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We compute the one-point function of the glueball loop operator in the maximally confining phase of

supersymmetric gauge theory using instanton calculus. In the maximally confining phase the residual

symmetry is the diagonal Uð1Þ subgroup and the localization formula implies that the chiral correlation

functions are the sum of the contributions from each fixed point labeled by the Young diagram. The

summation can be performed exactly by operator formalism of free fermions, which is also featured in the

equivariant Gromov-Witten theory of P1. By taking the Laplace transformation of the glueball loop

operator, we find an exact agreement with the previous results for the generating function (resolvent) of

the glueball one-point functions.
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I. INTRODUCTION

Symmetry helps us to understand physics, in particular,
the nonperturbative dynamics. Guided by holomorphy
coming from N ¼ 2 supersymmetry and the asymptotic
behavior in a semiclassical region, Seiberg and Witten
wrote down the effective prepotential of N ¼ 2 super-
symmetric gauge theory [1]. However, it is still desirable to
derive their result following the standard process of quan-
tum field theory—path integral. After a lot of work on
direct integration over the moduli space of instantons,
Nekrasov [2] applied the localization theorem for toric
actions to compute the equivariant integral over the instan-
ton moduli space. Subsequently, it was noted by [3] that a
similar approach also applies to the instanton calculus of
N ¼ 1 supersymmetric gauge theory where N ¼ 2 the-
ory is perturbed by a superpotential Wð�Þ. Here the inte-
gration is localized to the summation over the (isolated)
fixed points labeled by the Young diagrams, which are in
some sense regarded as saddle points. One might expect
the instanton calculus on the saddle points has more appli-
cations than kinematical constraints.

The computation of the holomorphic quantities inN ¼
1 theory such as effective superpotential is related to the
matrix model in [4]. This proposal is derived by relating
them to the B-model topological string amplitudes on
certain noncompact Calabi-Yau manifolds. The relation
is a mirror to a gauge/string duality due to the geometric
transition on the A-model side [5]. Thus the reproduction
of the holomorphic quantities in N ¼ 1 theory from the
microscopic instanton calculus can be regarded as a check
of the gauge/string correspondence involving the matrix
model. For a recent progress in microscopic approach to
N ¼ 1 supersymmetric gauge theory, see [6–8].

Though the localization formulas are given explicitly for
both the partition function and the chiral correlation func-

tions, in general it is not straightforward to perform the
summation over the Young diagrams exactly. In the maxi-
mally confining phase of UðNÞ supersymmetric gauge
theory,1 where SUðNÞ is confined and the residual symme-
try at low energy is the diagonal Uð1Þ � UðNÞ, the task of
summation gets considerably tractable. In [9], we adopted
the standard correspondence between Young diagrams and
neutral states in the fermion Fock space and calculated
explicitly the chiral one-point functions hTr’Ji in the
maximally confining phase. We found that the results can
be summarized compactly in terms of the loop operator:

hTreu’i ¼ I0

�
4
ffiffiffi
q

p sinhðu@=2Þ
@

�
! I0ð2 ffiffiffi

q
p
uÞ; ð@ ! 0Þ;

(1.1)

with InðxÞ being the modified Bessel function. The vacuum
expectation value of the loop operator has two parameters
q ¼ �2N and @. The series expansion in q is the instanton
expansion of gauge theory, while that in @ is interpreted as
the genus expansion of the corresponding string theory. In
the gauge/string theory correspondence, the partition func-
tion and the correlation functions allow the double pertur-
bative expansion in the instanton number of gauge theory
and the genus of the string theory. Usually we can sum up
the expansion only in one of the two expansion parameters,
but we have to compute the functions order by order in the
other parameter. It is very amusing that the above result
(1.1) gives an example where we can perform the summa-
tion of the double expansion completely in a closed form.
The chiral one-point functions hTr’Ji inN ¼ 1 theory

do not detect the superpotential Wð�Þ which is used to
deform the original N ¼ 2 theory [3,9]. In this paper we
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1We reduce the computation to the instanton calculus of Uð1Þ
gauge theory. However, the existence of underlying UðNÞ theory
should be assumed, since we will consider the expansion in the
second Chern number whose meaning is lost in a genuine Uð1Þ
theory.
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would like to proceed to the computation of the chiral
glueball one-point functions hTr����’Ji, which depend
on the details of Wð�Þ. The chiral glueball one-point
functions were obtained previously by several methods.
For example, one can relate the holomorphic (F-term)
quantities in supersymmetric gauge theory to amplitudes
of topological string theory [10] and then compute with
matrix model using open/closed string duality [4]. We can
also relate the correlation functions to the generalized
Konishi anomaly and perform a purely field theoretical
computation [11]. The resulting glueball resolvent is given
by

RðzÞ :¼
�
Tr����

1

z� ’

�
¼ �W 0ðzÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W 0ðzÞ2 � 4fðzÞ

q
;

(1.2)

with an unknown polynomial fðzÞ which is determined so
that the asymptotic behavior of RðzÞ in z! 1 is
hTr����i � z�1 þOðz�2Þ. In the maximally confining
phase, the polynomial fðzÞ is further tuned so that the
square root is factorized intoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W 0ðzÞ2 � 4fðzÞ
q

¼ HðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� aÞ2 � 4q

q
: (1.3)

In the matrix model the maximally confining phase is
described by a one-cut solution, while on the moduli space
of Seiberg-Witten theory it corresponds to the degenerating
loci where the maximal number of mutually nonintersect-
ing cycles of the Seiberg-Witten curve collapse. In this
paper we would like to add one more method to derive the
glueball resolvent RðzÞ. We find our instanton calculus
gives an exact agreement to the result (1.2) with the
factorization (1.3). The reproduction of previously known
results should serve as a nontrivial consistency check of the
instanton calculus. Besides, along the way of computation
we also find an explicit expression of the polynomial fðzÞ
that causes the complete factorization (1.3). It is interesting
that our Uð1Þ instanton calculus automatically gives a
closed form for the glueball resolvent in the maximally
confining phase.

