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We study the mechanism of particle production in the world volume of a probe D6-brane (or D6 with

supersymmetry (SUSY) breaking) moving in the background created by a fixed stack of D6-branes. We

show that this may occur in a regime of parametric resonance when the probe’s motion is nonrelativistic

and it moves at large distances from the source branes in low eccentricity orbits. This leads to an expo-

nential growth of the particle number in the probe’s world volume and constitutes an effective mechanism

for producing very massive particles. We also analyze the evolution of this system in an expanding

universe and how this affects the development of the parametric resonance. We discuss the effects of

transverse space compactification on the probe’s motion, showing that it leads to the creation of angular

momentum in a similar way to the Affleck-Dine mechanism for baryogenesis. Finally, we describe

possible final states of the system and their potential relevance to cosmology.
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I. INTRODUCTION

One of the most important aspects of string theory
with potential applications to beyond-the-standard-model
physics and cosmology is the existence of additional ex-
tended objects. A particularly interesting class of these,
Dp-branes, occur as ðpþ 1Þ-dimensional surfaces arising
as supersymmetric solutions of the low-energy supergrav-
ity field equations but have also a high-energy interpreta-
tion as surfaces confining the endpoints of open strings [1].
By now many different configurations of Dp-branes have
been studied, including parallel and intersecting sets of
branes [2,3], the combination of branes with different di-
mensionalities [4], and also several possible embeddings in
the compactified extra-dimensions [5]. These models have
an enormous potential in the construction of gauge theories
with matter and several new extensions of the standard
model have been obtained in this way [3].

Branes have also been intensively studied in their appli-
cation to the problems of early universe cosmology, such as
inflation and reheating. In the context of effective field
theory treatments of brane-world model building, an im-
mense amount of work has been performed on the astro-
physical and cosmological implications of these theories
for both flat and warped extra dimensions [6], while many
studies in string theory have also been undertaken [7–9].
One important property of Dp-branes is the fact that they
interact at large distances via the exchange of closed string
modes, which allows one to study them as massive point-
like charged objects moving along the dimensions trans-
verse to their world volumes. An interesting application of
this was proposed in [10], where it was shown that branes
with opposite charges may form bound states similar to

electron-positron states, despite the different origin of the
central potentials involved. This analogy has motivated the
name of branonium to designate this type of system. Sev-
eral properties of these bound states have been analyzed in
[10], including the classical orbits, the associated quantum
dynamics, and possible compactification schemes. This
analysis assumed a probe (anti)brane moving in the back-
ground spacetime created by a fixed central stack of
branes, thus neglecting the gravitational backreaction of
the probe. In the case of D6-branes, the probe’s trajectory
follows closed elliptical orbits similar to those found in
planetary systems. It was also suggested that the probe’s
motion would lead to radiation of particles into both the
bulk space and the probe’s world volume, making other-
wise stable orbits decay. The stability of this system was
further studied in [11], where it was shown that orbital
decay necessarily occurs when geometric moduli of the
background spacetime are allowed to vary.
In this work, we explore some properties of branonium

systems, namely, the mechanism leading to particle pro-
duction in the world volume of the probe brane. For the
particular case of a scalar field living in the world volume
of a probeD6-brane, we show that particle production may
occur in a regime of parametric resonance similar to the
one behind the phenomenon of preheating after inflation
[12,13], leading to an exponential growth of the particle
number in the probe’s world volume.1 We determine how
the orbital parameters of the system constrain this mecha-
nism and analyze the possible properties of the resonantly
produced particles. Also, we study how the probe’s trajec-
tory is modified by compactifying three of the dimensions
parallel to the branes, so that a 4-dimensional spacetime

*j.rosa1@physics.ox.ac.uk
+jmr@thphys.ox.ac.uk

1Discussions of preheating in brane systems other than bra-
nonium can be found in [14].
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with a flat Friedmann-Robertson-Walker geometry is ob-
tained. In this case, we analyze the effects of Hubble
expansion on the orbital parameters and how it modifies
the parametric resonance regime. Other instability sources
such as radiation into bulk modes are discussed as well. We
also consider the effects of transverse space compactifica-
tion on the probe’s motion in the case of a compact 3-torus
and analyze the associated production of angular momen-
tum. Finally, we explore some of the cosmological appli-
cations of the resonant particle production mechanism and
relate them to possible final configurations of the system,
including stable states or brane-antibrane annihilation.

In the next section, we begin by introducing some of the
general properties of Dp�Dp branonia, with particular
emphasis on the p ¼ 6 case, and discuss the effects of
Hubble expansion on the orbital parameters. In Sec. III, we
study the evolution of scalar particle-modes confined to the
probe brane and analyze the properties of the associated
parametric resonance mechanism in both the nonexpand-
ing and expanding universe cases. We distinguish between
the production of massless and massive particles and de-
termine the significance of energy damping into these
modes on the probe’s motion. We also consider, in this
section, the effects of radiation into bulk modes on the
resonant production of brane-bound particles. In Sec. IV,
we analyze how compactifying the directions transverse to
the branes modifies the probe’s trajectory and dynamically
generates the required angular momentum. Possible final
states of the system are described in Sec. V, where we also
analyze the relevance of the particle production mecha-
nism to cosmology in some particular scenarios. We sum-
marize the main results and conclusions of this work in
Sec. VI.

II. EVOLUTION OF BRANONIUM IN AN
EXPANDING UNIVERSE

Branonium corresponds, in its simplest form proposed in
[10], to a system whose components are a fixed stack of N
parallel p-branes and a probe p-brane, parallel to the stack,
whose gravitational backreaction is neglected so that it has
no influence on the geometry of the background spacetime.
Let the coordinates x�, � ¼ 0; � � � ; p, correspond to the
dimensions parallel to the stack and the coordinates ym,
m ¼ pþ 1; � � � ; D� p, correspond to those transverse to
the branes. Then, the general solution of the supergravity
equations of motion in D dimensions for N parallel
p-branes is given, in the Einstein frame, by [15]

ds2 ¼ h�~�dx2p þ h�dy2; e� ¼ h�;

C01���p ¼ �ð1� h�1Þ; (1)

which give the D-dimensional metric, the dilaton �, and
the nonvanishing components of the bulk ðpþ 1Þ-form
field C½pþ1� which couples to the ðpþ 1Þ-dimensional

world volume of the stack of branes. The harmonic func-

tion hðrÞ is a function of the radial coordinate in transverse
space, r2 ¼ �mny

myn, and has the form

hðrÞ ¼ 1þQp

r
~d
; (2)

where ~d ¼ D� d� 2 and the factor of 1 ensures that the
solution is asymptotically the D-dimensional Minkowski
space. For the cases we will be interested in studying, the

transverse space is at least 2-dimensional, so that ~d > 0.
The stack of branes is, thus, located at the origin in the
transverse space. The exponents �, ~�, � and the constant �
that characterize the solution are given by

� ¼ 4d

ðD� 2Þ� ; ~� ¼ 4~d

ðD� 2Þ� ;

� ¼ 2�

�
; � ¼ 2ffiffiffiffi

�
p ;

(3)

where d ¼ pþ 1 and

� ¼ �2
n þ 2d~d

D� 2
: (4)

The constant �n defines the coupling of the n ¼ ðpþ
2Þ-form field strength to the dilaton in the supergravity
action. We will be interested in the particular case of
Dp-branes in type II supergravities, which arise as the
low-energy limit of type II string theories, so that the
n-form field strength corresponds to a closed string state
in the Ramond-Ramond sector, and �n ¼ �R ¼
2ðD� 2nÞ=ðD� 2Þ. Taking D ¼ 10, we have �R ¼ 1

2 �
ð3� pÞ, � ¼ 4, � ¼ 1

4 ð3� pÞ, ~d ¼ 7� p, ~� ¼ 1
8 ð7� pÞ,

and � ¼ 1
8 ðpþ 1Þ. It is clear that the condition ~d > 0

implies p < 7. The constant Qp is related to the charge

carried by the stack of N branes, and for the case of
Dp-branes we have

Qp ¼ cpgsNl
~d
s ; (5)

where cp ¼ ð2 ffiffiffiffi
�

p Þ5�p�ð7�p2 Þ, ls is the string length and gs
is the string coupling constant. This solution holds in the
limit of validity of string perturbation theory and for small
curvature, which allows a low-energy description of the
system in terms of supergravity fields. This approximation
is valid as long as the local string coupling, gse

�, is every-
where small. Also, we need to require the radial coordinate
r, which will give the distance between the probe and the
stack branes, to be large compared to the string length ls,
so that mediation by supergravity bulk fields (graviton,
dilaton, and RR-forms) is the dominant source of brane
interactions.
Before analyzing the motion of the probe brane, we

need to consider possible compactifications of the 10-
dimensional spacetime that yield our 4-dimensional world
at low energies. Compactification of dimensions parallel
and transverse to the world volume of the branes involve
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different procedures. In the case of dimensions parallel to
the branes, it suffices to consider the Kaluza-Klein ansatz.
If we start with the D-dimensional spacetime Eq. (1) and
compactify along a periodic coordinate z ’ zþ 2�R with
radius R, so that the branes are wrapped around this di-
mension, we obtain a D0 ¼ ðD� 1Þ-dimensional space-
time with metric given by [15]

ds2D ¼ e2â’ds2D0 þ e2b̂’ðdzþB�dx
�Þ2;

ds2D0 ¼ h� ~�0
dx2p0 þ h�

0
dy2; e’ ¼ h�;

(6)

where

â ¼ 1

2ðD0 � 1ÞðD0 � 2Þ ; b̂ ¼ �ðD0 � 2Þâ;

� ¼ ~�

2ðd0 � 2Þâ ; �0 ¼ �� 2�̂; ~�0 ¼ ~�þ 2â�:

(7)

The dilaton field � is not altered by this compactifica-
tion, while the ðn� 1Þ-form RR field can be decomposed
as follows:

C½n�1� ¼ B½n�1� þ B½n�2� ^ dz: (8)

We take the following truncation of these fields:

B½n�1� ¼ 0; ðB½n�2�Þ01���p�1 ¼ �ð1� h�1Þ: (9)

This truncation leads to a ðp� 1Þ-brane supergravity
solution in D� 1 dimensions, characterized by the same
harmonic function of the transverse space radial coordi-
nate hðrÞ. Applying this toroidal compactification proce-
dure j times we obtain ðp� jÞ-brane solutions living in a
ðD� jÞ-dimensional spacetime, with the number of trans-
verse dimensions remaining the same.

The process of compactifying the dimensions transverse
to the branes is not as straightforward due to the lack of
translational invariance which results from the presence of
the branes. In particular, to make a given transverse coor-
dinate z0 periodic, so that a similar Kaluza-Klein mecha-
nism can be applied, one needs to include the appropriate
‘‘image branes’’ of the source branes which will ensure the
invariance of the configuration under z0 ! z0 þ 2�R0, R0
being the radius of the compact dimension. For example, if
a source brane is located at z0 ¼ 0, an image brane has to
be considered at z0 ¼ 2�R0. This implies a generalization
of the harmonic function in Eq. (2) to include branes
located at different points in transverse space [15]:

hðyÞ ¼ 1þX
i

Qp

jy � yij~d
; (10)

where the vectors yi denote the positions of the different
image branes and jy � yij2 ¼ �mnðym � ymi Þðyn � yni Þ.

These two compactification schemes allow us to reduce
a 10-dimensional solution of the supergravity field equa-
tions to a 4-dimensional spacetime which resembles our
world. We will be interested in studying a particular case

of the general branonium configuration described so far
where we have a source stack of D6-branes and also a
probe D6-brane. As was shown in [10], when the probe
carries an antibrane charge, i.e. opposite to the charge of
the source branes, the system yields closed elliptical orbits
which can be solved analytically, while for other values of
p < 7 the orbits fail to close. This feature has, as we will
describe later on, important consequences for particle pro-
duction in the world volume of the probe.
Compactifying three of the dimensions parallel to

the branes, we obtain effective D3-branes moving in a
3-dimensional transverse space, the shape of the orbits
not being affected by this toroidal compactification scheme
as mentioned before. If the transverse dimensions are finite
but their typical size is much larger than that of the com-
pact parallel dimensions and the interbrane distance, we
may consider them to be infinite and neglect the brane
images described before. Although this would correspond
to a 7-dimensional spacetime, from the point of view of
fields confined to the world volume of the source and
probe branes it is effectively 4-dimensional. The dynamics
in the transverse space will, nevertheless, affect the
4-dimensional dynamics of the fields.
In order to make the system more similar to the observ-

able universe, we consider a modification of the solution
Eq. (1) so that, after compactification of three of the
parallel dimensions, the 4-dimensional world volume of
the branes has a flat Friedmann-Robertson-Walker (FRW)
geometry. This is a particular case of the system studied in
[11], where the moduli governing the size of both parallel
and transverse dimensions were allowed to vary. In this
work, we will assume that some dynamical mechanism at
the string scale (see, e.g. [16]) or at some other high-energy
scale [such as supersymmetry (SUSY) breaking] fixes all
moduli except the scale factor associated with the three
noncompact dimensions parallel to the branes. Hence, in
the Einstein frame, the complete 7-dimensional line ele-
ment is given by

ds27 ¼ h�~�4½�dt2 þ a2�ijdx
idxj� þ h�4�mndy

mdyn;

(11)

where a � aðtÞ, i; j ¼ 1; 2; 3, and m; n ¼ 1; 2; 3. The har-
monic function is in this case hðrÞ ¼ 1þQ6=r. The ex-
ponents �4 and ~�4 can be obtained using Eq. (3) and
applying Eq. (7) for the compactification on a 3-torus,
but their precise values will not be necessary in the sub-
sequent calculations.
The motion of the probe brane is described by its action,

which is divided in two parts. The Born-Infeld contribu-
tion, which concerns the geometry of the world volume and
possible gauge fields living on it, is in the string frame
given by, for a generic p-brane probe [10]

SBI ¼ �Tp
Z
dpþ1	e��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�detð�̂�
 þ 2l2sF�
Þ

q
; (12)
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where 	� are world-volume coordinates, Tp gives the

p-brane tension, and �̂�
 ¼ ĝMN@�x
M@
x

N is the induced

metric on the probe. The hatted metric tensor is defined in
the string frame and is related to the Einstein frame one via
ĝ�
 ¼ e��g�
 with � ¼ 4=ðD� 2Þ in the general case.

