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Recently the partial-wave cutoff method was developed as a new calculational scheme for a functional

determinant of quantum field theory in radial backgrounds. For the contribution given by an infinite sum

of large partial waves, we derive explicitly radial-WKB series in the angular momentum cutoff for d ¼ 2,

3, 4, and 5 (d is the space-time dimension), which has uniform validity irrespectively of any specific

values assumed for other parameters. Utilizing this series, precision evaluation of the renormalized

functional determinant is possible with a relatively small number of low partial-wave contributions

determined separately. We illustrate the power of this scheme in a numerically exact evaluation of the

prefactor (expressed as a functional determinant) in the case of the false vacuum decay of 4D scalar field

theory.
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I. INTRODUCTION

Functional determinants of (ordinary or partial) differ-
ential operators arise in many areas of physics: for in-
stance, in connection with the one-loop effective action
in quantum field-theoretic studies and in the semiclassical
approximation to quantum mechanical tunneling ampli-
tudes. However, explicit evaluation of these quantities,
especially with partial differential operators involving non-
trivial background fields, is usually a very difficult prob-
lem. Explicit analytic results are known only in some
simple cases, such as the one-loop effects in constant
electromagnetic fields in QED [1–3] and in a covariantly
constant field strength in non-Abelian gauge theories [4,5].
Therefore various methods for approximate calculation
were considered, the large mass expansion [6] and the
derivative expansion [7,8] being good examples of them.
But the validity of these approximate methods crucially
depends on the range of various parameters entering the
problem.

Recently there has been significant progress in this
problem, at least when the differential operators are sepa-
rable. Especially, for background fields having radial sym-
metry, a method using the partial-wave analysis has been
developed in the form of the partial-wave cutoff method
[9,10]. This method was first used in the computation of the
QCD instanton determinant [9] for an arbitrary value of
quark mass. (The same quantity with massless quarks was
calculated in a classic paper by ’tHooft [11] a long time
ago). It was then applied to the evaluation of the one-loop
effective action for more general classes of radial back-
ground fields [10]. The prefactor in the false vacuum decay

rate, which requires an evaluation of the functional deter-
minant also, is calculated by the same method [12,13].
Of crucial importance in the above-mentioned calcula-

tional scheme is to find a simple way to extract a finite
renormalized quantity from the infinite sum of partial-
wave contributions. In [9] this was achieved by introducing
a cutoff in the partial-wave sum and then finding a uniform
radial-WKB expansion for the sum of partial waves be-
yond the cutoff value (which is combined with the con-
ventional renormalization counterterms). Combining the
leading terms of this WKB expansion with the contribution
from partial waves below the cutoff value, it is possible to
secure a finite renormalized value in the limit of a large
cutoff value. [In [14], similar results were obtained using
the zeta function technique]. More recently it is observed
that the inclusion of higher order terms in the uniform
radial-WKB expansion greatly improves the rate of con-
vergence for the infinite sum of partial-wave contributions
[15]. The computational labor needed for the functional
determinant calculation is thus much reduced. Efficiency
of this scheme will become especially conspicuous for
functional determinants of higher-dimensional differential
operators, thus making it an effective tool also for the
studies of higher-dimensional quantum field theories.
In the present paper we will give a simplified derivation

of the uniform WKB expansion and provide explicitly
several leading terms of this expansion (needed for fast
precision evaluation of functional determinants) in general
contexts. It is our hope that these explicit results find useful
applications in various related problems. This paper is
organized as follows. In Sec. II the partial-wave cutoff
method is explained briefly and the desired form of the
asymptotic WKB series is presented. In Sec. III, after
introducing the proper-time representation of the radial
functional determinant, we derive the large l expansion
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of the proper-time Green function. In Sec. IV the infinite
sum of contributions from high angular momentum is
explicitly evaluated using the radial-WKB series and the
Euler-Maclaurin summation method and then the uniform
WKB expansions (as a descending series in the angular
momentum cutoff L) are presented in various dimensions
i.e., for d ¼ 2, 3, 4, 5. Our formulas for the renormalized
functional determinants have definitely faster convergence
property compared, say, to those given in [14]. In the next
section we consider a direct application of these results,
finding a more accurate value for the false vacuum decay
rate in the context of 4D scalar field theory. In Sec. VI we
consider the functional determinant in gauge theories,
where the radial potential has a linear dependence in
angular quantum number l. But this does not change the
general structure, and in this case also the appropriate
coefficient functions in the uniform WKB expansion can
be found in explicit forms.

II. SETTING UP THE PROBLEM

In order to set the problem precisely, let us start by
considering a pair of partial differential operators

M ¼ �@2 þ VðrÞ; Mfree ¼ �@2; (2.1)

where @2 ¼ @�@� is the Laplace operator in d dimension

and VðrÞ is a radial potential vanishing sufficiently fast at

infinity. In the one-dimensional case (i.e., with M ¼
� d2

dr2
þ VðrÞ) with the Dirichlet boundary condition on

the interval ½0;1Þ, we can determine the ratio of two
functional determinants of the operators with mass m,
using the Gel’fand and Yaglom’s theorem [16], as

detðMþm2Þ
detðMfree þm2Þ ¼  ð1Þ

 freeð1Þ ; (2.2)

where the wave function  ðrÞ satisfies the ordinary differ-
ential equation (ODE) ðMþm2Þ ¼ 0 with initial value
conditions at r ¼ 0:  ð0Þ ¼ 0 and  0ð0Þ ¼ 1. The other
function  freeðrÞ is the solution to the differential equation
ðMfree þm2Þ free ¼ 0 with the same initial conditions.
This method turns the problem of finding an infinite num-
ber of eigenvalues into that of finding the solutions to the
ODE initial value problems.

Now we consider the case of higher dimensions (i.e.,
d � 2). [In this paper we will provide explicit formulas for
the cases with d ¼ 2, 3, 4, 5 but the extension to higher
dimension is also straightforward]. When the potential is
radial, i.e., V ¼ VðrÞ, we can use the partial-wave analysis,
taking advantage of the spherical symmetry. Formally, for
the radially separable operators given in (2.1), the loga-
rithm of the determinant ratio can be written as a sum of the
logarithm of radial (that is, one-dimensional) determinant
ratios:

� ¼ ln

�
det½Mþm2�

det½Mfree þm2�
�

¼ X1
l¼0

glðdÞ ln
�
det½Ml þm2�
det½Mfree

l þm2�
�
: (2.3)

Here l denotes the angular momentum quantum number
appropriate to each partial wave and

glðdÞ ¼ ð2lþ d� 2Þðlþ d� 3Þ!
l!ðd� 2Þ! (2.4)

is the degeneracy factor [14,17]. The associated radial
differential operator Ml is given by

M l ¼ � 1

rd�1

@

@r

�
rd�1 @

@r

�
þ lðlþ d� 2Þ

r2
þ VðrÞ;

(2.5)

and Mfree
l has the same form as Ml but without the

potential term VðrÞ.
The individual radial determinant ratio in (2.3) is finite

and it can be evaluated easily by using the above Gel’fand-
Yaglom method; but the sum over l leads to a divergent
result. This problem is related to renormalization and an
elegant method to extract the finite or renormalized ex-
pression �ren from � (after a suitable regularization and
renormalization) is presented in [9,14]. We are concerned
here with a more practical problem, which should be
addressed if one wants the full, including the finite part,
expression of�ren. The rate of convergence of the l-sum in
(2.3) is quite slow, and we require an efficient method to
deal with this l-sum. To this end it is convenient to intro-
duce a partial-wave cutoff L [10] and to split the sum into
two pieces, i.e., the low angular momentum part �L and
the high angular momentum part �H:

�ren ¼ �L þ�H; (2.6)

�L ¼ XL
l¼0

glðdÞ ln
�
det½Ml þm2�
det½Mfree

l þm2�
�
; (2.7)

