
which is evaluated as
1 o
dst; = <d x>+ Zsin2 Xé;(fc)ég(fc)dxﬂdx”)
+ (enay — s Xas@maxt). @38
et (y)dy sin Eeﬂ(x) x*) . (4.38)

In the above expression, the first term represents the metric
of the base space S* and the second one represents that of
the fiber space SU(2) locally. Note that ;%24 and ;e el
are a metric of S> with radius 1. From (4.38) one can read
off the vielbein on S* and the local connections of the fiber
bundle as

1 0 1 0

e“(x)_<0 ;sinxé;(fc)) e“(x)_<0 ﬁég(i))’

bi(x) =0, b (x) = e5(x),
b4 5 (x) = fP<el (x)es (x).

As noted before, when we move to the other region, U,, we
must change A to A’ = kA. Then, one can easily find that
the local connections change to

b4, (x) = tang e (x),

(4.39)

D) =0, bE) =~ cot Ad(K)" el (x),

bis(x) = Ad(K)PbY;(x), b5 (0) = Ad(k) by ().

(4.40)

This transformation property is consistent with (3.3). The
vacua of (4.15) are given by (4.2), (2.25), (4.39), and (4.40)
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on each patch. b, and b/ are known as the gauge field of
the Yang monopole [47].

By applying the arguments in the previous subsection,
we can show that YM on S7 is equivalent to the theory
around the multi-Yang monopole background of YM-
Higgs on $* with the periodicity imposed.

V. GAUGE THEORIES ON SU(n + 1)(/H) AND
MATRIX MODEL

In this section, we reveal various relations among gauge
theories on SU(n + 1) and SU(n + 1)/H, where H is
SU(n) or SU(n) X U(1) or SU(n + 1) which is a subgroup
of SU(n + 1). Note that SU(n + 1)/SU(n) = S***! and
SU(n +1)/(SU(n) X U(1)) = CP" and for H = SU(n +
1) the corresponding gauge theory reduces to a matrix
model. First, we develop a general formalism of a dimen-
sional reduction by which one can obtain YM-Higgs on
G/H from YM on G, where G is an arbitrary group
manifold. Applying this formalism to the case of G =
SU(n + 1), we obtain YM-Higgs on S*"*! and on CP"
and the matrix model. Next, by using the facts explained in
appendix E, we show that the YM-Higgs on CP" in the
most general U(1) monopole background is obtained by
taking the commutative limit of the theory around a certain
background of the matrix model. We have found the cor-
rect form of the YM-Higgs type action of such theory on
CP". Third, by using the extended matrix T-duality of the
U(1) case reviewed in Sec. IV, we show that YM-Higgs on
§2*t1 is equivalent to the theory around a certain back-
ground of YM-Higgs on CP" with the orbifolding condi-
tion imposed. Combining these two facts, we also show
that YM-Higgs on S?"*! is realized as the theory around an
appropriate background of the matrix model with the orbi-
folding condition imposed. Finally, by using the results in
Sec. IV, we show that YM on SU(n + 1) is realized in YM-
Higgs on SU(N + 1)/(SUQ2)* X U(1)"). In particular, it
follows that YM on SU(3) is realized in YM-Higgs on S°
and on CP?.

A. Dimensional reduction of YM theory on a group
manifold

In this subsection, we restrict ourselves to the case in
which the total space P is itself a group manifold G. In this
case, we can take the Maurer-Cartan basis and rewrite the
YM action on G in such a way that the relation between
YM on the total space and YM-Higgs on the base space
becomes more manifest. In terms of this expression of the
YM action, we can easily perform the dimensional reduc-
tion to obtain the YM-Higgs theory on a coset space G/H,
where H is a subgroup of G. Some conventions on the
group manifold G and the coset space G/H are summa-
rized in appendix C.

Let us consider pure YM on G. In the Maurer-Cartan
basis, the gauge potential is written as A = X, E4 where EA
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are the right-invariant 1-forms on G which are defined in
(C2). In this basis, the field strength is written as

F=dA+iAANA
= I(fapcXc T iLaXp — iLpXy + i[ X4 Xg))EA A EB,
5.1

where we have used the Maurer-Cartan equation (C3) and
L 5 are the right-invariant Killing vectors on G which are
defined in (C9). This is a counterpart of (2.20). Then, the
original YM action on G is rewritten as follows:

1 1 1 =. 1
vl /tr(—F A *F) = — [dDZ Gtr{— (fABCXC
8 2 4

%6

+ i.EAXB - i.EBXA
+ il X)) (5.2)
where D = dim(G), G = detG,;y and G,y is the metric

on G. Note that the gauge transformation in this basis is
given by

X, — UX,U ' — L,UU". (5.3)

As explained in appendix C, if one drops the derivatives
along the fiber direction in L4, these operators are reduced
to the L, which are the Killing vectors on G/H defined in
(C12). By dropping the derivatives along the fiber direction
in L, in (5.2), therefore, we can obtain the theory on G /H,

1 1 1 1
- [tr(EFA *F) - b} [ddx\/gtr{z (fABCXC
8G/m

86

+ iLAXB - iLBXA

+ [ Xy, XB])2}, (54

where gé/H = g%/Vol(H), d = dimG/H, g = detg,,
and g,, is the metric on G/H. This is a counterpart of
(2.18).

The action (5.4) is also rewritten into the YM-Higgs
form which was obtained in Sec. III. The relation between
the fields X, and the gauge and Higgs fields on G/H is
given as follows. We introduce the orthogonal vectors to
Ly, as

N¢ = Ad(L(x))4, (5.5)

where L(x) is a representative element of G/H which is
defined in (Cl), and Ad represents the adjoint action:

gT4g~ ! = TBAd(g)g4. One can show the orthonormality
conditions,
LYLY = —gt?, N4Nb = 59, LYNG =0,
5.6)

where gH” is the inverse of the metric on G/H.
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Furthermore, the following equalities hold:
Lo, N§ — Lgd, Ni = —2iL\Lyby, — Fape(LY NG
— LENYDS,
fABCNg‘ - fachszé + L,}:Lféblfw =0.
(5.7)

We decompose X4 into the gauge and Higgs fields in terms
of LY and N as follows [33]:

X, = il¥a, + N9, (5.8)

This is a generalization of (2.16). Then, each term in the
action (5.4) is rewritten as
fapcXc = ifapcLea, — LKLybS,, é,

+ fathzNgd)a’

iLAXB - iLBXA = _l.fABcha# - LQLLE(B#GV - aya
—2b%,,¢,) + i(LyNj — LyNY)
X (a#d)a - fabcbfl’td)c):

i[XA’ XB] = _ILXLZ’[a/_u av]