The antisymmetric field strength tensor F�
 refers to

gauge fields describing open string modes with endpoints
on the probe (in the case of Dirichlet branes), but in what
follows we will set these fields to zero.2 The Wess-Zumino
part of the action describes the minimal coupling of the
Ramond-Ramond ðpþ 1Þ-form to the ðpþ 1Þ-world vol-
ume of the probe brane and can be written as [10]

SWZ ¼ �qTp
Z
C½pþ1�: (13)

The constant q gives the sign of the charge of the probe
brane, which being a Bogomol’nyi-Prasad-Sommerfield
(BPS) saturated state is equal or opposite to the brane
tension Tp, so that q ¼ 1 corresponds to a brane and q ¼
�1 corresponds to an antibrane [10].

If we now consider the particular case of -D6-branes in
10 dimensions, compactifying three of the parallel dimen-
sions and including the scale factor describing the expan-
sion (or contraction) of the three remaining noncompact
dimensions along the brane, and choose the world-volume
coordinates such that 	� ¼ x�, we arrive at the following
expression for the total action of the probe brane:

S4 ¼ �T6V3

Z
d4xa3ðtÞ

�
1

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hv2

p
þ q

�
1� 1

h

��
;

(14)

where V3 gives the volume of the compact 3-torus around
which the D6-branes are wrapped to give the effective
4-dimensional space. We have assumed that the transverse
space coordinates are exclusively time dependent, ym ¼
ymðtÞ, and defined the velocity of the probe as v2 ¼
�mn _y

m _yn, with dots denoting time derivatives. As men-
tioned before, the bound orbits of the probe brane can be
exactly solved for the case where the scale factor is con-
stant, and it was shown in [10] that they correspond to
closed ellipses. We now wish to analyze the effects of the
varying scale factor on these orbits. In this case, a full
analytical solution is hard to obtain and it is simpler to
consider the evolution of the system when the probe brane
moves at large distances from the stack with small veloc-
ities. These two conditions can be expressed as hv2 � 1.
One must recall that we considered initially that the trans-
verse dimensions can be considered infinite in extent.
Hence, our analysis will hold as long as the radial coor-
dinate is large compared to the typical length scale of the
harmonic function, given by Q6 (assumed larger than the

string scale and the compactification scale), but still much
smaller than the typical size of the transverse dimensions
(assumed much larger than Q6). With this hierarchy in
mind, we may expand the probe brane’s action to obtain,
to lowest order,

S4 � �T6V3

Z
d4xa3ðtÞ

�
1

h

�
1� 1

2
hv2 � q

�
þ q

�
: (15)

Our subsequent analysis will not be affected by the
constant term and we may drop it. For a probe antibrane,

S4 � T6V3

Z
d4xa3ðtÞ

�
1

2

X
i

_y2i �
2

h

�
: (16)

The rotational symmetry of the problem implies that the
probe’s trajectory will be confined to a plane, which we
may choose to be y3 ¼ 0. Then, we may define the canoni-
cally normalized complex scalar field

� �
ffiffiffiffiffiffiffiffiffiffiffi
T6V3

2

s
ðy1 þ iy2Þ; (17)

so that its action is, in the nonrelativistic and large distance
limit,

S� ¼
Z
d4xa3ðtÞð�g�
@��@
�� � Vð�ÞÞ; (18)

where g�
 is the 4-dimensional flat FRW metric of the

spacetime where the field is defined and the potential is
given by

Vð�Þ ¼ 2T6V3h
�1 � 2T6V3

0
@1�

ffiffiffiffiffiffiffiffiffiffiffi
T6V3

2

s
Q6

j�j

1
A; (19)

so that it only depends on � ¼ j�j. Note that in writing the
action in this form one must take into account that the
spatial derivatives of the field, @i�, i ¼ 1, 2, 3, are as-
sumed to vanish, i.e. the probe brane should remain parallel
to the source branes during its motion. The analysis of the
classical motion of the probe brane is in this way reex-
pressed as a classical field theory problem of a complex
scalar field in the background of a flat FRW spacetime.
Before deriving the equations of motion for the field�, it is
useful to consider some of the symmetries of the action.
First, the rotational symmetry of the problem in the plane
transverse to the branes is associated with a conserved
angular momentum. In terms of the field theory approach,
this corresponds to the global U(1) invariance of the action
under �! ei��, where � is a constant. The associated
Noether current induces a conserved charge which gives, in
the quantum theory, the particle number operator associ-
ated with the field. Writing the field as � ¼ �ei
 and
defining the comoving angular momentum as l � �2 _
,
the comoving particle number density is given by

n ¼ ið _���� _���Þ ¼ 2�2 _
 ¼ 2l; (20)

2This means that we will consider the particular scenario
where the classical background of these gauge fields vanishes.
The role of gauge fields was considered in [17].

J. G. ROSA AND JOHN MARCH-RUSSELL PHYSICAL REVIEW D 77, 126004 (2008)

126004-4



while the total particle number, which corresponds to the
conserved Noether charge, is given by N ¼ a3n. The
energy density and pressure of the field can be obtained
from its energy-momentum tensor, yielding

� � T00 ¼ j _�j2 þ Vð�Þ ¼ _�2 þ l2

�2
þ Vð�Þ;

p � Tii
a2

¼ j _�j2 � Vð�Þ ¼ _�2 þ l2

�2
� Vð�Þ:

(21)

The covariant conservation of the energy-momentum
tensor can then be expressed as dE ¼ �pdV, where the
energy of the field is defined as E � a3� and V ¼ a3 is the
volume of the expanding (or contracting) flat FRW space-
time. Defining the Hubble parameter H � _a=a, we can
write this in the form

d�

dt
¼ �3Hð�þ pÞ: (22)

From Eqs. (21) and (22) we conclude that d�dt 	 0, the

equality holding only for H ¼ 0. Thus, in an expanding
universe (H > 0), the system evolves with a strictly de-
creasing energy density. The angular momentum evolves
according to

dl

dt
þ 3Hl ¼ 0; (23)

which corresponds to conservation of the total particle
number N. Hence, in an expanding universe, the absolute
value of the angular momentum will necessarily decrease,
vanishing asymptotically.

We, thus, conclude from this simple analysis of conser-
vation laws that the expansion of the universewill make the
system reduce both its energy density and its angular
momentum. To analyze the details of this evolution, we
need to determine the equations of motion for the field �.
Varying the action Eq. (18) with respect to ��, and taking
this variation to vanish, we obtain

€�þ 3H _�þ @Vðj�jÞ
@�� ¼ 0: (24)

In terms of the transverse space coordinates ym, m ¼ 1, 2,
3, this can be written as

€y m þ 3H _ym þ 2Q6

ym

r3
¼ 0: (25)

This implies that the polar variables � and 
 satisfy

€�þ 3H _�� l2

�3
þ 1

2

�

�2
¼ 0; €
þ 2

_�

�
_
þ 3H _
 ¼ 0;

(26)

where we have defined the constant

� � 4Q6

�
T6V3

2

�
3=2
; (27)

so that, apart from constant factors, the large distances

potential is Vð�Þ ¼ � �
� . It is easy to check that the equa-

tion for 
 simply gives the evolution of the angular mo-
mentum that we obtained previously in Eq. (23).
The evolution of the radial field � is determined by the

form of the Hubble parameter, given by the energy density
content of the universe via the Friedmann equation in the
usual way. This may include not only the energy density of
the field � but also all other matter, radiation, or vacuum
energy components. The possibility that this scalar field
may drive (slow-roll) inflation if, in the early universe, it
dominates the energy density has been analyzed in [7], for
the case where the probe brane moves in a linear trajectory,
i.e. l ¼ 0. It was shown that the interbrane potential arising
from type II supergravity/string theories is not flat enough
to produce the required number of e-foldings, exhibiting an
‘‘ �-problem.’’ This is intrinsically related to the assump-
tion that r is much smaller than the size of the transverse
dimensions.
An inflationary period driven by the angular field vari-

able 
was proposed in [10], where it is argued that, despite
having a flat potential, this field may provide the constant
energy density necessary for inflation if the probe brane
moves in a circular orbit with _� ¼ 0. However, we need to
take into account the fact that, during inflation, the angular
momentum decays exponentially as l / e�3Ht, from
Eq. (23). The system will hence quickly tend to the l ¼ 0
case, where sufficient inflation is difficult to obtain.
Furthermore, the decay of the angular momentum will
necessarily alter the evolution of � and the value of H,
so that a slow-roll inflationary mechanism with the probe
brane moving in a circular orbit would be hard to
construct.3

Although we do not wish to completely discard such
inflationary mechanisms, we will from now on assume that
some other field is responsible for inflation and analyze

how the compactifiedD6�D6 branonium system evolves
in the post-inflationary eras.
Before analyzing in detail the effects of the expansion on

the trajectory of the probe, let us recall the general bound
orbits of the system in a nonexpanding universe. In this
case, the system reduces to the well-known problem of a
particle in a central 1=� attractive potential, admitting
closed orbit solutions of the form

�ð
Þ ¼ Rð1� e2Þ
1þ e cos


: (28)

These are closed ellipses with eccentricity and semimajor
axis given by

3Some work has been done recently in the context of D-branes
moving in warped throats [18]. In particular, the important role
of the angular variables in providing accelerated periods of
expansion was discussed in [19].
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e ¼
�
1þ 4�l2

�2

�
1=2
; R ¼ � �

2�
: (29)

The properties of such orbits may be obtained by study-
ing the effective potential Veffð�Þ ¼ l2=�2 þ Vð�Þ. This
potential has a minimum at �ð�=2lÞ2, tends to þ1 at
the origin and to zero at large distances. The condition _� 

0 then implies that orbits with �ð�=2lÞ2 < �< 0 will be
bounded, with 0< e< 1. In this case, � will oscillate
between its minimum and maximum values, �min ¼ Rð1�
eÞ and �max ¼ Rð1þ eÞ, which can be obtained from
Eq. (28) by setting 
 ¼ 0 and 
 ¼ �, respectively. At the
minimum of Veffð�Þ, the orbits will be circular with � ¼
�c ¼ 2l2=�, and e ¼ 0. For � 
 0, the orbits will only be
bounded from below with e.g. � 
 l2=� for � ¼ 0, which
corresponds to an e ¼ 1 parabolic orbit. The linear trajec-
tory, with l ¼ 0, is a particular case of the latter with no
bounds on the value of � except for the trivial � 
 0. For
� > 0, the orbits are hyperbolic.

Consider now the expanding case with the scale factor
evolving as aðtÞ / t�. This power law behavior is typical of
the post-inflationary stages of the universe’s evolution,
where one may consider a single fluid to give the dominant
contribution to the total energy density. For example, in the
radiation era we have � ¼ 1=2 and in the matter era � ¼
2=3. We can also take � ¼ 2=3 at the end of inflation,
when the oscillations of the inflaton about the minimum of
its potential, with an equation of state corresponding to that
of nonrelativistic matter, dominate the energy density. This
model only holds away from the transitions between these
periods as in these cases at least two of the components
give similar contributions to the energy density.

We will consider the evolution of the branonium system
for arbitrary �, starting at some instant t0 when the scale
factor has a value a0 � aðt0Þ. The Hubble parameter is
then of the form H ¼ �

t , which implies from Eq. (23) that

the angular momentum evolves according to

l ¼ l0

�
t

t0

��3�
; (30)

with l0 being its initial value. It is then clear that l! 0 as
t! þ1, as we mentioned earlier. The equation for the
radial field � can now be written as

€�þ 3�

t
_�� l20

�3

�
t

t0

��6� þ 1

2

�

�2
¼ 0: (31)

Let us start by analyzing how the system evolves when
placed initially in a would-be circular orbit, so that

�ðt0Þ ¼ 2l20
�

� �c0; (32)

as €�ðt0Þ ¼ _�ðt0Þ ¼ 0. It is easy to see that � cannot remain
constant for t > t0 due to the decay of the angular momen-
tum. We may, however, look for solutions where the con-
dition for circular orbits is maintained during the motion of

the probe brane, i.e.

�ðtÞ ¼ 2l2ðtÞ
�

¼ �c0

�
t

t0

��6� � �cðtÞ: (33)

Substituting into Eq. (31) we obtain

�c0
t20

�
t

t0

��6��2
6�ð3�þ 1Þ ¼ 0; (34)

which is satisfied only in the nonexpanding case, � ¼ 0,
and for � ¼ �1=3. As we are interested in cases where
�> 0, we conclude that �cðtÞ is not an exact solution of
the equations of motion. It is, however, an approximate
solution at late times and, as we will check later, gives the
global evolution of the system in an expanding universe, so
that it is useful to consider some of its properties. In
particular, the angular frequency evolves as

_
 c ¼ l

�2
c

/
�
t

t0

�
9�
; (35)

so that the orbital period decreases as TcðtÞ / ðt=t0Þ�9�.
Such a solution eventually fails to satisfy the nonrelativ-
istic and large distance approximation as the radius of the
orbit decreases and its angular velocity grows. In particu-
lar, the parameter hv2 which controls this approximation
grows, for t� t0, as

hv2 ! 1

2
ðT6V3Þ4

�
Q6

l0

�
4
�
t

t0

�
12�
: (36)

Hence, given the values of T6 and V3, it is the ratio Q6=l0
that controls how long the approximations remain valid.
Consider now trajectories with a nonvanishing initial

eccentricity. In an expanding universe, the effective poten-
tial becomes time dependent, although its asymptotic prop-
erties at the origin and at infinity remain the same. As the
angular momentum redshifts away, the minimum of the
effective potential decreases, the same happening with
the value of � at this minimum, according to the circular
solution defined in Eq. (33). As discussed earlier, the
energy density of the field always decreases during the
motion of the probe brane in an expanding universe.
Hence, if the system is initially in one of the closed orbits
with � < 0, the latter condition will be satisfied for all t >
t0. This means that, at all times, the probe brane will be in
one of the closed elliptical orbits defined earlier. From
Eq. (29), we also conclude that the semimajor axis of the
orbit will decrease as the energy density evolves to more
negative values. The eccentricity of the orbits may, how-
ever, not remain constant, as it depends on the variation of
both the energy density and the angular momentum. In
fact, using Eqs. (22) and (23), one can show that the
eccentricity varies according to

de2

dt
¼ �12H

l2

�2
ð3�þ pÞ ¼ �24H

l2

�2
ð2T þ VÞ; (37)
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where we defined the kinetic energy of the field as T ¼
_�2 þ l2

�2 , so that � ¼ T þ V and p ¼ T � V.

