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Inflationary models driven by a large number of axion fields are discussed in the context of type IIB

compactifications with N ¼ 1 supersymmetry. The inflatons arise as the scalar modes of the R-R two-

forms evaluated on vanishing two-cycles in the compact geometry. The vanishing cycles are resolved by

small two-volumes or NS-NS B fields which sit together with the inflatons in the same supermultiplets.

String world sheets wrapping the vanishing cycles correct the metric of the R-R inflatons. They can help to

generate kinetic terms close to the Planck scale and a mass hierarchy between the axions and their

nonaxionic partners during inflation. At small string coupling, D-brane corrections are subleading in the

metric of the R-R inflatons. However, an axion potential can be generated by D1 instantons or gaugino

condensates on D5-branes. Models with a sufficiently large number of axions admit regions of chaotic

inflation which can stretch over the whole axion field range for potentials from gaugino condensates.

These models could allow for a possibly detectable amount of gravitational waves with tensor to scalar

ratio as high as r < 0:14.
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I. INTRODUCTION

Current observational cosmology allows us to test fun-
damental physics with a continuously improving precision.
To evaluate and understand these data, theoretical models
about the evolution of our universe are crucial. One prom-
ising paradigm receiving growing experimental support is
cosmological inflation [1]. Inflation postulates a period of
exponential expansion of the universe driven by scalar
fields slowly rolling in an almost flat potential. This enor-
mous growth stretches quantum fluctuations present in the
early universe to currently observable astrophysical scales.
The imprints of such a process can be found, for example,
in the cosmic microwave background and the large scale
structure of the universe [2–4].

In recent years much effort has focused on the realiza-
tion of inflation within string theory [5,6]. In string theory
there are potentially many scalar fields which could drive
inflation and hence different opportunities to model in-
flation. Specific scenarios include realizations of Kähler
moduli inflation [7,8], racetrack models [9] and the most
intensively studied possibility of D-brane inflation [5,10].
However, as of today, it remains challenging to establish
explicit scenarios in a controlled compactification without
employing extreme fine-tuning to obtain a sufficiently flat
potential [11]. Having found a realization of inflation re-
producing the current cosmological observables, it is im-
portant to establish which models can incorporate possible
future observations. For example, as argued in Ref. [12],
many string scenarios do not allow for a high ratio r of
gravitational waves produced in the early universe. The
current experimental bound on gravitational waves is

r < 0:3 [3], but future experiments, including Planck,
BICEP and Spider [13], might allow the observation of r
with a precision down to r > 0:01. It is thus desirable to
study string embeddings of inflation which can incorporate
an r observable in these experiments. Recent attempts to do
that can be found, for example, in Refs. [14–18].
A possible scenario able to incorporate primordial gravi-

tational waves was suggested by Dimopoulos, Kachru,
McGreevy and Wacker [19]. The authors argue for an
embedding of multifield inflation with a large number N
of axion fields. Such models use an assistance effect
studied in Refs. [20,21] ensuring that the small fraction
1=N controls the flatness of the potential. Indeed, generic
compactifications of type II string theory on a six-
dimensional manifold can admit 104, or more, axions
from the NS-NS B field and the R-R form fields. An
appropriate subset of N such axions was proposed to drive
inflation in Ref. [19] and the authors termed these scenar-
ios N-flation. For a sufficiently large N the scenarios can
be interpreted as a realization of natural inflation [22,23]. If
the inflatons can produce the desired amount of e-foldings
already in the quadratic regime of the potential, the models
admit chaotic inflation [24]. This implies thatN-flation can
yield a possibly observable signature of gravitational
waves with r < 0:14 and thus distinguishes it from most
other string realizations of inflation.
The aim of this paper is to study a specific realization of

N-flation in type IIB string theory. The inflating axions
correspond to the zero modes of the R-R forms in the
compactification to four space-time dimensions. In com-
pactifications preserving N ¼ 2 supersymmetry the R-R
axions sit in the same supermultiplets as the Kähler struc-
ture moduli parametrizing the volumes of two-dimensional
cycles in the internal space. Manifolds with a large number*grimm@physics.wisc.edu
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of nontrivial two-cycles are thus candidate backgrounds for
N-flation. As will be shown, the density perturbations and
slow roll parameters depend on the volume of the compact
space and it has to be ensured that they do not become large
with increasing N. We will thus argue that explicit ex-
amples always involve compact manifolds which admit
many very small or vanishing cycles.

In the presence of small cycles, stringy effects become
important and significantly alter the structure of the four-
dimensional effective theory. In order to analyze these
contributions we will concentrate on axions arising from
the R-R two-form evaluated on vanishing two-cycles of the
compact geometry. The standard example of a vanishing
two-cycle is the resolved conifold [25]. In this case a
conical singularity is resolved by a two-sphere supported
by a geometric volume or an NS-NS B field. If this S2

becomes smaller than the square string length, world sheets
will start to wrap and significantly contribute to the metric
of the R-R axions. Fortunately, in N ¼ 2 compactifica-
tions these corrections can be computed for the conifold
and many other Calabi-Yau geometries [26,27] allowing
the evaluation of the metric of the axions. We will illustrate
this general fact on a toy model with N conifold singular-
ities. For such examples it can be shown that the kinetic
terms of the axions can be close to the Planck scale which
is crucial to obtain inflation [28].

In addition to the fundamental strings also D-branes can
become relevant in geometries with vanishing cycles [29].
In particular, D1 instantons can wrap the small cycles and
correct the metric of the R-R axions. Such contributions
appear with the exponential of the D1-instanton action
which depends on the R-R two-form axions themselves.
In contrast to the string world-sheet action the D-instanton
action also contains a factor of the inverse string coupling.
This implies that for small string coupling and finite vol-
ume or B field of the vanishing cycles the D1-instanton
corrections are subleading in the axion metric. However,
correction due to D-branes will be the leading contribu-
tions in the scalar potential and can induce the desired
potential for the R-R axions.

To study the scalar potential for the axions and non-
axionic moduli we will focus on N ¼ 1 orientifold
compactifications of type IIB string theory. Such compac-
tifications have been studied intensively in the last years
[30]. It was shown that N ¼ 1 potentials can be induced
by background fluxes, D-brane instantons or gaugino con-
densates on space-time filling D-branes. The desired axion
potentials can arise through nontrivial superpotentials from
any of the three sources [30]. We will briefly discuss their
properties in various orientifold compactifications: D1
superpotentials in type I [31], D1 dependences through
the determinants in the D3-instanton superpotentials [32–
34] and gaugino condensates on space-time filling D5-
branes [30,35–37]. Remarkably, explicit computations of
the nonperturbative superpotentials can often be performed

in a dual flux picture where geometry dictates the form of
the corrections [35–39].
In the final part of this work we will study the effective

theory of orientifold compactifications with O3 and O7
planes in more detail. Using earlier results [40,41] we
argue that the N ¼ 2 world-sheet corrections are inher-
ited by the N ¼ 1 orientifold theory. In particular, they
correct the N ¼ 1 Kähler potential and complex coordi-
nates in a calculable way. This general fact can be applied
to a simplistic compact toy model with 2N conifolds pair-
wise identified under the orientifold projection. Including a
flux and D-instanton superpotential, we make first steps in
establishing an effective theory with a large number of
light axions and all other moduli stabilized. An explicit
numerical evaluation indicates the presence of a nonsuper-
symmetric axion valley [42]. This ensures the desired
mass hierarchy between the axions and their nonaxionic
partners.
The paper is organized as follows. In Sec. II we review

the N-flation scenario of [19] and discuss some of its
cosmological implications. We recall that the kinetic terms
of the axions, set by the axion decay constants, have to be
large in order to obtain inflation. A discussion of axion
decay constants in type IIB string theory is presented in
Sec. III. The four-dimensional effective Lagrangian and
the general form of the axion decay constants are studied in
Sec. III A supplemented with Appendix A. In Sec. III B we
argue that in compactifications with all cycles larger than
string length, the axion decay constants typically become
very small with an increasing number of axions. This im-
plies that only compactification manifolds with small or
vanishing cycles are candidate backgrounds to obtain
N-flation. The quantum corrected axion decay constants
for the resolved conifold and geometries with N resolved
singularities are discussed in Secs. III C and III D. Non-
perturbative D-brane effects can induce a scalar potential
through a nonvanishing superpotential as discussed in
Sec. IV. In Sec. IVA it is shown that such a superpotential
can arise from D1-instanton corrections, while Sec. IVB
discusses superpotentials originating from gaugino con-
densates on D5-branes. In the final part of this work,
Sec. V, the embedding of N-flation into a concrete N ¼
1 orientifold compactification is addressed. The general
form of the N ¼ 1 data including the inherited N ¼ 2
perturbative and nonperturbative string world-sheet correc-
tions is presented in Sec. VA and Appendix B. In Sec. VB,
a toy model with N conifold pairs is used to illustrate that
the string world-sheet corrections in the Kähler potential
and the presence of a nonperturbative superpotential can
ensure an effective theory with light axions. This indicates
the possibility of N-flation in string theory.

II. REVIEW OFAXION N-FLATION

In this section we will review some basics about
N-flation driven by a large number of axion fields follow-
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ing [19,43]. The basic idea is that by increasing the set of
inflaton fields an assistance effect can help to ensure that
the slow roll conditions are met [20,21]. More precisely,
one considers setups with inflaton fields ca; a ¼ 1 . . .N,
where each field feels the downward force of its own
potential but is slowed down by the collective frictional
force of all fields. To make this more explicit, let us
consider a set of inflaton fields ca with Lagrangian

L ¼ 1
2f

2
ab@�c

a@�cb � V þ . . . : (2.1)

To employ the assistance effect we will specify the setup
further. We consider a scenario, where, at least approxi-
mately, the metric f2ab is independent of ca and can be

diagonalized to have a diagonal f2aa ¼ f2a. In order to
obtain canonically normalized kinetic terms in (2.1) we
introduce the fields �a

ca ¼ �a=fa; a ¼ 1 . . .N: (2.2)

Moreover, we also constrain the potential for the fields �a.
We assume that in an effective description the potential
V � Veff is given by

Veffð�aÞ ¼
X
a

Vað�aÞ; (2.3)

where each term Vað�aÞ only depends on the ath inflation
field �a. For a time-dependent evolution in a Friedmann-
Robertson-Walker universe the equations of motion for the
fields �a take the simple form

€� a þ 3H _�a þ @aV ¼ 0; H2 ¼ 1

3M2
P

ð1
2
ð _�aÞ2 þ VÞ:

(2.4)

The assistance effect is now apparent. The Hubble friction
contains the whole potential of all fields �a, while the
downward force @aV only yields a nonvanishing contribu-
tion from the ath potential term in (2.3). For a large number
of fields this assistance can help to ensure slow roll for the
inflaton fields �a.

In the following we will be more concrete and study an
explicit potential in more detail. Our aim is to identify
ca ¼ �a=fa with axion fields in a string compactification.
The axions ca are periodic with period 2� such that the
accessible field range is the intervals

� �< ca � �; �fa� < �a � fa�: (2.5)

A potential term for the axions arises only through non-
perturbative corrections to the four-dimensional effective
theory as will be discussed in Sec. IV. This implies that the
approximate effective potential (2.3) for the axion fields is
of the form1

Veffð�aÞ ¼ Cþ XN
a¼1

�4
að1� cos½�a�a=fa�Þ: (2.6)

Let us introduce the different variables appearing in Veff .
The constants fa arise through the redefinition (2.2) ensur-
ing that �a have canonically normalized kinetic terms. fa
are the axion decay constants appearing in the metric (2.1).
Nontrivial �a might already arise in the potential for ca

and thus do not appear due to the rescaling of the fields. In
Sec. IVB it will be analyzed how nontrivial �a arise in
string theory. The constants �a set the scale of inflation
and are typically determined by the vacuum expectation
values of other fields in the full string compactification.
The constant C is the value of the effective potential at the
minimum where all �a ¼ 0. This cosmological constant C
is, in accordance with current observations, very small and
can be safely approximated to be zero for the following
analysis. Figure 1 shows one of the periodic potentials of
the sum (2.6).
Let us now discuss inflation driven by the scalar fields �a

in the potential (2.6). To obtain slow roll inflation we need
to satisfy the standard slow roll conditions [44,45]. We will
first introduce the slow roll parameters for a separable
potential V as in (2.3). In this case the slow roll parameters
are given by

� ¼ M2
P

2

X
a

�
V;a

V

�
2
; � ¼ M2

Pmin
a

�
V;aa

V

�
; (2.7)

where V;a � @�aV and V;aa ¼ @2�aV. The slow roll condi-

tions read � < 1 and j�j< 1 and define a multidimensional
subspace in the fields �a where inflation takes place. In this
inflationary region of the field space the Hubble friction
(2.4) is well approximated by the potential H ¼ V=ð3M2

PÞ
and the physical observables can be defined as a function of
the potential V and its derivatives.
The number of e-foldings and the magnitude of scalar

density perturbations during the slow roll epoch is given by

FIG. 1. Potential for one axion field � with � ¼ 1.