— (LiNg — LyNYla,, ¢.]
+ NSN3 by bl

M

(5.9

where we have used (5.7). By substituting these equations
into the action (5.4) and using (5.6), we indeed obtain the
YM-Higgs type action (3.20),

1 1 1
SG/H = ’[ddx\/gtr{z(fpw - b;lu/(ba)z + E(D,u,(ba
gG'/H

- fabcbz(z)c)z + i(fabcd)c + i[d)a’ d)b])z} (510)

Finally, we consider the case in which P = G and the
base manifold is just a point. This is the special case of the
above dimensional reduction in which H equals G itself. In
this case, the theory on the base space is given by a zero-
dimensional matrix model. Dropping all the derivatives in
(5.2), we can easily make a dimensional reduction to the
matrix model:

1 1 1 1 .
g ftr(EF A *F) g S tr{Z (fABCXC + Z[XA, XB])Z},

G mm

(5.11)

where g2, = gé /Vol(G). This is a counterpart of (2.19).
Of course, we can obtain the matrix model (5.11) also from
the theory (5.4) on G/H by dropping the derivatives L. If
we regard the original YM on G as YM on a principal G

bundle over a point, we obtain (5.11) as a special case of
(3.20).
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B. Dimensional reduction of YM theory on SU(n + 1)

In this subsection, we derive the YM-Higgs on $?"*! and
on CP" by applying the dimensional reduction discussed in
the previous subsection. We also derive the O-dimensional
matrix model in which the YM-Higgs on $***! and on CP"
will be realized.

Let us consider the group manifold SU(n + 1). We can
apply the dimensional reduction developed in Sec. VA to
the case of P = G = SU(n + 1) and obtain a theory on a
coset space SU(n + 1)/H, where H is a subgroup of
SU(n + 1). We begin with pure YM on the group manifold
SU(n + 1) in the Maurer-Cartan basis,

1 1
[d”(””)z\/atr{zL (fapcXc

SSU(n+1) = 2
8sum+1)

VL, Xg — iLX, ¥ X, XB])Z}, (5.12)

where f,pc is the structure constant of SU(n + 1), G =
detG,y and G,y is the Cartan-Killing metric on G which
is defined in (C6).

Let us consider the dimensional reduction of the above
theory to a theory on G/H. If we take H to be SU(n), the
coset space is given by SU(n + 1)/SU(n) = $*"*!. By
applying the dimensional reduction (5.4) to YM on

SU(n + 1), therefore, we obtain the YM-Higgs theory on
52n+ 1 ,

1

2
gs2n+1

1 .
SSZn-H = /d2n+])~é\/§' tr{z(fAchC + iLAXB

—iLpXy + i[X,, XB])z}, (5.13)
where g represents the determinant of the metric on §>"*!,
and L ,’s are the Killing vectors on S>**!. Note that §>"*!
that we consider here possesses only SU(n + 1) isometry
which is smaller than SO(2n + 2). In fact, this is not the
ordinary round sphere but a squashed sphere. In the case of
n = 2, the metric of this squashed S is explicitly given in
appendix D.

Next, we consider the case of H = SU(n) X U(1). In
this case, the coset space is SU(n + 1)/(SU(n) X U(1)) =
CP". Then, we can obtain the theory on CP" from YM on
SU(n + 1) through the dimensional reduction,

1 1
[dz”x\/gtr{z (fABCXC + iLAXB

Scpm = —
8cpr

— iLgX, + i[X,4, XB])Z}. (5.14)
As in the case of $>'*1, g = detg,,» 8., and L, represent
the metric and the Killing vectors on CP" respectively. The
theory (5.14) can be obtained also from the theory (5.13) by
dropping the derivative along the extra U(1) fiber direction.
We can also rewrite (5.13) and (5.14) into the YM-Higgs
type actions as in (5.10) by using the relation (5.8). For
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example, (5.14) is rewritten into (5.10) with w, v =
l,---,2nand a, b, c=0,---,n> — 1. Here, a, b, c are
indices of SU(n) X U(1) and a = 0 corresponds to the
U(1) direction.

Finally, we consider the case in which H is SU(n + 1)
itself. In this case, the coset space is just a point. Then, we
obtain the following matrix model by using (5.11):

1

1 .
Smm = 2 tr{z (fapcXc + i X4, XB])Q}- (5.15)

This theory is used to realize the theories (5.13) and (5.14)
in the next subsection. For n = 1, the dimensional reduc-
tions in this subsection are equivalent to those in Sec. II.

C. Relations among gauge theories on SU(rn +1)/H

In this subsection, we show that the theory (5.14) in a
monopole background can be realized by taking the com-
mutative limit of the theory around a nontrivial background
of (5.15). Combining this construction and the matrix T-
duality, we also show that the theory (5.13) on $?**! can be
realized as the theory around a certain background of the
matrix model with the orbifolding condition imposed.
Furthermore, we apply the extended matrix T-duality de-
veloped in Sec. IV to YM-Higgs on SU(n + 1)/(SU(2)* X
U(1)) and show that YM on SU(n + 1) is equivalent to the
theory around a certain vacuum of YM-Higgs on SU(n +
1)/(SU@2)F x U(1)!) with the periodicity condition im-
posed. For n = 2, we obtain YM on SU(3) from YM-
Higgs on S° and on CP? through the extended matrix T-
duality.

First, we review nontrivial backgrounds of the theory
(5.14) on CP" and the matrix model (5.15). The theory on
CP" has many nontrivial monopole vacua. In particular, we
focus on the U(1) monopole background. Recall that we
have n?> Higgs fields ¢,. In the U(1) monopole back-
ground, only the Higgs field along the U(1) direction ¢,
acquires its nonzero vacuum expectation value. In the
gauge where ¢ is diagonal, the vacuum configurations
of the U(1) monopole with the gauge group U(M) are given
by

a, = b9y,
. 1
¢0 = —7diag(. . .’nS— , .’ns—l’
J2n(n + 1) NG
Ns*l
X Mg " g Ry, "ty R, " .)’
%,_J
N, Nyt
b, =0,  (fora #0). (5.16)

Here, > N, = M and n; must be integers due to Dirac’s
quantization condition. Because of (5.8), the vacuum con-
figurations of X, are equivalently given by
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r M0 0
XA:_Mdlag( s Mg—1, 7775 Ng—1,
J2n(n + 1) — v
Ny
an;”‘;ns’ ns+1"';ns+1"”)' (517)
N, Nsi

The theory around the background (5.17) is obtained by
expanding each block of the fields in (5.14) as XE‘”) —
X(‘”) + X(‘Y’l). Then, the following action is obtained,

/ Py \/_Z tr{ (FascXS) + L0 x50

8¢ cpr

- iLgI”)XS't) + i[Xa, X510 (fapp X5y
+iL XY — il XY + Xy, XB](t'S))}:
(5.18)

where g, = *5* and Li\") are the angular momentum
operators in the presence of a monopole with the magnetic
charge ¢, which take the form

2q
J2n(n + 1)
These operators are the generalization of (2.27) in the case

of §2.
The vacua of the theory (5.15) are determined by

[X4 Xpl = ifapcXc.