Thus, in an expanding universe, for finite l0, one expects
the eccentricity of the orbit to vary unless T ¼ �V=2. This
last condition is satisfied on average in the nonexpanding
case, corresponding to the virial theorem. It does not
necessarily hold, however, in an expanding universe, with
the semimajor axis of the orbits decaying as discussed
above. It is nevertheless clear that, at late times, as H and
l decrease, the variation of the eccentricity of the orbits
should be smaller. The sign of 2T þ V is also not definite,
so that the eccentricity may either increase or decrease
during the motion of the probe brane.

From Eqs. (29) and (33), we obtain

RðtÞ ¼ �cðtÞ
1� e2ðtÞ : (38)

Hence, the variation of the semimajor axis follows the
decrease of the circular solution obtained earlier, being
also affected by the variation of the eccentricity.

In order to have a better understanding of the evolution
of the probe brane’s motion in an expanding universe, we
have solved the equations of motion numerically. Measur-
ing all quantities in terms of the string length, i.e. setting
ls ¼ 1, we choose, as an example, the values V3 ¼
ðT6Þ�1 ¼ ð2�Þ�6 and Q6 ¼ 100.4 We set the initial con-
ditions at t ¼ t0 to be those of a nonexpanding elliptical
orbit with angular momentum l0 and eccentricity e0, which
we take to be the only free orbital parameters. The field is

initially at its maximum value �0 ¼ �c0
1�e0 , with _�0 ¼ 0 and


 ¼ �. After determining the numerical solution for �ðtÞ,
we computed the corresponding energy density and eccen-
tricity evolution, according to Eqs. (21) and (29), respec-
tively. We used the numerical solution for the eccentricity
to compute RðtÞ, according to Eq. (38), and also the maxi-
mum and minimum values of �ðtÞ at each orbit, given by

�minðtÞ ¼ RðtÞð1� eðtÞÞ; �maxðtÞ ¼ RðtÞð1þ eðtÞÞ:
(39)

We have also determined the evolution of the angular field
variable 
 using _
ðtÞ ¼ lðtÞ=�ðtÞ2.

In Fig. 1 we have plotted the results obtained for the
values l0 ¼ 20005 and e ¼ 0:2 in a matter-dominated uni-
verse, � ¼ 2=3, with t0 ¼ 108.6

Observing the plots shown in this figure, we conclude
that, as expected, the probe brane evolves continually

FIG. 1 (color online). Numerical results obtained for l0 ¼
2000 and e ¼ 0:2 in a matter-dominated universe, � ¼ 2=3,
with t0 ¼ 108. The plots show (a) the radial field and associated
quantities, (b) the energy density, (c) the eccentricity, and (d) the
motion of the probe brane in the complex plane of the field �.

4For the value of Q6 we follow the example analyzed in [11].
5The nonrelativistic and large distance approximation holds

for this value of initial angular momentum.
6Notice that although this value of t0 seems quite large, one

must take into account that it is measured in units of the string
time, which is of order 10�43 seconds if the string scale is of the
order of the Planck scale. Thus, we are considering the probe
brane to be moving quite early in the history of the universe.
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through elliptical orbits of decreasing semimajor axis, so
that they fail to close. The radial field then oscillates
between minimum and maximum values which decrease
in time. The global decrease follows that of the circular
solution, Eq. (33), but exhibits an oscillating behavior as-
sociated with the variation of the energy density. Although
the latter strictly decreases, as expected, it also oscillates
with decreasing period and amplitude, so that at later
stages its evolution tends to be smooth. Consequently,
one observes oscillations in the evolution of the eccentric-
ity of the orbit. In the example shown in Fig. 1, these
oscillations have a small amplitude. However, at earlier
times, when the effects of Hubble expansion are more
significant, numerical simulations show that this amplitude
can be quite large. All simulations show that eðtÞ starts
increasing and, as the period and amplitude of the oscil-
lations decay, it tends to a constant value.

A constant eccentricity at late times implies that, in this
limit, the energy density should, on average, vary as

h�ðtÞi / l�2ðtÞ /
�
t

t0

�
6�
; (40)

tending smoothly to more negative values as observed in
Fig. 1. Then, from Eq. (22),�

d�

dt

�
¼ �3Hh�þ pi ¼ 6Hh�i; (41)

so that h3�þ pi ¼ 0 or, equivalently, h2T þ Vi ¼ 0. Thus,
although at early times the effect of the expansion makes
the eccentricity vary significantly, at late times the system
virializes and starts evolving smoothly between orbits of
constant eccentricity and decaying radius. This result will
be useful later for studying particle production in the probe
brane at late times.

Another interesting consequence of the expansion of the
universe is a rotation of the axis of the elliptical orbits with
time, although this is a small effect in the example shown
in Fig. 1. This is simply a result of the growing eccentricity
of the orbits which deviates the maximum and minimum
values of � from 
 ¼ � and 
 ¼ 0, respectively. The
orbital axis will, however, stabilize at late times, as eðtÞ
tends to a constant value.

Numerically, one also observes a decrease in the ampli-
tude of the oscillations of �ðtÞ. This is given by

��ðtÞ � �maxðtÞ � �minðtÞ ¼ RðtÞeðtÞ; (42)

so that the observed decay of the amplitude is mainly due
to the decrease of RðtÞ as discussed above.

The asymptotic value of the eccentricity depends not
only on the initial time t0 at which the probe starts its
motion but also on the initial values of the orbital angular
momentum and eccentricity. Numerical simulations show
that larger values of l0 lead to a more pronounced growth of
the eccentricity, in agreement with Eq. (37). The depen-
dence on e0 is less trivial and numerically one finds a larger

eccentricity variation for e0 close to 0 and to 0.9. This is,
however, very small for e0 close to 1, which is expected, as
the energy density of the field cannot increase to produce
hyperbolic orbits with e > 1 if initially � < 0. The eccen-
tricity always grows if initially _� ¼ 0, so that 2T þ V < 0
and d�

dt > 0, as most of the eccentricity variation occurs ini-

tially when Hubble expansion is more significant. The op-
posite behavior should be observed if initially 2T þ V > 0.
Although the example we have shown refers to a matter-

dominated universe, � ¼ 2=3, our qualitative discussion
and analytical results hold for all �> 0, in particular, to
the � ¼ 1=2 radiation-dominated universe.
To summarize the results of this section, we conclude

that, in an expanding universe, the probe brane follows
elliptical orbits with decreasing radius and increasing fre-
quency and whose eccentricity exhibits an oscillating be-
havior and asymptotically tends to a constant value larger
than the initial one. If the motion of the probe brane begins
at late times with a small angular momentum, the latter
effect is negligible.
The probe brane will asymptotically collide with the

branes in the stack, as �! 0, but our approximations
will break down before this happens, so that we expect
the motion of the probe brane to deviate significantly from
our previous results as its angular velocity grows and it
spirals towards the central stack. The collision will, how-
ever, occur if nothing else prevents the probe from losing
energy and angular momentum as the universe expands,
and may lead to the annihilation of the probe antibrane
with one of the source branes. For now, we will use the
results obtained in this section to study the production of
particles in the probe brane and we will return to this issue
in Sec. V of this work.

III. PARTICLE PRODUCTION

In the original discussion of the branonium system [10],
it was argued that the fields confined to the probe brane,
such as the gauge fields mentioned earlier, become time
dependent due to the motion of the probe through the
background spacetime created by the central stack. Con-
sequently, an observer bound to the probe interprets this
variation as corresponding to the production of particles
associated with these fields. Such radiation of energy into
brane particle-modes arises only if the distance between
the probe and the stack varies in time, thus creating a time-
dependent background from the point of view of brane-
bound observers. Although the power radiated into these
modes was estimated in [10], many aspects of this particle
production mechanism remain unclear. In this section, we
will analyze this mechanism in more detail, revealing some
new properties of particle production in branonium, and
discuss how the expansion of the universe modifies this
process.
The fields confined to the brane arise, from the string

theory point of view, as states associated with open strings

J. G. ROSA AND JOHN MARCH-RUSSELL PHYSICAL REVIEW D 77, 126004 (2008)

126004-8



whose endpoints are attached to the brane, as discussed
earlier. For a single p-brane, which is a 1=2 BPS super-
symmetric state, these include bosonic fields such as gauge
bosons and scalar fields, as well as their fermionic super-
partners. If the probe corresponds itself to a stack of M
parallel p-branes, other degrees of freedom associated with
aUðMÞ vector supermultiplet may arise [20]. Here, we will
study the simplest case of a real scalar field � confined to
the probe brane and follow an effective field theory
approach.

For the D6�D6 system described earlier, we write the
effective action for the scalar field � in the form

S� ¼ �T6
Z
d7	e��

ffiffiffiffiffiffiffiffi��̂p �
� 1

2
�̂�
@��@
�� 1

2
m2�2

�
;

(43)

where m denotes the mass of the scalar field, which in-
cludes its bare mass as well as quantum corrections, and all
other quantities are those defined earlier in this work.
When compactifying three of the dimensions parallel to
the brane as before, the scalar field will be decomposed
in its Kaluza-Klein (KK) modes, leading to a tower of
4-dimensional massive modes, or KK states. We will focus
on the evolution of the zero mode of the field �, whose
mass will simply be given by m. To simplify the notation,
we will denote this mode as �, although one must bear in
mind that it is not the original 7-dimensional field. The
global factor of T6 will not affect our discussion and we
may absorb it into the definition of the field.

First, let us consider the case m ¼ 0. Then, the classical
equations of motion arising from the action Eq. (43) are
given by

@�ðe��
ffiffiffiffî
�

p
�̂�
@
�Þ ¼ 0: (44)

Using the results obtained in Sec. II, and defining the

function fðtÞ � ½hð1� hv2Þ�1=2, we can write this as

€�þ ð3H � FÞ _�� 1

a2
ð1� hv2Þr2� ¼ 0; (45)

where F ¼ _f
f and r2� � �ij@i@j� is the flat

3-dimensional Laplacian of the field.
To construct the associated quantum description, we

follow the semiclassical approach to the quantization of
scalar fields in curved space [21]. In a curved background
spacetime with a time-varying geometry, as is the case of
the world volume of the probe brane, the induced time
variation of the fields modifies the usual canonical quanti-
zation procedure, as the quantum operators become them-
selves time dependent. In particular, the creation and
annihilation operators associated with the field will now
evolve in time as the background changes, the same hap-
pening with the associated multiparticle states. This is the
main reason behind the production of particles in a dy-
namical background. Let us start by expanding the field in

Fourier modes of the form

�ðx; tÞ ¼
Z d3k

ð2�Þ3=2 ðak�kðtÞeik�x þ ayk�
�
kðtÞe�ik�xÞ:

(46)

In the quantum theory, ak and ayk become the annihila-

tion and creation operators associated with the Fourier
mode k of the field. Expanding the field in this way, we
include all the time dependence of the field in the functions
�kðtÞ and ��

kðtÞ, while the operators remain time indepen-
dent. The conjugate momentum to the field �, obtained by
computing �S�=� _�, can then be written as

�ðx; tÞ ¼ a3

f

Z d3k

ð2�Þ3=2 ðak _�ke
ik�x þ ayk _��

ke
�ik�xÞ: (47)

If the creation and annihilation operators satisfy the
canonical commutation relations

½ak; ak0 � ¼ ½ayk; ayk0 � ¼ 0; ½ak; ayk0 � ¼ �3ðk� k0Þ;
(48)

then the canonical commutators for the field and its
conjugate momentum, ½�ðx; tÞ; �ðy; tÞ� ¼ i�3ðx� yÞ, can
only be obtained if the mode functions satisfy the follow-
ing Wronskian normalization condition:

�k _��
k � ��

k _�k ¼ i
f

a3
: (49)

This condition is essential for consistency of the quan-
tization procedure. We now follow a semiclassical ap-
proach and consider the evolution of the field modes
to be given by the classical equations of motion, assum-
ing that any quantum corrections to their propagation can
be neglected. Substituting Eq. (46) into Eq. (45), we see
that each of the Fourier modes evolves independently
according to

€� k þ ð3H � FÞ _�k þ k2

a2
ð1� hv2Þ�k ¼ 0 (50)

and similarly for the complex conjugate modes ��
k. Notice

that this equation depends only on k2 � jkj2 but not the

direction of the momenta k̂ � k
k . This is a consequence of

the isotropy of our metric ansatz, and we may write without
loss of generality �kðtÞ ¼ �kðtÞ. It is also clear, from
Eq. (50), that the physical momentum of the modes is
related to their comoving momentum k via

kphys ¼ k

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hv2

p
: (51)

This expression includes both the expected redshift of the
modes in an expanding universe and the effect of the
probe’s motion through the dynamical background.
Let us now rescale the field modes by defining the mode

functions XkðtÞ � a3=2ðtÞf�ð1=2ÞðtÞ�kðtÞ. These satisfy

RESONANT PARTICLE PRODUCTION IN BRANONIUM PHYSICAL REVIEW D 77, 126004 (2008)

126004-9



€X k þ!2
kXk ¼ 0; (52)

which corresponds to the equation for a harmonic oscilla-
tor with a variable frequency given by

!2
k ¼

k2

a2
ð1� hv2Þ � 1

4
ð3H � FÞ2 � 1

2
ð3 _H � _FÞ

¼ k2phys þ �2; (53)

where we have defined

�2ðtÞ � �1
4ð3H � FÞ2 � 1

2ð3 _H � _FÞ: (54)

As each mode behaves as a harmonic oscillator, we can
define the associated particle number via

Ek ¼ 1

2
j _Xkj2 þ 1

2
!2
kjXkj2 ¼ !k

�
nk þ 1

2

�

, nk ¼ !k

2

�j _Xkj2
!2
k

þ jXkj2
�
� 1

2
: (55)

It is well known that this quantity is an adiabatic invari-
ant for a harmonic oscillator with variable frequency, as
happens, for example, in an oscillating pendulum whose
length is decreased infinitely slowly [21]. Thus, the number
of quanta in a given Fourier mode k can only change if its
frequency varies in a nonadiabatic way, which can be
expressed by the following condition [13]:��������d!k

dt

��������* !2
k: (56)

For our particular case, this gives, in the limit hv2 � 1,

jHk2phys � � _�j * ðk2phys þ�2Þ3=2: (57)

This condition will then constrain the number of particles
produced in each physical momentum mode by the motion
of the probe brane.