1The potential generally also contains cross coupling terms
of the form cos½�a�a=fa ��b�b=fb� as discussed in
Refs. [19,43]. These will be omitted in this section.

AXION INFLATION IN TYPE II STRING THEORY PHYSICAL REVIEW D 77, 126007 (2008)

126007-3



Ne ¼ �X
a

Z �fin

�in

Va

V;a

d�a

M2
P

;

�
��

�

�
2 ¼ V

75�2M6
P

X
a

�
Va

V;a

�
2
:

(2.8)

Ne parametrizes the exponential growth of the universe
during inflation. It has to be sufficiently large, Ne * 50, to
ensure that different parts of the early universe have been
in causal contact. The density perturbations seen in the
cosmic microwave background arise from the time 50–60
e-foldings before the end of inflation. For simplicity, we
will take �ain � �in to be the starting point of 55 e-foldings

of inflation and evaluate all cosmological observables
around this point in field space. In accordance with current
observations, we demand

Ne � 55; ð��=�Þ�in � 2� 10�5: (2.9)

Similarly, the other cosmological observables can be de-
fined for multifield scenarios. We will not review all the
details here, but rather refer to the literature for a more
exhaustive discussion [45]. There is, however, one more
observable which we would like to introduce. We denote
by r ¼ Pg=PR the relative magnitude of gravity waves Pg

to density perturbations PR. Recalling that Pg and PR are

given by

Pg ¼ 2

3�2

V

M4
P

; PR ¼ 25

4

�
��

�

�
2
; (2.10)

the ratio r is seen to be

r ¼ 8M2
P=

X
a

�
Va

V;a

�
2
: (2.11)

The current bounds on r demand that

ðrÞ�in < 0:3; (2.12)

where r is evaluated close to 55 e-foldings before the end
of inflation. However, future experiments might show that
r is not much below this bound. As we will discuss mo-
mentarily, due to the assistance effects of the many axions,
r can be close to this bound in models of axion N-flation.
This provides one of the major motivations to study these
scenarios, since typically r in string motivated models such
as D-brane inflation [5] takes a rather small value [12].

In the remainder of this section we will evaluate the slow
roll parameters �, � as well as the number of e-foldings Ne

and the ratio r for the potential (2.6). Clearly, using (2.7),
(2.8), and (2.11) this is straightforward and can be done in
full generality. However, to simplify the analysis and to
make the results more transparent we will set all axion
decay constants fa and the coefficients �a to be approxi-
mately of the same size, and set �a=fa � A. We also
assume that �a � �. Now we evaluate the slow roll pa-
rameters (2.7) for �a � � by using the effective potential
(2.6). Explicitly, we find

� ¼ M2
P

2

A2sin2ðA�Þ
Nð1� cosðA�ÞÞ2 ;

� ¼ M2
P

A2 cosðA�Þ
Nð1� cosðA�ÞÞ :

(2.13)

An immediate conclusion is that � as well as � are inde-
pendent of the scale �, but crucially depend on the con-
stants A and the number of axions N. The number of
e-foldings and amount of scalar density perturbations
(2.8) are given by

Ne ¼ � 2N

M2
PA

2
log

�
cosðA�in=2Þ
cosðA�fin=2Þ

�
;

��

�
¼ 2�2N

M3
P

ð1� cosðA�inÞÞ3=2
A sinðA�inÞ ;

(2.14)

where �in and �fin are the starting and endpoint of inflation.
Finally, we will derive the relative magnitude of gravity
wave to density perturbations r. Inserting (2.13) into (2.11)
one finds with the above simplifications

r ¼ 16� ¼ 8M2
P

A2sin2ðA�inÞ
Nð1� cosðA�inÞÞ2

: (2.15)

From this expression we infer that r will be small if �in is
close to the maximum of the potential. However, for suffi-
ciently largeN and small A horizon crossing can take place
away from the maximum. In such cases, r can be close to
the current observational bound (2.12). This is particularly
easy to see in the quadratic regime of the potential which
we will study in the final part of this section.
For a subset of values N and fa, �

a a quadratic approxi-
mation of the potential (2.6) suffices for slow roll inflation.
More precisely, we will concentrate on the regime

�a�a=fa � A�a < 1; Veffð�aÞ � m2
X
a

ð�aÞ2; (2.16)

where m2 ¼ �4A2 are the masses of the axions �a which
are assumed to be similar in magnitude. In this regime we
can expand the trigonometric functions in (2.14) and (2.15)
to lowest order in the �’s. One obtains a model of chaotic
inflation for which the assistance effect of the N inflatons
allows effectively super-Planckian vacuum expectation
values. To qualitatively discuss this regime we again as-
sume �a � � ¼ �MP and include appropriate factors of N
in our analysis. In this limit (2.13) and (2.14) simplify to

� � 2

N�2
; � � 2

N�2
; (2.17)

and

Ne � N�2
in

4
;

��

�
� mN�2

in

MP

; r � 32

N�2
in

: (2.18)

Using (2.9) we conclude that N�2
in � 220 and m=MP �

10�7. Evaluating r using these results gives r � 0:14,
which is not significantly below the current bound (2.12).
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In case we are able to realize axion inflation in a controlled
string compactification it might be the ratio r which cru-
cially distinguishes it from other scenarios such as the
inflation of a small number of D-branes [12].

Let us note that in order to obtain slow roll in the
quadratic regime (2.16) we have to ensure that N is very
large and �a=fa is small. In particular, it has to be guar-
anteed that the axions generate a sufficient number of
e-foldings, Ne � 55, during the slow roll phase in the
regime (2.16). However, for �a ¼ 1 a significant part of
the e-foldings are generated close to the maximum of the
cosine in (2.6), where the quadratic approximation is no
longer valid. Including the constants�a in the discussion is
more subtle, as we will discuss in more detail in Sec. IVB.
The reason is that a change in �a does not alter the field
range (2.5) of the canonically normalized axions. Never-
theless, the quadratic approximation (2.16) becomes valid
for more values of �a if �a � 1 is small. Eventually, small
values of �a can push the maximum out of the field range
of �a and even ensure that a quadratic approximation is
valid for all values of �a in (2.5). Both in the quadratic
regime as well as for the full potential, we observe that for
large N and fa the slow roll condition � < 1, �< 1 is
easier to satisfy for many values of �a. We thus have to
ensure that sufficiently large values for N and fa are
accessible in a string embedding.

In the next section we will start the discussion of axion
inflation in type IIB string theory by evaluating the axion
decay constants for different R-R and NS-NS axions. We
will recall that in a controlled string compactification fa &
MP seems unavoidable. In order to nevertheless obtain a
sufficiently long period of slow roll inflation, we have to
ensure that bothN and fa are close to the accessible values.

III. AXION DECAY CONSTANTS IN
IIB STRING THEORY

In the previous section we reviewed a simple inflationary
scenario driven by the dynamics of a large number of
axions. In order to embed such a model into string theory,
we have to identify an appropriate set of axions �a arising
in a compactification of string theory from ten to four
space-time dimensions. As we have seen, the cosmological
models crucially depend on the number of axionsN and the
value of the axion decay constants fa. In order to guarantee
an epoch of slow roll inflation we have to ensure that both
N and fa take sufficiently large values. In this section, we
discuss the axion decay constants of type IIB compactifi-
cations on Calabi-Yau manifolds with N ¼ 2 supersym-
metry. We will see that in string theory an implementation
of axion decay constants close to the Planck scale (fa &
MP), for a large number of axions, is in general hard to
achieve. It appears that candidate scenarios can only arise
away from the large volume limit, where the compact
geometry admits small or vanishing cycles.

A. The four-dimensional axion Lagrangian

In this section we will fix our conventions and discuss
the four-dimensional effective Lagrangian for the NS-NS
and R-R axions obtained by compactifying type IIB string
theory on a Calabi-Yau manifold Y. This will allow us to
determine the axion decay constants for the various types
of axions.
Let us begin by summarizing our conventions following

[46,47]. The ten-dimensional gravitational coupling 	10 in

the Einstein-Hilbert term is given by 	2
10 ¼ g2s‘

8
s=4�,

where ‘s ¼ 2�
ffiffiffiffiffi
�0p

is the string length and gs is the type
II string coupling. The string coupling is normalized such
that S duality acts as gs ! 1=gs. The four-dimensional
Planck mass MP is obtained by dimensionally reducing
the Einstein-Hilbert term to four dimensions. Denoting
by VY the volume of the internal manifold, MP ¼
2� 1018 GeV is given by

M2
P ¼ 4�VY

g2s‘
8
s

; VY ¼ R6; (3.1)

where R denotes the typical radius of the compactification
space. It turns out to be convenient to introduce the dimen-
sionless volume V ¼ VY=‘

6
s . The ratio of string scale

ms ¼ 1=‘s to Planck scale is then given by

ms

MP
¼ gsffiffiffiffiffiffiffiffiffiffiffiffi

4�V
p : (3.2)

This fraction is smaller than unity, since we will consider
the volume V to be above string scale, i.e. V > 1, and gs
to be at weak coupling. Following [47] we will normalize
the NS-NS and R-R field strengths to have integral periods.
This implies that the kinetic terms for the metric as well as
the NS-NS and R-R fields B2,Cp are obtained from the ten-

dimensional string-frame action of the form

� 2�

	2
10

Z �
1

2
e�2
R � 1þ 1

4

1

‘4s
e�2
H3 ^ �H3

þ 1

4

1

‘8�2p
s

Fpþ1 ^ �Fpþ1

�
; (3.3)

where H3 and Fpþ1 are the field strengths of B2 and Cp,

respectively. In the expression (3.3) the field e
 denotes the
ten-dimensional dilaton with vacuum expectation value

gs ¼ eh
i being the string coupling constant. Finally, in
accordance with (3.3), the coupling of the R-R forms to
Dp-branes takes the form 2�

R
Cp. The tension of a

Dp-brane is given by Tp ¼ 2�=ðgs‘pþ1
s Þ.

In compactifications of type IIB string theory a large
number of axions can only arise from the NS-NS and R-R
two-forms C2, B2 and the R-R four-form C4. More pre-
cisely, taking the internal six-dimensional space to be a
Calabi-Yau manifold Y, the axions arise by expanding B2,
C2 and C4 in a basis of harmonic forms. Denoting by !A a
basis of two-forms in H2ðY;ZÞ and by ~!A its dual basis of
four-forms in H4ðY;ZÞ we can expand
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B2 ¼ 1

2�
bA!A; C2 ¼ 1

2�
cA!A;

C4 ¼ 1

2�
�A ~!

A;

(3.4)

where the factors of 1=2� were included to ensure that the
axions are 2� periodic. We also expand the Kähler form J
of Y into the above integral basis

J ¼ vA!A ¼ ðRA=‘sÞ2!A: (3.5)

Here J is normalized to be dimensionless, while the ðRAÞ2
are the dimensionfull volumes of two-cycles. Compacti-
fying type IIB string theory on the Calabi-Yau manifold Y
yields a four-dimensional N ¼ 2 supergravity theory.
Indeed, the axion fields in (3.4) combine with the Kähler
structure deformations into N ¼ 2 hypermultiplets with
scalars (vA, bA, cA, �A). The effective four-dimensional
action for these hypermultiplets was derived in [48]. In the
following, we will only discuss some of the relevant terms
and determine the leading axion decay constants. A more
complete study of the action and the axion decay constants
can be found in Appendix A.