�H ¼ X1
l¼Lþ1

glðdÞ ln
�
det½Ml þm2�
det½Mfree

l þm2�
�
þ ��; (2.8)

where �� denotes the ‘‘conventional’’ renormalization
counterterm. Separate treatment of �L and �H constitute
the crux of the partial-wave cutoff method.
The part�L (see (2.7)) can be evaluated with the help of

the Gel’fand-Yaglom method. Since the determinant ratio
for given l behaves like � 1

l for large l and the degeneracy

factor glðdÞ increases as ld�2, it should be clear that �L

behaves like Ld�2 for d � 3 and like lnL for d ¼ 2 in the
large L limit. (This reveals the divergent structures in the
formal expression in (2.3)). As for the part �H which
involves the sum of all partial-wave contributions with l �
Lþ 1, we can evaluate it analytically in a uniform asymp-
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totic series of the form

�H ¼
Z 1

0
dr

�
Qlog þ

X1
n¼2�d

Q�nL�n
�
; (2.9)

where Q�n’s may have an implicit L dependency of OðL0Þ
and Qlog behaves as OðlnLÞ in the large L limit. This

uniform nature makes also the r integrals in (2.9) well
defined. To find explicit forms of the Q’s, we take the
proper-time representation for the functional determinant
of radial operators for each partial wave and then use the
quantum mechanical radial-WKB expansion which be-
comes exact in the large l limit. For the desired large L
expansion we then perform the sum over l ¼ Lþ
1; � � � ;1 with the help of the Euler-Maclaurin method.
These are given in the following sections.

Note that, as L! 1, unsuppressed terms in the

expansion (2.9) may grow like lnL; L; � � � ; ; Lðd�2Þ, but
they match precisely the large-L divergences coming
from �L except for the sign. Hence, combining the
large-L-unsuppressed terms of �H with �L and taking
L! 1 limit, we get a finite renormalized quantity �ren,
i.e.,

�ren ¼ lim
L!1

�
�L þ

Z 1

0
dr

�
Qlog þ

Xd�2

n¼0

QnL
n

��
: (2.10)

In [14], Dunne and Kirsten identified this expression for
d ¼ 2, 3, 4 by using the zeta function technique.

In principle, since (2.10) yields a well-defined expres-
sion, one can use this expression to obtain the renormalized
functional determinant. But we still have a practical prob-
lem determining �L. Since it is generally not possible to
find a master formula for the determinant ratio valid for all
l, we have to evaluate (numerically) those partial-wave
contributions corresponding to the angular momentum
range 0 � l � L to be able to determine �L. Because of
the slow rate of convergence, a very large number of these
determinant terms should be thus considered to get a
sufficiently good result for the sum. There is a rather
simple way to secure a reliable large-L limit value in
(2.10) with a relatively small number of partial-wave con-
tributions. Including the 1

L -suppressed terms of the expan-

sion (2.9) inside the squared braces in (2.10) would make
the sum converge faster, thereby reducing the number of
partial-wave determinants to be evaluated explicitly. To
appreciate this better, note that if we were able to calculate
both of �L and �H exactly, their sum would be indepen-
dent of the choice of the cutoff L. This implies that, leaving
aside possible numerical inaccuracy in calculating�L, the
L-dependency in the sum for the finite value of the cutoff L
is really due to our ignoring of the 1

L -suppressed contribu-

tions in the asymptotic series (2.9). Therefore, it is possible
to reduce this undesired L-dependency systematically by
taking into account the (ignored) higher order terms in the
1
L -series. Now, instead of taking the strict L! 1 limit in

(2.10), we can write the following formula for �ren:

�ren ¼ �L þ
Z 1

0
dr

�
Qlog þ

Xd�2

n¼0

QnL
n þ XN

n¼1

Q�n
1

Ln

�

þO

�
1

LNþ1

�
; (2.11)

where N refers to the order of truncation. In this formula
the error is indicated by the last term and it is totally under
control. It is apparent that, for a given value of the cutoff L,
we get a more accurate value of�ren by taking into account
more 1

L -suppressed terms. Or, for a given accuracy, we can

lower the value of L by including some 1
L -suppressed

terms. We can thus use (2.11) as the basis of precision
calculation for functional determinants. In this work, we
take N ¼ 4 for concreteness and derive the expressions for
Qd�2; � � � ; Q�4 and Qlog in dimensions d ¼ 2, 3, 4, 5 to

facilitate the use of our formula (2.11) in various physical
problems.

III. THE PROPER-TIME RADIAL GREEN
FUNCTION AND ITS DERIVATIVE EXPANSION

First we write the partial-wave determinant ratio in a
more convenient form

detðMl þm2Þ
detðMfree

l þm2Þ ¼ detð ~Ml þm2Þ
detð ~Mfree

l þm2Þ ; (3.1)

where

~M l � rðd�1Þ=2Mlr
�ðd�1Þ=2 (3.2)

¼ � d2

dr2
þ ðlþ d�3

2 Þðlþ d�1
2 Þ

r2
þ VðrÞ (3.3)

and ~Mfree
l is equal to ~Ml with V ¼ 0. Note that the

operators ~Ml and
~Mfree
l do not involve any first order

derivative term. It is also convenient to introduce the
effective potential

V lðrÞ ¼
ðlþ d�3

2 Þðlþ d�1
2 Þ

r2
þ VðrÞ: (3.4)

The Schwinger proper-time representation for the deter-
minant ratio, for a partial-wave l, is given as

ln
detð ~Ml þm2Þ
detð ~Mfree

l þm2Þ ¼ �
Z 1

0

ds

s
e�m2s

Z 1

0
drf�lðr; r; sÞ

� �free
l ðr; r; sÞg: (3.5)

Here the proper-time radial Green function is defined by

�lðr; r0; sÞ ¼ hrje�s ~Ml jr0i (3.6)

(�free
l corresponds to the one with ~Mfree

l instead of ~Ml)

and it satisfies the equation
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f@s � @2r þV lðrÞg�lðr; r0; sÞ ¼ 0: (3.7)

Since we are interested in the large l behavior of the Green
function, let us rescale the potentialV l and the proper time
s, following [10], as

V l ¼ l2Ul; s ¼ t

l2
: (3.8)

Then (3.7) becomes

�
@t � 1

l2
@2r þUlðrÞ

�
�l

�
r; r0;

t

l2

�
¼ 0: (3.9)

From this equation one may readily recognize that the large
l expansion is of the same nature as the derivative expan-
sion which is an expansion in the number of derivatives on
V l.

In the rest of this section, we develop the derivative
expansion of the above proper-time radial Green function.
The resulting series will be identical with the large l series
considered in [10], but a simpler derivation is given here.
Introducing the momentum variable p, the proper-time
Green function can be cast into the form

�ðr; r0; sÞ ¼
Z 1

�1
dp

2�
hrje�s ~Ml jpihpjr0i

¼
Z 1

�1
dp

2�
e�s½�@2rþV lðrÞ�e�ipðr�r0Þ: (3.10)

After moving the last Fourier factor e�ipðr�r0Þ to the left of
the differential operator @r, one may set the coincident
limit r0 ¼ r and get

�ðr; r; sÞ ¼
Z 1

�1
dp

2�
e�s½�ð@r�ipÞ2þV lðrÞ�

�
Z 1

�1
dp

2�
e�sp2

Kðr; p; sÞ; (3.11)

where a new function Kðr; p; sÞ is introduced. Kðr; p; sÞ
satisfies the following differential equation:

f@s � @2r þ 2ip@r þV lðrÞgKðr; p; sÞ ¼ 0 (3.12)

and the boundary condition Kðr; p; 0Þ ¼ 1.
Now, we introduce an auxiliary expansion parameter �

in (3.12), i.e., consider

ð@s � �2@2r þ 2i�p@r þV lðrÞgKðr; p; sÞ ¼ 0: (3.13)

Then, taking � as an expansion parameter, a series solution
to the above equation can be found with the ansatz:

Kðr; p; sÞ ¼ e�sV lðrÞ½1þ �b1ðr; p; sÞ
þ �2b2ðr; p; sÞ þ � � ��: (3.14)