To quantify this number of particles, we need to look for
solutions of the mode equation, Eq. (52). We will start by
discussing what happens in a nonexpanding universe, and
then we will analyze the effects of Hubble expansion on
particle production.

A. Nonexpanding universe

Consider the motion of the probe brane in a nonexpand-
ing universe, H ¼ 0, and assume that the nonrelativistic
and large distance approximations discussed earlier are
valid. As we have seen in Sec. II, the probe follows closed
elliptical trajectories if its energy (density) is negative,
� < 0. If hv2 � 1, we have to leading order

1� hv2 ’ 1; kphys ’ k; f ’ h1=2: (58)

Then, we may take the following approximations:

F ¼
_f

f
’ 1

2

_h

h
; _F ’ 1

2

� €h

h
�

� _h

h

�
2
�
; (59)

so that we can write

�2 ¼ � 1

4
F2 þ 1

2
_F ’ � 5

16

� _h

h

�
2 þ 1

4

€h

h
: (60)

An exact analytical expression for the time variation of
the radial field �ðtÞ can be obtained in a nonexpanding
universe, being given implicitly by

�ðtÞ ¼ R½1� e cosð ðtÞÞ�: (61)

The angular variable  ðtÞ satisfies
t� t0 ¼ ��1½ �  0 þ eðsin � sin 0Þ�; (62)

where  0 �  ðt0Þ and � ¼ ffiffiffi
�
2

p
R�ð3=2Þ is the angular fre-

quency of the orbit. The angular variables  and 
 are
related by

tan



2
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ e

1� e

s
tan
 

2
: (63)

For small eccentricity orbits, e� 1, Eq. (62) gives, to
leading order in e,

 ’  0 þ�ðt� t0Þ: (64)

Choosing  0 ¼ � we have, in this approximation,

�ðtÞ ’ R½1þ e cosð�ðt� t0ÞÞ�: (65)

This allows us to determine the nonrelativistic and large
distance expression for�2, in the case of small eccentricity
orbits. To lowest order, we then obtain

�2 ’ 1

4

ffiffiffiffiffiffiffiffiffiffiffi
T6V3

2

s
Q6

R
e�2 cosð�ðt� t0ÞÞ: (66)

Defining

�2 � 1

4

ffiffiffiffiffiffiffiffiffiffiffi
T6V3

2

s
Q6

R
e�2; (67)

the variable frequency of the mode with comoving mo-
mentum k can, hence, be approximated by

!2
kðtÞ ’ k2 þ �2 cosð�ðt� t0ÞÞ: (68)

If we now rewrite Eq. (52) in terms of the rescaled time

variable z � �
2 ðt� t0Þ, we obtain
X00
k þ ðAk � 2q cosð2zÞÞXk ¼ 0; (69)

where

Ak � 4k2

�2
; q � �2

�2

�2
: (70)

Equation (69) has the form of the well-known Mathieu
equation [22] with parameters Ak and q determined by the
orbital parameters of the probe brane and by the value of
the comoving momentum k of each mode. In the parameter
space ðAk; qÞ, the Mathieu equation exhibits both stable
and unstable solutions, the latter being closely associated
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with the phenomenon of parametric resonance [23]. As we
are working under the assumption that the probe brane’s
orbit has a large radius and a small eccentricity, it is easy to
check that jqj � 1 (the analysis is independent of the sign
of q). In this region of parameter space, the Mathieu
equation exhibits instabilities in a series of narrow reso-
nance bands near Ak � n, with n being a positive integer,
and with a width in comoving momentum space approxi-
mately given by �kn � jqjn. In these resonance bands, the

solution evolves as Xk / e�ðnÞ
k
z, with a real exponent �ðnÞ

k ,

according to Floquet’s theorem.
The most important of these is the first resonance band,

which occurs when

1� jqj � 1
8q

2 & Ak & þjqj � 1
8q

2: (71)

The exponent �k � �ð1Þ
k can then be approximately

written as

�k ’ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � ðAk � 1Þ2

q
: (72)

This is, as claimed, real for 1� jqj & Ak & <1þ jqj,
having a maximum value of jqj=2 for Ak ’ 1. This implies
that particle modes lying inside this resonance band will be
exponentially amplified, leading to a resonant production
of particles. Thus, from Eq. (70), the center of the reso-
nance band occurs for comoving momentum kc ’ �=2,
while its lower and upper bounds are given by

kmin ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�

2

�
2 � �2

2

s
’ kc

�
1�

�
�2

�

�
2
�
;

kmax ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�

2

�
2 þ �2

2

s
’ kc

�
1þ

�
�2

�

�
2
�
;

(73)

so that the resonance band has a width in comoving mo-

mentum space of �kres � kmax � kmin ’ �2

� . This is quite

small compared to the value of the center of the resonance,

as �kres
kc

’ jqj � 1, which means that particle production

occurs in a regime of narrow parametric resonance. The
particles produced by this mechanism have typical ener-

gies of order!k ’ �
2 , i.e. with half the typical energy of the

field �. This agrees with the discussion in [10], where it is
stated that particles are produced in pairs with opposite
momenta, as if resulting directly from the decay of the
interbrane distance field.7 We have found in this work,
however, that these particles are produced resonantly, the
associated field modes being exponentially amplified.

After the modes inside the resonance band have been
amplified sufficiently, we may write, from Eq. (55),

nk / e2�kz ¼ e�k�ðt�t0Þ; (74)

where we used that �k &
jqj
2 � 1, so that the term involv-

ing j _Xkj2 in Eq. (55) can be neglected. This also implies
that, although the particle number in each mode grows
exponentially, the resonance takes a long time to develop.
In particular, the typical resonance time,�tres ¼ ð�k�Þ�1,
is much larger than the orbital period of the probe brane,
which is of order 2���1. This is characteristic of the
narrow resonance regime and, hence, a significant particle
number is only produced after the probe brane has com-
pleted a large number of orbits, given by ð2��kÞ�1.
To have an idea of the order of magnitude of these

quantities, consider the scenario studied in Sec. II, where
V3 ¼ T�1

6 ¼ ð2�Þ6 with Q6 ¼ 100. Then, for an orbit

with eccentricity e ¼ 0:01 � 1 and an angular momentum

l ¼ 500, we have
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T6V3=2

p
Q6

R ’ 0:03, which satisfies the
large distances approximation, and jqj ’ 10�4 � 1. This
implies that the probe brane will have to complete approxi-
mately 3� 103 orbits for the particle number to be ampli-
fied by one e-folding.
To illustrate the results obtained earlier, we have solved

Eq. (52) for the example described above. An initial vac-
uum state with zero particle number corresponds to the
following initial conditions:

Xkðt0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!kðt0Þ

p ; _Xkðt0Þ ¼ �i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
!kðt0Þ

2

s
: (75)

In Fig. 2 we have plotted the numerical results obtained
for the comoving momentum at the center of the resonance
band, kc. The linear evolution observed for the logarithm of
the particle number shows that, as expected, this quantity is
being amplified exponentially with time, but that a signifi-
cant number of particles is produced only after the probe
brane has completed a few thousands of orbits.
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FIG. 2 (color online). Numerical results obtained for the evo-
lution of the particle number associated with the mode in the
center of the resonance band for an orbit with e ¼ 0:01 and l ¼
500, giving q ’ 10�4. The time coordinate t is given in units of
the orbital period T ¼ 2���1 ’ 1:57� 105.

7This field can be seen as a classical condensate of zero
momentum particles, so that only pair production of
�-particles ensures momentum conservation.
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We note that, although this solution was obtained nu-
merically, a formal analytical solution of the Mathieu
equation can be written in terms of the Mathieu sine and
cosine functions.

In Fig. 3 we also show the evolution of the particle
number for a mode outside the limits of the resonance
band. In this case, �k takes imaginary values and nk
exhibits an oscillating behavior with a small amplitude,
confirming that only for comoving momenta kmin 	 k 	
kmax a significant particle number is produced by the
elliptical motion of the probe brane. It is also worth men-
tioning that, in the limit of circular orbits, e! 0, the
parameter q vanishes and there is no amplification of any
of the particle momentum modes. This confirms our early
assumption that the interbrane brane distance needs to vary
for particle production to occur.

So far we have not included the backreaction effects of
the produced particles on the probe’s motion. We will
return to this later in Sec. III C, where we estimate the
energy density damped into brane modes by the resonance
and discuss how this affects the probe brane’s orbital
decay.

Consider now the case where the field has a nonvanish-
ing mass, m � 0. In this case, the classical equations of
motion Eq. (44) can be generalized to

@�ðe��
ffiffiffiffî
�

p
�̂�
@
�Þ � e��

ffiffiffiffiffiffiffiffi��̂p
m2� ¼ 0; (76)

or, explicitly,

€�þ ð3H � FÞ _�� 1

a2
ð1� hv2Þr2�

þ ð1� hv2Þ
h1=2

m2� ¼ 0: (77)

Each of the Fourier modes then evolves independently
according to

€� k þ ð3H � FÞ _�k þ
�
ð1� hv2Þ k

2

a2
þ ð1� hv2Þ

h1=2
m2

�
:

(78)

This implies that all modes have, in this case, an effec-
tive physical mass which is different from the mass pa-
rameter m due to the motion of the probe brane:

m2
eff ¼

ð1� hv2Þ
h1=2

m2: (79)

Notice that the mass is not, however, affected by the
expansion of the universe. When writing the equations of
motion in terms of the rescaled mode function XkðtÞ de-
fined earlier, we again obtain the equation for a harmonic
oscillator with a varying frequency, which is now given by

!2
k ¼ k2phys þm2

eff þ �2; (80)

where all the quantities are time dependent in the general
case. Let us now set H ¼ 0 and compare these results with
the ones obtained for the particle production mechanism in
the massless case. First, notice that, in the nonrelativistic
and large distance approximation, we have m2

eff ’ m2.

Thus, the leading order modification introduced by the
mass of the field can be obtained by simply replacing
k2 ! k2 þm2.
Following the same procedure as before, one can reduce

the particle-mode equation to the Mathieu equation, with
the parameter Ak being now given by

Ak ¼ 4ðk2 þm2Þ
�2

: (81)

The parameter q, which quantifies the strength and
width of the resonance phenomenon, is not modified by
the introduction of the mass parameter, so that we expect
the particle production mechanism to occur as before. In
this case, however, the center of the resonance band is

shifted to a lower momentum, kc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�=2Þ2 �m2

p
, which

gives Ak ¼ 1. The upper and lower limits of the resonance
band are also modified, being now given by

kmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�=2Þ2 �m2 � 1

2
�2

s
;

kmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�=2Þ2 �m2 þ 1

2
�2

s
;

(82)

which in turn alters the width of the resonance band in the
obvious way. If, as in the massless case, we have �2=2 �
k2c, we may write �kres ’ �2=2kc, which is larger than the
corresponding value in the massless case, satisfying never-
theless the narrow resonance condition. Notice that this
implies an upper bound for the mass of the particles which
can be produced by this mechanism,
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t
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nk (t)

FIG. 3 (color online). Evolution of the particle number for a
particle mode outside the resonance band for an orbit with e ¼
0:01 and l ¼ 500, giving q ’ 10�4. The comoving momentum
of the mode is k ¼ kcð1þ 4 �2

�2Þ> kmax. The time coordinate t

is given in units of the orbital period T ¼ 2���1 ’ 1:57� 105.
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m 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�

2

�
2 � 1

2
�2

s
’ �

2
: (83)

In the particle description discussed earlier, this sim-
ply means that each ‘‘particle’’ in the interbrane distance
field � needs to have enough energy to decay into two
�-particles at rest. A residual kinetic energy is also neces-
sary if all the modes inside the resonance band are to be
excited. In the nonrelativistic and large distance approxi-
mation, the orbital frequency of the probe brane is assumed
to be small, so that only particles with small masses may be
excited during its motion. One must recall, however, that
we are measuring all quantities in terms of the typical
string parameters. In particular, the orbital frequency
should be small compared to the string energy scale. If
the latter corresponds to the Planck scale, then the pro-
duced particles can still be quite massive.

For the example studied earlier in this section, with
orbital parameters � ’ 4� 10�5, particles up to masses
of order 1013 GeV can be resonantly created. Recalling the
definition of� in terms of the physical interbrane distance,
Eq. (17), we may write the upper bound on the mass of the
produced particles in terms of the physical semimajor axis

of the orbit, Rphys ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=T6V3

p
R. Inserting back the missing

ls factors, we obtain

mmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Q6

2Rphys

s
ls

Rphys

Ms; (84)

whereMs ¼ l�1
s is the string energy scale. As we assumed

in the beginning that r� Q6 � ls, it is clear from this
expression that mmax � Ms, which allows nevertheless for
the production of very massive particles. In general, parti-
cles living in the world volume of the probe brane will be
massive, so that we need to use the results obtained above
to describe the parametric resonance. For masses which are
small compared to the typical orbital energies of the probe,
the simpler treatment of the m ¼ 0 case will be sufficient.