As in Sec. II, the axion decay constants are determined
from the kinetic terms of bA, cA and �A. These are derived
by dimensionally reducing the ten-dimensional action
(3.3). The resulting four-dimensional Lagrangian for the
axions takes the form

L ¼ �M2
P

2�
ðGA �B@�b

A@�bB þ e2
GA �B@�c
A@�cB

þ e2
 ~GA �B@��A@
��BÞ; (3.6)

where GA �B and ~GA �B are the moduli space metrics. It is
important to note that in the expression (3.6) we have left
out additional terms which will not be relevant in the
following but are of crucial importance for the effective
action to have N ¼ 2 supersymmetry (see Appendix A).
The leading axion decay constants are determined in terms

of the metrics GA �B and ~GA �B as

B2:
f2AB
M2

P

¼ 1

�
GA �B; C2:

f2AB
M2

P

¼ g2s
�

GA �B;

C4:
f2AB
M2

P

¼ g2s
�

~GA �B:

(3.7)

In these expressions we have taken the dilaton to be fixed to
its vacuum value gs. Clearly, in order to evaluate the
typical size of the axion decay constants we will need
the explicit form of the moduli space metrics appearing
in (3.7).

The moduli space metrics in (3.7) are functions of the
complexified Kähler structure deformations

tA ¼ �bA þ ivA: (3.8)

Because of the underlying N ¼ 2 supersymmetry all
dependence of GA �B on t, �t can be encoded by a holomor-

phic function F ðtÞ known as the prepotential. In general,
F contains a classical piece cubic in t as well as perturba-
tive and nonperturbative string world-sheet corrections of
order �0. The metric GA �B ¼ @tA@�tBK is a Kähler metric
with Kähler potential [49]

Kðt; �tÞ ¼ � lnV ;

V ¼ 2iðF � �F Þ � ið@tAF þ @�tA
�F ÞðtA � �tAÞ;

(3.9)

where V is the quantum corrected volume of the compact

Calabi-Yau space Y. Up to a factor ofV the metric ~GA �B is

the inverse ofGA �B, i.e. ~G
A �B ¼ ðV =2Þ�2GA �B. Having given

the metrics in (3.7) in terms of a general prepotentialF , we
are free to evaluate them at various points in the moduli
space parametrized by tA. In the next section we will do
that in the large volume limit, while Secs. III C and III D
are devoted to a study of the axion decay constants on more
singular points in the moduli space.

B. Large volume compactifications

Let us now assume that we are in the strict large volume
limit in the moduli space. This implies that all physical
volumes of the two-cycles are larger than the square string
length ‘2s . All �

0 corrections are then suppressed and the
prepotential can be approximated by

F class ¼ � 1

3!
KABCt

AtBtC;

KABC ¼
Z
Y
!A ^!B ^!C;

(3.10)

which is the classical contribution depending on the triple
intersections KABC. In the large volume limit, V given in
(3.9) is simply the geometrical volume of the Calabi-Yau
manifold and reads2

V ¼ 8

3!
vAvBvCKABC: (3.11)

The moduli space metrics in (3.6) can be expressed

through V and its derivatives V A ¼ @vAV and V AB ¼
@vA@vBV as

GAB ¼ � 1

4

V AB

V
þ 1

4

V AV B

V 2
;

~GAB ¼ �32
V AB

V
þ 8

vAvB

V 2
;

(3.12)

where V AB is the inverse of the matrix V AB. Using these
explicit results for the large volume limit, wewill be able to
argue that the axion decay constants are sensitive to the
number of axions. This will lead us to conclude that natural
scenarios contain manifolds with small string-scale cycles.

2The volume is actually V =8, but we will keep this normal-
ization for simplicity.
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Let us now argue that a scenario in the strict N ¼ 2
large volume limit excludes the possibility of slow roll. As
introduced in (3.5) the vA parametrize the string-scale size
of the two-cycles in the Calabi-Yau space Y. They have to
take values inside the Kähler cone in order to ensure that
the physical volumes of two- and four-cycles are positive
[50].3 To make this more transparent, we note that, at least
for toric-projective Calabi-Yau manifolds, we can choose a
basis !A such that

0< vA <1 (3.13)

parametrizes the Kähler cone [50,51]. In this basis, the
large volume limit is obtained when all vA > 1 ensuring
that the radii RA in (3.5) satisfy RA > ‘s. Since the world-
sheet instantons contribute with exponential suppression

e�vA
these �0 corrections can be neglected in the above

regime. A more detailed discussion of the correct choice of
basis can be found in, for example, Ref. [27].

We are now in the position to evaluate the decay con-
stants. For simplicity, we will assume that all cycles in this
limit are approximately of the same size vA � ðR=‘sÞ2.
The axion decay constants (3.7) then take the form [47]

B2:
f2AB
M2

P

ffi
�
‘s
R

�
4 xAB
2�

; C2; C4:
f2AB
M2

P

ffi g2s

�
‘s
R

�
2p xAB

2�
;

(3.14)

where p ¼ 2 for the axions of C2 and p ¼ 4 for the axions
of C4. The constants xAB arise from the sum over inter-

section numbers KABC in the metrics GAB and ~GAB con-
tained in (3.7). In order to get a rough estimate of xAB we
note that in the parametrization (3.13) of the Kähler cone
the intersections are necessarily positive, KABC 	 0 en-
suring positivity of the total volume in the whole Kähler
cone. Inspecting (3.12) we find that the axion decay con-
stants generically depend on N, since we have as many
axions (cA, bA, �A) as volumes vA. For axions of B2, C2 a
rough estimate yields xAB / 1=N, while for axions of C4

we have xAB / 1=N2.4 Even though this analysis is strictly
only valid for Calabi-Yau manifolds with Kähler cones
(3.13) one expects that more exotic examples will not
significantly alter the conclusion that xAB and hence the
axion decay constants fAB scale with N. This conclusion
rules out large volume scenarios of axion N-flation since
the N dependence of fAB will compensate the assistance
effect which was of essential importance in achieving slow
roll inflation in Sec. II.

In summary, we note that large volume scenarios make it
hard, if not impossible, to implement slow roll inflation
driven by a large number of axions. This is in accord with
the findings of Ref. [18]. Clearly, a possible conclusion is
to relax the requirement that all physical cycles are larger
than string scale. As we will discuss in the next section,
axions arising on vanishing cycles are natural candidates to
realize N-flation. Such small cycles are not untypical in
string theory. However, it is clear that in such scenarios
additional stringy corrections of the axion decay constants
will be of importance and have to be included.

C. Axions from vanishing cycles—The resolved conifold

In this section we discuss axions arising from vanishing
cycles of a compact manifold Y. Since in type IIB string
theory axions can arise from the two- and four-forms B2,
C2 and C4 a general discussion would include the physics
of vanishing two- and four-cycles. However, in the follow-
ing we will exclusively discuss vanishing two-cycles. The
main reason for this restriction is the fact that corrections
are significantly better understood for lower-dimensional
cycles. For two-cycles stringy corrections arise from wrap-
ping world sheets and D1-branes and have been studied
intensively in the literature [26,27,52,53].
The standard example for a vanishing two-cycle is the

resolved conifold. The conifold is a cone over T1;1, which
is topologically S3 � S2. Its metric and harmonic two-form
!2 are know explicitly and the axion decay constants for
the R-R axion c of C2 ¼ 1

2� c!2 are computed directly [47]

f2cone
M2

P

ffi g2s
‘4s�

2

R6

x

�
; (3.15)

where � is the cutoff regularizing the infinite cone and x is
a dimensionless number of order 1. In case we take � � R
the result coincides with (3.14). Note that this analysis is
purely classical and follows directly from the geometry of
the conifold. In the following we will discuss the case
where the conifold singularity is resolved by an S2 ffi P1.
We will see that corrections to fcone arise from string world
sheets and D1 instantons wrapped around the S2.
In order to discuss the resolved conifold we recall that in

string theory the size of the resolution is parametrized by
the integral over the Kähler form J and the NS-NS two-
form B2. Explicitly, introducing the complexified Kähler
structure deformation t as

t ¼ �bþ iv ¼ � 1

2�

Z
S2
B2 � iJ; (3.16)

the size of the S2 is given by jtj‘2s . The geometry becomes
singular in the limit jtj ! 0, but remains resolved as long
as the geometrical volume v or the NS-NS B field b are
nonzero. In the following we will study the effects of a
small resolution by jtj in more detail.
Turning to the corrections to (3.15) we recall that the

string world sheet couples to t such that the nonperturba-

3Formally, these conditions translate to
R
Y J ^ J ^ J > 0,R

D J ^ J > 0 and
R
C J > 0 for all nontrivial divisors D and

holomorphic curves C in Y.
4To illustrate this result let us concentrate on the first term in

GAB in (3.12). For this term we evaluate the quotient of V AB ¼
R2

P
CKABC and V ¼ 4

3R
6
P

D;E;FKDEF. We conclude that for
each A, B the sum in the numerator runs over significantly more
values than the sum in the denominator.
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tive �0 corrections arise through the exponential eit. As
discussed in Sec. III A all �0 corrections are conveniently
encoded by the holomorphic prepotential F ðtÞ. This pre-
potential can be split as

F ¼ F class þF pert þF sing; (3.17)

where F class is a cubic classical term given in (3.10), and
F sing contains the nonperturbative �0 corrections from
string world sheets wrapping the vanishing cycle. The
second term F pert contains a perturbative �0 correction
as well as linear and quadratic terms in the Kähler moduli.
For the discussion of the size of the axion decay constants
we will ignore these contributions, even though the known
N ¼ 2 corrections can be straightforwardly included. In
the case of a conifold singularity the nonperturbative �0
corrections can be summed up to give a closed expression
for F singðtÞ. The leading prepotential is thus given by
[27,54,55]

F class ¼ i

3!
ðR=‘sÞ6 þ i

2!
ðR=‘sÞ2t2 þOðt3Þ;

F sing ¼ 1

2!
t2 logtþOðt2Þ;

(3.18)

for jtj< 1. Because of the fact that jtj is small we have
omitted further terms regular in t in F sing. Using the
quantum corrected prepotential including the conifold cor-
rections we compute the quantum volume (3.9) as

V ¼ 4

3
ðR=‘sÞ6 � 4ðR=‘sÞ2v2

þ 2ðjtj2 logjtj þ v2Þ þOðt0Þ; (3.19)

where v ¼ ðt� �tÞ=2i is the volume of the vanishing S2. It
is important to note that for a small resolution jtj< 1 the
logarithmic term in (3.19) becomes negative. This implies
that both the second and third term in (3.19) lower the size
of V .