In addition to the trivial solution X, = 0, there are non-
trivial solutions which are given by the representation
matrices of the SU(n + 1) generators,

LY=L, + GLYBY, + NY).  (5.19)

(5.20)

Xa=1L, (5.21)
L, are generally in a reducible representation. In order to
construct a theory on CP” in a U(1) monopole background,
we consider the following representation:

(5.22)
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Here £ are the abbreviations of £1** % which are the
generators of SU(n + 1) in the irreducible representation
specified by the Dynkin index of SU(@# + 1),
[A,, 0, - -, 0]. We consider the matrix model (5.15) around
the background (5.22) by expanding the each block of the
fields around the background: X" — X% + X" Then,
the action takes the following form:

1
Som = —— Ztr{ (FapcXE" +iLly o X"
mm st

—ilLg o XSJ) + i[ Xy, XB](X’I))(]CABDX%S)

+ily o XUV —ify o X\ +i[X,, XB](“))}.

(5.23)
L 40 are defined as
o Xg,t) — LA&s) ng’” _ ng) Eﬁj). (5.24)

We show in the following that the theory (5.23) is
equivalent to the theory (5.18) if we put A; = Ny + n,
and take N, — oo limit. In order to show this equivalence,
we make a harmonic expansion [31,32,35]. As explained in

appendix E, the (s, ) blocks X/(f’[) in the matrix model are
expanded by the basis of rectangular matrices (E21) as

(Ag+A)/2 (5.)
Xf:’t) _ XASJ Bitqy ® Y([;i;;)qs,' (5.25)

leqxrl

Then, the diagonal coherent map allows us to map the (s, )
blocks to local sections of the monopole bundle on CP”
with the charge g,,,

X[(:,z) Z X(%/)thu ® Y(q;i)
= 7. qst
st B+ st Y \dst
= 3 AT ) = X )
st
(5.26)

where we have taken the commutative limit N, — o0 and
Y (q;,) are the basis of local sections of the U(1) monopole
+qst

bundle on CP" which are defined in (E26). Note that we
have put the superscript CP on the quantity in the right-
hand side of the above equation in order to emphasis that

the XCP(“) are the fields on CP" appearing in (5.18).
Similarly, L, o is mapped to L(q) as shown in (E31)*:

LYXEP (w, w).

Using (5.26) and (5.27), we find that the matrix model

Lyoxi?— (5.27)

“In [32], (5.26) and (5.27) are proven to the quadratic order in
the fields for all ¢ and to all order for ¢ = 0. In this paper, we
assume that these are also valid to all order for all q.
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(5.23) is equivalent to the theory (5.18) on CP" in the
commutative limit Ny — oo.

Next, we show that the theory around a certain vacuum
of UM = N X c0) YM-Higgs on CP" with a periodicity
condition imposed is equivalent to U(N) YM-Higgs on
§2*+1 This statement is nothing but the matrix T-duality.
As explained in Sec. IV, therefore, we consider the appro-
priate vacuum which is given by (5.17) (or equivalently
(5.16)) with s running from —oo to 00, ny, = s and Ny = N.
We expand the fields on CP" around the background as

X, — X, + Xy, (5.28)

and impose the periodicity (orbifolding) condition on the
fluctuation,

X/(4s+1,t+1) _ ng,t) = Xffft). (5.29)

Then, we define the gauge and Higgs fields on $?**! by the
Fourier transforms of the fluctuations on each local coor-
dinate patch:

x§ =Y x{Memim, (5.30)

where y is a coordinate which parameterizes the fiber
(U(1)) direction and satisfies 0 = 7 =< 2. Here, the super-

scripts S and CP indicate that X3 and XEP(W) are the fields
on $?"*1 and CP" respectively. We substitute (5.30) into
(5.18) and divide an overall factor Y, to extract a single
period. Then, we obtain U(N) YM-Higgs on $?**! written
in the basis of X, (5.13).

Combining the above matrix T-duality and the construc-
tion of (5.18) in terms of the matrix model, we find that the
theory around (5.22) of the matrix model, where s runs
from —oo to o and A; = Ny + s, is equivalent to U(N)
YM-Higgs on S?"*! if we take the limit N, — 0, impose
the periodicity condition on the fluctuations, and finally
divide the overall factor Y.

Finally, it is straightforward to apply the extended ma-
trix T-duality to SU(2)¥ X U(1)! bundle on SU(n +
1)/(SU2)* X U(1)!) and show that YM on SU(n + 1) is
equivalent to the theory around a certain vacuum of YM-

|
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Higgs on SU(n + 1)/(SUQ2)* X U(1)!) with the periodic-
ity condition imposed.

VI. INTERPRETATION AS BUSCHER’S T-
DUALITY

In this section, let us see that the extended matrix T-
duality of the U(1) case, which was obtained in [29] and
reviewed in Sec. IV B, is actually interpreted as the T-
duality in Buscher’s sense. We put dimM = p. For G =
U(1), as in (4.12), the metric of the total space is given by

ds®> = GyndMdzN = gurdxtdx” + (dy — bﬂdx“)z,
6.1)

where M, N=1,---,p+1and u, v=1,---,p. We
assume that the other fields such as the antisymmetric
fields and the dilaton field are trivial. Then, YM on the
total space is viewed as the low energy effective theory for
the D p-branes wrapped on the total space.” We make the T-
duality transformation for the fiber direction to obtain a
new geometry [36]:

ds? =g, dx*dx" +dy*,  B,,=0, B, =—b,.

(6.2)
The Dp-branes should be transformed to the D(p —
1)-branes wrapped on the base space. The D(p —

1)-brane effective action on the new geometry (6.2) is
given by

Sp1="Tp jdpae_q’\/det(éab + B,, +2ma'F,),
(6.3)

where 0%(a = 1, - - -, p) parametrize the world-volume of
the D(p — 1)-brane, and G, and B,,, are the pullback of
(6.2) on the world volume which is defined through the
embedding of world volume z” (o) as

~ azM azN ~ azM oz

Gar =5 ggn O Bav =5 a5 n B ()
In the static gauge x*(o) = o* and 2°(0) = 27a’ ¢, (6.3)
reduces to

Sp 1 =T, [d”x\/det(gw + (27Ta’)28Md)a,,d) +27ad'(F,, + 0,¢4b, — 9,¢b,)).