The plan of the present paper is as follows. We will
shortly review some necessary ingredients of the instanton
calculus in Sec. II. Before proceeding to our computation
of the chiral glueball one-point functions in Sec. IV, we
will first compute two-point functions of the loop operators
as a preparation in Sec. III. Finally in Sec. V we comment
on the higher genus correction to our computation.

II. REVIEW OF INSTANTON CALCULUS

Chiral operators O in supersymmetric field theories are,
by definition, those annihilated by the fermionic charges
�Q _� of one chirality. Two chiral operators are defined to be
equivalent, if the difference is �Q _�-exact. The set of chiral
operators is closed under the multiplication and form a
ring, which we call chiral ring. From the supersymmetry

algebra in four dimensions, fQ�; �Q _�g ¼ �
�
� _�P�, we can

see that correlation functions of chiral operators are ‘‘to-
pological’’ in the sense that they are independent of the
positions of operators. Especially, topological one-point
functions characterize the phase structure of vacua. In the
four dimensional N ¼ 1 supersymmetric gauge theory
with a single adjoint matter �, we have a vector multiplet
ðA�; ��Þ and a chiral multiplet � ¼ ð’; �Þ, which are all

in the adjoint representation. One can show that the gen-
erators of the chiral ring are of the form Tr’J, Tr��’

J, and
Tr����’

J [11]. The correlation functions of the chiral
operators O are defined by

hOiN¼1 :¼ 1

VZN¼1

Z
M

�Z
C2

O
�
expð�SN¼1Þ; (2.1)

where the action forN ¼ 1 supersymmetric gauge theory
SN¼1 is that of N ¼ 2 theory SN¼2 perturbed by a
superpotential Wð�Þ:

SN¼1 :¼ SN¼2 þ
Z
dx4d�2Wð�Þ: (2.2)

The correlator hOiN¼1 is normalized by the volume V of
the noncommutative C2 and the partition function
ZN¼1 :¼

R
M expð�SN¼1Þ. The integral is over the mod-

uli spaceM ofUðNÞ instantons described, for example, by
the ADHM (Atiyah-Drinfeld-Hitchin-Manin) construc-
tion. The moduli space has the decomposition M :¼
tkMN;k, that is, the correlation function is a sum over

the contributions from each moduli space MN;k with a

specific instanton number k. The correlation function
hOiN¼1 for O ¼ Tr’J or Tr����’

J is of our prime
interest in this paper. We shall omit the subscripts N ¼
1 orN ¼ 2 of the correlators hereafter as long as it is clear
from the context.
The strategy to calculate these correlation functions is to

first replace all the operators by their equivariant exten-
sions [3]:

Tr’J � �ð2;2Þ ^ TrF J; (2.3)

Tr����’
J � � 1

ðJ þ 2ÞðJ þ 1Þ�ð0;2Þ ^ TrF Jþ2; (2.4)

d2�Wð�Þ � �ð2;0Þ ^ TrWðF Þ; (2.5)

with � being the equivariantly closed forms

�ð0;0Þ :¼ 1; (2.6)

�ð2;0Þ :¼ dz1 ^ dz2 þ i@z1z2; (2.7)

�ð0;2Þ :¼ d�z1 ^ d�z2 � i@�z1 �z2; (2.8)

�ð2;2Þ :¼ �ð2;0Þ ^ �ð0;2Þ: (2.9)

The curvature F of the universal bundle over C2 �MN;k
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is expanded according to the direct product structure of the
base space as follows2:

F ¼: Fþ�þ ’

¼ F��dx
�dx� þ f�mdzm þ  �md�z

�mg
þ fðdMUyÞðdMUÞ �UyL�Ug: (2.10)

If we untwist the theory,3 the components F�� and �m are

identified with the field strength and the gaugino, which
gives a vector multiplet in N ¼ 1 theory. The remaining
pair  �m and ’ gives a chiral multiplet. Then due to the
localization theorem, our computation reduces to picking
up the value at the fixed points. Since the fixed points are
classified by the Young diagrams, the result is given in
terms of summation over the Young diagrams. Especially
in the maximally confining phase, the correlation functions
(2.1) simplifies into

hOi ¼ 1

Z

X1
k¼0

�
q

@
2

	
k X
jYj¼k

OYQ
h2Y

ðhðhÞÞ2 ; (2.11)

where the partition function is given by

Z ¼ X1
k¼0

�
q

@
2

	
k X
jYj¼k

1Q
h2Y

ðhðhÞÞ2 : (2.12)