Plugging (3.14) into (3.13), we find the recurrence relations

@sbk ¼ �2ipf@r � sV 0
lgbk�1 þ f@2r � 2sV 0

l@r

� sV 00
l þ s2ðV 0

lÞ2gbk�2; ðk � 2Þ (3.15)

together with b0 ¼ 1 and @sb1 ¼ 2ipsV 0
lðrÞ. With the

boundary conditions bkðr; p; 0Þ ¼ 0, these recurrence rela-
tions may be used to determine the coefficient functions bk
(k ¼ 1; 2; � � � ). Some leading terms satisfying (3.15) are
easily found. Note that bkðr; p; sÞ is a simple odd/even
polynomial of p when k is odd/even and hence it vanishes
as we integrate over p for all odd numbers of k. Here we
report a few leading bk’s with even numbers of k (k ¼ 2, 4,
6):

b2 ¼
�
s3

3
� p2s4

2

�
ðV 0

lÞ2 þ
�
2p2s3

3
� s2

2

�
V 00

l ; (3.16)

b4 ¼
�
p4s8

24
� p2s7

6
þ s6

18

�
ðV 0

lÞ4 þ
�
�p4s7

3
þ 47p2s6

36
� 13s5

30

�
V 00

l ðV 0
lÞ2 þ

�
p4s6

3
� 19p2s5

15
þ 5s4

12

�
V ð3Þ

l V 0
l

þ
�
2p4s6

9
� 13p2s5

15
þ 7s4

24

�
ðV 00

l Þ2 þ
�
� 2p4s5

15
þ p2s4

2
� s3

6

�
V ð4Þ

l ; (3.17)
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b6 ¼
�
p6s11

36
� 13p4s10

48
þ 287p2s9

540
� 7s8

60

�
V 00

l ðV 0
lÞ4 þ

�
4p6s7

315
� p4s6

9
þ p2s5

5
� s4

24

�
V ð6Þ

l

�
�
2p6s8

45
� 124p4s7

315
þ 43p2s6

60
� 3s5

20

�
V ð5Þ

l V 0
l �

�
p6s12

720
� p4s11

72
þ p2s10

36
� s9

162

�
ðV 0

lÞ6

�
�
p6s8

18
� 32p4s7

63
þ 17p2s6

18
� s5

5

�
ðV ð3Þ

l Þ2 þ
�
4p6s9

81
� 7p4s8

15
þ 25p2s7

28
� 139s6

720

�
ðV 00

l Þ3

�
�
p6s10

9
� 287p4s9

270
þ 493p2s8

240
þ 25s7

56

�
ðV 00

l Þ2ðV 0
lÞ2 �

�
4p6s8

45
� 254p4s7

315
þ 269p2s6

180
� 19s5

60

�
V 00

lV
ð4Þ
l

þ
�
p6s9

15
� 109p4s8

180
þ 473p2s7

420
� 43s6

180

�
V ð4Þ

l ðV 0
lÞ2 þ

�
2p6s9

9
� 31p4s8

15
þ 82p2s7

21
� 301s6

360

�
V 00

lV
ð3Þ
l V 0

l

�
�
p6s10

18
� 47p4s9

90
þ 359p2s8

360
� 271s7

1260

�
V ð3Þ

l ðV 0
lÞ3: (3.18)

From the series solution of Kðr; p; sÞ we perform the Gaussian integrations over p. Then the proper-time radial Green
function at the same points, �ðr; r; sÞ, is determined as

�ðr; r;sÞ ¼ e�sV lffiffiffiffiffiffiffiffiffi
4�s

p
�
1þ�2

�
s3

12
ðV 0

lÞ2 �
s2

6
V 00

l

�
þ�4

�
s6

288
ðV 0

lÞ4 �
11s5

360
ðV 0

lÞ2V 00
l þ

s4

40
ðV 00

l Þ2 þ
s4

30
V 0

lV
ð3Þ
l � s3

60
V ð4Þ

l

�

þ�6

�
s9

10368
ðV 0

lÞ6 �
17s8

8640
ðV 0

lÞ4V 00
l þ

83s7

10080
ðV 0

lV
00
l Þ2 þ

s7

252
ðV 0

lÞ3V ð3Þ
l � 61s6

15120
ðV 00

l Þ3

� 43s6

2520
V 0

lV
00
lV

ð3Þ
l � 5s6

1008
ðV 0

lÞ2V ð4Þ
l þ 23s5

5040
ðV ð3Þ

l Þ2 þ 19s5

2520
V 00

lV
ð4Þ
l þ s5

280
V 0

lV
ð5Þ
l � s4

840
V ð6Þ

l

�

þOð�8Þ
�
: (3.19)

Clearly, this �-series is organized according to the total
number of derivative on V l. Of course, we can set � ¼ 1
now. We also remark that, ignoring the last sixth order term
in (3.19), the quantum mechanical WKB series used in the
approximate evaluation of the instanton determinant in
[18] can be obtained from (3.19) if we substitute the
relevant expression for the potential VðrÞ.

IV. LARGE-L EXPANSION OF THE HIGH
ANGULAR MOMENTUM PART

In this section we use the derivative expansion (3.19) to
derive the large L expansion in (2.9). To this end it is
necessary to identify the structure of the renormalization
counterterms, ��, first. For simplicity we use the dimen-
sional renormalization method. Setting the dimension of
space-time to be d� 2�, a dimensionally regularized ex-
pression of the functional determinant is, using the proper-
time representation,

�� ¼ �
Z 1

0

ds

s

e�m2s�2�

ð4�Þd=2sd=2��
Z
ddx

X1
k¼1

akðx;xÞsk;

(4.1)

where �, introduced for dimensional reason, carries the
dimension of mass. In (4.1), akðx;xÞ (k ¼ 1; 2; 3; � � � ) are

the heat-kernel coefficients. Even if many of them are
known in explicit forms, two leading coefficients, a1 ¼
�V and a2 ¼ 1

2V
2 � 1

6@
2V, are sufficient for our purpose.

The integration over s yields

�� ¼ � md

ð4�Þd=2
�
�

m

�
2� X1

k¼1

�ðk� d
2 þ �Þ

m2k

Z
ddxakðx;xÞ:

(4.2)

When the dimension of space is an odd number, the above
expression is finite at � ¼ 0 and does not require any
counterterm. However it has a pole when the associated
dimension is even and, particularly for d ¼ 2, 4, it has the
structure

�� �� 1

�

Z d2x

4�
a1ðx;xÞ; ðd ¼ 2Þ; (4.3)

�� �� 1

�

Z d4x

16�2
½�m2a1ðx;xÞ þ a2ðx;xÞ�; ðd ¼ 4Þ;

(4.4)

in the �! 0 limit. For d ¼ 2 and 4 we here choose the
renormalization counterterms, assuming the minimal sub-
traction scheme as follows:
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�� ¼ 1

4�

�
1

�
� �E

�Z
d2xa1ðx;xÞ; ðd ¼ 2Þ; (4.5)

�� ¼ 1

16�2

�
1

�
� �E

�Z
d4x½�m2a1ðx;xÞ þ a2ðx;xÞ�;

ðd ¼ 4Þ; (4.6)

where �E is Euler’s constant. With these counterterms,�H

has a finite expression

�H ¼ lim
�!0

�
�

Z 1

0

ds

s
ð�2sÞ�e�m2s

Z 1

0
dr

� X1
l¼Lþ1

glðdÞf�lðr; r; sÞ ��free
l ðr; r; sÞg þ ��

�
:

(4.7)

From the expression (4.7) and the derivative expansion
of the proper-time radial Green function �lðr; r; sÞ ob-
tained in the previous section, the desired large L expan-
sion in (2.9) can be derived. After plugging (3.19) into
(4.7), we may perform the l summation first. Note that the
sum has the structure

X1
l¼Lþ1

e�sðA2l
2þA1lþA0Þðc0 þ c1lþ c2l

2 þ � � �Þ: (4.8)

This kind of summation cannot be done explicitly; but,
with the help of the Euler-Maclaurin method, it is possible
to obtain the large-L series expansion. In computing the
asymptotic expansion of this sum, the most useful form of
the Euler-Maclaurin formula is