Up to O(a’?), this equals

1 1
> d”xﬁ(Z(FaB + Vade/; - vB¢ba)2
8ym
1
+5(Va02) (6.6)
where g3y = ;- If we redefine the gauge field as

a, — a, + b,¢ and make non-Abelianization, we obtain

(6.5)

from (6.6)

1
- [ dpx\/;g‘trG (Fug — bagd)? + %(Daqﬁ)z), ©.7)

g%{M
which indeed agrees with (3.20) with G = U(1).

Here we ignore the transverse directions.
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APPENDIX A: SPHERICAL HARMONICS

In this appendix, we review the spherical harmonics on
§3, the monopole harmonics on S? [42] and the fuzzy
spherical harmonics [15,24,48]. For more details, see
[29,49] and references therein.

1. Spherical harmonics on $3

We regard S* as the SU(2) group manifold. We parame-
trize an element of SU(2) in terms of the Euler angles as

g = e*i(pjgefiejz‘efiz/d}, (Al)
where J satisfy [J4, Jp] = i€qgcJcand 0 =0 = 7,0 =
@ <2, 0 < <4m. The isometry of S3 is SO(4) =
SU(2) X SU(2), and these two SU(2)’s act on g from left
and right, respectively. We construct the right-invariant 1-
forms,

dgg™! = —ipEM,, (A2)

where the radius of 3 is 2/ u. They are explicitly given by

1
E' = —(—sinpd6 + sinf cospdi),
m

1
E? = —(cosepd® + sinf sinpdi), (A3)
M
5 1
E> = —(do + cosbdy),
M
and satisfy the Maure-Cartan equation
A _H B A FC —
dE - EGABcE ANE"=0. (A4)

The metric is constructed from E4 as
1
ds* = EAE* = — (d6? + sin?0d@* + (dy + cosd@)?).
M
(AS)

The Killing vectors dual to E4 are given by

L,=——EMa,, (A6)
"

where EY are inverse of Ej,. The explicit form of the
Killing vectors are
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. ) cosg
L =—z<—sm dy — cotf cospd, + —— 9 ),
1 Pog o, sing ¥
sin
L, = —i(cosgoag — cotf singd , + _—g;a¢>, (A7)
sin

£3 = —id

@

Because of the Maure-Cartan equation (A4), the Killing
vectors satisfy the SU(2) algebra, [ L4, Lg] = i€ gcLec.
The scalar spherical harmonics on S* are given by

Yy (Q3) = (=120 + 1 — g~ Jm).

These spherical harmonics form the basis of SU(2) algebra
generated by L4’s.

(A8)

LzYlmlﬂ = J(J + 1)YJmn%

LY =T FmJ £m+ 1Y (A9)

L3Y i = mY .

The complex conjugates of the spherical harmonics are
evaluated as

(Ylmlﬁ)* = (_ l)mi’ﬂYme*ﬁz'

The spherical harmonics also satisfy the orthonormality
condition

dQ,

21
The integral of the product of three spherical harmonics is
given as follows:

(A10)

Y)Y gtint = 81118 s & - (A1D)

C = [y, ) Vs Yromn
JomyinJymsiiy 2 Jymynny Joymoy iy £ J3ms g

2
_ @+ DR+ 1), ol
2]1 +1 ~ JymyJyms Ty J3is?
(A12)
where Cﬁz; 7,m; 18 the Clebsch-Gordan coefficient of

SU(2). Finally, the spherical harmonics satisfy the com-
pleteness condition,

D (Vi) (Q3)Y 1 (Q}) = 2728(Q5 — ), (A13)

Jmin
where
8
8(Q3) = ——58(0)8(@)5(¢h). (Al4)
sinf
2. Monopole spherical harmonics on S
We adopt the following metric for S%:
1
ds? = —(d6* + sin*0dp?). (A15)
7

We define two local patches on S? to describe nontrivial
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U(1) bundles over S?: the patch I is specified by 0 < 6§ < 7
and the patch IT is specified by 0 < # = 7. In the following
expressions, the upper sign is taken in the patch I and the
lower sign in the patch II.

The angular momentum operator in the presence of a
monopole with magnetic charge ¢ at the origin takes the
form

L(q) = i(singdy + cotf cosgd,) — q% cosg,
L(q) = i(—cospd,y + cotf singd,,) — qil +§;)50 sing,
LY = —ia, * q, (A16)
where ¢ is quantized as g = 0, i;, *+1, + %, «++. These

operators act on the local sections on S? and satisfy the
SU(2) algebra [Lff), qu)] =i eABCL(C"). Note that when
q = 0, these operators are reduced to the ordinary angular
momentum operators on S (or R?). if we regard S° as a
U(1) bundle over S?, and parametrize the fiber direction by
y = iy = ¢, the above expression (A16) can be obtained by
making a replacement in (A7): 9, — —igq.

The monopole spherical harmonics are the basis of local
sections on S? and also form the basis of the SU(2) algebra

generated by Li"’). The monopole scalar spherical harmon-
ics are given by

Y jmg(Qa) = (= 1)/ 79520 + 1{J — gle®2|Imyei=atme,
(A17)

Here J=lqllgl+1Llg+2,---, m=—-J —-J+
1,---,J — 1, J. The existence of the lower bound of the
angular momentum J is due to the fact that the magnetic
field produced by the monopole also has nonzero angular
momentum. Note that the monopole harmonics with g = 0
do not transform on the overlap of two patches. They
correspond to global sections (functions) on S? which are
expressed by the ordinary spherical harmonics on S%. The
action of Lﬁf’) on the monopole spherical harmonics is
given by

L(({)ZYqu = J(J + 1)ijq,

LOY g =TT MU =m + D ey, (ALS)

Li(%q) Ylmq = mYqu-

The complex conjugates of the monopole spherical har-
monics are evaluated as

(?qu)* = (_1)mqu~vJ*m7q'

The monopole spherical harmonics are orthonormal to
each other,

(A19)

dQ
f 2 (Ylmq) YJ’m’q - 6JJ’6mm (AZO)

The integral of three monopole spherical harmonics is
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equal to the corresponding integral (A12) on S3 with the
identification m = ¢,

sz
( jl’”]‘]l) Yfzmzthszslh
Q2+ DRI+ 1) _jm, 7
2J, +1 ~Jamydymy = J2q2033
J
= C-’;z;Z;hms% (A21)

where the monopole charges must be conserved in the left-
hand side of the above equation as g; + g, + g3 = 0. Note
that the monopole spherical harmonics are expressed in
terms of the spherical harmonics on S

Yqu(QZ) = eiq(‘/’i“’)Yqu(Qﬂ,

e o (A22)
LY 1y (Q,) = €4V=9) LY, (Q3).