We have introduced the parameter q of the instanton
expansion. @ is the equivariant parameter associated with
the Uð1Þ action T@: ðz1; z2Þ ! ðei@z1; e�i@z2Þ on C2. Note
that the partition function Z depends on these parameters
only through the combination q=@2. We denote by jYj the
total number of boxes of a Young diagram Y. The hook
length at a box h 2 Y is denoted by hðhÞ and the weightQ

h2YðhðhÞÞ�2 is called the Plancherel measure. At each
fixed point Y we can estimate the chiral operator O to
obtain OY . Thus OY is a function on the space of Young
diagrams and hOi is nothing but the integration ofOY with
respect to the Plancherel measure.4

For the loop operator O ¼ Tret’, which is a generating
function of Tr’J, the function OY is given by

Ch Yð�Þ ¼ eta
�
1þ sh2ð�ÞX

h2Y
e�ðcðhÞÞ

�
; (2.13)

where a ¼ hTr’i, � ¼ t@, and shð�Þ :¼ e�=2 � e��=2 [9].
For a box h at the mth row and the nth column of the
Young diagram, we define the content by cðhÞ :¼ n�m.
In [3] the glueball operator O ¼ Tr����’

J is related to

the connected two-point function by

hTr����’JiN¼1 ¼ � 2

ðJ þ 2ÞðJ þ 1Þ@2
�hTrWð’ÞTr’Jþ2iconn: (2.14)

The relation (2.14) may be derived as follows5: The defi-
nition (2.1) implies that the N ¼ 1 correlators are related
to the N ¼ 2 correlators by

hOiN¼1 ¼ hOiN¼2 þ
�
O
Z
C2
�ð2;0Þ ^ TrWðF Þ

�
N¼2

þ � � � : (2.15)

Hence we have�Z
C2
�ð0;2Þ ^ TrF Jþ2

�
N¼1

¼ @�z1 �z2hTr’Jþ2i þ @
2z1z2 �z1 �z2hTr’Jþ2 TrWð’Þi þ � � � ;

(2.16)

Vh1iN¼1 ¼ @
2z1z2 �z1 �z2ðh1i þ @z1z2hTrWð’Þi þ � � �Þ:

(2.17)

Note that in the expansion the first term vanishes after
setting �z1, �z2 ! 0, while the higher-order terms vanish
because of z1, z2 ! 0. Summing up all the terms in
(2.14) into the exponential function, we find that the glue-
ball loop operator is given as

hTr����eu’iN¼1 ¼ � 2

@
2

�
TrWð’Þ Tr e

u’ � 1� u’

u2

�
conn

:

(2.18)

The more conventional quantity is the glueball resol-
vent, which is the Laplace transformation of the glueball
loop operator

RðzÞ :¼
�
Tr����

1

z� ’

�
¼
Z 1

0
due�zuhTr����eu’i:

(2.19)

The explicit form of the glueball resolvent is known to be

RðzÞ ¼ �W 0ðzÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W 0ðzÞ2 � 4fðzÞ

q
; (2.20)

from the relation to the matrix model [4] or the generalized
Konishi anomaly [11]. For the superpotential WðzÞ of
degree nþ 1, we need to include a polynomial fðzÞ of
degree n� 1. Since we are considering the maximally
confining phase, we have to choose the coefficients of

fðzÞ so that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W 0ðzÞ2 � 4fðzÞp

is factorized into a product
of a polynomial and the square root of a quadratic function.
Therefore, the resolvent RðzÞ in the maximally confining
phase is characterized by the following conditions:

2The matrix U appears in the ADHM construction as the zero
modes of the Dirac operator.

3Note that we consider the case C2 ’ R4 in this paper. In
general the topological twist ofN ¼ 1 theory is possible on the
Kähler manifold.

4The Plancherel measure can be regarded as a discretization of
the Vandermonde measure. This interpretation suggests a natural
connection to the matrix model. 5Two proofs of (2.14) have been presented recently in [6,8].
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(i) The resolvent RðzÞ is a linear combination of 1 and
the square root of a quadratic function with the
coefficients being polynomials of z.

(ii) The behavior of z! 1 is hTr����i � z�1 þ
Oðz�2Þ.

(iii) The coefficient of 1 is �W 0ðzÞ.
We would like to reproduce all these features from the

following instanton calculus.

III. SCALAR TWO-POINT FUNCTIONS

In this section we compute the two-point correlation
function of the loop operator:

hTret’ Treu’i ¼ 1

Z

X1
k¼0

�
q

@
2

	
k X
jYj¼k

ChYð�ÞChYð�ÞQ
h2Y

ðhðhÞÞ2 ; (3.1)

where

Ch Yð�Þ ¼ 1þ sh2ð�ÞX
h2Y

e�ðcðhÞÞ; (3.2)

with � ¼ t@ and � ¼ u@. (We set a ¼ 0 for simplicity in
this section, but we can easily reproduce the contribution
by multiplying the final result by the factors eta and eua.)
Taking care of the constant term separately, we find

hTret’ Treu’i ¼ W þ hTret’i þ hTreu’i � 1; (3.3)

where

W :¼ 1

Z

X1
k¼0

�
q

@
2

	
k
sh2ð�Þsh2ð�Þ

� X
jYj¼k

P
h2Y

e�ðcðhÞÞ P
h2Y

e�ðcðhÞÞ

Q
h2Y

ðhðhÞÞ2 : (3.4)

A. Operator formalism

It is well known that there is a correspondence between
the Young diagrams and the fermion Fock states with
neutral charge. By making use of the correspondence, we
can compute the summations over the set of Young dia-
grams in operator formalism. Let us introduce a pair of
charged (Neveu-Schwarz) free fermions

 ðzÞ ¼ X
r2Zþ1=2

 rz
�r�ð1=2Þ;