B. Expanding universe

Let us now consider the case of an expanding universe,
with H ¼ �

t > 0. The inclusion of the scale factor will

modify our previous analysis of particle production in
several ways. First, it will change the frequency of each
harmonic oscillator particle mode, namely, modifying the
factor �2ðtÞ, given in Eq. (54). Also, the physical momenta
of the particle-modes will be redshifted as the universe
expands, so that, in the nonrelativistic and large distance
approximation, we have kphys ’ k=a / ðt=t0Þ��. Finally,
the motion of the probe brane will be altered, as we
saw in Sec. II, so that the semimajor axis of elliptical orbits
will decrease as RðtÞ / ðt=t0Þ�6�, making the angular
frequency consequently increase as �ðtÞ / ðt=t0Þ9�.
Furthermore, if the Hubble parameter is sufficiently large,
the orbital eccentricity may exhibit a significant growth.

1. Analytical results

All the modifications make a complete analytical study
of particle production in the probe brane rather complex. In
order to determine the leading effects of the expansion, we
will consider the motion of the probe brane at sufficiently
late times, so that some of the effects of the expansion can
be discarded. As we concluded in Sec. II, the variation of
the eccentricity of the orbits is, in this regime, very small,
so that it may be neglected. The explicit effects of the
expansion in modifying the factor �2 may also be dis-
carded in this limit, provided that jFj � 3H and j _Fj �
j3 _Hj, or explicitly

t� 6�

e�

�
Rphys

Q6

�
; t2 � 6�

e�2

�
Rphys

Q6

�
: (85)

The first of these conditions will, a priori, be more con-
straining. For the example we have been following in this
section, the first condition gives t� 5� 108 while the
second only implies the constraint t� 3:5� 106.
With these constraints in mind, we now have to analyze

how Hubble expansion modifies the factors F and _F in the
variable harmonic oscillator frequency. The radial inter-
brane distance field � can now be written, in the low
eccentricity orbit approximation, as

�ðtÞ ’ RðtÞ½1þ e cosð�ðtÞðt� t0ÞÞ�; (86)

with

RðtÞ ¼ R0

�
t

t0

��6�
; �ðtÞ ¼ �0

�
t

t0

�
9�
: (87)

Computing its time derivatives, we find that they involve
terms arising from Hubble expansion which are suppressed
by at least one power of t, being negligible at late times.
There are also terms involving the quantity �t

t0
¼ t�t0

t0
. If the

time necessary for particle production to occur is smaller
than the age of the universe at that time, we may also
discard these terms. After some algebra, the leading order
modification to �2 is then given by

�2ðtÞ ’ �2ðtÞ cosð�ðtÞðt� t0ÞÞ: (88)

The quantity �2 is now time dependent and can be obtained
trivially by including the appropriate time variation of the
orbital parameters in its nonexpanding expression,
Eq. (67). This gives

�2ðtÞ ¼ �2
0

�
t

t0

�
24�
; �2

0 �
1

4

ffiffiffiffiffiffiffiffiffiffiffi
T6V3

2

s
Q6

R0

e�2
0: (89)

Then, taking into account the momentum redshift, we
can write the particle-mode equation, to lowest order, as

€X k þ
�
k2
�
t

t0

��2� þ �2
0

�
t

t0

�
24�

cosð�ðtÞðt� t0ÞÞ
�
Xk ¼ 0:

(90)
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Following the same reasoning as in the nonexpanding
case, we rescale the time coordinate by defining the vari-

able z � �ðtÞ
2 ðt� t0Þ. As the angular frequency of the orbit

is now time dependent, this change of variables will in-
troduce new terms in the equation. These will, however, be
suppressed by powers of t and involve first and second
derivatives of the mode function Xk. In the nonexpanding
case, these were quite small compared to Xk, and one
expects them to be negligible in this case as well. Using

that, to lowest order, z ’ �0

2 �t, we may write the leading

order equation for the mode function in terms of the
variable z as

X00
k þ ½AkðzÞ � 2qðzÞ cosð2zÞ�Xk ¼ 0; (91)

with

AkðzÞ � Ak0ð1� �zÞ; qðzÞ � q0ð1þ 	zÞ; (92)

where Ak0 � 4k2=�2
0 and q0 � �2�2

o=�
2
0 correspond to

the initial values of the parameters of the Mathieu equa-
tion, given by their nonexpanding case expressions, and the
coefficients � and 	 are given by

� � 40�

�0t0
; 	 � 12�

�0t0
¼ 3

10
�: (93)

We, hence, conclude that the leading order effect of the
expansion is to make the coefficients of the Mathieu equa-
tion vary in time. In particular, their variation is, to a first
approximation, linear in the variable z and controlled by
the single parameter �, which will be small at late times.
One must take into account, however, that Eq. (91) is not
the Mathieu equation and, namely, does not satisfy the
conditions of Floquet’s theorem which allowed us to define
the coefficient �k. Nevertheless, we can use the results
obtained in the nonexpanding case from the properties of
the Mathieu equation as a guide to describe the behavior of
the modes when H > 0.

First, notice that, as Ak decreases with z, the position of
the center of the resonance band, at Ak ¼ 1, will be shifted
to higher momentum modes:

kcðzÞ ¼ kc0
1� �z

; kc0 � �0

2
: (94)

Thus, we expect modes with comoving momentum larger
than kc0 to be excited as the probe’s orbit decays. To better
understand the evolution of each mode, let us analyze the
evolution of the exponent �kðzÞ, which is given by

�kðzÞ ’ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q20ð1þ 	zÞ2 � ðAk0ð1� �zÞ � 1Þ2

q
: (95)

The zeros of �kðzÞ occur for

z1 ¼ �jq0j þ Ak0 � 1

�Ak0 þ 	jq0j ; z2 ¼ jq0j þ Ak0 � 1

�Ak0 � 	jq0j ; (96)

with z2 > z1. This means that �kðzÞ will be real for z1 	
z 	 z2 and purely imaginary for z < z1 and z > z2.
Figure 4 illustrates the typical evolution of �kðzÞ for a
generic Fourier mode.
Thus, each mode may only experience the resonant

regime during a finite amount of time, when �kðzÞ is real
and the mode is inside the resonance band. During the
periods where �kðzÞ is purely imaginary, we expect the
particle number to exhibit an oscillating behavior. In
the nonexpanding case, the frequency and amplitude of
these oscillations for modes outside the resonance band
is determined by the value of Im�k, so that the larger
the latter the smaller the period and the amplitude of
the oscillations. As, in an expanding universe, Im�kðzÞ
changes in time, we expect the frequency and amplitude
of the oscillations of the particle number to vary as the
probe brane’s orbit decays. Similarly, as Re�k is not con-
stant when the mode is inside the resonance band, the
strength of the resonance is also expected to vary.
Particle modes will then have different behaviors ac-

cording to their position relative to the initial resonance
band, which can be parametrized by

Ak0 � 1þ �jq0j: (97)

Recalling that the center of the original resonance band
corresponds to � ¼ 0 and that the probe’s motion begins
at z ¼ 0, we need to distinguish three different types of
modes:

(I) �<�1.—As both z1 and z2 are negative in this
case, these modes will always be outside the reso-
nance band, with an imaginary exponent �kðzÞ for
all z 
 0.

(II) �1 	 � 	 1.—This case corresponds to the par-
ticle modes inside the resonance band in a non-
expanding universe, with z1 	 0 but z2 
 0.
Hence, they will start inside the resonance band

z1 z2

z

Re µkIm µk

FIG. 4 (color online). Evolution of the real and imaginary parts
of the exponent �kðzÞ for a generic mode. The shaded area
corresponds to the period the mode spends inside the resonance
band.
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but stop experiencing the resonant regime for
z > z2.

(III) �> 1.—Although these modes are outside the ini-
tial resonance band, they will experience the reso-
nant behavior at some later stage, as z2 > z1 > 0.

For both type II and type III modes, the maximum value

of Re�kðzÞ occurs for zmax ¼ z1þz2
2 , giving, for jq0j � 1,

�kðzmaxÞ ’ jq0j
2

�
1þ 3

10
�jq0j

�
: (98)

This gives the same result as in the nonexpanding limit
for � ¼ 0. It is easy to check that zmax ! 
1 as �! 0,
the same happening for z1 and z2. This implies that only
modes for which z1 	 0 ( ! �1) and z2 
 0 ( ! þ1)
will be excited in this limit, in agreement with the fact that
only type II modes are excited in the nonexpanding case
(� ¼ 0) and that these experience the parametric reso-
nance during an infinite period of time. It is also clear
from Eq. (98) that higher momentum modes are excited by
the resonance at later times, as expected from the evolution
of the center of the resonance band.

The total time each type II or type III mode spends inside
the resonance band is given by

�zband � z2 � z1 ’ 2jq0j
�

�
1� 7

10
�jq0j

�
: (99)

It is clear that this quantity decreases with �, so that the
smaller the Hubble parameter the more time each mode is
excited by the resonance. In the limit �! 0, �zband !
þ1, but as previously discussed this limit only applies to
type II modes, as all the others are outside the resonance
band in this limit. One also concludes that higher momen-
tum modes will spend less time inside the resonance band,
which suggests these will be less excited.

The analysis of the properties of the exponent�kðzÞ thus
provides a very clear insight on the qualitative evolution of
all momentum modes. We would like, however, to be able
to quantify the particle number produced by the resonance
in each mode. In the nonexpanding case, XkðzÞ / e�kz,
which implied nkðzÞ / e2�kz in the limit of large particle
number for type II modes. Despite the variation of �k in
the H > 0 case, we may take this exponent to be approxi-
mately constant during an infinitesimal interval between z
and zþ dz. Then, during this interval, Xk will be amplified
by a factor expð�kðzÞdzÞ if the mode is inside the reso-
nance band. Integrating this result, we expect that, after a
significant number of particles has been produced,

nkðzÞ / exp

�
2
Z z

zi

�kðz0Þdz0
�
: (100)

The initial time zi refers to the time the mode enters the
resonance band, i.e. zi ¼ 0 and zi ¼ z1 for type II and
type III modes, respectively. One can use Eq. (100) to
estimate the total particle number produced in each mode
by the parametric resonance. The details of this calculation

are given in the appendix. For type II and type III modes,
one obtains

lognresðIIÞk ðz2Þ ¼ q20
2�

1

1þ �jq0j
�

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

q
þ �

2
þ arcsin�

�
;

lognresðIIIÞk ðz2Þ ¼ q20
2�

�

1þ �jq0j :

(101)

Equation (101) constitutes the main result of this sec-
tion, giving the leading order expressions for the particle
number density produced by the resonance in an expanding
universe. From these approximated expressions, we can
see that the parameter q20=� controls the strength of the

resonance, a significant number of particles being pro-
duced only if � & q20. Recall that, in the nonexpanding

case, the typical resonance time was given by �tres ¼
ð�k�Þ�1 � ðjq0j�0=2Þ�1. The typical time a mode spends
inside the resonance band in the expanding case is, from

Eq. (99), of order �tband � 4q0
� ��1

0 . Hence, apart from

numerical factors, the condition for a significant number
of particles to be produced is simply stating that the time a
given mode spends inside the resonance band should be
greater than the typical time the resonance takes to de-
velop, �tband * �tres.
From the results in Eq. (101), we can also conclude that

the total particle number produced increases with � for
�1 	 � 	 1. On the other hand, for �> 1, it exhibits a
slow decrease with �, showing that the production of high
momentum modes is suppressed. This agrees with the fact
that high momentum modes spend less time inside the
resonance band, as obtained above.

2. Numerical simulations in an expanding universe

To check the results obtained so far for the resonant
particle production in an expanding universe, we have
solved Eq. (91) numerically. In order to simplify the
computation, we have rescaled the mode functions via
~Xk �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!kðt0Þ

p
Xk, so that initially we have approximately

~X kð0Þ ’ 1; ~X0
kð0Þ ’ �i: (102)

We then computed the function

~n kðzÞ ¼ j ~XkðzÞj2 þ j ~X0
kðzÞj2: (103)

This is related to the physical particle number density of

each mode, given by Eq. (55), approximately by nk ’ ~nk
4aðtÞ ,

taking the large particle number limit. Note that ~nk ¼ 2
initially, as we neglected the 1=2 factor in Eq. (55), so that
the effects of this normalization have to be taken into
account before the resonance produces a significant num-
ber of particles.
In Fig. 5, we illustrate the results obtained for modes of

types I, II, and III, including also the analytical prediction
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obtained from Eq. (100). These simulations correspond to
an original resonance strength jq0j ¼ 10�3, the effects of
the expansion being quantified by � ¼ 10�7 [recall
Eq. (93)]. These values ensure the validity of the approx-

imations made and also that a significant particle number is
produced for modes of types II and III.
Observing the plots shown in this figure, we see that all

three particle modes follow the expected behavior. The
type I mode exhibits an oscillating particle number, with
oscillations of decreasing amplitude and period, confirm-
ing that, in fact, no net particle number is produced.8 Both
the type II and the type III modes are exponentially am-
plified during a finite period, after which their particle
number oscillates with decreasing amplitude and period,
tending to an adiabatically constant value. Also, as ex-
pected, the type III mode exhibits an oscillating behavior
before entering the resonance band.
We can also conclude from Fig. 5 that the particle

number follows the predicted evolution inside the reso-
nance band, the main differences between the numerical
and the analytical solutions occurring near the endpoints of
the resonance band, where the transitions between resonant
and oscillating regimes take place. The discrepancies for
low particle number are also due to the normalization of ~nk,
as discussed earlier. It is nevertheless clear that Eq. (100)
gives a quite good description of the resonant particle
production regime in an expanding universe, although it
underestimates the particle number density, and that the
contributions of the nonresonant periods are subdominant,
as expected.
The total particle number produced by the end of the

resonant regime, ~nkðz2Þ, was computed for several values
of �, keeping jq0j and � fixed at the values chosen above.
The results we have obtained are shown in Fig. 6.
One observes that ~nkðz2Þ increases with � for type II

modes and slowly decreases with � for type III modes, in
agreement with Eq. (101). The main discrepancies between
the numerical results and the analytical prediction are
again due to the smooth transition between the resonant
and nonresonant regimes at z2, with the latter giving a
subdominant contribution to the total particle number,
which is more significant for type III modes. The different
number of oscillations the modes undergo before entering
the resonance band give the oscillations that can be ob-
served in Fig. 6. These are suppressed for large � as the
preresonance oscillations of the particle number give a
negligible contribution for high momentum modes.
Numerical simulations also show that, as expected, the

particle number in all modes decreases with �, so that
Hubble expansion may inhibit the resonant amplification
of particle modes at early times.
Thus, we conclude that our analysis of the resonance

regime gives a good description of the mechanism of
particle production in branonium for an expanding uni-
verse and that the corrections arising from the nonresonant
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FIG. 5 (color online). Numerical results obtained for the par-
ticle number with jq0j ¼ 10�3 and � ¼ 10�7. The plots
correspond to (a) a type I mode, with � ¼ �3, (b) a type II
mode, with � ¼ 0 and (c) a type III mode with � ¼ 3. The
solid line corresponds to the numerical solution in all three cases,
while in (b) and (c) the dashed line gives the corresponding
analytical prediction. The shaded area corresponds to the period
that each mode spends inside the resonance band.