The general form of the leading axion decay constant for
the R-R axion c was given in (3.7). It contains the second
derivative of the Kähler potential (3.9) which has to be
evaluated for the resolved conifold prepotential (3.18). One
derives

f2cone
M2

P

ffi g2s
�

2ðR=‘sÞ2 � 2 logjtj � 1

V
þ . . . ; (3.20)

where V is given in (3.19). As expected this expression
correctly reproduces the classical piece (3.15). It also con-
tains the leading singular term for jtj< 1. We note that, at
least to leading singular order, the quantum volume in the
denominator of (3.20) is reduced due to the �0 corrections
on the conifold singularity, while the expression in the
numerator increases by a positive term proportional to
� logjtj. Hence, the size of axion decay constant fcone
does not necessarily decrease if the axion arises from a
small cycle. This is a desired behavior. It implies that even

in the presence of a large number of vanishing cycles the
axion decay constants are not necessarily small. Therefore,
we can circumvent a scaling of the decay constants with
the number of axions as encountered in compactifications
with all cycles of size R> ‘s as discussed in Sec. III B. It
remains to discuss other corrections due to D1 instantons
and to estimate the typical size of the axion decay constants
fcone for the vanishing cycle.
Inspecting (3.20) one would naively conclude that fcone

can be made very large by taking the limit jtj ! 0, i.e. by
shrinking the geometrical size and also switching off the
NS-NS B field. However, this will drive us into a regime
where the effects of D1 instantons become important and
correct the axion decay constants as well as the potential
significantly. This would then imply that the effective
action (2.1) with potential (2.6) for the axion fields will
not be trustable. To make the coupling to D1 instantons
more explicit we introduce the fields5

G ¼ c� i
jtj
gs

¼
Z
S2
ðC2 � C0B2Þ � i

Z
S2
e�
jB2 � iJj;

(3.21)

where C2 and B2 are the R-R and NS-NS two-forms as
above. The first integral in (3.21) corresponds to the Chern-
Simons action on a D1 instanton, while the second term is
the minimal coupling in the Born-Infeld action.6 D1 in-
stantons couple via the exponential

ZD1 ¼ expð�iGÞ ¼ exp

�
�jtj
gs

� ic

�
: (3.22)

In order to make sure that there are no significant correc-
tions to the axion decay constants as well as no higher
harmonics proportional to ZD1 we have to guarantee that
jZD1j< 1. This provides a lower bound on the size of
jtj=gs and hence prevents us from taking jtj ! 0. It will
be sufficient to take jtj slightly larger than gs. In order to
get an estimate for the axion decay constants (3.20) we also
take the typical radius R to be slightly larger than ‘s. We
thus find

fcone & MP: (3.23)

We thus conclude that the axion decay constants can be
maximally of order Planck scale. This is not a new result,
but rather supports the analysis of Ref. [28] carried out in
various different string scenarios. Equation (3.23) implies
that we have to make use of the assistance effect of many
axions as discussed in Sec. II.

5We slightly abuse the notation of (3.4) in defining c to also
contain the lower R-R form scalars.

6In N ¼ 1 compactifications either the real or imaginary part
of t will control the size jtj in the definition of G. In Sec. V we
show that for O3/O7 orientifolds the B field b survives in G,
while in O5 orientifolds the volume v appears in G [40].
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Before turning to the multiaxion case let us summarize
our strategy. As discussed in this section, we will allow for
two different scales in the problem. On the one hand, the
radius R sets the size of the large cycles, while on the other
hand a small parameter jtj sets the size of the vanishing
cycles. In the following we will always take

gs & 1; 1 & jtj=gs; 1 & ðR=‘sÞ2: (3.24)

This choice of hierarchy implies that we can neglect world-
sheet and D1-instanton corrections on the large cycles of
radius R. On the small cycles of size jtj the D1 instantons
do not significantly correct the metric and hence the axion
decay constants. However, world-sheet instantons are rele-
vant on these cycles and have to be taken into account.
Fortunately, inN ¼ 2 setups such as the ones discussed in
Secs. III C and III D, these are encoded by the prepotential
and are thus, at least in principle, computable by standard
techniques such as mirror symmetry.

D. Axions from vanishing cycles—The
multiaxion scenario

Having discussed the qualitative feature of a single
axion from a vanishing cycle, we will now turn to the
multiaxion case. Recall that due to (3.23) we always obtain
sub-Planckian axion decay constants, such that in order to
implement slow roll inflation as in Sec. II a scenario with a
number of N axions seem unavoidable.

In order to introduce setups with many vanishing cycles,
we divide the two-cycles of the compact space Y into two
sets. Let us denote by Ci 2 H2ðYÞ, i ¼ 1 . . .N a set of two-
cycles, which can be made small without forcing the over-
all volume of the Calabi-Yau manifold to vanish. The
remaining cycles in H2ðYÞ will be denoted by CI. The
two-forms dual to CA ¼ ðCi; CIÞ are denoted by

!A ¼ ð!i;!IÞ; i ¼ 1 . . .N; I ¼ 1 . . . hð1;1Þ � N;

(3.25)

where hð1;1Þ is the dimension of the second cohomology

group Hð1;1Þ of the Calabi-Yau manifold. The triple inter-
sections KABC defined in (3.10) are evaluated using this
basis. As in Sec. III C we will introduce two scales and
assume that all large cycles are of approximate radius R *
‘s and all small cycles are of size jtj, i.e. we demand

vI � ðR=‘sÞ2 * 1; jtij � jtj< 1: (3.26)

As an estimate of complicated final expressions we will
express them as functions ofR and jtj as well as the number
N of axions only.

The leading classical axion decay constants for the R-R
axions ci have been derived in Sec. III B. They are obtained
by taking the derivatives of the classical volume (3.11).
The resulting classical metricGij given in (3.12) is inserted

into the general expression (3.7) for the decay constants.
As in the example of the resolved conifold discussed in

Sec. III C it will be crucial to evaluate the quantum correc-
tions to this classical result. To make this explicit, this
would force us to specify the type of singularities we are
considering and thus requires further information about the
geometry of the setup. In this paper we will only discuss a
simple toy model of N conifolds and it would be desirable
to extend this analysis in future work. However, the general
way to proceed should be as follows. In the split (3.17) of
the prepotential F the contribution F sing will only depend
on the small moduli ti and should be derived for a given
geometry. This singular geometry can be considered to be
local or noncompact and later embedded into a compact
space with cutoff given by the radius R of the large cycles.
Given a prepotential (3.17) the leading axion decay con-
stants are straightforwardly computed by evaluating

f2ij

M2
P

¼ g2s
�

Gi�|; (3.27)

where Gi�| ¼ @ti@�tjK is the Kähler metric to the Kähler

potential (3.9).
Let us now exemplify a multiaxion scenario with a

toy model admitting N resolved conifold singularities.
To derive the axion decay constants we investigate the
prepotential

F ¼ i

3!
ðR=‘sÞ6 þ i

2

XN
i¼1

ðtiÞ2½ðR=‘sÞ2 � logti� þ . . . ;

(3.28)

which is the straightforward generalization of the single
conifold prepotential (3.18). It can be viewed as describing
a toy model of N conifold singularities in a compact
Calabi-Yau manifold with simple intersection numbers.
We have assumed that the nontrivial intersection numbers
of the large cycles of radius R with the vanishing cycles of
size jtij are given by KIij � ��ij, while all other inter-

sections of the large cycles are of order one KIJK � Oð1Þ
or vanish. The quantum corrected volume (3.9) is com-
puted to be

V ¼ 4

3
ðR=‘sÞ6 � 4ðR=‘sÞ2

X
i

ðviÞ2

þ 2
X
i

ðjtij2 logjtij þ ðviÞ2Þ þ . . .

� 4

3
ðR=‘sÞ6 � 4NðR=‘sÞ2v2

þ 2Nðjtj2 logjtj þ v2Þ þ . . . ; (3.29)

where in the second line we have used (3.26). This ex-
pression should be compared to the case of a single coni-
fold (3.19). The axion decay constants are computed using
the general expression (3.27). Inserting the prepotential
(3.28) we find that the leading contributions to f2ij ¼
�ijf

2
i are diagonal with
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f2i
M2

P

¼ g2s
�

2ðR=‘sÞ2 � 2 logjtj � 1

V
þ . . . : (3.30)

We can now draw the conclusion already indicated in the
previous section. Even though we are dealing with a setup
with a possibly large number N of small cycles, the axion
decay constants can be close to the Planck scale for appro-
priate values of R, t and gs.

To illustrate (3.30) let us consider a numerical example.
Let us assume that we have 100 large cycles of volume
ðR=‘sÞ2 � 1:44 and to each there are coupling 8 different
small cycles of volume jtj � 0:31with coupling ðR=‘sÞ2 �
ðtiÞ2 in (3.28). This gives N ¼ 800 axions. At string cou-
pling gs ¼ 0:25 one evaluates

fi � 0:1MP (3.31)

at a string-frame volume V � 18:6 and Einstein-

frame volume VE ¼ g�3=2
s V � 148 in units of ‘s. We

also evaluate

jtj
gs

� 1:25;
ðR=‘sÞ2

gs
� 5:7: (3.32)

To end this section let us also comment on the correc-
tions due to D-brane instantons to the axion decay con-
stants fij. In particular, D1 instantons will introduce a

dependence of fij on the axion fields ci themselves. This

is clear from the fact that D1 instantons on a cycle Ci
couple to the complex coordinates Ga defined as7

Gi ¼ ci � i
jtij
gs

¼
Z
Ci
ðC2 � C0B2Þ � i

Z
Ci
e�
jB2 � iJj;

(3.33)

which is the obvious generalization of (3.21). The correc-
tions are proportional to the exponential of the Ga as in
(3.22). In complete analogy to the discussion in Sec. III C
we want to make sure that these D-brane corrections are
parametrically small and can be neglected in the analysis
of the axion decay constants. Therefore, we demand that
each jtij=gs is larger than unity, such that jZD1j 
 1. In
other words, we will demand that each ti � t satisfies the
constraint (3.24). Again, we have two scales parametrizing
our models; one parameter R setting the size of the large
cycles, and another much smaller parameter jtj associated
to the stringy volume of the vanishing cycles.

IV. AXION POTENTIALS IN TYPE
IIB STRING THEORY

In the previous section we studied the kinetic terms of
R-R axions for type IIB Calabi-Yau compactifications.
Most of our analysis focused on axions ca, a ¼ 1 . . .N
arising from the two-form C2 integrated over vanishing

cycles in the Calabi-Yau manifold. In this section we will
discuss the nonperturbative effects which lead to the gen-
eration of a nonvanishing scalar potential for the fields ca.
We will identify sources which generate an axion potential
of the form

Veffð�aÞ ¼ Cþ XN
a¼1

�4
að1� cos½�a�a=fa�Þ; (4.1)

which was already given in (2.6). In this effective potential,
the �a are the canonically normalized axions (2.2) and fa
are the diagonalized axion decay constants.
To make the discussion of axion potentials more explicit

we will further break the supersymmetry of the N ¼ 2
scenarios of Sec. III to N ¼ 1. This can be done by
including background fluxes, space-time filling D-branes
or orientifold planes [30]. If these additional sources are
appropriately chosen they only preserve half of the eight
supercharges in four dimensions. It is well-known, that the
effective action of the resulting four-dimensional super-
gravity theory can be described in terms of a set ofN ¼ 1
characteristic functions. The kinetic terms for a set of
chiral multiplets containing the complex scalars Mn are
encoded by the metric Kn �m ¼ @Mn@ �MmK, which is the
second derivative of a Kähler potential K. Super-
symmetry also implies that the effective scalar potential
can always be written as

V ¼ eK=M2
PðKn �mDnWDmW � 3jWj2=M2

PÞ
þ ðRefÞklDkDl: (4.2)

Here W is the superpotential holomorphic in MI and
DnW ¼ @MnW þ ð@MnKÞW denotes its Kähler covariant
derivative. The second term in (4.2) arises if some of the
scalars are gauged. It depends on the nontrivial D termsDk

as well as the real part of the gauge-kinetic coupling
function fkl. In the following we will discuss sources for
a superpotential W which inserted into the potential (4.2)
induces an axion potential of the form (4.1).

A. Corrections due to D1 instantons

In this section we will discuss a first set of corrections
which can induce a nontrivial axion potential of the form
(4.1). More precisely, we will study an effective potential
arising from D1 instantons wrapped around small cycles in
the Calabi-Yau manifold.
In order to study the effects of D instantons wewill focus

entirely on the superpotentialW. Recently, much effort has
focused on the study of D3 instantons wrapped on four-
cycles in O3/O7 orientifold and F-theory compactifications
as reviewed, for example, in Ref. [30]. These instantons
can, under certain well-known conditions [56], induce a
superpotential of the form

WD3 ¼
X
�

A�e
in��T� : (4.3)7We slightly abuse the notation of (3.4) in defining ci to also

contain the lower R-R form scalars.
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In this expression T� are the moduli containing the Kähler

structure deformations v� defined in (3.5). In (4.3) the
functions A� generically depend on other fields in the
spectrum, while n�

� is a constant matrix parametrizing
the wrapping numbers of the D3 instantons. In the work of
KKLT [57] the corrections (4.3) have been used to stabilize
the moduli T� at large volume v� > 1. Moreover, in spe-
cific setups the corrections (4.3), together with a super-
potential due to background fluxes, are shown to be
sufficient to stabilize all moduli in the model [58].
Typically, such examples have no R-R two-form scalars
in the spectrum, since these have been projected out in the
N ¼ 2 to N ¼ 1 reduction. In order to realize the sce-
narios of Secs. III C and III D we thus have to focus on a
more general set of examples which contain R-R two-
forms in the spectrum.