 �ðzÞ ¼ X
s2Zþ1=2

 �
sz

�s�ð1=2Þ;

(3.5)

with the anticommutation relation

f r;  �
s g ¼ 	rþs;0; r; s 2 Zþ 1

2: (3.6)

We define the Fock vacuum j0i by
 rj0i ¼  �

s j0i ¼ 0; r; s > 0: (3.7)

Recall that the Young diagram is specified by a partition

� ¼ ð�iÞ, where �i is the length of the ith row. Then the
corresponding state is given by

j�i ¼ Y1
i¼1

 i��i�ð1=2Þjj0ii; (3.8)

with  �
s jj0ii ¼ 0, 8 s. One can show that

Jk�1j0i ¼
X
j�j¼k

k!Q
h2�

hðhÞ j�i; (3.9)

where J�1 is the constant mode in the standard Uð1Þ
current JðzÞ :¼:  ðzÞ �ðzÞ : . From (3.9) we can confirm
the following famous relation

X
jYj¼k

Y
h2Y

hðhÞ�2 ¼ 1

k!
; (3.10)

which is used for computing the summation over the
Young diagrams appearing in the partition function Z.
We find (2.12) has a simple form:

Z ¼ exp

�
q

@
2

�
: (3.11)

This is the most fundamental example of the computation
in operator formalism of the summation with the
Plancherel measure [12].
To compute the correlation functions, it is convenient to

introduce the operator [13,14]

E ð�ÞðzÞ :¼ :  ðe�=2zÞ �ðe��=2zÞ :¼ X
n2Z

Eð�Þ
n z�n�1;

(3.12)

which is a ‘‘point splitting’’ deformation of JðzÞ ¼ Eð0ÞðzÞ.
The modes of Eð�ÞðzÞ

E ð�Þ
n :¼ X

r2Zþ1=2

e�ðr�n=2Þ:  n�r �
r :; (3.13)

satisfy the commutation relation,6

½Eð�Þ
n ; Eð�Þ

m � ¼ shðn��m�ÞEð�þ�Þ
nþm þ 	nþm;0

shnð�þ �Þ
shð�þ �Þ :

(3.14)

We will use the following important relation in the com-
putation of correlation functions:

6The infinite-dimensional Lie algebra with the commutation
relation (3.14) appeared first in [15], where it was called area-
preserving torus diffeomorphism algebra. The representation
theory was initiated in [16] and the algebra was identified with
W1þ1 algebra. Recently the same algebra is used to reveal a
connection of the counting of plane partitions and the Toda
hierarchy [17].
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E ð�Þ
0 j�i ¼ X1

i¼1

ðe�ð�i�iþ1=2Þ � e�ð�iþ1=2ÞÞj�i

¼ shð�ÞX
h2�

expð�cðhÞÞj�i: (3.15)

The second term comes from Eð�Þ
0 jj0ii ¼ �ðshð�ÞÞ�1jj0ii,

which can be calculated directly from the definition of jj0ii
or from the consistency Eð�Þ

0 j0i ¼ 0.

B. Computation

After the preparation of the operator formalism, let us
proceed to the explicit calculation of W defined by (3.4).
First of all, note that the formulas in the operator formalism
imply

h0jJk1Eð�Þ
0 Eð�Þ

0 Jk�1j0i ¼ ðk!Þ2shð�Þshð�Þ

� X
jYj¼k

P
h2Y

e�ðcðhÞÞ P
h2Y

e�ðcðhÞÞ

Q
h2Y

ðhðhÞÞ2 :

(3.16)

Thus the problem of evaluation of W reduces to the

computation of h0jJk1Eð�Þ
0 Eð�Þ

0 Jk�1j0i. With the help of the

commutation relation (3.14) with J1 ¼ Eð0Þ
1 , we obtain

h0jJk1Eð�Þ
0 Eð�Þ

0 Jk�1j0i ¼
Xk
l¼0

Xk�l
m¼0

ðk!Þ2shlð�Þshmð�Þ
l!m!ðk� l�mÞ!ðlþmÞ!

� h0jEð�Þ
l Eð�Þ

m Jlþm�1 j0i; (3.17)

where we have used

Jk�l�m1 Jk�1j0i ¼
k!

ðlþmÞ! J
lþm
�1 j0i: (3.18)

Bringing J�1’s to the most left in h0j � � � j0i by iteratively
using the commutation relation

½Eð�Þ
l Eð�Þ

m ; J�1� ¼ Eð�Þ
l ðshð�ÞEð�Þ

m�1 þ 	m;1Þ
þ ðshð�ÞEð�Þ

l�1 þ 	l;1ÞEð�Þ
m ; (3.19)

we are left with a constant term and terms such as

h0jEð�Þ
n Eð�Þ�nj0i. The coefficients of these terms can be cal-

culated as follows. We first place the operator Eð�Þ
l Eð�Þ

m at

the point ðl; mÞ in the two-dimensional plane. (See Fig. 1.)
Using the commutation relation (3.19) once means that we
bring the operator downwards or leftwards by one unit in
the plane. After ðlþmÞ times of the iterative moves, we
finally arrive at the integer point ðn;�nÞ. The coefficient of
the h0jEð�Þ

n Eð�Þ�nj0i term (or the constant term) can be inter-
preted as the combinatorial factor of moving from ðl; mÞ to
ðn;�nÞ [or ð0; 0Þ, respectively] by these iterative moves. In
this way we find

h0jEð�Þ
l Eð�Þ

m Jlþm�1 j0i
ðlþmÞ! ¼ Xl

n¼0

½shð�Þ�l�n½shð�Þ�mþn
ðl� nÞ!ðmþ nÞ!