(A21) and (A22) represent a map between the local sec-
tions on S? and the Kaluza-Klein modes on S3.

3. Fuzzy spherical harmonics

Let us consider (2 + 1) X (2’ + 1) rectangular com-
plex matrices. Such matrices are generally expressed as

M= M, |jr)j'"l. (A23)

rr

We can define linear maps L, o , which map the set of
(2j + 1) X (2j' + 1) rectangular complex matrices to it-
self, by their operation on the basis:

Lo ljnyjr'l = LK) = 1inG'PIEY, - a24)
where I:E{] are the spin J representation matrices of the
SU(2) generators. L,o satisfy the SU(2) algebra
[Lao, Lyol=iespcLco.

We make a change of a basis of the rectangular matrices
from the above basis {|jr){(j’7/|} to the new basis which is
called the fuzzy spherical harmonics:

=VNoY (=) 1Nl (A25)

)A]Jm(jj’)
where N, is a positive integer which will be specified
below. For a fixed J the fuzzy spherical harmonics also

form a basis of the spin J irreducible representation of
SU(2) which is generated by L, o ,

(£A°)2?Jm(jj’) = J(J + 1)?‘/,,1(”'/);

L.oYygn=vUFmU xm+ DY, (A26)

£3 ] YA'J’"(]]) = m?,,n(jj/).

The Hermitian conjugates of the fuzzy spherical harmonics
are evaluated as

(ij(jj’))1L = (_1)m7(j7j/)?17m(j’j)- (A27)
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The fuzzy spherical harmonics satisfy the orthonormality
condition under the following normalized trace:
1 N .
A tr{(YJm(jj’))JrYJ’m’(jj’)} = 07O s (A28)
where tr stands for the trace over (2j/ + 1) X (2j/ + 1)

matrices. The trace of three fuzzy spherical harmonics is
given by

AJimy (i)

Jym, (]]’)ngg(/’]”) tr{(leml (I]”)) Yfzmz(]]') Yfzms(]/]")}

_ (_1)]1+j+j”JNO(2J2 +1DQ2J3+1)

Ji L J
J 1 2 3
X CJ;Z;J;mg{ . }’

A A

(A29)

where the last factor of the above equation is the 6 — j
symbol.

In order to reveal relationships among the fuzzy spheri-
cal harmonics, the monopole harmonics on $? and the
spherical harmonics on S3, we introduce the following
parametrization for j, j/, and j",

2j+1=No+¢ 2/ +1=Ny+¢,

(A30)
2j"+1=Ny+ "
£, ', and ¢ are integers which are grater than —N,,. Then,
in the limit Ny — o0, one can show that
AJimy (") Jimiq
J;mz(JJ N3ms(j'j") Cjimzq;hmws (A31)

S —

with the identification j — j” = g, j — j' = ¢,, and j' —
j" = q5. This relation can be proved by using the following
asymptotic form of the 6 — j symbols. If R >> 1, one
obtains [50]

(—1)a+bret2dretf+R)

V2R

(ofr slaate)
(A32)

a b c -
d+R e+R f+R

where the 3 — j symbol is related to the Clebsch-Gordan
coefficient as

‘]l ‘12 ]3 — (_1)J3+n13+2.11 1 J3ms
my my  my 2 £ 1 Nmdm
(A33)

The relation (A31) implies that the fuzzy spherical har-
monics Y, give a matrix regularization of the mono-

pole  harmonics  Y,,, through the following
correspondence:
N dQ
j_j/‘_’q; LAO‘—’L‘E{]) *tf‘—’f 2

(A34)
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Furthermore, combining the above correspondence and the
relations (A21) and (A22), we can also map the fuzzy
spherical harmonics to the spherical harmonics on S°.

4. Vector spherical harmonics

We introduce vector spherical harmonics for three dif-
ferent types of the spherical harmonics that we have de-
fined above. The vector spherical harmonics are given by

Y;mfﬁA(Q3) = iPZUAanlenYme(Q3):
np

V] qa(Q2) = i Y Upu €8, ¥ 5, ( ), (A35)
n,p
/\p . Qm A ~
YimGina = lPZUAnCQplnYQP(jjI)’
np
where p=—1,0, 1 and Q=J+36,,, 0=J+5,,

These spherical harmonics transform as the vector repre-
sentations under SU(2) rotation. The unitary matrix U is

given by
-1 0 1
U= (—i 0 —i).
0 V2 0

The vector spherical harmonics satisfy

(A36)

%GABCVB JminC = i€apc LY, Jmimc T Yy JmimA

=p(J + DY} -,

zeABCL Y,ch + Yﬁqu p(J + l)YquA,
i€xpelp o YJ Gine T ij(”,)A p(J + l)YJm( na- (A37)

The complex (Hermitian) conjugates of these vector har-
monics are evaluated as

( mmA)* = ( )m_ﬁH—IY.IIJ—m—rhA’
(Ffpqa) = (V") n (A38)
o0 iN+17P
(YJm(jj’)A) = (=" b= YJ m(j' A’
The orthonormal relations are
dQs -
f ( JmmA) TmliAa = 6]]’5mm’8ﬁ1n~1’ 3pp’>
dQ2 “f
4 (YIJ)qu) J’m’qA 611’5mm/5pp/’ (A39)
1 N
N tr((YJm(]/’)A)TYﬁ’m'(j’j)A) = 5111 6mm’8pp"

Finally, the integrals (or trace) of three vector harmonics
are given by
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A ¥ yp e ¢
20 5.2 CABCY Jymyi AL Iymyiiy BY J3ms i C Jimyiy p1Jamyiig pyJymyiny py
dQ, VP2

VPl
A GABCYj,mquAYJZquzB YJ;m;q;C 511mlqlﬂlfzmzﬂlzpzfzm3ﬂl3p3’

(A40)

— (7" pre pPs =& N L L
€aBC No tr(Yllml(jj’)A szmz(j’j”)BYJ3m3(j” j)C) gllml(././’)p1szz(J’J”)szsm}(./”J)ps’

where the monopole charges must be conserved in the left-hand side of the second equality as ¢; + ¢, + g3 = 0 and &, &
are given by

E 1oy prdymaiig pyJymsiiiaps = \/6(2J1 + 1DQ2J; +2p + DQ2J, + 1)Q2J, +2p3 + 1)(2]5 + 1)(2]5 +2p3 + 1)

0 0 1! .
X (1)~ ettt 50 5 (Ql Q> Q3)(?1 ?2 Q3) (A41)
~ mp mp mzj\m; m; my
Qs 05 1

gj]lﬂ](jjI)PlJzmz(ﬂj”)ﬂzh”&(j”/)ﬁ} == J6N0(2]1 + 1)(2]1 + 2p% + 1)(2]2 + 1)(2.’2 + ZP% + 1)(2]3 + 1)(2.]3 + ng + 1)

X (= 1)*(P1+P2+Pa+1/2)*Q1*QZ*Q3+2J'+2]’+2]”

01 0

~ 01 & 0:\[01 0, O
x10, 0, 1 (m = {j,} j ]} (Ad2)
~ 1 2 3
0; 05 1
As in (A31), we can show
gJlm](jj/)p1-]2m2(j/j//)P2'I3m3(j”j)PS - gflmlfhlpljzmzf;lzﬂzhmsﬁl}/)}’ (A43)

in the limit Ny — oo with j — j' = gy, j/ — j” = q, and j"" — j = g5 fixed.