Examples admitting R-R two-form axions have been
studied, for example, in Refs. [34,59]. In such O3/O7
orientifolds the fields Ga defined in (3.33) arise as chiral
multiplets in the spectrum. Based on the earlier works
[32,33], it has been argued in [34] that a dependence on
Ga can appear through the prefactors A� in (4.3). More
precisely, this dependence arises through generalized theta
functions ��ð�;GÞ each being a power series in the ex-
ponentials ei� and e�iGa

. The superpotential (4.3) can be
written as

WD3 ¼
X
�

Â���ð�;GÞein��T�; (4.4)

with new coefficient functions Â� independent of �, Ga.8

For our purposes it will be sufficient to consider the first
few terms in �ð�;GÞ. For example, consider a setup with
one field T coupling to a set of moduli G1, G2, etc. Since
�ð�;GÞ generically starts with a constant, a candidate
superpotential is of the form

WD3 ¼ eiT þ ei�½e�iG1 þ e�iG2 þ . . .�eiT; (4.5)

where the prefactors were taken to be of order one. Note
that due to the presence of the exponential factor involving
T� the Ga dependence through ��ð�;GÞ would be sub-

leading if contributions entirely due to D1 instantons are
present. This is the case since ImT� > 1 parametrizes
large volumes of four-cycles in a self-consistent analysis.
However, as can be seen by analyzing the F theory under-
lying the O3=O7 orientifold, there is no calibration which
can support D1 instantons alone [32–34].

Let us now turn to potentials for the R-R two-forms
scalars entirely generated by effects of D1 instantons.
These couple to the complex coordinates Ga defined in
(3.33). In analogy to the discussion of D3 instantons one
expects these to generate a superpotential of the form

WD1 ¼
X
a

Bae
�imb

aG
a
: (4.6)

This form is not surprising since nonperturbative correc-
tions are necessarily weighted by the exponential of the
action of the corresponding instanton. Hence, as in (3.22)
D1 instanton contributions on vanishing cycles contain an
exponential factor of Ga. A study of explicit examples will
reveal if the coefficient functions Ba are indeed
nonvanishing for the D-brane configurations under
consideration.
A detailed investigation of the superpotential (4.6) has

been carried out for type I string theory on a Calabi-Yau
manifold in [31]. Type I strings can be viewed as an
orientifold setup with O9 planes and D9-branes. In this
case the conditions for a nonvanishing superpotential (4.6)
are known explicitly. One expects that the analysis of [31]
can be extended to the other orientifolds such that a super-
potential (4.6) will be generated for part or all of the mod-
uli Ga. For example, explicit computations of such a
D1 superpotential including multi-instanton contributions
have been recently carried out in [39].

B. Gaugino condensates on D5-branes

In the following we comment on an interesting further
source, which induces the desired axion potentials. More
precisely, let us consider space-time filling D5-branes
which wrap the small cycles in the compact Calabi-Yau
manifold. Such branes can be supersymmetric and con-
sistently included in orientifold setups with O5 planes. In
the presence of appropriate orientifold planes the tadpoles
can be canceled yielding a stable configuration [30].
Alternatively, one might try to include pairs of D5 and
anti–D5-branes wrapping two-cycles in the same homol-
ogy class [61]. Even though such configurations are only
metastable and will break supersymmetry, they can be
sufficiently long-lived to accommodate our universe.
For concreteness, let us first focus on a stack of M D5-

branes wrapping a small S2 resolving the conifold singu-
larity as in Sec. III C. The gauge theory on the space-time
filling D5-branes is a pure UðMÞ Yang-Mills theory with
N ¼ 1 supersymmetry. At low energies this gauge theory
will be strongly coupled leading to gaugino condensation.
The gauge coupling is given by the complex field G ¼
c� jtj=gs already defined in (3.21). The effective theory
for the gaugino condensate S admits a superpotential of
Veneziano-Yankielowicz form

WVY ¼ �iGSþ 1

2�i
MSðlogðS=�3

0Þ � 1Þ; (4.7)

where �0 is the cutoff scale. The extrema of WVY corre-
spond to the vacua of the gauge theory. Eliminating S the
effective superpotential is of the form

WD5 ¼ �3
0e

�iðG=MÞ: (4.8)
8An explicit compactification, where such a superpotential is

induced, can be found in Ref. [60].
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The superpotential has a dependence on the field G similar
to the one arising from D1 instantons (4.6). However, there
is a crucial factor of 1=M appearing in the exponential. In
the axion potential (4.1) we thus identify � ¼ 1=M where
� is appearing in the cosine multiplying the canonically
normalized axion.

It is important to note that such a result has to be treated
with care. The factor 1=M should not spoil the 2� period-
icity of the axions. This can be achieved by replacing the
potential (4.1) with

Veff ¼ CþX
a

�4
amin
na2Z

�
1� cos

�ð�a=faÞ þ 2�na

Ma

��
; c

(4.9)

for gaugino condensates of an UðMaÞ gauge theory on the
ath stack of D5-branes. That such a form is indeed ob-
tained by analyzing the confining gauge theories using
string duality was explicitly shown in Ref. [38]. The
form (4.9) implies that the field range of the canonically
normalized axions �a will remain limited by the value of
the axion decay constants alone. Considering ca and �a in
the intervals (2.5) the potential (4.9) is again identical to
(4.1) with �a ¼ 1=Ma. Remarkably, independent of the
value of the axion decay constants the factors 1=Ma can
push the smooth maximum of the cosine out of the acces-
sible field range of �i (compare Fig. 1 with Fig. 2). For
Ma > 3 the potential becomes approximately quadratic in
the complete field range (2.5) of �i and we can apply
Eqs. (2.17) and (2.18) for all values of �i.

Since this seems an interesting opportunity to built ex-
plicit models for chaotic inflation, let us briefly comment
on the computation of (4.9) in Refs. [38,61]. The authors
consider stacks of several D5 (and anti–D5-branes) in the
same homology class on a small two-cycle. This configu-
ration can be pushed through a conifold transition. In this
process the branes get replaced by three-form fluxes on
small three-spheres S3 with complex structure modulus S
replacing the gaugino bilinear [35]. In the dual picture the
superpotential and scalar potential are entirely determined

by the local geometry. It can be given in terms of the dual

prepotential F̂ ðSÞ as

W ¼
Z

G3 ^�ðSÞ ¼ �iGSþM@SF̂ ðSÞ; (4.10)

where G3 is the complex NS-NS and R-R three-form

flux. In (4.10) the prepotential takes the form F̂ ¼
� 1

2�i S
2 logðS=�3

0Þ þ fgeomðSÞ, with fgeomðSÞ encoding

further corrections to (4.7) given by the local geometry.
Eliminating S in the local vacuum allows explicitly com-
puting (4.9) and determining �a [38]. Note that in order to
fully embed these local results into a global scenario
further work remains to be done. However, combining
available techniques for geometric transitions with the
analysis of the axion decay constants and scales of
Sec. III provides interesting possibilities to establish
explicit scenarios.
Before moving on to the N ¼ 1 orientifold scenarios,

let us stress the points we still need to address in order to
make our scenarios consistent. Having analyzed the axion
decay constants encoding the kinetic terms and the scalar
potential due to nonperturbative D-brane effects, it remains
to discuss two important issues:
(a) It has to be ensured that all nonaxionic moduli are

stabilized at the desired scales.
(b) It has to be true that the axions are the only fields

which are relevant during inflation. In particular, the
nonaxionic scalar partners in the supermultiplets of
the axions should not interfere with their dynamics
during inflation.

Both of these requirements are hard to address in general
and are not necessarily satisfied in many string compacti-
fications [18]. First steps in establishing a consistent sce-
nario for a class of N ¼ 1 orientifold compactifications
will be made in the next section.

V. AXION INFLATION IN N ¼ 1 ORIENTIFOLDS

In the following we embed the scenario outlined in
previous sections into an N ¼ 1 orientifold compactifi-
cation. We begin with the study of the four-dimensional
effective N ¼ 1 theory obtained by compactifying type
IIB string theory on a Calabi-Yau orientifold with O3/O7
planes in Sec. VA. The N ¼ 1 data are expressed as a
function of the underlying N ¼ 2 prepotential and hence
inherit the �0 corrections discussed in Sec. III. This will be
illustrated for a toy model with N conifolds in Sec. VB.
Combined with the superpotentials of Sec. IV an approxi-
mate evaluation of the potential allows us to comment on
axion inflation in these N ¼ 1 scenarios.

A. The four-dimensional N ¼ 1 effective theory

Let us discuss the N ¼ 1 effective theory in more
detail. As above, the compact Calabi-Yau manifold isFIG. 2. Potential for one axion field � with M> 3.
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denoted by Y. In order to define the orientifold projection
we demand that Y admits a holomorphic, isometric invo-
lution 
. The full orientifold action is given by

O ¼ ð�ÞFL�p

�; 
�J ¼ J; 
�� ¼ ��;

(5.1)

where �p is the world-sheet parity, FL is the left moving

fermion number and 
� is the pullback of 
 acting on
forms. In (5.1) we have also displayed the action of 
 on
the Kähler form J and holomorphic three-form� of Y. J is
invariant due to the fact that 
 is holomorphic and iso-
metric. The negative sign for the action on � implies that
we are considering scenarios with O3 and O7 planes.

In order to determine theN ¼ 1 spectrum we note that

 splits the cohomologies into positive and negative ei-
genspaces. In particular, the cohomology of two-forms
splits as

Hð1;1Þ ¼ Hð1;1Þ
þ �Hð1;1Þ� ; (5.2)

with dimensions hð1;1Þþ and hð1;1Þ� . Accordingly, the basis of

Hð1;1Þ can be split into !A ¼ ð!�;!aÞ with !� being a
basis of the positive eigenspace in (5.2) and !a being a
basis in the negative eigenspace of (5.2). Note that the
Kähler form J lies in the positive eigenspace of (5.2) as
indicated in (5.1). In contrast, the NS-NS B field has to
transform as 
�B2 ¼ �B2 in order to remain in the spec-
trum and thus lies in the negative eigenspace of (5.2).
Hence, in the basis !A ¼ ð!�;!aÞ we have to expand

J ¼ v�!�; B2 ¼ ba!a;

ta ¼ �ba; t� ¼ iv�;
(5.3)

where tA ¼ ðt�; taÞ are the complexified Kähler structure
deformations introduced in (3.8). We find that the negative
two-cycles dual to !a have vanishing geometric volume
va ¼ 0, but are supported by a nontrivial B field. The
positive two-cycles dual to !� have geometric volume
v� and vanishing B field.