� shnð�þ �Þ
shð�þ �Þ

þ ½shð�Þ�l�1½shð�Þ�m�1

l!m!
�l>0�m>0:

(3.20)

Note that the second term, which comes from the constant
term in the commutation relation (3.19), contributes only
when l � 0 and m � 0. Plugging back into (3.4), we call
each contribution from the above two terms as W 1 and
W 2, respectively.
Let us concentrate on W 2 first:

W 2 ¼ 1

Z

X1
k¼0

Xk
l¼0

Xk�l
m¼0

�
q

@
2

	
k

� ½shð�Þ�2l½shð�Þ�2m
ðl!Þ2ðm!Þ2ðk� l�mÞ!�l>0�m>0: (3.21)

We can exchange the order of summation by bringing the
k-summation into the most right

X1
k¼0

Xk
l¼0

Xk�l
m¼0

� � � ¼ X1
l¼0

X1
k¼l

Xk�l
m¼0

� � � ¼ X1
l¼0

X1
m¼0

X1
k¼lþm

� � � :

(3.22)

After the exchange of summation, we find W 2 is com-
puted to be

W 2 ¼ ðI0ðAÞ � 1ÞðI0ðBÞ � 1Þ; (3.23)

(l, m)

(0, 0)
(n, − n)

FIG. 1. Combinatorics of the coefficients.
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with A ¼ 2
ffiffiffi
q

p
shð�Þ=@, B ¼ 2

ffiffiffi
q

p
shð�Þ=@ and InðxÞ is the

nth modified Bessel function.
Now let us turn to W 1:

W 1 ¼ 1

Z

X1
k¼0

Xk
l¼0

Xk�l
m¼0

Xl
n¼0

�
q

@
2

	
k

� ½shð�Þ�2l�nþ1½shð�Þ�2mþnþ1

l!ðl� nÞ!m!ðmþ nÞ!ðk� l�mÞ!
� shnð�þ �Þ

shð�þ �Þ : (3.24)

Here the exchange of summation goes as

X1
k¼0

Xk
l¼0

Xk�l
m¼0

Xl
n¼0

� � � ¼ X1
l¼0

X1
m¼0

X1
k¼lþm

Xl
n¼0

� � �

¼ X1
l¼0

Xl
n¼0

X1
m¼0

X1
k¼lþm

� � �

¼ X1
n¼0

X1
l¼n

X1
m¼0

X1
k¼lþm

� � � ; (3.25)

where we have used (3.22) in the first equality and then
brought the n-summation to the most left. Performing the
k-summation, we have

W 1 ¼
X1
n¼0

shnð�þ �Þ
shð�þ �Þ

�X1
l¼n

�
q

@
2

	
l ½shð�Þ�2l�nþ1

l!ðl� nÞ!
�

�
�X1
m¼0

�
q

@
2

	
m ½shð�Þ�2mþnþ1

m!ðmþ nÞ!
�
; (3.26)

which implies

W 1 ¼ shð�Þshð�ÞX1
n¼0

InðAÞInðBÞ shnð�þ �Þ
shð�þ �Þ : (3.27)

Plugging back into (3.4) all our results including the
one-point function hTret’i ¼ I0ðAÞ, we finally find that the
two-point function is given by

hTret’ Treu’i ¼ I0ðAÞI0ðBÞ þ shð�Þshð�ÞX1
n¼0

InðAÞInðBÞ

� shnð�þ �Þ
shð�þ �Þ : (3.28)

Note that the first term can be interpreted as the discon-
nected contribution. Hence,

hTret’Treu’iconn :¼ hTret’Treu’i� hTret’ihTreu’i

¼ shð�Þshð�ÞX1
n¼0

InðAÞInðBÞ shnð�þ�Þ
shð�þ�Þ :

(3.29)

IV. GLUEBALL ONE-POINT FUNCTIONS

Having finished our computation of the scalar two-point
function in the previous section, let us turn to the glueball
one-point function. As (2.18) implies, all the information
we need is encoded in the scalar two-point function (3.29)
in the limit @ ! 0:

lim
@!0

1

@
2
hTret’Treu’iconn ¼ etaeuatu

X1
n¼0

nInð2 ffiffiffi
q

p
tÞInð2 ffiffiffi

q
p
uÞ;

(4.1)

where we have restored the classical value a ¼ hTr’i by
simply multiplying the factors eta and eua. Using this
result, we find only the exponential term in (2.18) gives a
nontrivial contribution:

hTr����eu’i ¼ lim
@!0

� 2

@
2u2

hTrWð’ÞTreu’iconn: (4.2)

Then, all we have to do is to pick up necessary terms out of
(4.1) and perform the Laplace transformation to obtain the
glueball resolvent.

A. An example

Before proceeding to the general superpotential, let us
consider a simple example

WðzÞ ¼ z4

4
; (4.3)

which allows an explicit computation and is instructive for
general cases. Since the connected two-point function is
given by

lim
@!0

1

@
2
hTret’ Treu’iconn ¼ etaeuatuðI1ð2 ffiffiffi

q
p
tÞI1ð2 ffiffiffi

q
p
uÞ

þ 2I2ð2 ffiffiffi
q

p
tÞI2ð2 ffiffiffi

q
p
uÞ

þ 3I3ð2 ffiffiffi
q

p
tÞI3ð2 ffiffiffi

q
p
uÞ þ � � �Þ;

(4.4)

with the modified Bessel functions being

I1ðzÞ ¼ ðz=2Þ
0!1!