X1
l¼Lþ1

fðlÞ ¼
Z 1

L
fðlÞdl� 1

2
fðLÞ � 1

12
f0ðLÞ

þ 1

720
fð3ÞðLÞ þ � � � ; (4.9)

assuming that fðlÞ and its derivatives vanish at l! 1.
When fðlÞ is of the form (4.8), the integral in the Euler-
Maclaurin formula can be performed in terms of the ex-
ponential function and the error function along with a
polynomial of L. Regarding s to be of an order of 1=L2,
we find that taking a derivative of fðLÞ increases the power
of 1=L. Therefore the rest of the series in Euler-Maclaurin
formula is an asymptotic large-L series. See Appendix C in
[10] for more details. After using the Euler-Maclaurin
formula and changing the integration variable s with t

L2 ,

we can find the large-L series for the high angular momen-
tum contribution in the following form:

X1
l¼Lþ1

glðdÞf�lðr; r; sÞ � �free
l ðr; r; sÞg ¼ X1

n¼2�d
P�nL�n:

(4.10)

Because of the presence of the degeneracy factor, explicit
forms of P�n ’s and further evaluation depend on the

dimension of the space. However, since the procedure itself
is basically the same, we will present the related calcula-
tion in detail for d ¼ 2 and only the final results for d ¼ 3,
4, 5 below.

A. 2D

Note that the degeneracy factor is simply glð2Þ ¼ 2�
�10, which is independent from l ( � 0). The large L
expansion in (4.10) starts from P0. Some of the leading
coefficient functions P�n are explicitly evaluated as

P0 ¼ � r

2
erfc

� ffiffi
t

p
r

�
V; (4.11)

P�1 ¼ e�ðt=r2Þ

2
ffiffiffiffi
�

p ffiffi
t

p
V; (4.12)

P�2 ¼ e�ðt=r2Þ

6
ffiffiffiffi
�

p
�
t3=2

2r2
ðV � 2rV0Þ � t5=2

r4
V

�

þ erfc½
ffiffi
t

p
r �

12
tð3rV2 � V 0 � rV00Þ: (4.13)

Other coefficient functions have similar structures: one

part being e�t=r2 times a polynomial in V or its derivatives,

and the other part erfcð
ffiffi
t

p
r Þ times a different polynomial in V

or its derivatives. One may perform t integration with these
explicit forms of P�n ’s. In performing this process with the
first term, P0, we find a pole term: explicitly,

�
Z 1

0

dt

t
e�ðm2t=L2Þ

�
�2t

L2

�
�
erfc

� ffiffi
t

p
r

�

¼ � 1

�
þ �E � 2 ln

�
�r

ð1þ uÞL
�
þOð�Þ (4.14)

with

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2r2

L2

s
: (4.15)

This 1
� divergence is canceled by the renormalization coun-

terterm ��. In the evaluation of other terms on the other
hand, no such divergence arises and so the limit �! 0 can
be taken safely. In the evaluation of these terms, the
following integral formulas are useful:

Z 1

0

dt

t
tne�tðu2=r2Þ ¼ r2n

u2n
�ðnÞ; (4.16)

Z 1

0

dt

t
tne�ðm2t=L2Þerfc

� ffiffi
t

p
r

�

¼ 2

�
r

2

�
2n �ð2nÞ
�ðnþ 1Þ 2F1ðn; nþ 1=2;nþ 1; 1� u2Þ;

(4.17)

where 2F1 is the hypergeometric function. Here note that
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we do not expand the function u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2r2

L2

q
as a power

series of m
2r2

L2 (even for a large value of L), for this kind of

expansion breaks down whenm or/and r get large. Keeping
the function u as a whole, we can maintain the uniform
nature of our large L expansion.

After the l-sum and the t integration, we can generate a 1
L

series for the large partial-wave contribution �H as de-
sired. The leading term of this series is

Qlog ¼ ln

�
�r

ðuþ 1ÞL
�
rV; (4.18)

which is the only nonvanishing term as we let L! 1
(since Q0 ¼ 0). Other terms vanish in the limit L! 1
like L�n (n � 1), but they can be important for L not too
large. Some of those secondary leading terms, needed for
the fast evaluation of�ren, are found to have the following

forms:

Q�1 ¼ � 1

2u
rV; (4.19)

Q�2 ¼ 1

24u5ðuþ 1Þ f�6r3u4V2 þ 2r3u4V 00

þ 2r2ðu2 þ uþ 1Þu2V0 � rðu3 þ u2 � 3u� 3ÞVg;
(4.20)

Q�3 ¼ 1

48u7
f6r3u4V2 � 2r3u4V 00 � 6r2u2V0

� 3rðu4 � 6u2 þ 5ÞVg; (4.21)

Q�4 ¼ 1

1920L4u11ðuþ 1Þ2 f80r
5ð2uþ 1Þu8V3 � 40r5ð2uþ 1Þu8ðV0Þ2 þ 8r5ð2uþ 1Þu8Vð4Þ

þ 16r4ð2u3 þ 4u2 þ 6uþ 3Þu6Vð3Þ þ 60r3ðuþ 1Þ2ðu2 � 5Þu4V2 � rðuþ 1Þ2ð81u6 � 1185u4 þ 2695u2 � 1575Þ
� V � 80r4ð2u3 þ 4u2 þ 6uþ 3Þu6VV0 þ 4r2ð4u7 þ 18u6 þ 32u5 � 139u4 � 310u3 þ 20u2 þ 350u

þ 175Þu2V 0 � 4r3ð4u5 þ 13u4 þ 22u3 � 44u2 � 110u� 55Þu4V00 � 80r5ð2uþ 1Þu8VV00g: (4.22)

The formula given in [14] can be reproduced immedi-
ately, utilizing only the piece Qlog above. First note that
their result in 2D can be written in the form

�DK ¼ lim
L!1

�XL
l¼0

ð2� �10Þ�l

þ
Z 1

0
drrV

�
�XL

l¼1

1

l
þ ln

�
�r

2

�
þ �E

��
: (4.23)

Now, using the relation

�XL
l¼1

1

l
þ ln

�
�r

2

�
þ �E ¼ ln

�
�r

2L

�
þOðL�1Þ; (4.24)

one can see that the second part of (4.23) indeed corre-
sponds to Qlog. (Here observe that u! 1 as L! 1). This
clearly shows that the result of Dunne and Kirsten,�DK, is
equal to

�DK ¼ lim
L!1

�XL
l¼0

ð2� �10Þ�l þ
Z 1

0
drQlog

�
; (4.25)

i.e., our expression without any 1
L -suppressed terms involv-

ing Q�1; Q�2; � � � .

B. 3D

In 3 dimensions no ultraviolet divergence problem arises
in the dimensional regularization procedure and hence no
renormalization counterterm is necessary, i.e., �� ¼ 0.
Now the degeneracy factor is glð3Þ ¼ 2lþ 1—it grows
linearly with l. Hence the series in (4.10) starts from P1.
Using the integral formulas in (4.16) and (4.17), we can
perform the t integration explicitly to obtain the following
expressions for the Q’s:

Q1 ¼ �urV; (4.26)

Q0 ¼ � 1

u
rV; (4.27)

Q�1 ¼ 1

24u5
f�6r3u4V2 þ 2r3u4V 00 þ 2r2ð2u2 þ 1Þu2V 0

� 3rð4u4 � 3u2 � 1ÞVg; (4.28)

Q�2 ¼ 1

24u7
f6r3u4V2 � 2r3u4V 00 � 6r2u2V0

þ 3rð2u4 þ 3u2 � 5ÞVg; (4.29)
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Q�3 ¼ 1

1920u11
f80r5u8V3 þ 60r3ð4u4 � 9u2 � 5Þu4V2 þ 8r5u8Vð4Þ � 40r5u8ðV0Þ2 þ 16r4ð2u2 þ 3Þu6Vð3Þ

� 20r3ð4u4 � 9u2 � 11Þu4V 00 � 20r2ð30u4 � 19u2 � 35Þu2V 0 � 80r5u8VV00 � 80r4ð2u2 þ 3Þu6VV0

þ 15rð88u6 � 235u4 þ 42u2 þ 105ÞVg; (4.30)

Q�4 ¼ 1

1920u13
f120r5u8ðV 0Þ2 � 60r3ð6u4 þ 15u2 � 35Þu4V2 � 24r5u8Vð4Þ � 240r5u8V3 � 240r4u6Vð3Þ

þ 20r3ð6u4 þ 39u2 � 77Þu4V00 � 60r2ð4u6 þ 18u4 � 119u2 þ 105Þu2V 0 þ 240r5u8VV 00 þ 1200r4u6VV0

þ 15rð48u8 � 20u6 � 1015u4 þ 2142u2 � 1155ÞVg: (4.31)

These explicit results can be utilized for fast evaluations of
�ren in d ¼ 3. Note that there is no lnL related term in this
dimension.