APPENDIX B: DERIVATION OF (4.22)

In this appendix, we give the derivation of (4.22) in some detail.

dQs

(Lo a]* = 5,0 @ Ly © Ty = [553

N dQ
Aa(D)Y ], ) ® Ly © ¥y ) = f oy 53 AdD LY Sy ® Vi)
dQ)
[ 3 (.E A (Z))Ylmq . ® YJm(/;J,)’ B1)
where we have used (A9) and (A26).
[ba pp]" = Z(%q}“nl SRR D E-D GINIRRS SRS

_ (qm) (qu) 4 (qg) (qm) AI"m" (jgji)
Z(d’wm bt~ Prim®Pay ')®CJm(M>J' 'o“mYJ” "GisJo)

o Z[dﬂ3 dQ3 {A (Z)Ab( /) — Ab(Z)A (Z/)} Jmgy, (y) J'm'q,, (y/)

d .
X o 3 Y;”m”q (y//)Yqum (yI/)YJ’m’qv, (y//) ® YJ”m"(jb\.j,)
dQ .
= [ A AWy, 0)© Ty (B2)

In the third and fourth lines of the right-hand side, we have used (A31), the charge conservation " = /m + ' of
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Cj:n’:;:]’f‘;,m, and (A12), so that we have added the new
summation over v additionally and replaced ¢g,; by gq,;-
Then, we can regard the summation ¥, , as 3., ., and

the last equality holds due to (A13).

APPENDIX C: GROUP MANIFOLD AND COSET
SPACE

In this appendix, we describe some conventions on the
group manifold G and the coset space G/H which we
follow in this paper.

We parametrize an element of G as

g(z) = L(x)h(y),

where L(x) € G/H, h(y) € H, the coordinates z*, x* and
y" parametrize G, G/H and H respectively and z" are
decomposed into (x*, y). We can construct the right and
left invariant 1-forms on G as

(CDH

dgg™' = —iERTY, g 'dg =iE{T*, (C2)

where A =1, ---,dimG and T* represent the generators
of G which satisfy the Lie algebra of G, [T?, T?] =
ifapcTC. We decompose T4 into (7%, T%) where a =
1,-+-,dimG/H, a =dimG/H + 1,---,dimG, and we
assume that 7¢ satisfy the Lie algebra of H which is a
subalgebra of G, [T% T”] = if,,.T¢. The both of E} and

E? satisfy the Maurer-Cartan equation,
dEg — %fABcEg AEG =0, ©3)
dEé - %fABCEE A Eg = 0,

We also introduce the right and left invariant 1-form for
L(x) € G/H and h(y) € H as follows:

dLL™" = —i(eg)s (x)T*dx*,
L7YdL = i(ep )5 (x)T*dx*,

(C4H
dhh™! = —i(eg);, ()T dy",

h=tdh = i(e,)5,()Tdy".
Then, we can write down the components of E4 and E}

explicitly:

(Enlly = ((eR)Z

(eR)le/,
A _ (eL)ﬁAd(h)ﬁa 0 )
(EL)y ( (eL)ﬁAd(h)Ba s )

where Ad is defined as the adjoint action gTg
TBAd(g)p4. The Cartan-Killing metric on G is defined as

ds®> = GyndMdzN = —2Tr(dgg 'dgg™").  (C6)

Ad(L)g (R,
Ad(L)g(eR)m )
(C5)

-1 _

In terms of the components (C5), the above metric is
written as
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ds* = (eL)Z(eL)gdx'ude +{(@p)mdy™ — (eL)dex”}2~
(C7)

We can regard the group manifold G as the principal H
bundle on G/H. By comparing (C7) and (3.7), therefore,
we can make the following identifications:

(eL)Z(eL)g = g;u/’ (eL)ftlL = bt,tlu

C8
(éR);ln(éR)z = hmn’ ( )

where g, and h,,, are the metrics on G/H and H, re-
spectively, and by, are the local connection 1-forms of the
principal H bundle. Namely, we can regard (e;)§ and
(ég)% as the vielbein on G/H and H, respectively. The
metric (C6) is invariant under the right and left actions of
G. The corresponding right and left invariant Killing vec-
tors on G are defined in terms of the inverse of E* as

LB = —iEpl oy, L5=—iE)Noy.  (C9)

By using (C3), we can show that L& and L satisfy the Lie
algebra of G X G,

[ﬁR, £§] = ifABcﬁlé:

[LL’ Llé] = ifABcﬁlé’ (C10)
(L}, LE]1=0,
and they also satisfy the Killing vector equations,
VuLay +VyLay =0, (C11)

where V,, are the covariant derivative on G and £, =
Gyn LY. We also define the following operators:

Ly = —i(Ep)4,,. (C12)

One can show that L, do not depend on y™ and they satisfy
[L4, Lg] = if spcLc by using (C10). Furthermore, we can
show that

VL, + VL, =0, (C13)

where Ly, = g,,L}. Namely, L, are the Killing vectors
on the coset space G/H.

APPENDIX D: METRICS OF SU(3), S AND CP?