þ ðz=2Þ3
1!2!

þ � � � ; I2ðzÞ ¼ ðz=2Þ2
0!2!

þ � � � ;

I3ðzÞ ¼ ðz=2Þ3
0!3!

þ � � � ; (4.5)

we find
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lim
@!0

1

@
2

�
Tr
’4

4!
Treu’

�
conn

¼
ffiffiffi
q

p 3

0!

�
1

0!3!
3uI3ð2 ffiffiffi

q
p
uÞeua þ 1

1!2!
uI1ð2 ffiffiffi

q
p
uÞeua

	
þ

ffiffiffi
q

p 2a

1!

�
1

0!2!
2uI2ð2 ffiffiffi

q
p
uÞeua

	

þ
ffiffiffi
q

p
a2

2!

�
1

0!1!
uI1ð2 ffiffiffi

q
p
uÞeua

	
; (4.6)

by picking up the t4 terms. Therefore, the one-point function of the glueball loop operator is given as

hTr����eu’i ¼ �2
ffiffiffi
q

p 3 3!

0!3!

�
3!

0!3!

3

u
I3ð2 ffiffiffi

q
p
uÞeua þ 3!

1!2!

1

u
I1ð2 ffiffiffi

q
p
uÞeua

	
� 2

ffiffiffi
q

p 2a
3!

1!2!

�
2!

0!2!

2

u
I2ð2 ffiffiffi

q
p
uÞeua

	

� 2
ffiffiffi
q

p
a2

3!

2!1!

�
1!

0!1!

1

u
I1ð2 ffiffiffi

q
p
uÞeua

	
; (4.7)

which is transformed into the glueball resolvent through
the Laplace transformation. The Laplace transformation
can be performed asZ 1

0
due�ðz�aÞu n

u
Inð2 ffiffiffi

q
p
uÞ ¼ Zn; (4.8)

with Z (and �Z which will appear later) defined by

Z ¼ z� a� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðz� aÞ2 � 4q
p
2

ffiffiffi
q

p ;

�Z ¼ z� aþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðz� aÞ2 � 4q
p
2

ffiffiffi
q

p :

(4.9)

Here we have used the Laplace transformation formula for
the modified Bessel function

Z 1

0
dte�stInð!tÞ ¼ ðs� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 �!2
p Þnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 �!2

p
!n

; (4.10)

and the recursive relation of the modified Bessel function

2n

x
InðxÞ ¼ In�1ðxÞ � Inþ1ðxÞ: (4.11)

Using (4.8) we easily find�
Tr����

1

z� ’

�
¼ �2

ffiffiffi
q

p 3 3!

0!3!

�
3!

0!3!
Z3 þ 3!

1!2!
Z

	

� 2
ffiffiffi
q

p 2a
3!

1!2!

�
2!

0!2!
Z2

	

� 2
ffiffiffi
q

p
a2

3!

2!1!

�
1!

0!1!
Z

	
: (4.12)

It is remarkable that the Laplace transform of the modi-
fied Bessel function gives a linear combination of 1 andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðz� aÞ2 � 4q
p

with the coefficient being the polynomials
of z, which is required for the resolvent in the maximally
confining phase. Furthermore, it behaves as Oðz�1Þ in the
limit z! 1, as can be seen from

Z ¼ �Z�1: (4.13)

Hence, in the final step of matching our computation to the
expected result, all we have to do is to prove that the
coefficient polynomial of 1 is �z3. This can be done

without explicit calculation. Let us first rewrite our final
result (4.12) as

� VðzÞ þHðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� aÞ2 � 4q

q
¼ �2

ffiffiffi
q

p 3 3!

0!3!

�
3!

0!3!
Z3 þ 3!

1!2!
Z

	

� 2
ffiffiffi
q

p 2a
3!

1!2!

�
2!

0!2!
Z2

	
� 2

ffiffiffi
q

p
a2

3!

2!1!

�
1!

0!1!
Z

	
:

(4.14)

Then, our task is to prove VðzÞ ¼ z3. To pick up VðzÞ let us
consider the ‘‘conjugate’’ of (4.14)

� VðzÞ �HðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� aÞ2 � 4q

q
¼ �2

ffiffiffi
q

p 3 3!

0!3!

�
3!

0!3!
�Z3 þ 3!

1!2!
�Z

	

� 2
ffiffiffi
q

p 2a
3!

1!2!

�
2!

0!2!
�Z2

	
� 2

ffiffiffi
q

p
a2

3!

2!1!

�
1!

0!1!
�Z

	
;

(4.15)

and add up with original (4.14). Then we can sum up the
right-hand side into

�2VðzÞ ¼ �2
ffiffiffi
q

p 3 3!

0!3!
½Zþ �Z�3

� 2
ffiffiffi
q

p 2a
3!

1!2!

�
½Zþ �Z�2 � 2!

1!1!

�

� 2
ffiffiffi
q

p
a2

3!