If one does not care much about the fast convergence of
the expression (in the limit L! 1), the renormalized
quantity �ren can be found using only the terms Q1 and
Q0 above, i.e.,

�ren ¼ lim
L!1

�XL
l¼0

ð2lþ 1Þ�l þ
Z 1

0
drðQ1LþQ0Þ

�
:

(4.32)

On the other hand, the 3D formula for the same quantity
given in [14] reads

�DK ¼ lim
L!1

�XL
l¼0

ð2lþ 1Þ�l �
Z 1

0
drrVðrÞðLþ 1Þ

�
:

(4.33)

Observing that u ¼ 1þOðL�2Þ, one may easily see that

ðQ1LþQ0Þ ¼ �rVðrÞðLþ 1Þ þOðL�1Þ (4.34)

and therefore two quantities in (4.32) and (4.33) are
identical.

C. 4D

The degeneracy factor in 4 dimensions is
glð4Þ ¼ ðlþ 1Þ2—it grows like a quadratic power in l.

The large-L series in (4.10) starts from P2 in this case.
The integral formulas in (4.16) and (4.17) enable us to
perform the t integration again. After some calculations
we have found the following results for the unsuppressed
quantities:

Qlog ¼ � 1

24
ln

�
�r

ðuþ 1ÞL
�
ð6m2r3V þ 3r3V2

� 3r2V 0 � r3V00Þ; (4.35)

Q2 ¼ � 1

8
ðu2 þ 2u� 1ÞrV; (4.36)

Q1 ¼ � 3

4u
rV; (4.37)

Q0 ¼ 1

48u5
f�6r3u4V2 þ 2r3u4V 00 þ 2r2ð3u2 þ 1Þu2V0

þ rð�52u4 þ 25u2 þ 3ÞVg: (4.38)

Subleading terms in the 1
L asymptotic expansion can also be

identified, with the results

Q�1 ¼ 1

32u7
f6r3u4V2 � 2r3u4V 00 � 6r2u2V0

� rð16u6 � 37u4 þ 6u2 þ 15ÞVg; (4.39)

Q�2 ¼ 1

11 520u11ðu2 � 1Þ f240r
5ðu3 � 1Þu8V3 � 120r5ðu3 � 1Þu8ðV 0Þ2 þ 24r5ðu3 � 1Þu8Vð4Þ þ 144r4ðu5 � 1Þu6Vð3Þ

þ 60r3ð52u6 � 127u4 þ 60u2 þ 15Þu4V2 þ 4r3ð18u7 � 260u6 þ 635u4 � 228u2 � 165Þu4V 00

� 720r4ðu5 � 1Þu6VV 0 � 12r2ð6u9 þ 510u6 � 1011u4 þ 320u2 þ 175Þu2V0 � 240r5ðu3 � 1Þu8VV 00

þ 3rðu2 � 1Þ2ð3288u6 þ 1605u4 � 7630u2 � 1575ÞVg; (4.40)

Q�3 ¼ 1

7680u13
f�720r5u8V3 þ 360r5u8ðV0Þ2 � 72r5u8Vð4Þ � 720r4u6Vð3Þ þ 60r3ð16u6 � 111u4 þ 30u2 þ 105Þu4V2

� 20r3ð16u6 � 111u4 � 42u2 þ 231Þu4V 00 � 60r2ð90u6 � 201u4 � 182u2 þ 315Þu2V 0 þ 720r5u8VV 00

þ 3600r4u6VV0 þ 15rð96u10 þ 63u8 � 2980u6 þ 3010u4 þ 3276u2 � 3465ÞVg; (4.41)
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Q�4 ¼ 1

645 120u17ðu2 � 1Þ2 fr
7ð2u5 � 5u2 þ 3Þu12½�1680V4 þ 3360VðV 0Þ2 � 1008ðV00Þ2 þ 3360V2V 00 � 1344V 0Vð3Þ

� 672VVð4Þ þ 48Vð6Þ� þ r6ð2u7 � 7u2 þ 5Þu10½432Vð5Þ � 7392V0V00 � 4032VVð3Þ þ 10080V2V 0�
� 1680r5ðu2 � 1Þ2ð52u4 � 125u2 � 35Þu8V3 þ 5rðu2 � 1Þ3ð64 692u10 � 748 223u8 � 1 201 788u6

þ 7 638 246u4 � 4 708 704u2 � 1 576 575ÞV � 168r5ð28u9 � 260u8 þ 1145u6 � 1083u4 � 355u2 þ 525Þu8ðV 0Þ2
� 336r5ð12u9 � 260u8 þ 1145u6 � 1167u4 � 115u2 þ 385Þu8VV00 þ 24r5ð36u9 � 364u8 þ 1603u6 � 1365u4

� 785u2 þ 875Þu8Vð4Þ þ 1008r4ð4u11 þ 850u8 � 2869u6 þ 2645u4 � 105u2 � 525Þu6VV0

� 144r4ð8u11 þ 1190u8 � 3843u6 þ 3030u4 þ 665u2 � 1050Þu6Vð3Þ � 42r3ðu2 � 1Þ2ð9864u8 � 8415u6

� 64 645u4 þ 54 495u2 þ 17 325Þu4V2 þ 2r3ð432u13 þ 69048u12 � 25641u10 � 1242409u8 þ 2941010u6

� 1987510u4 � 167265u2 þ 412335Þu4V 00 � 6r2ð144u15 þ 46 032u14 � 228 564u12 � 659 897u10

þ 4 287 475u8 � 6 809 390u6 þ 3 736 110u4 þ 153 615u2 � 525 525Þu2V0g: (4.42)

These can be used for fast evaluations of �ren in d ¼ 4.
For the comparison with the result of [14], we here give the
formula presented in [14]:

�DK ¼ lim
L!1

�XL
l¼0

ðlþ 1Þ2
�
�l �

R1
0 drrVðrÞ
2ðlþ 1Þ

þ
R1
0 drr

3VðV þ 2m2Þ
8ðlþ 1Þ3

�

� 1

8

Z 1

0
drr3VðV þ 2m2Þ

�
ln

�
�r

2

�
þ �E þ 1

��
:

(4.43)

The l sum of the second term in the above equation yields

XL
l¼0

ðlþ 1Þ2
�
� rVðrÞ

2ðlþ 1Þ
�
¼ �rVðrÞ

�
L2

4
þ 3L

4
þ 1

2

�
;

(4.44)

while the l sum of the next term, if combined with the last
term, produces

VðV þ 2m2Þ
8

�XL
l¼0

1

lþ 1
� ln

�
�r

2

�
� �E � 1

�

¼ �VðV þ 2m2Þ
8

�
ln

�
�r

2L

�
þ 1

�
þOðL�1Þ: (4.45)

On the other hand, our formula for �ren using only unsup-
pressed terms (given in (4.35), (4.36), (4.37), and (4.38)) is

�ren ¼ lim
L!1

�XL
l¼0

ðlþ 1Þ2�l þ
Z 1

0
drðQlog þQ2L

2

þQ1LþQ0Þ
�
; (4.46)

Qlog þQ2L
2 þQ1LþQ0

¼ ln

�
�r

2L

��
� r3VðV þ 2m2Þ

8
þ ðr3V 0Þ0

24

�

� rVðrÞ
�
L2

4
þ 3L

4
þ 1

2

�
� r3VðV þ 2m2Þ

8

þ 1

24
ð4r2V 0 þ r3V 00Þ þOðL�1Þ: (4.47)

The difference between �ren and (4.43) is

�ren ��DK ¼
Z 1

0
dr

1

24

�
r3V 0 ln

�
�r

2L

�
þ r3V 0

�0 ¼ 0;

(4.48)

showing that our result is consistent with the 4D formula
given in [14].