The four-dimensional N ¼ 1 effective theory obtained
by compactifying on the Calabi-Yau orientifold Y=
 was
derived in [40,41]. It was shown in [40] that the scalar
modes arising from B2 as well as C2, C4 combine together
with the Kähler structure deformations into chiral N ¼ 1
multiplets. The complex scalars in the chiral multiplets are
the dilaton-axion � ¼ C0 þ ie�
, the purely axionic fields
Ga already given in (3.33) and the complexified Kähler
moduli T�. Explicitly, we define

Ga ¼ ca þ ie�
 Reta; T� ¼ ��� þ ie�
 ReF �;

(5.4)

where Reta ¼ �ba and the axions ca and �� are defined as

ca ¼ 1

2�

Z
Ca
C2 � C0B2;

�� ¼ 1

2�

Z
~C�
C4 � B2 ^ C2 þ 1

2
C0B2 ^ B2:

(5.5)

In (5.5) the cycles Ca 2 H�
2 are dual to !a and ~C� 2 Hþ

4

are four-cycles transforming with a positive sign under 
�.
At the end of Sec. III D, the fields Ga have been identified
as the correct couplings to D1 instantons for two-cycles of
vanishing geometrical volume. The coordinates T� provide
the correct couplings to D3 instantons wrapping four-
cycles in Y.
Because of the N ¼ 1 supersymmetry of the four-

dimensional effective action the metric on the field
space spanned by �, Ga and T� is necessarily Kähler.
This implies that it takes the form GI �J ¼ @MI@ �MJKq,

where MI ¼ ð�;Ga; T�Þ are the complex coordinates and
KqðM; �MÞ is the Kähler potential. The Kähler potential for
the complex scalars MI is shown to be [34,41]

Kqð�;G; TÞ ¼ �2 ln½ie�2
ð2ðF � �F Þ
� ðF A þ �F AÞðtA � �tAÞÞ�: (5.6)

It is important to note that despite the obvious similarity to
(3.9) the Kähler potential Kq has a more complicated func-

tional dependence on its complex coordinates MI. For a
general prepotential F it is impossible to explicitly write
Kq as the function of �, Ga, T�. This is due to the fact that

one would need to express e�2
V as a function of
e�
Reta and e�
ReF � appearing in the N ¼ 1 coordi-
nates (5.4). This functional dependence is nonpolynomial
and can only be determined explicitly in very specific
examples.9 Nevertheless, one can derive the Kähler metric
by using the underlying N ¼ 2 special geometry [41] or
the work of Hitchin [62] as done in [63]. Also the deriva-
tives of the Kähler potential (5.6) are known as a function
of the prepotential [41]. The Kähler metric and its inverse
as well as the first derivatives of the Kähler potential are
summarized in Appendix B.
Before moving on to the N ¼ 1 axion decay constants

let us stress again that Kq still contains the �
0 corrections

inherited from the underlying N ¼ 2 theory. It does not,
however, depend on the axions C0, c

a, ��. This can be
traced back to the fact that no corrections due to D-branes
are included in the expression (5.6), which is in accord with
the discussion in Secs. III C and III D. Clearly, in addition
to the inherited N ¼ 2 corrections one expects further
N ¼ 1 corrections to appear. However, it seems unlikely
that these will cancel the N ¼ 2 effects. We thus have
some confidence that the appearance of large axion decay
constants is not restricted to the N ¼ 2 setups outlined in
Sec. III.

9This is equivalent to the problem of solving the attractor
equations for N ¼ 2 black holes.
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Let us discuss the axion decay constants for the R-R
two-form axions ca in (5.4) in more detail. Using Kq these

are simply given by the Kähler metric

f2ab
M2

P

¼ 2@Ga@ �GbKq: (5.7)

As a consistency check we can derive fab for the classi-
cal prepotential (3.10). This was done in Ref. [40]
(Appendix C.1) and reproduces the leading classical result
discussed in Sec. III B. In the special cases such as when

hð1;1Þþ ¼ 1, i.e. in case there is only one T1 � T, the com-
putation of the classical Kq simplifies significantly and

(5.6) reduces to

Kq ¼ � lnið�� ��Þ

� 3 lni

�
T � �T � CabðG� �GÞaðG� �GÞb

2ð�� ��Þ
�
; (5.8)

where Cab is a positive definite integral matrix given by

the triple intersection Cab ¼ �R
! ^!a ^!b, with ! 2

Hð1;1Þ
þ corresponding to the one modulus T. It is now

straightforward to compute fab and compare the result
with the N ¼ 2 counterpart of Sec. III B.

Recall that we found in Secs. III C and III D that in order
to obtain large axion decay constants we need to move
close to singular points in the moduli space. In the vicinity
of a singularity the �0 corrections in the Kähler potential
Kq become important and have to be included.

B. A simplistic N conifold toy model

In this last part of Sec. V we will study an orientifold
scenario of a simplified toy model with 2N resolved coni-
fold singularities. The aim of this section is to illustrate that
the N ¼ 1 effective theory can be evaluated explicitly
including the simple logarithmic N ¼ 2 corrections near
the singularities. This allows the illustration of some of the
features necessary to model N-flation. However, the reader
should not consider this as an explicit construction, but
rather as support of our general arguments that the outlined
scenarios provide a promising possibility to model axion
inflation.

Let us start with a compact geometry with a set of
2N conifold singularities resolved by two-spheres S2i ,
S2�i, where i ¼ 1 . . .N. As in Sec. III D, the blown-up
spheres are supported by a geometric volume and NS-NS
B field. We assume that there is an orientifold projection
mapping10


S2i ¼ S2�i; i ¼ 1 . . .N: (5.9)

The two-forms associated to the two-cycles ðS2i ; S2�iÞ are
denoted by ð ~!i; ~!�iÞ. To obtain invariant and anti-invariant

forms these are combined as

!þ
i ¼ ~!i þ ~!�i; !�

i ¼ ~!i � ~!�i; (5.10)

with !�
i transforming with a plus or minus sign under the

orientifold involution 
�. The corresponding special coor-
dinates are likewise given by

tiþ ¼ 1
2ðti þ t�iÞ ¼ ivi; ti� ¼ 1

2ðti � t�iÞ ¼ �bi;

tR ¼ iðR=‘sÞ2; (5.11)

where ti, t�i are the complexified Kähler moduli corre-
sponding to the resolved conifolds and tR parametrizes the
larger cycles of radius R. Note that in (5.11) we have
already applied the orientifold constraint (5.3) to express
ti� through the B field and Kähler form alone. In other
words, the orientifold projection enforces that the volumes
of Si and S�i are identical, vi ¼ v�i, while the B fields
have the opposite sign, bi ¼ �b�i.
In order to derive the metric on the N ¼ 1 field space,

we will consider the simple prepotential (3.28) written as

F ¼ � 1

3!
t3R þ 1

2!

XN
i¼�N

ðtiÞ2½tR � i logti�; (5.12)

where the sum does not include the term with i ¼ 0. Using
the coordinate transformation (5.11), F can be expressed
in terms of ti�, tR, and hence vi, bi and R, as

F ¼ � 1

3!
t3R þ tR

XN
i¼1

½ðtiþÞ2 þ ðti�Þ2� � i

2

XN
i¼1

ðtiþ þ ti�Þ2

� logðtiþ þ ti�Þ � i

2

XN
i¼1

ðtiþ � ti�Þ2 logðtiþ � ti�Þ:

(5.13)

This explicit ansatz for F should be understood as our
main simplification in the study of these N ¼ 1 orienti-
fold models with resolved conifold singularities. In gen-
eral, there will be further perturbative and nonperturbative
corrections to the N ¼ 1 Kähler potential depending on
bi, vi and R which are only suppressed in certain regimes
of the moduli space. In particular, the prepotential (5.13)
contains contributions from two rather extreme regimes:
the large volume corrections in R, and the logarithmic
corrections in vi, bi due to the singularity. However, we
cannot make R extremely large, nor vi, bi extremely small
as we have already discussed in Sec. III. Let us note that for
a given Calabi-Yau geometry the N ¼ 2 prepotential can
be computed much more explicitly than (5.13). However,
also additional perturbativeN ¼ 1 corrections might alter
the precise form of the effective theory. These perturbative
corrections are believed not to depend on the axions.
Hence, in case they do not cancel the N ¼ 2 effects, an
effective theory with light axions might still be accessible.
Therefore, even though the following analysis appears

10The local geometry of this setup is similar to the T dual of the
O5 orientifold geometries discussed, for example, in Ref. [39].
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rather explicit, its results should be interpreted with care
and further study will be required to gain a solid picture.

For a given prepotential the N ¼ 1 Kähler coordinates
are computed using (5.4). Clearly, the complex dilaton �
and the coordinates

Gi ¼ ci þ ie�
 Reti� ¼ ci � ie�
bi (5.14)

do not depend on the form of the prepotential. In our setup,
we denote by TR the coordinates corresponding to the
larger cycles of radius R. Here R is not an index, but we
will later work in a toy model with several TR of the same
size and include appropriate factors to label this degener-
acy. The definition of TR depends on the prepotential (5.13)
in a rather simple way, since we only kept the classical
terms in F . However, the Kähler coordinates Ti associated
with vi contain the terms Reð@F =@tiþÞ and hence will
receive �0 corrections form the logarithmic corrections.
Using the prepotential (5.13) in (5.4) we derive

TR ¼ ��R þ ie�


�
1

2
ðR=‘sÞ4 �

X
j

½ðvjÞ2 � ðbjÞ2�
�
;

Ti ¼ ��i þ ie�
ð�2ðR=‘sÞ2vi þ vi

þ ½�2bi argðtiÞ þ 2vi logjtij�Þ; (5.15)

where we abbreviated ti ¼ �bi þ ivi. Finally, the Kähler
potential Kq can be evaluated using (5.13). This is straight-

forward, since the quantum corrected volume (3.29) only
depends on vi and the absolute value of ti. The B field bi

appears only quadratic and the sign flip of bi in the last two
terms of (5.13) only yields a factor of 2. The expression for
Kq is simply

Kq ¼ �2 log

�
e�2


�
4

3
ðR=‘sÞ6 � 8ðR=‘sÞ2

X
i

ðviÞ2

þ 4
X
i

ðjtij2 logjtij þ ðviÞ2Þ
��

: (5.16)

The combination in the brackets is precisely e�2
V ,
where V is the quantum volume of Y, and should be
compared to the earlier expression (3.29) in Sec. III D.
Expressing Kq as a function of the N ¼ 1 Kähler coor-

dinates �, Gi, Ti and TR is considerably harder. In order to
do that we would have to solve � ¼ C0 þ ie�
, as well as
Eqs. (5.14) and (5.15) for e�
, R, vi, bi and insert the result
into (5.16). Fortunately, we will not need an the explicit
expression for Kq as a function of theN ¼ 1 coordinates.

At least in principle, we are now in the position to
compute the N ¼ 1 scalar potential (4.2) induced by a
superpotential due to background fluxes and nonperturba-
tive effects. A nonperturbative superpotential of the form
(4.4) and (4.5) can potentially stabilize the moduli TR, Ti

and Gi. The flux superpotential depends on the complex
dilaton � and the complex structure moduli. Altogether, the
superpotential is a function of all bulk moduli of theN ¼
1 effective theory and one expects that the scalar potential

will admit minima in which all fields can settle to their
vacuum values. First the heavier fields will roll quickly
down to their minima, while only later the light degrees of
freedom will follow. If the axions are indeed the lightest
fields and the other fields are fixed to the desired values, the
effective theory could allow the N-flation scenario of
Sec. II.
Given the N ¼ 1 characteristic data it is still not

straightforward to explicitly check if our setup admits an
epoch of axion inflation. The reason for this is of a tech-
nical nature. First, the general expressions for the deriva-
tives of the Kähler potential summarized in Appendix B
are complicated functions of the prepotential (5.13). In this
work, we will simplify the computations and evaluate the
potential using the leading results (3.7) for the axion decay
constants and hence the Kähler metric.11 Second, since the
fields �, Gi, Ti and TR mix both in the Kähler potential as
well as in the superpotential it is hard to determine an
effective theory for any subset of fields. In order to never-
theless proceed, we will have to assume, similar to the
approach of KKLT [57], that we can stabilize the fields in
two steps. In a first step, the dilaton and complex structure
moduli are stabilized using background fluxes. Later on,
within the effective theory for the fields TR, Ti and Gi, we
will address the stabilization of the remaining bulk fields in
an uplifted nonsupersymmetric vacuum. One expects that
this will give at least a qualitative picture of the N conifold
toy model.
Let us begin by utilizing the flux superpotential to fix the

complex structure moduli zk and the dilaton � such that

DzkW ¼ 0; D�W ¼ 0: (5.17)

As already mentioned above, our setup is so complicated
that the second condition in (5.17) will receive correc-
tions through the derivative of the Kähler potential (B3).
However, we will assume that we can choose the fluxes
such that these corrections are subleading and we can fix �
nevertheless to an appropriate value. The effective poten-
tial for the remaining fields is obtained by inserting (5.17)
into the general expression (4.2). Setting SA ¼ ðGi; TR; TiÞ
one finds

Veff ¼ eKðKSA �SBDSAWDSBW � 3jWj2Þ þ Vup: (5.18)

As in the scenarios of Refs. [57,64,65], we will add an
uplift term of the form Vup ¼ 	=V � to VðSÞ, where 	 is a

tunable constants and � is a rational number of order unity
depending on the source of the uplifting energy. By fine-
tuning 	, the positive contribution Vup can be utilized to

lift a vacuum at negative vacuum energy to a very small
positive cosmological constant. Typically, this uplifting
does not significantly change the location of the vacua

11For a small number of fields it can be checked numerically
that this is a reasonable approximation. It becomes more accu-
rate with increasing volume V .