2!1!
½Zþ �Z�; (4.16)

because of (4.13). We can further rewrite the result into

� 2VðzÞ ¼ �2
ffiffiffi
q

p 3

�
Zþ �Zþ affiffiffi

q
p

	
3 þ 2F4; (4.17)

with F4 defined as

F4 ¼ ffiffiffi
q

p 3

�
3!

1!2!

2!

1!1!

affiffiffi
q

p þ 3!

3!0!

0!

0!0!

�
affiffiffi
q

p
	
3
�
: (4.18)

Using
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Zþ �Zþ affiffiffi
q

p ¼ zffiffiffi
q

p ; (4.19)

we find (4.17) reduces to

VðzÞ ¼ z3 � F4: (4.20)

To finish our proof of VðzÞ ¼ z3 we need to choose a ¼ 0
so that F4 vanishes.

Note that since VðzÞ is the first derivative of the potential
(in the matrix model terminology), we can interpret the
constant part F4 as the force felt by the cut. (See Fig. 2.)
Here the main contribution of F4 is F4 � a3 for large a and
the subleading term depends on the width of the cut

ffiffiffi
q

p
.

B. Monomial superpotentials

The above argument can be easily generalized to any
monomial superpotential. To compute the glueball one-
point function for a superpotential

WðzÞ ¼ zkþ1

kþ 1
; (4.21)

we have to pick up the tkþ1-terms in the right-hand side of
(4.1):

hTr����eu’i ¼ �2eua
Xk�1

l¼0

ffiffiffi
q

p k�lal
k

l

 ! X½ðk�l�1Þ=2�

m¼0

k� l

m

 !

� k� l� 2m

u
Ik�l�2mð2 ffiffiffi

q
p
uÞ: (4.22)

Using the Laplace transformation formula (4.8), we find
the resolvent is given by�

Tr����
1

z� ’

�
¼ �2

Xk�1

l¼0

ffiffiffi
q

p k�lal k
l

� �

� X½ðk�l�1Þ=2�

m¼0

k� l
m

� �
Zk�l�2m:

(4.23)

Note again that the result takes the form of �VðzÞ þ
HðzÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 � 4q
p

. To see the result is the expected one, we
have to show VðzÞ ¼ zk. This can be done by adding the
conjugate. In this way, we will complete ‘‘half’’ of the
binomial expansion in (4.23) into a full one except constant

terms. Finally, we find VðzÞ ¼ zk � Fkþ1 with the force
Fkþ1 given by

Fkþ1 ¼
X½k=2�
l¼0

ffiffiffi
q

p 2lak�2l k!

ðk� 2lÞ!ðl!Þ2 : (4.24)

If the potential is even, the force is odd and we can always
make Fkþ1 ¼ 0 by setting a ¼ 0. This means that in the
even potential we can stabilize the cut at the center.
However, this does not work for the odd monomial
potentials.

C. General superpotentials

If the superpotential is W2ðzÞ ¼ z2=2, the glueball re-
solvent is given as�

Tr����
1

z� ’

�
¼ �2

ffiffiffi
q

p 1!

0!1!

�
1!

0!1!
Z

	
; (4.25)

and the force felt by the cut is given as

F2 ¼ ffiffiffi
q

p �
1!

1!0!

0!

0!0!

affiffiffi
q

p
�
; (4.26)

while if the potential is W3ðzÞ ¼ z3=3, the glueball resol-
vent is�

Tr����
1

z� ’

�
¼ �2

ffiffiffi
q

p 2 2!

0!2!

�
2!

0!2!
Z2

	

� 2
ffiffiffi
q

p
a

2!

1!1!

�
1!

0!1!
Z

	
; (4.27)

and the force is

F3 ¼ ffiffiffi
q

p 2

�
2!

0!2!

2!

1!1!
þ 2!

2!0!

0!

0!0!

�
affiffiffi
q

p
	
2
�
: (4.28)

Hence for the potential of the linear combination

V ¼ m

2
’2 þ g

3
’3; (4.29)

we have to impose the force balance condition:

mF2 þgF3 ¼m
ffiffiffi
q

p �
1!

1!0!

0!

0!0!

affiffiffi
q

p
�

þg
ffiffiffi
q

p 2

�
2!

0!2!

2!

1!1!
þ 2!

2!0!

0!

0!0!

�
affiffiffi
q

p
	
2
�
¼ 0:

(4.30)

As is clear from the above example the linearity holds
for any superpotential. Therefore, as long as we are careful
with the force balance condition, we can reproduce the
results of all the superpotentials in the maximally confining
phase.

V. HIGHER GENUS CORRECTION

So far we have computed the classical limit of the
glueball one-point function by instanton calculus and
found a complete agreement with the matrix model result.

F

FIG. 2. Force felt by the cut.
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In the computation we have to introduce an equivariant
parameter @ for the toric action onC2, which can be related
to the (local) SOð4Þ rotations of the � background [2].

Note that the @-expansion of the scalar one-point and
two-point functions computed in this paper agrees with the
genus expansion of the Gromov-Witten theory of P1 de-
veloped in [13,14]. The correspondence is described as
follows: Okounkov and Pandharipande computed all genus
correlation functions of the Kähler class! and its descend-
ents 
pð!Þ (the so-called stable sector) with respect to the

two ramification data at the north and the south poles of P1,
which are labeled by the partitions. To obtain the gauge
theory correlation functions we identify the operator Tr’2j

as the cohomology class 
pð!Þ. Then, the k-instanton

sector is recovered by taking both the ramification data to
be (1k).