In this appendix, for concreteness, we give an explicit
form of the metrics of SU(3), SU(3)/SU(2) =~ S§> and
SU@B)/(SUQ2) X U(1)) = CP? [51]. We parametrize an
element g of SU(3) as

g§=L(x. 0 ¢ y)Z(1)V(a, b, c), (D1)

where
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L(X’ 0, o, lﬂ) — ei(p/\3eit9)\zeiw/\3 €2iXA5,

Z(r) = em N2, (D2)

V(a, b, C) — e—tu/\3e—zl7/\ze—lc)t3y

ad 0=yxy=7,0=0=m 0= <27 0=y <A4m,
0=7<2m, 0=a<2m, 0=b=m and 0 = c <4m.
A, v+, Ag are the Gell-Mann matrices and satisfy
Tr(A,Ap) = § 8,45 The metric of SU(3) is given by

dS§ym) = —5Tr(dgg 'dgg™")
= dx* + jsin* x{d6? + sin*0d p?
+ cos?y(dy + cosfd )}
+ Hdr + Jsin? y(dy + cosfd )}
+ i{e! + cosx(sinydf — sind cosyrd o)}
+ {e? — cosy(cosypdd + sinf singrd o)}
+ e =31 + cos? x)(dy + cosfd o)}, (D3)

where

el = — sinadb + cosasinbdc,

2 e’ = da + cosbdec,

(D4)

which are the right-invariant 1-form of SU(2). SU(3) is an
SU(2) X U(1) bundle over CP?. The second line in the
right-hand side of (D3) is the Fubini-Study metric of CP2.
The third line represents the U(1) fiber structure while the
fourth, fifth, and sixth lines represent the SU(2) fiber
structure. SU(3) is also viewed as an SU(2) bundle over
§3 =~ SU(3)/SU(2). The second and third lines together
correspond to the metric of S°> = SU(3)/SU2). §° =~
SU(3)/SU(2) is viewed as a U(1) bundle over CP2. The
metric of the ordinary unit $° is given by the sum of the
second and third lines with the factor 3/4 in the third line
replaced by 1/4.

e“ = cosadb + sina sinbdc,

APPENDIX E: FUZZY CP"

In this appendix, we give a brief review of a construction
of fuzzy CP" [28,31-35].

1. Functions on fuzzy CP"

Fuzzy CP" is a well-known example of noncommutative
space which is given by the quantization of coadjoint orbit
of SU(n + 1) in terms of a certain matrix algebra acting on
an appropriate representation space V. We can determine
this matrix algebra and the representation space V by
matching the spectrum of functions on CP" and that on
fuzzy CP".

In order to consider the spectrum of functions on CP",
We regard CP" as a coadjoint orbit in the Lie algebra of
SU(n + 1).
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crt ={gtg g € SUm + 1)}

=~ SU(n + 1)/(SU(n) X U(1)), (ED)

where ¢ is an element of the SU(n + 1) Lie algebra such
that the stabilizer of ¢ is given by SU(n) X U(1). For
example, for the case of CP?, we can take f to be Ag which
is invariant under SU(2) X U(1) adjoint action generated
by A;, Ay, A3 and Ag. Functions on CP" should be invariant
under the action of SU(n) X U(1). Then, the space of
functions on CP" is given by a direct sum of the represen-
tation spaces of SU(n + 1) which contain SU(n) X U(1)
invariant states:

Cc*(CP") = @ Vo011 (E2)
J=0

where we denote [J,0, - -+, 0,J] as the Dynkin index of
SU(n + 1), and V..o represents the corresponding
irreducible representation space of the SU(n + 1) Lie al-
gebra. One can show that Vi, ..., are the only spaces
which contain the SU(r) X U(1) singlets.

The space of functions on fuzzy CP" is obtained by
introducing a cutoff A in (E2) as

A

@ V[J,O,"',O,J] = V[A,O,"',O] ® V[*AOO] (E3)
J=0

By definition, it is obvious that the above spectrum on
fuzzy CP”" tends to the spectrum (E2) on CP" in the
commutative limit A — oo. Note that the right-hand side
of the above equation can be viewed as a space of matrices.
From this viewpoint, we make an identification V =
VIa,--0) and regard functions on fuzzy CP" as matrices
acting on the vector space V. In particular, the coordinates
on fuzzy CP" are identified with

Ea= L300 (E4)

which are the generators of SU(n + 1) in the irreducible
representation specified by the Dynkin index [A, O, - - -, 0].
These coordinates on fuzzy CP" are actually reduced to the
coordinates on CP" in the commutative limit through a
map which will be defined in the last part of this section.

2. Derivatives on fuzzy CP"

In order to construct differential operators on fuzzy CP",
let us recall the simplest case of fuzzy CP! ~ S°. In this
case, we established the differential operators on fuzzy S>
in appendix A. As shown in (A34), the adjoint action of the
SU(2) generators is reduced to the action of the Killing
vectors on S? in the commutative limit. We can generalize
this fact into the case of fuzzy CP" with n = 2. The adjoint
action of the SU(n + 1) generators on the space of square
matrices (E3), [LAI[L‘A’O""’O], -], is mapped into the action of
the Killing vectors on the space of functions on CP”" in the
commutative limit.
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3. U(1) monopoles on fuzzy CP"

Topologically nontrivial field configurations including
U(1) monopoles can be realized on fuzzy CP". If we
consider rectangular matrices in addition to the square
matrices (E3), the concept of fiber bundles naturally arises.
Let us again consider the case of fuzzy CP'. We have
shown in appendix A that the basis of (2j + 1) X (2’ +
1) rectangular matrices, )A’Jm(jj/), are mapped into local
sections of the U(1) fiber bundle on S2. In this correspon-
dence, The difference j — j' is identified with the mono-
pole charge g of the U(1) bundle. This fact is also
generalized into the case of CP" with n = 2. For the
case of CP", we consider a space of rectangular matrices,

V[A+q,0,"',0,] ® V[*qu’(),.“‘(],]' (ES)
Here, the charge ¢ is a half integer and we take A * ¢ to be
integers. When ¢ = 0, A is an integer and this is the case of
square matrices (E3). We can show that elements of (ES)
are mapped into local sections of U(1) fiber bundle on CP"
with the monopole charge g. Furthermore, we can extend

the action of the differential operators [I:I[L‘A’O""’O], -] dis-
cussed above to the action on rectangular matrices as
follows.

Laom, =LMoo, — wp, £ 2000 (E6)

where Mq is an element of (E5). When ¢ = 0, M is just a

square matrix and L, o are nothing but the commutators
[I:I[AA'O""’O], -]. The operators L,o map the space (E5) to
itself and they are reduced to the angular momentum
operators in the presence of a U(1) monopole with the
magnetic charge g in the commutative limit. We will show

these facts in the following subsections.

4. Fock space representation

In order to construct a map between matrices and func-
tions on CP", we introduce the Fock space representation
developed in [35]. Let a:r,, a=12---,n+1beasetof
creation operators and a® be a set of annihilation operators
which annihilate the Fock vacuum |0). They satisfy the
Heisenberg commutation relations.

[a®, a?] = [al, a}] =0, [a“, aL] =83 (E7)
By acting the creation operators on the vacuum state |0),
we can construct the entire Fock space F which is spanned
by

1
|p1)p2"“!pn+l>= ] ] 7
NVP1:P2' " Pa+l:

% (a'zr)l’z e (al+l)Pn+1 |0).

(a}‘)m

(E8)

In terms of the operators (E7), we can construct elements
of the Lie algebra of SU(n + 1),
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L= al(Ty)8aP, (E9)
where T, = LAE’O""’O] represent the generators of SU(n +
1) in the fundamental representation. We also define the
number operator which commutes with all the operators in
(E9).