D. 5D

The degeneracy factor in the 5 dimensional space is
glð5Þ ¼ 1

6 ðlþ 1Þðlþ 2Þð2lþ 3Þ. The first term in the

large-L series in (4.10) will be the term P3 now. The
integral formulas in (4.16) and (4.17) are used in the t
integration again. After the l summation and the t integra-
tions, we have found the following results:

Q3 ¼ 1

18
uð2u2 � 3ÞrV; (4.49)

Q2 ¼ � 1

3u
rV; (4.50)

Q1 ¼ 1

144u5
f6r3ð2u2 � 1Þu4V2 þ 2r3ð1� 2u2Þu4V00

þ 2r2ð�8u4 þ 4u2 þ 1Þu2V 0

þ rð�138u4 þ 47u2 þ 3ÞVg; (4.51)
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Q0 ¼ 1

72u7
f6r3u4V2 � 2r3u4V00 � 6r2u2V 0 � 3rð28u6 � 34u4 þ 9u2 þ 5ÞVg; (4.52)

Q�1 ¼ 1

11 520u11
f80r5ð2u2 þ 1Þu8V3 � 40r5ð2u2 þ 1Þu8ðV 0Þ2 þ 8r5ð2u2 þ 1Þu8Vð4Þ þ 16r4ð8u4 þ 4u2 þ 3Þu6Vð3Þ

þ 60r3ð46u4 � 47u2 � 5Þu4V2 � 5rð1152u10 � 5600u8 þ 5010u6 þ 2469u4 � 2716u2 � 315ÞV
� 80r4ð8u4 þ 4u2 þ 3Þu6VV 0 þ 4r3ð32u6 � 214u4 þ 247u2 þ 55Þu4V 00 � 4r2ð32u8 þ 16u6 þ 1172u4 � 1045u2

� 175Þu2V 0 � 80r5ð2u2 þ 1Þu8VV00g; (4.53)

Q�2 ¼ 1

5760u13
f�240r5u8V3 þ 120r5u8ðV0Þ2 � 24r5u8Vð4Þ � 240r4u6Vð3Þ þ 60r3ð28u6 � 102u4 þ 45u2 þ 35Þu4V2

� 20r3ð28u6 � 102u4 þ 21u2 þ 77Þu4V00 � 180r2ð32u6 � 74u4 þ 7u2 þ 35Þu2V0 þ 240r5u8VV 00

þ 1200r4u6VV0 þ 15rð704u10 � 1656u8 � 1260u6 þ 3745u4 � 378u2 � 1155ÞVg: (4.54)

One may use these results for fast evaluation of �ren in
d ¼ 5.

V. THE PREFACTOR IN FALSE VACUUM DECAY
RATE

We will here illustrate how the formulas obtained in
previous sections can be used to improve the rate of con-
vergence in the calculation of the prefactor in the false
vacuum decay. We consider a simple four-dimensional
scalar field theory described by the Euclidean action

Scl½�� ¼
Z
d4x

�
1

2
ð@��Þ2 þUð�Þ

�
; (5.1)

with

Uð�Þ ¼ �

8
ð�2 � a2Þ2 � �

2a
ð�� aÞ: (5.2)

Here the parameter � represents a constant external source,
which serves to break the degeneracy of the double-well-
type potential. The potential Uð�Þ has two nondegenerate
classical minima, �� and �þð>��Þ, with Uð��Þ>
Uð�þÞ. After expanding the field� about the false vacuum
��

� ¼ �� þ ’; (5.3)

it is convenient to rescale the field ’ and the space-time
coordinates as

�x ¼ mx; ’ ¼ m2

2�
� (5.4)

in the dimensionless form. Here the parameters m and �
are related to the original couplings by

m2 ¼ �

2
ð3�2� � a2Þ; � ¼ �

2
j��j: (5.5)

Then the classical action in terms of these dimensionless
quantities is

Scl½�� ¼
�
m2

4�2

�Z
d4 �x

�
1

2
ð �@��Þ2 þ 1

2
�2 � 1

2
�3

þ 	

8
�4

�
(5.6)

with the dimensionless quartic coupling constant 	 ¼ �m2

4�2 .

The bounce �clðrÞ, which determines the decay of false
vacuum, is a solution to the nonlinear ordinary differential
equation

��00
cl �

3

r
�0

cl þ�cl � 3

2
�2

cl þ
	

2
�3

cl ¼ 0; (5.7)

satisfying the boundary conditions

�0
clð0Þ ¼ 0; �clð1Þ ¼ 0: (5.8)

It is hard to solve this equation analytically but one can
always find a numerical solution. The false vacuum decay
rate is denoted by �decay and in the one-loop approximation

it is given by [19]

�decay ¼
�
Scl½�cl�
2�

�
2

�
�
det0½�@2 þU00ð�clÞ�
det½�@2 þU00ð��Þ�

��1=2
e�S½�cl����;

(5.9)

where the prime on the determinant means that the zero
modes (corresponding to translational moves) are re-
moved. In the exponent the first term S½�cl� denotes the
classical action of the bounce and �� denotes the renor-
malization counterterms. Note that this quantity �decay

involves the functional determinant and thus it can be
evaluated using the methods developed in this paper. The
potential VðrÞ in (2.1) is now fixed as

VðrÞ ¼ U00ð�clÞ ¼ �3�clðrÞ þ 3	

2
�2

clðrÞ; (5.10)

and so the effective potentialV l in the radial operatorMl
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for a partial wave with l becomes

V lðrÞ ¼
ðlþ 1

2Þðlþ 3
2Þ

r2
� 3�clðrÞ þ 3	

2
�2

clðrÞ: (5.11)

For the comparison with the result of [12], we will call
the logarithm of the prefactor in �decay (with the opposite

sign) the effective action �. Then the partial-wave expres-
sion for the renormalized effective action is

� ¼ 1

2
j�0j þ 1

2

XL
l¼2

ðlþ 1Þ2�l � 2 ln

�
�

2
�1

�
�0 � 3

2
�2

0

þ 	

2
�3

0

��
þ

Z
dr

�
Qlog þ

X4
n¼�2

Q�n
1

Ln

�
þO

�
1

L5

�
(5.12)

with �l ¼ lndetð ~Ml þm2Þ= detð ~Mfree
l þm2Þ. In this ex-

pression, �0 has a negative sign and its absolute value is
taken. The contribution from the sector with l ¼ 1 involves
the zero modes related to translational invariance and it is,
having been removed from the sum, written down sepa-
rately. The analytic expression for that contribution has
been found in [12]. The factor 1

2 in front of (5.12) is

introduced since we are considering a real single scalar
field and ðlþ 1Þ2 denotes the degeneracy factor. In the last
term, �0 � �clð0Þ and �1 is the coefficient of K1ðrÞ=r
(K1ðrÞ denotes the modified Bessel function) in the large-r
behavior of �clðrÞ. The coefficient functions Q’s are ex-
plicitly given in our subsection IVC.

In the case 	 ¼ 0:5 we plot in Fig. 1 the numerical
values for the right-hand side of (5.12) as a function of L ¼
1; 2; � � � ; 100, taking 1

L -suppressed parts of the asymptotic

expansion successively. The lowest plots in this figure are
in the case when we ignore all suppressed terms in the
large-L expansion of the high angular momentum part. It
shows the existence of the L! 1 limit. But, since the rate
of convergence is quite slow, it is difficult to find the actual
limit value which is the desired value for the effective
action �. Other plots represent the values obtained after
incorporating 1

L2 ,
1
L3 , and

1
L4 corrections successively and

they show remarkable improvements in convergence as we
include these corrections. A magnified form of this figure is
shown in Fig. 2. A relatively small number of L, for
instance L� 30 in the 	 ¼ 0:5 case, produces a good
convergence and thus gives us a very accurate number of
the effective action when

R
dr½P4

n¼1Q�nL�n� is added.