8The positive value of log~nk reflects the normalization chosen
in Eq. (103) and does not correspond to a physical particle
number.
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regimes are subdominant. Extrapolation of this discussion
to high momentum modes is, however, difficult, as these
will only be excited at late times, where the approxi-
mations we have considered may no longer hold. The
production of high momentum particles is nevertheless
suppressed, as we have concluded earlier. Furthermore, at
each given time z > 0, only the modes with z1 < z have
entered the resonance band, which means that only those
modes for which

A0k < Amax
0k ðzÞ � 1þ jq0jð1þ 	zÞ

1� �z
(104)

have started being excited. This gives the following mo-
mentum cutoff for modes which have already been ampli-
fied at t > t0:

kmaxðtÞ ¼ 1

2

�
2�2

0

�
1þ 6�

�t

t0
þ�2

0

��
1=2

�
�
1� 20�

�t

t0

��ð1=2Þ
: (105)

Notice that this gives the expected endpoint of the reso-
nance band in the limit �! 0, given by Eq. (73).
The generalization of these results for massive particles

follows the same reasoning used in the nonexpanding case,
with the substitution k2phys ! k2phys þm2 within our ap-

proximations. Note that, in the expanding case, the physi-
cal momentum of the particles is redshifted while their
mass remains the same as the universe expands. This
modification will then produce a more complex evolution
of the parameter AkðzÞ in the modified Mathieu equation,
Eq. (91), given to lowest order by

AkðzÞ ¼ Ak0ð1� �zÞ þ 4m2

�2
0

ð1� &zÞ; (106)

where & � 9
10� and all other quantities are defined as be-

fore. Although this will alter the way the resonance band
moves into higher momentum modes as the probe’s orbit
decays, the evolution of the modes is expected to follow the
same qualitative behavior as in the massless case, so that
we will not analyze this in more detail.
We, thus, conclude that, to lowest order, the parametric

resonance survives in an expanding universe, although
modes are excited only during a finite period. These results
hold only at late times but we note once again that all
quantities are measured with respect to the typical string
values. We need, however, to bear in mind that Eq. (91) is
not the Mathieu equation and that several other terms in
Eq. (52) may become important at early times. These may
alter the excitation time and the amplification of each
mode, or even prevent any particle production. It is never-
theless clear that the effects of the expansion are sup-
pressed at the typical energies involved in the probe’s
motion, so that one still expects a significant number of
particles to be produced.

C. Energy radiated into brane particle modes

As the resonance develops, the probe brane loses energy
to excited �-particle modes and one may wonder whether
the energy radiated by this mechanism is sufficient to affect
the probe brane’s motion.
Let us start by computing the energy density of massless

particles produced by the resonance in a nonexpanding
universe. We have seen that each rescaled mode function
Xk has an associated harmonic oscillator energy function
Ek ¼ !kðnk þ 1=2Þ. For the mode functions �k ¼

ffiffiffi
f

p
Xk,

the associated energy function is approximately the same
in the nonrelativistic and large distance limit, where f ’ 1.
Hence, the total energy density radiated into brane particle
modes is given by
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FIG. 6 (color online). Numerical results for the value of the
total particle number produced by the resonance as a function of
�. Plot (a) shows the results for small values of �, including
type II and III modes, and plot (b) shows the results for large
values of �, where only type III modes are present. The solid
line corresponds to the numerical results while the dashed line
gives the corresponding analytical prediction. All results corre-
spond to jq0j ¼ 10�3 and � ¼ 10�7.

RESONANT PARTICLE PRODUCTION IN BRANONIUM PHYSICAL REVIEW D 77, 126004 (2008)

126004-17



�p ¼
Z d3k

ð2�Þ3 Ek ¼
1

2�2

Z þ1

0
dkk2!k

�
nk þ 1

2

�
; (107)

where we have used the momentum space isotropy dis-
cussed earlier in this work. After a significant number of
particles has been produced, we may take nk � 1=2 and
neglect the 1=2 factor in Eq. (107). Also, we know that
particles are produced in a narrow resonance band centered
at kc ¼ �=2 with a band width �kres ’ �2=� ¼ jqj�=2.
The particle number distribution in momentum space can
then be well approximated by a Gaussian distribution of
the form

nkðtÞ ¼ nkcðtÞ exp
�
� 1

2

ðk� kcÞ2
�kðtÞ2

�
: (108)

The Gaussian distribution width�k should correspond to a
fraction of the resonance band width, so that we may write
�k ¼ ��kres. The coefficient � is expected to be time
dependent as the central mode kc is more amplified than
all the other modes in the resonance band, so that the
distribution should become more sharply peaked about
this value with time. The advantage of writing the particle
number distribution in this form is that it allows us to
further approximate the result by a �-function distribution,
taking into account that �k=kc � 1, as discussed earlier.
Introducing the correct normalization, we may then write

nkðtÞ ’ nkcðtÞ
ffiffiffiffiffiffiffi
2�

p
�kðtÞ�ðk� kcÞ: (109)

Using !kc ’ kc ¼ �=2, we obtain

�p ’ �

�
ffiffiffiffiffiffiffi
2�

p
�
�

2

�
3
�kresnkc ’

�

�
ffiffiffiffiffiffiffi
2�

p jqj
�
�

2

�
4
nkc ; (110)

where the time dependence of nkc , �, and consequently �p
is implicit. Notice that, when q! 0, we have �p ! 0, as

the resonance vanishes in this limit. To have an estimate of
the order of magnitude of this quantity, take the example
we have considered before in the discussion of particle
production in a nonexpanding universe, for which jqj ¼
10�4 and � ¼ 4� 10�5, in units of the string length. By
solving the equations of motion numerically and fitting the
obtained particle number distribution to the Gaussian dis-
tribution given in Eq. (108), we may determine the values
of � and nkc . For an initial time t0 ¼ 109, we obtained the

following results:

nkcð5t0Þ ’ 7:5� 102; �ð5t0Þ ’ 0:20;

nkcð10t0Þ ’ 1:6� 107; �ð10t0Þ ’ 0:12:
(111)

These two examples confirm that, indeed, the reso-
nance width decreases in time. From Eq. (110), we
obtain for these two cases �pð5t0Þ ’ 3� 10�22 and

�ð10t0Þ ’ 4� 10�18, in units of the string energy scale.
The energy density radiated into brane particle modes

should then be compared with the energy density of
the interbrane distance field �, which is given by

� ¼ ��=ð2RÞ ¼ �ð��=2Þ2=3. For the example consid-
ered above, � ’ �2� 10�2, so that the value obtained
for the energy density radiated into particles up to t ¼
10t0 ¼ 1010 is negligible when compared to the probe
brane’s energy density. In general, we obtain

�p
j�j ’

�

�
ffiffiffiffiffiffiffi
2�

p jqj
�2=3

�
�

2

�
10=3

nkc ; (112)

which gives the main result of this subsection. This means
that, in the previous example, if we take �� 0:01–0:1, up
to a �-particle number density of 1023–1024 can be pro-
duced without affecting significantly the motion of the
probe brane.
These results can be easily generalized for the massive

case, by taking into account the changes in kc and �kres
discussed earlier. For �2=2 � k2c, we obtain

�p
j�j ’

�

�
ffiffiffiffiffiffiffi
2�

p jqj
�2=3

kc

�
�

2

�
7=3
nkc ; (113)

with kc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�=2Þ2 �m2

p
and which, as expected, reduces

to Eq. (112) in the limit m! 0. As the momentum of the
produced particles decreases with m, it is easy to conclude
that the energy damped into brane particle modes is smaller
for more massive particles (recall that the strength of the
resonance is not affected by the mass of the particles).
The analysis of the energy radiated into brane particle

modes is more difficult to perform in the expanding uni-
verse case, as more effects have to be taken into account.
First, we need to recall the approximate relation between
~nk and the physical particle number. Next, we need to
notice that the mode functions �k are redshifted by a factor

of aðtÞ�ð3=2Þ with respect to the harmonic oscillator mode
functions Xk. Finally, for the purposes of determining the
energy density of the produced particles, we may take
!kðtÞ ’ k=aðtÞ. Then, we have

�pðtÞ ’ 1

aðtÞ5
Z dkk3

8�2
~nk: (114)

We see that the energy density of the produced particles
is redshifted by the usual power of a�3 but is further
reduced due to the redshift of the physical momentum
and energy of the modes. We can use the expressions
obtained for the particle number produced by the reso-
nance in Eq. (101) to determine ~nk, as we have concluded
that the effects of the nonresonant periods are subdomi-
nant. Writing them in terms of the comoving momentum of
the modes, we conclude that, for type III modes,

�pðtÞ /
Z
dkk3 exp

�
q20�

2
0�

8�

1

k2

�
: (115)

To determine the limits of this integral, one must recall
that, at a given time, only a finite number of modes has
entered the resonance band. In particular, one may use the
value computed in Eq. (105) as the upper limit of this
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integral, although some of these modes have not yet been
completely excited by the resonance. The lower limit of the

integral will be the first type III mode, with k ¼ k� �
kc0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jq0j

p
. This gives a finite energy density radiated

into brane modes at each finite time t > t0. This energy
density is redshifted by Hubble expansion, but at the same
time modes with increasing energy enter the resonance
band. This process will, however, stop at some point, as
our approximations will break down when the motion of
the probe becomes relativistic and gets too close to the
central stack. Even if the resonance mechanism persists in
this limit, although certainly in a different form, the probe
will eventually modify its trajectory, either by colliding
with the central stack or via some other mechanism that
stabilizes its motion.

The contribution of type II modes is obviously finite and
can be computed by integrating Eq. (114) using the corre-
sponding expression for ~nk given in Eq. (101), with a lower
limit kc0 and an upper limit k� for the integral. No particu-
lar insight is, however, gained by computing the exact
expressions for the energy density for both type II and
type III modes. Instead, we note that the dominant contri-
bution to the energy density will be given by high momen-
tum modes which enter the resonance band at late times.
For these, the effects of the expansion of the universe will
be less significant and one may use the results obtained in
the nonexpanding case to compute the energy density
produced by the resonance. In this case one should use
the values of q and � at the end of the resonance
mechanism.

D. Radiation into bulk modes

As discussed in [10], the probe’s trajectory in the back-
ground created by the central stack may induce not only the
production of brane-bound particles but also radiation into
bulk modes, namely, gravitational, RR-form, and dilatonic
fields. This effect is due to the accelerated motion of the
probe brane and most of the power is radiated into lower-
spin fields, in particular, scalar fields which couple to the
brane’s orbital monopole moment.

The probe will thus lose energy through this process,
contributing to the decay of its orbit. This will certainly
modify the mechanism of resonant production of particle
modes in the brane, namely, by varying the orbital fre-
quency, which determines the comoving momentum of the
modes that are excited by the parametric resonance. One
then expects the effects of radiation into bulk modes to be
quite similar to those induced by the universe’s expansion,
so that we will not analyze this process in detail. Never-
theless, it is important to estimate its contribution to the
decay of the probe’s orbit.

The power radiated into bulk scalar modes was esti-
mated in [10], where it was shown that the number of
orbits the probe can complete before the interbrane dis-
tance becomes of order ls is approximately given by

N ’ 2

3�

�
ri
ls

�
3=2 1

ðg3sNÞ1=2
; (116)

where ri is the initial value of the physical radius of the
orbit, assuming it is circular. (This gives a good estimate
for the decay time, even though we are interested in small
eccentricity orbits for the resonance process. N corre-
sponds to the ratio of the decay time to the initial orbital
period.) This expression shows that, for the probe to com-
plete a large number of orbits before decay, it needs to be at
a large distance from the central stack, in units of the string
length. Also, one needs g3sN � 1 to obtain a sufficiently
large value of N .
This value should be compared to the number of orbits

of the probe necessary for the resonance to be effective,
which in the nonexpanding case is of order ð2��kÞ�1 �
ð�jqjÞ�1. Hence, the production of a significant number of
particles requires N � ð�jqjÞ�1, which gives for the
initial radius of the orbit

ri
ls

�
�

3

2jqj
�
2=3
N1=3gs: (117)

For example, if jqj ’ 10�3 and there are 10 branes in the
central stack, we need the initial interbrane distance to be
larger than about 300gsls for the resonance to be effective,
which is not too large a number taking into account that gs
is parametrically small.
As, in the analysis of the parametric resonance mecha-

nism, we have assumed the interbrane distance to be large
compared to the string length, we expect the effects of
radiation into bulk modes to be initially negligible. This
process should, however, become more important as the
orbit decays and increases its acceleration. It is even pos-
sible that, at late times, it overcomes Hubble expansion as
the main energy loss process. Nevertheless, the end of the
resonance should still be determined by the breakdown of
the nonrelativistic and large distance approximation, as this
also controls the amount of energy damped into bulk
modes.