N = ala®. (E10)

The operators (E9) and (E10) act on the Fock space F, and
satisfy

[ﬁA, lA‘B] = ifABcﬁo

We can decompose the Fock space F into the eigenspaces
of N as

[Ly, N]=0. (E11)

F =B Voo (E12)
p=0

where p represent an eigenvalue of N. The basis of each
eigenspace V[, ... o 1S formed by

1
|ap> = |a], ay, ", ap> = ﬁaz‘;laz‘;z tee Cllpl()),
(E13)
where @, is an abbreviation of a set of p indices,

(al’ Qs ", ap)'
Let us consider square matrices which are elements of
(E3). These matrices are generally written as

M= Ma‘\ﬁA laAXBal-

We define a new basis of these matrices to see the corre-
spondence with the spectrum of functions on CP", (E2):

(E15)

(E14)

?B,aj = Nfl\J,Pﬁ,,f,a”a’wa Ya-sX75 Ya-il
where A — J indices y,_; are contracted and fl’ﬂjm"f"’f
is the projection operator onto the representation space
Vis0,--0s] Which appeared in the decomposition (E3),
that is, it removes all traces between a; and ;. For
example,

Y =Nl Yg =N, (8 va-1Xa yaal —385).

(E16)

Hence, ?ﬂj‘” belong to the representation V..o s and
they are mapped to the corresponding spherical harmonics
on CP" in the commutative limit which are elements of
(E2). N}, is an appropriate normalization constant which
is determined by the following orthonormality of the basis,

(Y, )Y, %) = 8,7 Py, -, Pro. (E17)

In the case of n = 1, YBJ“J are essentially the same as the
fuzzy spherical harmonics which are defined in (A25). The
action of differential operators on fuzzy CP" is given by
the adjoint action of operators in (E9). Then, one can
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evaluate the eigenvalues of the Laplacian as follows:

[La[La Y, 11 =T +n)Yy . (E18)

The above spectrum completely matches the spectrum of
functions on CP" up to the cutoff A.

In terms of the Fock space representation, we can also
express rectangular matrices which are elements of (ES).
Those rectangular matrices are generally expressed as

Mq = (Mq)a/\h]ﬁ/\ﬁI|aA+q><BA—q|' (E19)

These matrices are expanded by a similar basis to (E15).
Note that the direct product representation (ES) is decom-
posed as

A
D Vuigo0s-a
J=lql

(E20)

For each representation space in (E20) with fixed J, we can
use the following basis:

4 (q)

— AR
g, — N

&y, 0+
AJg :PBJ+(,,TJ—¢, ! qlo-J‘HI’ 7//\—1>

XATj— g YA—sl- (E21)

®-¢%+q is a
+quJ*q
projection operator onto the space (E20) with fixed J and
N}, q is a normalization constant which is determined by

As in the case of square matrices, ?BJ

U'J—q:ﬂjﬂ,.
Tj+qp@®j—q

pl@) ytple)
w (P )Y

W) =0,,P (E22)

When ¢ =0, ¥ © g, are identical with the square matri-
ces (E15). The action of differential operators on
y@ Bﬁq"-’*ff is given by (E6). We can evaluate the eigen-
values of the Laplacian as follows:

7 5 n—1 "
(LAO)ZY(Q)BHIICUW = (J(J + ]) + — 1q2>Y(q)ﬁH @,

q

(B23)

The above spectrum is the same as the spectrum of local
sections of U(1) bundle on CP" up to the cutoff. We show
in the following that the rectangular matrices ¥'¢ ﬁm]"f*q

are indeed mapped to the local sections on CP”".

5. Relation between matrices and sections
Let us recall the spherical harmonics on CP". In a
spinorial basis, they are given by

(E24)

% a; — n &), 07 PPy Tl oo Ty
Y, NiPg ., Wo, =t W, W w,

In the above expression, w® are the coordinates of $2"*! ~
SU(n + 1)/SU(n) which satisfy ¥, [w®|> =1 and the
normalization constant N is determined by

fCPn @"(Y g ®) Y, 7" = 8;5Pq, .7,  (E25)

PHYSICAL REVIEW D 77, 126015 (2008)

where w” is the volume form on CP". The functions (E24)
are invariant under the U(1) phase rotation so that they can
be regarded as global sections (functions) on CP". We can
generalize (E24) to a basis of local sections of the U(1)
monopole bundle on CP". The local sections of the mono-
pole bundle with the magnetic charge g can be expanded
by

Y(q)ﬁfﬂzajiq - N-;lq ?ﬁnqv"/fqajiq‘ahq w"'l T WUJ+4
>< WT] e WTJ?‘I) (E26)
which are normalized as
n(y(q) a; ) y(q) o
[CP”w (Y By ’ /) Y )l +q o
=81y Pay yr,. Proere. (E27)

Y@ p,., "'~ are not invariant under the U(1) phase rotation,
so that they transform as the local sections of the monopole
bundle on CP" with the magnetic charge . Note that
7O g,/ are nothing but the global sections, Y 8"

The relation between matrices and sections on CP" is
given by the diagonal coherent state map [35]. Let us
consider a matrix M ¢ Which is an element of (E5) and
expanded as in (E19). M ¢ corresponds to a section of the
monopole bundle on CP" through the map. In particular,
when ¢ = 0, My, is just a square matrix and corresponds to
a global section on CP". The map to the sections is given
by

M ,(w, w) = (w, A + qqulw, A —q), (E28)

where

lw, p) = L(w“aiﬁ)”lO).

N

The map (E28) is equivalent to the following replacement
up to an over all constant factor,

(E29)

Jd
(aIY)L - wop (aoz)L - ?,
Wa (E30)
(aa)R_, we, (a:r,)R—>—,
ow?

where the superscripts L and R express that the operators
act on matrices from the left and right, respectively.
Through this correspondence, (E15) and (E21) are mapped
to (E24) and (E26) respectively. Furthermore, the differ-
ential operators L 40 on fuzzy CP" are mapped to
Lyo—1l) = m(n)g% —we Lo @

wh
When g = 0, these operators act on the functions (E24)
and they can be identified with the Killing vectors on CP".
In the case ¢ # 0, however, they act on the local sections
(E26) so that the derivative along the U(1) fiber direction
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does not vanish and yields additional terms which are pro-
portional to the charge ¢. In this case, the operators (E31)

(1]
(2]
(3]

(4]
(5]

(6]

(25]

(26]

PHYSICAL REVIEW D 77, 126015 (2008)

can be interpreted as the angular momentum operators on
CP" in the presence of a monopole with the charge g.
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