VI. RADIAL OPERATORS IN GAUGE THEORIES

In this section we consider an application of the large-L
expansion in (2.9) to gauge theory. In [15] it was used to
calculate the renormalized effective actions in classes of
radially symmetric background gauge fields. We present
here the explicit forms of some coefficient functions Q�n
which were announced in that paper.
The one-loop effective action in a gauge theory is ex-

pressed by the logarithm of the functional determinant,

� ¼ ln

�
det½�D2 þm2�
det½�@2 þm2�

�
; (6.1)

where D2 ¼ D�D� and D� ¼ @� � iA� is the covariant

derivative operator. We consider two cases with SU(2)
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FIG. 1 (color online). Plot for the sum of the low angular
momentum (l � L) and the high momentum part when we
take L ¼ 1; 2; � � � ; 100. The (brown) pluses denote the values as
we ignore all terms of Oð1LÞ and beyond. Slow convergence is

evident. Solving 100 differential equations to determine the
determinant for each partial wave (for the case with L ¼ 100)
is not enough to approach the limit. The blue crosses denote
those after incorporating Oð1LÞ corrections and show the marked

improvement of convergence already. The (red) diamonds,
(gray) squares, and (black) dots represent the cases obtained
after we incorporate 1

L2 ,
1
L3 , and

1
L4 corrections successively.
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FIG. 2 (color online). The same plots with Fig. 1 but the scale
is magnified by 250. We can see only the (red) diamonds, (gray)
squares, and (black) dots which represent the values after in-
corporating 1

L2 ,
1
L3 , and

1
L4 corrections successively. One may

conclude that L� 30 is enough to get the limiting value with a
very good precision.

FAST WAY TO COMPUTE FUNCTIONAL DETERMINANTS . . . PHYSICAL REVIEW D 77, 125033 (2008)

125033-11



backgrounds gauge fields of the form

ðCase 1Þ: A�ðxÞ ¼ 2��
ax
fðrÞ �
a

2
; (6.2)

ðCase 2Þ: A�ðxÞ ¼ 2ð��
iûiÞx
gðrÞ �
3

2
; (6.3)

where �, 
 ¼ 1, 2, 3, 4, ��
a (or ��
i) are the ’t Hooft

symbols [11] and ûi a unit 3-vector. The functions, fðrÞ and
gðrÞ are unspecified so that general (radially symmetric)
background fields can be studied. Following [11], we
define the angular momentum operators La �
� i

2��
ax�@
 and the SU(2) isospin generators Ta ¼ �a

2 ,

which satisfy the commutation relations ½La; Lb� ¼
i�abcLc and ½Ta; Tb� ¼ i�abcTc. These operators carry the
quantum numbers characterized by lð¼ 0; 12 ; 1; � � �Þ and

tð¼ 1
2Þ. Note that the angular momentum operators defined

here are different from those of previous sections so that
the quantum number l can take half-integer values as well
as integer values. (The quantum number l in previous
sections corresponds to 2l in this section). Because of the
radial symmetry, as in previous sections, the one-loop
effective action can be written as a sum over one-
dimensional radial determinants.

A. Case 1

The form of the gauge field (6.2) is inspired by the
instanton solution (which corresponds to fðrÞ ¼ 1

r2þ�2

with the size parameter �) and it carries genuine non-
Abelian nature. The covariant Laplacian �D2 involves

the isospin-orbit coupling term and then ~J2 (Ja � La þ
Ta), ~L

2, and ~T2 ¼ 3
4 are conserved quantities. Therefore,

partial waves are specified by the quantum numbers ðl; jÞ.
For each sector, the radial differential operator ~Mðl;jÞ
associated with the covariant Laplacian �D2 assumes the
form

~M ðl;jÞ ¼ �@2r þV ðl;jÞ (6.4)

with the effective potential

V ðl;jÞ ¼
ð2lþ 1

2Þð2lþ 3
2Þ

r2
þ 4fðrÞ

�
jðjþ 1Þ � lðlþ 1Þ � 3

4

�
þ 3r2fðrÞ2: (6.5)

The corresponding radial operator for the free Laplacian
�@2 is

~M free
l ¼ �@2r þV free

l ¼ �@2r þ
ð2lþ 1

2Þð2lþ 3
2Þ

r2
: (6.6)

Introducing the one-dimensional radial determinant
�ðl;jÞ

�ðl;jÞ ¼ ln

�
det½ ~Mðl;jÞ þm2�
det½ ~Mfree

l þm2�
�
; (6.7)

the low angular momentum part of the one-loop effective
action can be written as

�L ¼ XL
l¼0;1=2;1;���

ð2lþ 1Þð2lþ 2Þf�ðl;lþð1=2ÞÞ þ�ðlþð1=2Þ;lÞg

(6.8)

and the corresponding high angular momentum part as

�H ¼ X1
l¼Lþð1=2Þ

ð2lþ 1Þð2lþ 2Þf�ðl;lþð1=2ÞÞ þ�ðlþð1=2Þ;lÞg

þ �� (6.9)

with the renormalization counterterm

�� ¼
�
1

�
� �E

�Z 1

0
dr
r3

8
½4r4fðrÞ4 � 8r2fðrÞ3 þ 8fðrÞ2

þ 4rf0ðrÞfðrÞ þ r2f0ðrÞ2�: (6.10)

The Pauli-Villas regularization was employed in [15] but
we have changed it to the dimensional regularization
scheme in this work]. In (6.8) and (6.9) we have rearranged
jð¼ l	 1

2Þ-sum by combining two sectors of (l, j ¼ lþ 1
2 )

and (lþ 1
2 , j ¼ l) with the same degeneracy factor ð2lþ

1Þð2lþ 2Þ. See [10] for details.
Using the WKB series described in Sec. III, the high

partial-wave contribution (6.9) can be calculated analyti-
cally in the form of the large-L asymptotic series. The
calculational step is almost the same as that described in
Sec. IV. A part of the result was presented in [15] by the
form

�H ¼
Z 1

0
dr

�
Qlog lnLþ X1

n¼�2

Q�nL�n
�
: (6.11)

The first few terms, i.e., Qlog, Q2, Q1, Q0, and Q�1 are

given by relatively short expressions and they are already
presented in [15]. We here report the explicit expressions
for Q�2 and Q�3:
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Q�2 ¼ 1

7680ru13ðu2 � 1Þ f�80ð16u9 þ 27u6 � 81u4 þ 45u2 � 7Þu4G3 þ 20ð32u11 þ 792u10 � 5175u8 þ 8910u6

� 5140u4 þ 266u2 þ 315Þu2G2 þ 15ðu2 � 1Þ2ð3472u8 � 5619u6 � 7399u4 þ 7623u2 þ 1155ÞG
� 40rð12u9 þ 54u6 � 171u4 þ 140u2 � 35Þu4ðG2Þ0 � 60r2ð4u7 þ 6u4 � 15u2 þ 5Þu6ðG0Þ2
þ 40r2ð4u7 þ 9u4 � 18u2 þ 5Þu6ðG2Þ00 þ 48r3u6ðu2 � 1Þð4u2 � 5ÞGð3Þ þ 4rð1760u10 � 12494u8 þ 25779u6

� 19595u4 þ 2975u2 þ 1575Þu2G0 � 4r2ð440u8 � 1889u6 þ 2019u4 � 185u2 � 385Þu4G00

� 24r4ðu2 � 1Þu8Gð4Þ þ 24r4ðu5 � 1Þu8ð3ðH00Þ2 þ 4H0Hð3ÞÞ � 16r3ðu7 � 36u2 þ 35Þu6H0H00

þ 4r2ð6u9 � 930u6 þ 1854u4 � 685u2 � 245Þu4ðH0Þ2g; (6.12)