IV. EFFECTS OF TRANSVERSE SPACE
COMPACTIFICATION

So far we have considered the probe to move at distances
from the central stack which are small compared to the
typical size of the transverse space directions, so that we
may neglect the effects of compactification on the probe’s
motion. In this section, we will analyze the leading order
effects introduced by the finite size of these directions and
show that they may lead to the creation of orbital angular
momentum, a necessary condition for resonant particle
production to take place.
We will consider the simplest case of compactifying the

three transverse directions on an isotropic 3-torus of size
R?, which is defined by the identifications yi $ yi þ R?.
As mentioned earlier, the harmonic function associated
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with the central stack configuration needs to be modified in
this case by including the appropriate ‘‘brane images,’’
according to Eq. (10). These images are placed at points
with coordinates yi ¼ niR?, with integer ni, defining a
hypercubic lattice corresponding to the covering space of
the 3-torus, ðR=ZÞ3. Although toroidal compactifications
are too simple to give realistic particle physics phenome-
nology, this will be sufficient to illustrate the main effects
of compactification on the probe brane’s trajectory.

The interbrane potential associated with the generalized
harmonic function Eq. (10) is obtained by computing the
propagator for a massless field on a torus, which satisfies:

r2Gðy; y0Þ ¼ �ðy � y0Þ � 1

V?
; (118)

where V? � R3
? is the volume of the transverse 3-torus.

The term �1=V? is included for consistency, so that the
integral over the compact manifold of both sides of
Eq. (118) vanishes. If one expands the Green’s function
Gðy; y0Þ in terms of eigenfunctions of the Laplacian opera-
tor r2, one concludes that the �1=V? term removes the
unphysical zero-mode which makes the Green’s function
diverge. This term arises naturally from the curvature of
the noncompact 4-dimensional spacetime [24]. It has been
shown that one can write the massless propagator on the
3-torus in terms of an integral involving the Jacobi-theta
function 
3 [8]:

GðyÞ � Gðy; 0Þ ¼ 1

R?

Z 1

0
ds

�
1�Y3

i¼1


3

�
�yi

R?
; e�4�2s

��
:

(119)

Although this expression gives the full compact space
propagator, we are mainly interested in the leading order
modifications introduced by compactification when the
probe is moving closer to the central stack than to any of
its images (orbits around any of the brane images are
equivalent due to the symmetries of the hypercubic lattice).
In [25], an expansion of this propagator about the origin
was computed using Ewald’s method for calculating po-
tentials in hypercubic lattices in the context of solid state
physics. The leading corrections to the central 1=r poten-
tial are given by

GðyÞ ¼ � 1

4�r
� r2

6V?
� CS

V1=3
?

� A4h4ðyÞ � A6h6ðyÞ � . . .

(120)

The values for the coefficients of the various terms were
found numerically to be CS ¼ �0:21, A4 ¼ 0:44, and
A6 ¼ 0:0072. The functions h4ðyÞ and h6ðyÞ are harmonic
functions of order ðr=R?Þ4 and ðr=R?Þ6, respectively, and
the series continues with harmonic terms of higher (even)
orders. The leading harmonic correction to the propagator
is given by

h4ðyÞ ¼ 1

R5
?

�X3
i¼1

ðyiÞ4 � 3
X3
i�j¼1

ðyiÞ2ðyjÞ2
�
: (121)

Recalling that the function hðyÞ contributes to the inter-
brane potential through the graviton-dilaton and RR-form
interactions, we may write this potential for Q6 � r�
R?, to order ðr=R?Þ4 and discarding constant terms, as

VðyÞ ¼ �2Q6

�
1

r
þ 2�

3R?

�
r

R?

�
2

þ 4�A4

R?

�
r

R?

�
4
f

�
yi

r

�
þ . . .

�
; (122)

where we defined the function

f

�
yi

r

�
�

�X3
i¼1

�
yi

r

�
4 � 3

X3
i�j¼1

�
yi

r

�
2
�
yj

r

�
2
�
: (123)

We conclude that, to this order, the interbrane potential
is modified by two terms. Both terms correspond to repul-
sive contributions to the potential arising from the overall
attraction of the image branes and their coefficients are
suppressed by a factor 1=R?, so that their effects are
negligible for large transverse volume. The ‘‘jellium’’
term, of order ðr=R?Þ2 and whose name arises in the
context of solid state physics, gives an isotropic contribu-
tion while the ‘‘asymmetry’’ term, of order ðr=R?Þ4, gives
an anisotropic contribution to the potential.
We will be more interested in the effects of the asym-

metry term, as its breaks the rotational symmetry of the
transverse space and leads to the generation of orbital
angular momentum. The effects of the jellium term will,
however, be more significant close to the central stack. It is
easy to show that, for large transverse volume, this term
will, to leading order, make the probe brane’s orbits pre-
cess. This is due to its repulsive nature and, for small
eccentricity orbits, the deficit angle is approximately given
by �
 ’ 32�2ðl2=R?Q6ðT6V3Þ2Þ3. This effect will, how-
ever, be suppressed at late times as the probe’s angular
momentum is redshifted away by Hubble expansion.
The inclusion of the asymmetry term makes the analysis

quite difficult, as the potential is no longer central and
depends on both angular coordinates in the transverse
space. This may lead, in particular, to nonplanar orbits of
the probe brane. However, if we set y3 ¼ _y3 ¼ 0 initially,
the probe will feel no force along this direction and its
trajectory will be confined to the ðy1; y2Þ plane as before.
We will focus on this particular case, bearing in mind that
in general nonplanar trajectories may arise.
Within these assumptions, the problem reduces, as be-

fore, to the evolution of the canonically normalized com-
plex scalar field �, defined in Eq. (17), in an expanding
universe. Its potential can be written as
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Vð�Þ ¼ � �

j�j � �Jj�j2 � �Að�4
R þ�4

I � 6�2
R�

2
I Þ;
(124)

where �R and �I are, respectively, the real and imaginary
parts of the field, � was defined in Eq. (27), and

�J � 8�

3

Q6

R3
?
; �A ¼ 32�A4

T6V3

Q6

R5
?

(125)

give the strength of the jellium and asymmetry terms. This
potential is no longer invariant under the global U(1)
symmetry of the noncompact case, signaling that the
probe’s angular momentum is no longer conserved. This
is quite similar to the U(1)-violating potential governing
the evolution of the scalar field in the Affleck-Dine mecha-
nism [26], where nonconservation of angular momentum
plays a crucial role in generating the U(1) baryon number
asymmetry in our universe. The potential remains, how-
ever, invariant under the hypercubic group symmetries
�R;I ! ��R;I and �R $ �I. In terms of the polar angle


, this means that�=2 rotations as well as reflections about
the 
 ¼ �=4 axis are preserved by the asymmetry term, as
one can easily conclude by writing Eq. (123) for y3 ¼ 0 as

fð
Þ ¼ 1–2sin2ð2
Þ: (126)

Hence, we only need to consider initial conditions such
that�R 
 �I 
 0 or equivalently 0 	 
 	 �=4. The U(1)
symmetry violation precludes a complete analytical de-
scription of the orbits. However, it is not difficult to obtain
a qualitative insight on the main features of the probe’s
trajectories. If the probe is placed significantly far from the
central stack (but still closer to it than to any of the image
branes), the asymmetry term will not be negligible and
some angular momentum will be created or destroyed. If
the probe has no angular momentum initially, as we would
expect immediately after inflation, then it will necessarily
acquire some and be placed in an orbit around the central
stack, instead of just falling towards it along the radial
direction. As both the jellium and the asymmetry interac-
tions are repulsive, it is possible that this trajectory does
not remain bound to the central stack, becoming connected
to one or more branes in the hypercubic lattice. Hubble
expansion will, however, redshift the probe’s energy and
angular momentum, so that one expects the probe to be-
come bound to only one brane stack at late times. As the
orbital radius decreases, the U(1)-violating term becomes
less significant and the particle number associated with �
should asymptotically become constant, i.e. the angular
momentum should vary only due to the universe’s expan-
sion. One also expects the jellium term, as well as the
asymmetry term, to induce some precession of the orbital
axis, which should stop at late times when these terms
become negligible.

Because of the hypercubic symmetries, along 
 ¼ 0,
�=4 the force acting on the probe will be in the radial

direction, as f0ð�=4Þ ¼ f0ð0Þ ¼ 0, and no angular momen-
tum will be created in these particular directions. For 0<

< �=4, angular momentum creation should, however, be
a generic feature.
To have a better understanding of how the initial con-

ditions affect the amount of angular momentum created or
destroyed, we have computed the force acting on the probe
brane and the associated torque, given by

F ¼ �rV ¼ � @V

@�R

eR � @V

@�I

eI;

� ¼ j�� Fj ¼ ��R

@V

@�I

þ�I

@V

@�R

;

(127)

where we have considered the field � as a vector in the
ð�R;�IÞ plane. Recall that the torque gives the variation of
the angular momentum, which in terms of the particle
number density n defined in Eq. (20) can be written as

dn

dt
þ 3Hn ¼ �: (128)

We have plotted the isotorque contours for some par-
ticular parameter values in Fig. 7. We have restricted the
position of the probe to the region y1; y2 < 0:5R?, where
the expansion of the potential about r ¼ 0 is sufficiently
accurate and the probe’s motion is bound to the central

FIG. 7. The torque acting on the probe brane in the ðy1; y2Þ
plane. Coordinates are normalized to the size of the transverse
torus, with the value R? ¼ 2� 104 in this example, in units of
the string length. We considered Q6 ¼ 100 and T6V3 ¼ 1 in
these units. Note that the torque changes sign when crossing one
of the 
 ¼ n�=4 axis, with integer n, being negative for 0<

<�=4. Also, the absolute value of the torque increases as one
moves away from the origin.
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stack (near the limits of this region, the orbits may not be
bound to the central stack, as the actual region where the
force points towards the central stack has a more compli-
cated shape).

Observing this figure we see that the torque is maxi-
mized close to the boundary of the region mentioned above
(darker areas for 0 	 
 	 �=4). Also, the longer the
probe’s trajectory remains close to this boundary the more
angular momentum it is likely to gain. Thus, maximum
angular momentum creation should occur if the probe is
placed below the center of the hypercubic cell.

The initial value of the Hubble parameter H will also
affect the amount of angular momentum created. If it is of
the same order of magnitude as the orbital frequency, one
expects the probe to be driven into lower torque regions
within a few periods. Lower values of the Hubble parame-
ter should allow the probe’s angular momentum to oscillate
significantly as the probe moves through alternate regions
of positive and negative torque, but no net angular momen-
tum will be gained after completing the first few orbits.
The asymptotic value of the comoving particle number
N ¼ na3 will, hence, be determined by the initial path of
the probe.

We have simulated the evolution of the probe brane
numerically to illustrate this discussion. The initial values
for the real and imaginary parts of the field were defined as
follows:

�R;Iðt0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
T6V3

2

s
�R;IR?; _�R;I ¼ 0; (129)

with �R > �I, giving 0< 
<�=4, and �R;I < 0:5, which
ensures the probe is placed initially within the region
where it is bound to the central stack. We have also com-
puted the eccentricity of the orbit, as defined in Eq. (29),
with the probe’s energy density including both the jellium
and asymmetry terms. This quantity should only become
meaningful at late times, when the latter terms become
negligible, but its evolution tracks the creation of angular
momentum along the probe’s trajectory.

Figure 8 shows an example of the results obtained for the
probe’s orbit. In this case, the probe is placed below the
center of the hypercubic cell and, as expected, a significant
angular momentum is produced during its motion. One
observes, as expected, a small precession of the orbital
axis and the decay of the orbit into regions of lower torque,
which drives the orbital eccentricity towards a constant
value. Initial conditions were chosen in this example so
that the inverse Hubble parameter is of the same order of
magnitude as the orbital period and, hence, the orbit is
quickly stabilized. The eccentricity tends in this example
to a constant value of e ’ 0:28. Notice the similarities with
the example illustrated in Fig. 1, the main difference
residing in the fact that, in this case, the probe has initially
no angular momentum.

In Fig. 9 we plot the asymptotic values of the eccen-
tricity obtained numerically for different initial positions in
the plane ð�R;�IÞ, considering two distinct values of the
initial Hubble parameter in a matter-dominated universe.
In both cases, one observes that smaller eccentricity orbits
are obtained near the larger torque regions below the center
of the hypercubic cell, as expected. We see that, in general,
some angular momentum is produced, although the major-
ity of initial conditions leads to highly eccentric orbits,
with e > 0:9. We also conclude that the probe’s orbit is
generically less eccentric if its motion starts at later times,
so that the initial Hubble damping of the asymmetry term is
smaller. As one may observe in Fig. 9, in particular, in
plot (b), the combination of the asymmetry term and
Hubble expansion makes the final eccentricity vary in a
nontrivial way with the initial position of the probe,
namely, near �R ’ 0:5, where the orbits may in some cases
become unbound. Note that these results correspond to
particular values of the parameters of the problem and
that the values of the asymptotic eccentricity are highly
dependent on these parameters, namely, the relevant dis-
tance scales Q6 and R?.
These results show that a significant amount of angular

momentum can be created by U(1)-violating terms in the
probe’s potential arising from compactification of the
transverse dimensions, which is a key ingredient for
the development of the parametric resonance we have

-10000 -7500 -5000 -2500 2500 5000 7500 10000
y1

-10000

-7500

-5000

-2500

2500

5000

7500

10000
y2

FIG. 8 (color online). Results obtained numerically for the
probe brane’s trajectory for Q6 ¼ 100, R? ¼ 2� 104, and
T6 ¼ V�1

3 ¼ ð2�Þ6. The probe is initially stationary at the point

ð�R; �IÞ ¼ ð0:50; 0:35Þ for t0 ¼ 2� 106 and we consider a
matter-dominated universe with � ¼ 2=3. The asymptotic value
obtained for the eccentricity is e ’ 0:28.
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studied in this work. The simple 3-torus compactification
thus illustrates how low eccentricity orbits can be created
for a range of initial conditions, even if the probe has
initially no angular momentum.