On the other hand, the same glueball one-point function
was evaluated in [4] by relating the holomorphic quantities
in supersymmetric gauge theory to amplitudes of topologi-
cal string theory [10] and computing with the matrix model
using open/closed string duality. Here the loop expansion
parameter of the matrix model was interpreted as the genus
expansion parameter of topological string theory, which,
on the gauge theory side, was identified with a constant
graviphoton background. A comparison between instanton
calculus and matrix model at higher genus through topo-
logical string amplitudes was made in [18,19].

Although it was pointed out in [20] that the � back-
ground and the graviphoton background are different,7 here
we would like to compute the first order correction to the
one-point function on both backgrounds and compare with
each other, because these two backgrounds look similar
and share the interpretation of genus expansion. We shall
start with computing the @-correction of the glueball one-
point function from the instanton calculus in Sec. VA and
proceed to recapitulating the matrix model computation in
Sec. VB. Comparing the result of the glueball one-point
function from the instanton calculus (5.4) with the result of
the one-point function in the matrix model (5.11) or (5.14),
we find a discrepancy. Though we cannot find any way to
relate the two results, we still expect there to be a relation
between these two genus expansions, for example, by
change of variables.

A. @-corrections of the glueball one-point function

Let us study the @-corrections of the glueball one-point
function. We shall choose the simplest Gaussian super-
potential here.

Since the connected two-point function is given as�
Tr
’2

2
Treu’

�
¼ eua@

ffiffiffi
q

p
shðu@ÞI1

�
2
ffiffiffi
q

p shðu@Þ
@

�
; (5.1)

we find the @-corrections of the glueball one-point function
is

hTr����eu’i ¼ �2
ffiffiffi
q

p �
1þ ðu@Þ2

24

�

� 1

u
I1

�
2
ffiffiffi
q

p
u

�
1þ ðu@Þ2

24

��
eu’

¼ �2
ffiffiffi
q

p �
1

u
I1ð2 ffiffiffi

q
p
uÞeu’

þ ðu@Þ2
24

2
ffiffiffi
q

p
I0ð2 ffiffiffi

q
p
uÞeu’

�
; (5.2)

where we have used identities of the modified Bessel
function

In�1ðxÞ � Inþ1ðxÞ ¼ 2n

x
InðxÞ;

In�1ðxÞ þ Inþ1ðxÞ ¼ 2
d

dx
InðxÞ:

(5.3)

Therefore, the glueball resolvent is

�
Tr����

1

z� ’

�
¼ �2

ffiffiffi
q

p �
z� a� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðz� aÞ2 � 4q

p
2
ffiffiffi
q

p

þ @
2

24
2
ffiffiffi
q

p 2ðz� aÞ2 þ 4q

½ðz� aÞ2 � 4q�5=2
�
:

(5.4)

Note that the following formula holds for the Laplace
transformation

L ftnfðtÞg ¼ ð�1ÞnFðnÞðsÞ; (5.5)

if we denote the Laplace transformation asLffðtÞg ¼ FðsÞ.

B. Matrix model computation

The computation on the matrix model side can be per-
formed with several methods. The first method is due to
loop equation: The resolvent in the matrix model is deter-
mined by the loop equation.
We shall consider the matrix model with potential

WðMÞ:

Z ¼
Z

DM expð�N TrWðMÞÞ: (5.6)

The loop equation for the resolvent RðzÞ ¼ hN�1 Trðz�
MÞ�1i,

Z dy

2�i

W 0ðyÞ
z� y

RðyÞ ¼ RðzÞ2 þ 1

N2

	

	WðzÞRðzÞ; (5.7)

(see (13.52) in [22]) gives

Z dy

2�i

W 0ðyÞ
z� y

R1ðyÞ ¼ 2R0ðzÞR1ðzÞ þ 	

	WðzÞR0ðzÞ; (5.8)

at one loop. For the Gaussian modelW 0ðyÞ ¼ �y, the one-

7The relation between these two backgrounds was also dis-
cussed in [21].
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loop contribution is only nonvanishing for hTr’niwith n �
4. Hence, the resolvent for z! 1 should behave as
R1ðzÞ � 1=z5. This means there is no pole at y ¼ 1 and
we can perform the y integration easily by picking up the
pole at y ¼ z:

ð2R0ðzÞ �W 0ðzÞÞR1ðzÞ ¼ � 	

	WðzÞR0ðzÞ: (5.9)

The right-hand side is a two-point loop correlator and
given by [23]

	

	WðzÞR0ðzÞ ¼ R0ðz; zÞ ¼ 1

�ðz2 � 4=�Þ2 : (5.10)

Therefore, we find

R1ðzÞ ¼ 1

�2ðz2 � 4=�Þ5=2 : (5.11)

For the case of the Gaussian matrix model, an exact
manipulation is possible. The exact solution for the
Gaussian matrix model�

1

N
TreuM

�
¼ 1

Z

Z
DM

1

N
TreuM exp

�
�N�

2
TrM2

�
;

(5.12)

is given by [24]�
1

N
TreuM

�
¼

ffiffiffiffi
�

p
u
I1ð2u= ffiffiffiffi

�
p Þ þ u2

12N2�
I2ð2u= ffiffiffiffi

�
p Þ;
(5.13)

up to genus one. After the Laplace transformation we find�
1

N
Tr

1

z�M

�
¼ �

2
ðz�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 4=�

q
Þ

þ 1

N2�2

1

ðz2 � 4=�Þ5=2 : (5.14)
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