AXION INFLATION IN TYPE II STRING THEORY PHYSICAL REVIEW D 77, 126007 (2008)

126007-15



and the local shape of the potential close to the lifted
minimum. Therefore, we will set the uplifting term in
(5.18) to be zero in order to simplify our analysis.
Clearly, in order to make contact to Sec. II it eventually
has to be included and appropriately fine-tuned such that
the cosmological constant C in (2.6) is negligible during
inflation.

Following Ref. [57] and using (4.4) and (4.5), the effec-
tive instanton superpotential in (5.18) takes the form

W ¼ W0 þ
XN
j¼1

eiTj þ eiTR þ e�1=gs
XN
j¼1

e�iGj
eiTR ; (5.19)

where W0 is a constant depending on the values of the
background fluxes. We observe that only the last term in
(5.19) depends on the R-R two-form axions. At small string
coupling and ImTR > 1 this term is strongly suppressed in
comparison to the other contributions in W. Since the
masses of the fields are weighted by the instanton action
appearing in the superpotential, this simple observation
leads us to expect that the masses of the fields in Gi might
be lower than the masses of TR, Ti. Moreover, in the
absence of theGi dependent term inW, the axions ReGi ¼
ci are actually massless. However, due to the bi dependent
corrections to the Kähler potential the fields ImGi ¼
�bi=gs can acquire a mass even if they do not appear in
the superpotential. As we will see below, they can already
be stabilized to their vacuum in the absence of the Gi

dependent term in W.
In the following we numerically investigate our simple

toy model in more detail. Our goal is to show that the
included string world-sheet corrections alter the vacuum
structure of the theory and can result in a theory of light
axions. This should be viewed as a qualitative result, since
the precise values presented in the following are only valid
with our assumptions and an appropriate fine-tuning. For
our numerical example, we will tune the fluxes such that
gs ¼ 0:16 and W0 ¼ �0:12. Moreover, we will consider a
setup of 100 larger cycles of identical radius R. We assume
that there are 8 different resolved conifold singularities
coupling to each of these cycles. The orientifold projec-
tion should identify these pairwise, such that we have 400
conifold pairs and N ¼ 400 associated axions from the R-
R two-form. In order to get a qualitative picture of the
resulting potential we will restrict our study to a model
with effectively four real fields: the radius R of the larger
cycles and the three fields associated to each conifold pair

v � vi; b � bi; c � ci; (5.20)

where v, b parametrize the resolving volumes and B fields
and c are the R-R two-form axions.12 As in Sec. III D, it is
important to also carefully keep track of factors labeling

the degeneracy of the large cycles and the associated
conifold pairs.
In the computation of the effective potential (5.18) we

use the leading results for the Kähler metric (3.7), the
superpotential (5.19) as well as the derivatives of the
Kähler potential (B3). Explicitly, one computes

KTR
¼ 4igsðR=‘sÞ2V�1; KTj

¼ 4igsvV�1;

KGj ¼ �4igsð�2ðR=‘sÞ2bþ bþ ½2v argð�bþ ivÞ
þ b logðb2 þ v2Þ�ÞV�1: (5.21)

In a next step the effective potential VðR; v; b; cÞ can be
minimized numerically. This yields an anti–de Sitter mini-
mum at hRi ¼ 1:208, hvi ¼ �0:1225, hbi ¼ 0:2564 and
hci ¼ 0, which we have plotted in Appendix C, Figs. 5–7.
Inserting these vacuum values for R, v, b and c into the
Kähler coordinates (5.14) and (5.15), this minimum corre-
sponds to13

hImTRi ¼ 7:924; hImTji ¼ 12:039;

hGji ¼ 0� 1:603i:
(5.22)

We observe that these vacuum values are in the field range
consistent with the assumption that D-brane effects are
subleading in the Kähler potential. The respective
D1- and D3-instanton actions are sufficiently suppressed
by �ImGj and ImTR, ImTj. It is also straightforward to

compute the string-frame volume in (5.16) at this mini-
mum, V ¼ 205:6. This is not extremely small, which
implies that also the axion decay constant of each R-R
two-form axion c is not expected to be extremely close to
the Planck scale. Explicitly, the axion decay constants are
computed by inserting the vacuum values (5.22) into
Eq. (3.7) for C2 yielding

fC2
¼ 0:02MP: (5.23)

Clearly, this is too small to match the cosmological data.
However, fC2

can made larger by fine-tuning the value of

gs,W0 and considering a more sophisticated geometry. For
the following qualitative analysis the precise value of fC2

will not be directly relevant.
Let us now focus on the coordinates Gj containing the

R-R two-form axions c. In order to get a picture of the
axion potential, we first have to express Veffðb; c; v; RÞ as a
function of the N ¼ 1 Kähler coordinates Ti, TR and Gi

such that VeffðTi; TR; G
jÞ. This can be only done numeri-

cally, since the coordinate definitions (5.14) and (5.15) are
highly nonlinear. In a next step we fix TR and Ti to their
vacuum values (5.22) and plot the scalar potential as a
function of the axion ReGi ¼ c and its nonaxionic partner
ImGi ¼ �b=gs. The result is shown in Fig. 3. The poten-

12It is straightforward to also include the R-R four-form axions,
but we will omit them for simplicity.

13Recall that we have 100 coordinates TR with each 4 associ-
ated conifold pairs. This implies that the sums in the definition
(5.15) of each TR runs from j ¼ 1 . . . 4.
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tial takes the form of a valley. It is steep in the direction of
the nonaxionic field b, but shallow in the direction of the
axion c. This is very similar to the form of the axion valley
used by Kallosh in Ref. [42] to model natural inflation in
supergravity. In order to check that there is indeed a mass
hierarchy between the axions ReGi and their nonaxionic
partners ImGi, we can switch off the superpotential cor-
rections depending on Gi by setting the last term in (5.19)
to zero. The potential VeffðGÞ at the vacuum values (5.22)
for TR and Ti is plotted in Fig. 4. We conclude that the
minimum stabilization of ImG arises though corrections in
the Kähler potential. The mass hierarchy between the axion
and its nonaxionic partner is crucial for inflation. It ensures

that first the nonaxionic field settles to its minimum leaving
an effective theory for the light axion discussed in Sec. II.
Note that this hierarchy is supported by the world-sheet
corrections to the quantum volume V .
Let us end this section by computing the axion potential

near the minimum (5.22). For the canonically normalized
R-R two-form axions �i ¼ fC2

ci one finds

Veffð�iÞ=M4
P ¼ �7:86 
 10�11 þXN

i¼1

5:07 
 10�16

� ð1� cosð50�i=MPÞÞ; (5.24)

where we have taken all N ¼ 400 axions to be of similar
size � � �i. The effective potential (5.24) is precisely of
the form (2.6). However, note that our model was not
sufficiently fine-tuned to obtain a pseudorealistic cosmol-
ogy. First, the cosmological constant in (5.24) is still
negative and has to be lifted to a small positive value by
including the uplifting term Vup in the effective potential

(5.18). As in Ref. [57], this additional term is independent
of all R-R axions and will not change the location of the
minimum significantly. Thus our discussion of the mass
hierarchy still remains valid in the uplifted vacuum.
Second, the axion decay constants (5.23) are still too small
and we have to further improve our setup to find the desired
cosmology. In any case, as already stressed above, the
given form of the effective theory should only be inter-
preted qualitatively, since we worked with the simple
prepotential (5.13) and applied several approximations in
deriving Veff . Our analysis indicates that there might exist
compactifications with a large number of axions as the
lightest bulk moduli. A more intensive study of explicit
models will reveal whether these scenarios are indeed
suitable to obtain axion N-flation.

VI. CONCLUSIONS

In this paper we discussed the possibility of a string
theoretical embedding of cosmological inflation driven by
a large number of axions. Such scenarios use the fact that in
the dimensional reduction of string theory to four space-
time dimensions a vast number of scalar fields arise in the
low energy theory. In particular, we considered type IIB
string theory on a compact Calabi-Yau manifold with many
nontrivial two-cycles. To each of these two-cycles an axion
from the R-R two-form and an axion from the R-R four-
form can be associated. The effective theory for the axionic
fields will sensitively depend on the values of the geomet-
ric moduli, i.e. the volume of the two-cycles, as well as the
NS-NS B field. We have argued that a possible realization
of axion inflation might only exist in special corners in the
landscape of vacua. In these regimes various stringy effects
become relevant and have to be included.
In recent years,N ¼ 1 type IIB compactifications with

all volumes stabilized at scales much larger than string
scale have been investigated intensively [30]. For vacua in
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FIG. 3 (color online). Axion valley potential VeffðGÞ (multi-
plied by 1011) for axion ReG and its nonaxionic partner ImG,
at fixed hTRi and hTii.
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FIG. 4 (color online). Axion valley potential VeffðGÞ in the ab-
sence of a superpotential depending on G. The axion direction
ReG is flat, while ImG still has a minimum.
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this regime of the field space, stringy corrections, such as
wrapping stings and D-branes, play a subleading role in the
derivation of the kinetic terms of the axions. Nonper-
turbative D-brane effects can induce a potential exponen-
tially suppressed by the large volume of the cycles times
the inverse of a small string coupling. We have argued that
such scenarios are not suitable for axion inflation. They
naturally admit very small axion decay constants which
become even smaller if the number of axions increases.
Moreover, due to the strong exponential suppression, the
scale of inflation is typically too low for semirealistic
scenarios. This conclusion led us to the consideration of
manifolds with small or vanishing cycles.

In compactifications with cycles smaller than string
scale the caveats of the large volume compactifications
can be avoided. To obtain such geometries, we considered
resolutions of singularities supported by a volume and an
NS-NS B field. The standard example of such a blown-up
singularity is the resolved conifold. In the vicinity of small
cycles, new corrections will become relevant and alter the
effective theory. We have discussed a subset of such cor-
rections in N ¼ 2 compactifications of type IIB string
theory on a Calabi-Yau manifold. Including the leading
singular nonperturbative string world-sheet contributions,
we have argued that the axion decay constants can take
values close to the Planck scale also for scenarios with
many axions. In N ¼ 1 compactifications further per-
turbative and nonperturbative corrections can become
relevant and might alter the structure of the effective
four-dimensional theory. However, in case these do not
cancel the N ¼ 2 effects, large axion decay constants
will remain accessible also in these less supersymmetric
scenarios.

In addition to being close to the Planck scale, N-flation
also requires the axion decay constants to be independent
of the axions themselves. Corrections depending on the
R-R axions are believed to arise only from nonperturbative
D-brane effects. If the small cycles remain to be of finite
size and we work at sufficiently small string coupling,
D-brane corrections are subleading in the axion decay
constants, since the instanton action is larger by a factor
of the inverse string coupling. This will also be the case for
vacua in an N ¼ 1 supergravity theory. In a consistent
analysis, the vacuum values of the N ¼ 1 moduli fields
have to be inside an appropriate field range to ensure that
D-brane instantons are subleading in the Kähler potential
encoding the kinetic terms of the scalar fields.