Q�3 ¼ 1

7680ru15
f�720ð9u6 � 45u4 þ 35u2 � 7Þu4G3 � 60r2ð18u4 � 75u2 þ 35Þu6ðG0Þ2 þ 60ð72u10 � 1431u8

þ 3170u6 � 420u4 � 2562u2 þ 1155Þu2G2 þ 15ð528u12 � 3833u10 � 8245u8 þ 41454u6 � 29442u4

� 15477u2 þ 15015ÞG� 40ru4ð162u6 � 855u4 þ 980u2 � 315ÞðG2Þ0 þ 40r2u6ð27u4 � 90u2 þ 35ÞðG2Þ00
þ 12rð160u10 � 3534u8 þ 10165u6 � 4655u4 � 7875u2 þ 5775Þu2G0 � 12r2ð40u8 � 449u6 þ 165u4 þ 1435u2

� 1155Þu4G00 þ 48r3u6ð12u4 � 45u2 þ 35ÞGð3Þ � 24r4ð3u2 � 5Þu8Gð4Þ � 120r4u8ð3ðH00Þ2 þ 4H0Hð3ÞÞ
þ 80r3u6ð36u2 � 49ÞH0H00 � 20r2ð174u6 � 414u4 � 161u2 þ 441Þu4ðH0Þ2g; (6.13)

where uðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2r2

4L2

q
, HðrÞ ¼ r2fðrÞ, and GðrÞ ¼

HðrÞðHðrÞ � 1Þ. The Q�4 term was also used for the
evaluation in [15], but the expression for Q�4 is quite
long and its actual numerical value is rather small in
most cases. So we do not present it here.

In [15] it was shown that incorporating the combinationP
4
n¼1Q�nL�n made the summation over l converge dra-

matically fast. For instance, Fig. 4b in [15] clearly dem-
onstrated the changes when each of Q�1; . . . ; Q�4 terms
was added one by one.

B. Case 2

The second case is quasi-Abelian. The field has a fixed
color direction and only fL2; L3; T3g are conserved quanti-
ties. Partial waves for the covariant Laplacian �D2 are
classified with the quantum numbers ðl; l3; t3Þ (for l3 ¼
�l; � � � ; l, t3 ¼ 	 1

2 ). The radial operator for a given partial

wave has the form:

~M ðl;l3;t3Þ ¼ �@2r þV ðl;l3;t3Þ; (6.14)

V ðl;l3;t3Þ ¼
ð2lþ 1

2Þð2lþ 3
2Þ

r2
þ 8gðrÞt3l3 þ r2gðrÞ2:

(6.15)

The one-loop effective action in this case can be written as

� ¼ XL
l¼0;1=2;1;���

Xl
l3¼�l

X
t3¼	ð1=2Þ

ð2lþ 1Þ�ðl;l3;t3Þ

þ X1
l¼Lþð1=2Þ

Xl
l3¼�l

X
t3¼	ð1=2Þ

ð2lþ 1Þ�ðl;l3;t3Þ; (6.16)

where �ðl;l3;t3Þ is the one-dimensional radial determinant

defined by

�ðl;l3;t3Þ ¼ ln

�det½�D2
ðl;l3;t3Þ þm2�

det½�@ðlÞ þm2�
�
: (6.17)

As in case 1, the result of the renormalized large partial-
wave contribution can be written in the form (6.11) and
Q2; � � � ; Q�1 as well as Qlog terms were given in [15]. The

expressions for Q�2 and Q�3 are
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Q�2 ¼ r3

23 040u13ðu2 � 1Þ f�240u4ðu2 � 1Þ3r8g6 þ 240u6ðu2 � 1Þð4u2 � 3Þr6g2ðg0Þ2 þ 480u6ðu2 � 1Þ2r6g3g00

þ 480u4ðu2 � 1Þð6u4 þ 3u2 � 7Þr5g3g0 � 48gu8ðu2 � 1Þr4gð4Þ þ 60u2ð52u10 � 303u8 þ 678u6 � 560u4

þ 70u2 þ 63Þr4g4 þ 24u8ðu5 � 2u2 þ 1Þr4ð3ðg00Þ2 þ 4g0gð3ÞÞ þ 16u6ð71u7 � 72u4 � 54u2 þ 55Þg0g00r3
þ 4u4ð442u9 � 520u8 þ 1606u6 � 2043u4 � 10u2 þ 525Þr2ðg0Þ2 þ 8u4ð216u9 � 260u8 þ 1043u6 � 1599u4

þ 215u2 þ 385Þr2gg00 þ 40u2ð72u11 � 208u10 þ 202u8 þ 1131u6 � 1855u4 þ 343u2 þ 315Þrgg0 þ 5ð2248u12
� 12 421u10 þ 11 733u8 þ 20 070u6 � 32 214u4 þ 7119u2 þ 3465Þg2 þ 96u6ð2u7 � 4u4 � 3u2 þ 5Þr3ggð3Þg;

(6.18)

Q�3 ¼ r3

30 720u15
f�720u4ðu2 � 3Þðu2 � 1Þ2r8g6 þ 240u6ð12u4 � 35u2 þ 21Þr6g2ðg0Þ2 þ 480u6ð3u4 � 10u2

þ 7Þr6g3g00 þ 480u4ð18u6 � 15u4 � 70u2 þ 63Þr5g3g0 � 48u8ð3u2 � 5Þr4ggð4Þ þ 60u2ð16u10 � 207u8

þ 960u6 � 1022u4 � 504u2 þ 693Þr4g4 � 24u8ð6u2 � 5Þr4ð3ðg00Þ2 þ 4g0gð3ÞÞ � 16u6ð216u4 þ 270u2

� 385Þr3g0g00 � 96u6ð12u4 þ 15u2 � 35Þr3ggð3Þ � 8u4ð80u8 � 699u6 þ 2595u4 þ 1645u2 � 3465Þr2gg00
� 4u4ð160u8 � 1038u6 þ 3465u4 þ 3220u2 � 4725Þr2ðg0Þ2 � 40u2ð64u10 � 174u8 � 1605u6 þ 2905u4

þ 2583u2 � 3465Þrgg0 þ 5ð160u12 � 4107u10 � 735u8 þ 49 770u6 � 44 982u4 � 46 431u2 þ 45 045Þg2g:
(6.19)

Since the radial operator explicitly depends on l3, we have
to calculate the radial determinant for each l3: this makes
the amount of calculation grow very fast, i.e., by quadratic
powers of L as L becomes large. Thus the effect of accel-
eration, rendered by incorporating the 1

L -suppressed terms,
is greater than other cases.

VII. CONCLUSION

We have here presented an efficient and precise method
for the calculation of functional determinants with radially
symmetric differential operators. This method involves the
partial-wave cutoff technique in which the infinite partial-
wave summation is separated into two sectors as in (2.6).
The first sector is evaluated with the radial Gel’fand-
Yaglom method for each partial wave. We have developed
the large-L asymptotic series for the second sector, i.e., for
the high angular momentum part. Combining the first
sector with the unsuppressed terms of the latter series,
the renormalized sum can be found in the L! 1 limit.
Including the subsequent (i.e., 1

L -suppressed) terms in the

series also, we can get a precise value for the functional
determinant with the choice of relatively small L (which
means less computational work for low angular momen-
tum part). Certainly this greatly improves the efficiency of
calculation. That is, we can get a result with estimated

errors of � 1
L if we ignore all the terms suppressed by 1

L in

the large-L asymptotic expansion (2.9). However, keeping
the summation up to Q�N 1

LN
, the estimated error rate will

be reduced to� 1
LNþ1 . So with a suitable choice of L and N,

we can efficiently calculate the functional determinant to a
desired accuracy with a relatively small number of L.
A generalization of this work to fermi fields should be

important. It can be done by converting the Dirac operator
into the squared second order form, and then by applying
the method developed in the present work. However it
should be possible to develop a more direct fermionic
approach, studying the coupled first order equations, along
the line of the partial-wave cutoff method. Developing a
similar partial-wave method, to evaluate quantum correc-
tions to the masses of solitons like vortices and magnetic
monopoles in gauge theories is certainly an interesting
problem.
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