V. STABILIZATION AND COSMOLOGICAL
IMPLICATIONS

Potential applications of the resonant particle production
mechanism to cosmology will be largely determined by the
system’s final configuration. As we have discussed before,

the D6�D6 branonium we have analyzed in this work is
unstable, as the probe (anti)brane loses energy and angular
momentum due to Hubble expansion. At some stage, the
distance between the probe and the central stack of branes
will consequently become of the order of the string length
(although our approximations will break down long before
this happens). When this occurs, the scalar mode associ-
ated with open strings stretching between the probe and the
source branes becomes tachyonic, signaling an instability
of the system [27]. Condensation of this tachyonic mode
will then lead to the annihilation of the probe brane with
one of the branes in the central stack. The nonsupersym-

metric nature of the D6�D6 configuration, which is a
general property of all systems mixing brane and antibrane
states, is behind this instability. Namely, it makes the
system evolve into a 1=2 BPS state with ðN � 1Þ parallel
D6 branes, with the same total charge as the original
configuration but with a lower energy.
Interesting scenarios may arise if some additional

mechanism stabilizes the probe brane at a finite distance
from the central stack, in which case the produced particles
may survive after the resonance mechanism ends. An at-
tractive possibility for stabilizing multiple brane systems
was suggested in [28]. When supersymmetry breaking oc-
curs, one or more fields within the supermultiplets of the
theory typically acquire masses, their value being set by
the energy scale at which SUSY is broken. Massive gauge
potentials will then induce short-range interactions which,
if repulsive, may balance the gravitational attraction be-
tween different branes. Notice that the presence of a probe
antibrane itself breaks SUSY but that this does not induce
bulk field masses, so that other sources of SUSY breaking
need to be considered in this case.
Suppose, for example, that the C1 RR-form and conse-

quently its magnetic dual form C7 become massive after
SUSY breaking, the same happening to the dilaton field,�.
Both the RR-form and dilaton-mediated interactions will
then be described by Yukawa potentials whose range is
determined by the masses mRR and m�, respectively. If
mRR � m�, the dilaton-mediated interaction will be ex-
ponentially suppressed for interbrane distances of order
m�1
RR. Assuming Q6 � m�1

RR � R?, we may write the rele-

vant terms in the potential for r�m�1
RR as

FIG. 9. Contour plots obtained numerically for the asymptotic
value of the orbital eccentricity in the plane ð�R; �IÞ, with �R 

�I (with similar results for �R 	 �I), assuming Q6 ¼ 100,
R? ¼ 2� 104, and T6 ¼ V�1

3 ¼ ð2�Þ6. Both plots were ob-

tained for a matter-dominated universe with � ¼ 2=3 and the
motion of the probe starts at (a) t0 ¼ 1� 106 and (b) t0 ¼
5� 106. All parameters are given in units of the string length.
Contours were plotted for e ¼ n=10, with n ¼ 3; . . . ; 9, and
darker regions correspond to lower eccentricities.
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VðrÞ ¼ M4

�
�
e�mRRr

r
� 1

r

�
; (130)

whereM4 gives the overall constant factor. The constant �
parametrizes the effective strength of the RR-interaction
compared to the gravitational attraction and one expects
j�j> 1 as the dilaton-mediated interaction is negligible. If,
as we have assumed so far, the probe is a D6-brane, the
RR-interaction, although short-ranged, is attractive and
cannot balance the 1=r gravitational part. If, however, the
probe is aD6-brane, we have � > 0 and stabilization of the
system may be possible. In this case, for r� m�1

RR, the RR-
interaction is exponentially suppressed and the probe’s
motion is governed only by the gravitational term. The
evolution of the probe brane will, in this case, be very
similar to that of a probe antibrane in a massless RR-form
background which we have studied in this work, the po-
tential having a smaller strength than in the latter case. This
difference does not modify the qualitative features of the
probe’s trajectory and all the results we have derived in this
work remain valid using an effective central stack charge
Qeff

6 <Q6. In particular, one expects the parametric reso-

nance to develop in the probe’s world volume under the
same conditions as before and the effects of transverse
space compactification to provide the necessary source of
angular momentum for similar initial conditions.

The fate of a probe D6-brane will, however, be quite
different than that of a probe D6-brane. As the probe’s
orbit decays due to the universe’s expansion, the interbrane
distance will eventually become of order m�1

RR. At these
distances, the repulsive RR-interaction becomes relevant to
the probe’s motion and stabilization may be possible. The
potential given in Eq. (130) has a local minimum formally
given by

r0 ¼ �m�1
RR

�
1þW

�
� 1

�e

��
; (131)

where WðzÞ is the Lambert W-function, defined as the
inverse of fðWÞ ¼ WeW . After its angular momentum has
been redshifted away by Hubble expansion, one expects
the probe to settle at this local minimum. This may not be
the absolute minimum of the full potential, which includes
the dilaton-mediated interaction and other supergravity
and string theory corrections closer to the central stack.
Hence, absolute stabilization of the probe cannot be guar-
anteed, but it is reasonable to expect at least a long-lived
metastable state.

From the properties of the Lambert W-function, one
concludes that r0 ¼ 0 for � ¼ 1, being positive for � >
1, and that r0 strictly grows with �. Hence, as expected,
stabilization at large distances from the central stack is
only possible if the RR-repulsion is stronger than the
gravitational attraction. In this case, one expects the probe
brane to stabilize away from the central stack at a distance
r0 �m�1

RR.

The scale of supersymmetry breaking will then deter-
mine the cosmological implications of the particle produc-
tion mechanism analyzed in this work. If SUSY is broken
at very high energies, inducing a large mass for the RR-
potential (but still smaller than the dilaton’s mass), the
probe will stabilize very close to the central stack and no
tachyonic modes are present to induce annihilation. The
stable probe and the central stack will then be character-
ized by a general broken gauge symmetry group UðNÞ �
UðMÞ, whereM � N is the number of branes in the probe,
with an exponentially large number of particles charged
under the UðMÞ gauge group if the resonance develops
before stabilization occurs. This may be relevant, for ex-
ample, to the generation of the baryon asymmetry in our
universe. On the other hand, a parametrically small soft
SUSY breaking mass will stabilize the probe at large
distances. The parametric resonance may then be relevant
for dark matter production, as particles in the probe’s world
volume will necessarily interact weakly with the visible
sector if the latter is embedded in the central stack. As we
have shown, these particles may be supermassive (although
parametrically small compared to the string scale), so that
this scenario could provide an effective mechanism for a
nonthermal production of heavy weakly interacting parti-
cles such as WIMPZILLAS. [29].
One also expects the parametric resonance to amplify

other bosonic modes living in the probe’s world volume,
such as Yang-Mills fields if the probe has more than one
brane. If these mediate baryon number-violating forces,
their interactions with central stack fields could then pro-
vide a mechanism for baryogenesis as the one discussed in
[30], in which case the probe would need to be stabilized
before nucleosynthesis.
It is also possible for fermionic particles living in the

probe’s world volume to be produced in resonance, al-
though Pauli blocking makes this process significantly
different from the bosonic case, according to the discussion
given in [31]. Thus, if the probe can be stabilized, a
resonant production of fermionic dark matter particles
may also be achieved through this process.
One also expects the interbrane distance field to oscillate

about the local minimum of the potential, possibly gener-
ating a second stage of resonant amplification. This may be
induced from coupling to other fields, as in the standard
preheating mechanism, or gravitationally, as in the case
described in this work. Although this second stage may
contribute significantly to the final particle number density
in the probe brane’s world volume, we will not discuss
them in further detail but rather refer the reader to the
discussions given in this work and in the literature [12–14].
We emphasize that all these scenarios depend on the

particular embedding of the standard model fields in this
setup, an issue for which there is still no complete answer
and that is closely related to the nature of SUSY breaking
and its communication to the standard model.
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VI. CONCLUSIONS

In this work we have analyzed the mechanism of particle

production in D6�D6 branonium systems, as well as in
D6�D6 systems with SUSY breaking. We have shown
that, in the limit of large distances and small velocities and
for small eccentricity orbits, a parametric resonance will
develop, producing scalar particles confined to the probe
brane’s world volume. Massless particles are produced in a
narrow resonance band centered at the comoving momen-
tum corresponding to one half of the probe’s orbital fre-
quency �, as if resulting from the direct decay of the
particles associated with the interbrane distance field. The
strength of the resonance is given by the exponent �k

defined in Eq. (72). Massive particles are produced in the
same way, with energies of order �=2. These energies are
small compared to the string energy scale but, as the latter
should be close to the Planck scale, very massive particles
can be produced by the resonance mechanism, according to
Eq. (84). For both massless and massive particles, the
associated particle number grows exponentially in time
and a large number of particles can be produced by this
mechanism, just as in the case of preheating after inflation
[12,13]. However, the resonance surely requires the probe
to complete a large number of orbits before the particle
modes can be significantly amplified, due to the small
value of the exponent �k ’ q

2 � 1.

Hubble expansion of the 4-dimensional effective flat
FRW spacetime makes the probe’s orbit decay, redshifting
its energy and angular momentum. This alters the devel-
opment of the parametric resonance significantly if the
probe’s motion does not occur at sufficiently late times.
If, however, its motion begins late in the history of the
universe, at least compared to typical string times, the res-
onance will still develop with the associated resonance
band being shifted towards higher momentum modes.
Each mode will be excited during the finite period it spends
inside the resonance band, after which the associated par-
ticle number becomes an adiabatic invariant. A significant
number of particles, given approximately by Eq. (101), can
be produced if this period is sufficiently long for the
resonance to develop, according to the condition q20 * �,
where � quantifies the effects of the expansion and was
defined in Eq. (93).

We have also concluded that a large number of brane-
bound particles can be produced without affecting the
probe’s orbital motion, as can be seen in Eq. (112). Radi-
ation into bulk closed string modes will also have a neg-
ligible effect if the probe moves at sufficiently large
distances, as assumed for the validity of our study.

A realistic implementation of this mechanism requires
particular initial configurations with large interbrane dis-
tances, nonrelativistic velocities, and almost circular or-
bits. We have shown that angular momentum creation may
result from the effects of compactification of the directions
transverse to the branes, illustrating this for the case of a

compact 3-torus, where low eccentricity orbits can be
produced for some range of initial conditions.
In this work, we have also discussed how, for a probe

D6-brane, an interbrane potential may arise from super-
symmetry breaking, if e.g. the relevant RR-form and the
dilaton, �, gain a mass in the process. Stabilization of the
probe is then possible at late times and at distances of order
m�1
RR, if m� � mRR. Such a stabilization avoids annihila-

tion with the central stack, as necessarily happens for a
probe antibrane, making the parametric resonance regime
potentially relevant for baryon number or dark matter
generation, for example.
In our analysis, the parametric resonance arises only for

D6�D6 or D6�D6 systems, where the 1=r potential
allows the probe to move in closed elliptical orbits in a
nonexpanding universe. It is crucial for the development of
the resonance that the interbrane distance field � exhibits
an oscillating behavior, although the orbits do not need
to close, as we have seen for the case of an expanding
universe. Thus, other Dp�Dp or Dp�Dp branonium
systems with p < 6, where the probe trajectories are nec-
essarily unbounded from below, cannot exhibit such reso-
nant particle production. Additional stabilization potentials
may, however, provide the required oscillatory behavior, so
that it may be possible to find a resonant particle produc-
tion mechanism in other cases.
It is nevertheless clear that resonant particle production

in branonium systems may play an important role in our
universe’s evolution and we hope with this work to moti-
vate future exploitation of their properties and applications.
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APPENDIX: COMPUTATION OF THE PARTICLE
NUMBER FOR H> 0

The particle number produced by the parametric reso-
nance can be estimated by computing the integral in
Eq. (100). This gives the physical particle number apart
from constant factors, subdominant nonresonant contribu-
tions, and also an a�3 redshift factor due to Hubble expan-
sion. We have

lognresk ðzÞ ¼
8><
>:
0; z < zi;
2
R
z
zi
�kðz0Þdz0; zi 	 z 	 z2;

2
R
z2
zi
�kðz0Þdz0; z > z2:

(A1)
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In order to compute this function, let us write the ex-
ponent �kðzÞ in the form

�kðzÞ ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
az2 þ bzþ c

p
; (A2)

where

a ¼ q20	
2 � A2

k0�
2; b ¼ 2ðq20	þ Ak0ðAk0 � 1Þ�Þ;
c ¼ q20 � ðAk0 � 1Þ2: (A3)

For all modes of interest, a < 0, while we have c 
 0 for
type II modes and c < 0 for type III modes. The sign of b
will not affect our results. It is also useful to define d2 �
b2 � 4ac, which is explicitly given by

d2 ¼ 4q20ð2Ak0ðAk0 � 1Þ	�þ ðAk0 � 1Þ2	2 þ A2
k0�

2Þ;
(A4)

and is positive for all type II and type III momen-
tum modes. With these considerations, we find, for
zi 	 z 	 z2,

lognresk ðzÞ ¼ 1

2a

�
ð2az0 þ bÞ�kðz0Þ þ d2ffiffiffiffiffiffiffi�ap

� arcsin

�
2az0 þ b

d

��
z

zi

: (A5)

Taking into account that �kð0Þ ¼
ffiffiffi
c

p
=2, �kðz1Þ ¼

�kðz2Þ ¼ 0 and also that ð2az1 þ bÞ=d ¼ �ð2az2 þ
bÞ=d ¼ 1, we can write the total particle number produced
by the resonance for type II modes as

lognresðIIÞk ðz2Þ ¼ � 1

4a

�
b

ffiffiffi
c

p þ d2

2
ffiffiffiffiffiffiffi�ap

�
�

2
þ arcsin

�
b

d

���
:

(A6)

Similarly, for type III modes, we obtain

lognresðIIIÞk ðz2Þ ¼ �

8

d2

ð�aÞ3=2 : (A7)

It is easy to check that Eqs. (A6) and (A7) give the same
result for the mode in the transition between types II and
III, at � ¼ 1, as expected. Recalling that jq0j � 1, these
expressions can be approximated by those given in
Eq. (101).
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