One of the remaining complications in realizing
N-flation is to ensure that there indeed exists an effective
theory for axions with appropriate masses during inflation.
These masses have to be lower than the masses of their
nonaxionic partner and other bulk moduli fields, but still
sufficiently large to match the observed density perturba-
tions during inflation. Again, this forces us to work away
from the large volume regime, where at least some of the

moduli masses are suppressed by large instanton actions. A
careful investigation of the effective potential for the mod-
uli is necessary to study the vacua of the theory. In this
work we briefly discussed effective N ¼ 1 potentials
arising from D instantons and gaugino condensates on
space-time filling branes. We pointed out that for potentials
induced by large rank gaugino condensates on D5-branes,
the quadratic region of the axion potential can stretch over
the entire accessible field range. In practice, D1 corrections
arising through the prefactors of the D3 instantons are of
particular interest. If these are the leading axion-dependent
contributions to the N ¼ 1 superpotential, a mass hier-
archy can be ensured due to the suppression by both the
D1- and D3-instanton action.
To investigate the properties of the effective theory more

explicitly, we discussed the embedding of axion inflation
intoN ¼ 1 Calabi-Yau orientifold compactifications with
O3 and O7 planes. We showed that the N ¼ 1 character-
istic data remain calculable even in the case that the non-
perturbative N ¼ 2 string world-sheet corrections are
included. Utilizing a flux superpotential together with a
superpotential from nonperturbative D-brane effects a po-
tential for all bulk moduli fields is generated. We illustrated
that a theory of light axions could exist, if the axion
dependence is suppressed in the superpotential and the
nonaxionic partners of the axions in the N ¼ 1 chiral
multiplet are stabilized due to the string world-sheet cor-
rections to the Kähler potential. In an optimistic scenario,
one can hope that such an effective theory of a large
number of relatively light axions from the R-R forms
will also survive further perturbative corrections.
Even though an explicit embedding of N-flation into

string theory still remains to be constructed, the scenarios
outlined and studied in this work might provide a promis-
ing route to achieve this goal. Likely, such an embedding
will not solve intrinsic issues related to the fine-tuning of
initial conditions in chaotic and natural inflation with many
inflatons. However, it might provide a way to accommo-
date possible future observations of primordial gravita-
tional waves in a string theoretic model.
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APPENDIX A: AXIONS IN N ¼ 2 CALABI-YAU
COMPACTIFICATIONS

In this appendix we recall the effective action of type IIB
string theory compactified on a Calabi-Yau manifold Y.
Our analysis will not necessarily take place in the large
volume limit, such that stringy corrections have to be taken
into account. Clearly, we will not be able to incorporate all
of these corrections into our analysis. However, for small
string coupling gs there is a regime in parameter space in
which we have control over the effective theory as dis-
cussed in Secs. III C and III D. In particular, contributions
due to D-branes in the type IIB theory are subleading for
small gs. Nevertheless, the four-dimensional physics can
be corrected by contributions from string world sheets. In
an N ¼ 2 compactification such �0 corrections are en-
coded by a holomorphic prepotential F which can be
expanded around the desired point in the moduli space.
In general, the prepotential F is a function of the com-
plexified Kähler structure deformations tA defined in (3.8).

We also introduce homogenous coordinates XÂ ¼ ðX0; XAÞ
and write

FðXÂÞ � ðX0Þ2F ðtAÞ; tA ¼ XA=X0: (A1)

All four-dimensional N ¼ 2 data will be given as a
function of the homogenous prepotential FðXÞ and hence
as a function of F ðtÞ.

Recall that compactifying type II string theory on a
Calabi-Yau manifolds leads to an N ¼ 2 supergravity

theory with hð1;1Þ þ 1 hypermultiplets. The scalars in these
hypermultiplets are the complex scalars tA given in (3.8),
the lowest modes of the ten-dimensional dilaton and type
IIB R-R forms C0, C2, C4. More explicitly, this includes
the universal hypermultiplet (
, C0, �0, c

0), where �0, c
0

are the duals of the four-dimensional two-form part in B2,

C2. In addition there are hð1;1Þ hypermultiplets (tA, �A, c
A)

with

cA ¼ 1

2�

Z
CA
C2 � C0B2;

�A ¼ 1

2�

Z
~CA
C4 � B2 ^ C2 þ 1

2
C0B2 ^ B2;

(A2)

where CA and ~CA are harmonic two- and four-cycles of Y.
Note that we are slightly abusing the notation compared to
(3.4), since cA, �A now also include corrections due to
lower R-R forms. We combine (�0, c

0) and (�A, c
A) by

writing (�Â, c
Â) with Â ¼ 0 . . . hð1;1Þ. Having identified the

N ¼ 2 hypermultiplets we turn to their effective action
and moduli space metric. From a Kaluza-Klein reduction
one derives the effective Lagrangian [48]

Lð4Þ ¼ ð@DÞ2 þGA �B@t
A@�tB þ 1

4e
4DðdC0

� ð�Â@c
Â � cÂd�ÂÞÞ2 � 1

2e
2DImMÂ B̂@c

Â@cB̂

� 1
2e

2DðImMÞ�1Â B̂ð@�Â � ReMÂ Ĉ@c
ĈÞ

� ð@�B̂ � ReMB̂ D̂@c
D̂Þ; (A3)

where GA �B ¼ @tA@�tBK is the metric on the space of com-
plexified Kähler structure deformations tA and given in
terms of the Kähler potential (3.9). The complex coupling
matrix MK̂ L̂ appearing in (A3) depends on tA, �tA and is
defined as

M Â B̂ ¼ �FÂ B̂ þ 2i
ðImFÂ ĈÞXĈðImFB̂ D̂ÞXD̂

XÊðImFÊ F̂Þ; XF̂
; (A4)

where FÂ B̂ ¼ @
XÂ@XB̂F. Finally, the Lagrangian (A3) con-

tains the four-dimensional dilatonD defined in terms of the
ten-dimensional dilaton 
 according to

eD ¼ e
V�ð1=2Þ; (A5)

where V ðt; �tÞ is given in (3.9).
Using the Lagrangian (A3) it is straightforward to read

off the axion decay constants for the axions bA, cA and �A.
For the NS-NS B-field axions bA we find

B2:
f2AB
M2

P

¼ 1

�
GA �B; (A6)

just as given in (3.7). The expression for the R-R two- and
four-form axions cA, �A are more complicated:

C2:
f2AB
M2

P

¼ � g2s

2�V
ðImMAB

þ ReMAĈðImMÞ�1Ĉ D̂ReMD̂BÞ; (A7)

C4:
f2AB
M2

P

¼ � g2s

2�V
ðImMÞ�1AB: (A8)

These expressions appear to be different from the ones
used in the main text (3.7). However, due to the underlying
special geometry we can use

� 2V�1ImMAB ¼ GA �B þ . . . : (A9)

In other words, the metric GA �B is the leading contribution
to these axion decay constants and (A7) reduces to (3.7).
Of course, the study of the axion decay constants per-
formed in the main text can be repeated with the general
expressions (A7).

APPENDIX B: THE N ¼ 1 KÄHLER METRIC

In this appendix we summarize some useful formulas
allowing the derivation of the derivatives of the Kähler
potential Kq given in (5.6). Our summary will follow

Ref. [41]. Let us recall, for completeness, that Kq takes

the form
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Kqð�;G; TÞ ¼ �2 ln½ie�2
ð2ðF � �F Þ
� ðF A þ �F AÞðtA � �tAÞÞ�; (B1)

with complex coordinates

� ¼ C0 þ ie�
; Ga ¼ ca þ ie�
 Reta;

T� ¼ ��� þ ie�
 ReF �:
(B2)

In the equations (B1) and (B2), we have denoted by F A ¼
ðF �;F aÞ the derivatives of a general prepotential F with
respect to the special coordinates t�, ta. Note that t� and ta

are associated to the positive and negative two-cycles in the
eigenspace of the orientifold projection (5.2).

With our conventions, the first derivatives of the Kähler
potential (B1) are given by

K� ¼ �4ie�
 Imð2F � tAF AÞeKq=2;

KGi ¼ �4ie�
 ImF ae
Kq=2; KT�

¼ 4ie�
 Imt�eKq=2:

(B3)

We note that the Kähler coordinates (B2) are functions of
the real parts Reta, ReF �, while the first derivatives of the
Kähler potential are the imaginary part of F and its
derivatives.

The Kähler metric and its inverse can be also expressed
as functions of a prepotential F . Let us denote Nâ ¼
ð�;GaÞ, where the complex dilaton � is identified with
N0. One has

KT�
�T�

¼ �2e2DðImMÞ�1��;

KT�
�Nâ ¼ 2e2DðImMÞ�1��ReM�â;

K
Nâ �Nb̂ ¼ �2e2DðImMâ b̂

þ ReMâ�ðImMÞ�1��ReM�b̂Þ;

(B4)

with inverse

KT�
�T� ¼ �1

2e
�2DðImM��

þ ReM�âðImMÞ�1â b̂ReMb̂�Þ;
KNâ �Nb̂ ¼ �1

2e
�2DðImMÞ�1â b̂;

KT�
�Nâ ¼ �1

2e
�2DðImMÞ�1â b̂ReMb̂�:

(B5)

In these expressionsMÂ B̂ is the complex matrix defined in

(A4) and eD is the four-dimensional dilaton given in (A5).

APPENDIX C: PLOTS OF MINIMUM

This appendix contains the plots of the minimum for the
toy model with N ¼ 400 conifold pairs discussed in
Sec. VB (Figs. 5–7). The effective theory was evaluated
using the prepotential (5.13) at gs ¼ 0:16, W0 ¼ �0:12.
The numerically determined minimum is found at hRi ¼
1:208, hvi ¼ �0:1225, hbi ¼ 0:2564 and hci ¼ 0.
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Blumenhagen, B. Körs, D. Lüst, and S. Stieberger, Phys.
Rep. 445, 1 (2007); M. Graña, Phys. Rep. 423, 91 (2006)
and references therein.

[31] E. Witten, J. High Energy Phys. 02 (2000) 030.
[32] E. Witten, J. Geom. Phys. 22, 103 (1997).
[33] O. J. Ganor, Nucl. Phys. B499, 55 (1997).
[34] T.W. Grimm, J. High Energy Phys. 10 (2007) 004.
[35] C. Vafa, J. Math. Phys. (N.Y.) 42, 2798 (2001).
[36] F. Cachazo, K.A. Intriligator, and C. Vafa, Nucl. Phys.

B603, 3 (2001).
[37] R. Dijkgraaf and C. Vafa, arXiv:hep-th/0208048.
[38] J. J. Heckman, J. Seo, and C. Vafa, J. High Energy Phys.

07 (2007) 073; J. J. Heckman and C. Vafa, J. High Energy
Phys. 04 (2008) 052.

[39] M. Aganagic, C. Beem, and S. Kachru, Nucl. Phys. B796,
1 (2008).

[40] T.W. Grimm and J. Louis, Nucl. Phys. B699, 387 (2004).
[41] T.W. Grimm and J. Louis, Nucl. Phys. B718, 153 (2005).
[42] R. Kallosh, Lect. Notes Phys. 738, 119 (2008).
[43] R. Easther and L. McAllister, J. Cosmol. Astropart. Phys.

05 (2006) 018.
[44] A. D. Linde, arXiv:hep-th/0503203.
[45] D. H. Lyth and A. Riotto, Phys. Rep. 314, 1 (1999).
[46] J. Polchinski, String Theory (Cambridge University Press,

Cambridge, England, 1998), Vols. 1 and 2.
[47] P. Svrcek and E. Witten, J. High Energy Phys. 06 (2006)

051.
[48] S. Ferrara and S. Sabharwal, Classical Quantum Gravity 6,

L77 (1989); Nucl. Phys. B332, 317 (1990).
[49] P. Candelas and X. de la Ossa, Nucl. Phys. B355, 455

(1991).
[50] P.M.H. Wilson, Inventiones Mathematicae 107, 561

(1992); 114, 231 (1993).
[51] M. Reid in Arithmetic and Geometry, Vol II, Progr. Math.
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Reffert, E. Scheidegger, and S. Stieberger, arXiv:hep-th/
0609014.

[60] B. Florea, S. Kachru, J. McGreevy, and N. Saulina, J. High
Energy Phys. 05 (2007) 024.

[61] M. Aganagic, C. Beem, J. Seo, and C. Vafa, Nucl. Phys.
B789, 382 (2008).

[62] N. J. Hitchin, arXiv:math.dg/0010054; N. Hitchin, Q. J.
Math. 54, 281 (2003).

[63] I. Benmachiche and T.W. Grimm, Nucl. Phys. B748, 200
(2006).

[64] S. Kachru, R. Kallosh, A. Linde, J.M. Maldacena, L. P.
McAllister, and S. P. Trivedi, J. Cosmol. Astropart. Phys.
10 (2003) 013.

[65] C. P. Burgess, R. Kallosh, and F. Quevedo, J. High Energy
Phys. 10 (2003) 056.

THOMAS W. GRIMM PHYSICAL REVIEW D 77, 126007 (2008)

126007-22


