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a full numerical Hartree-Fock calculation.
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I. INTRODUCTION

Since the seminal paper by Gross and Neveu in 1974 [1],
field theoretic models of fermions in 1þ 1 dimensions
with (broken or unbroken) chiral symmetry have turned
out to be quite useful. In view of a long list of applications
in particle, condensed matter, and mathematical physics, it
is surprising that after more than three decades the basic
solution of these models is still incomplete, even in the
tractable limit of an infinite number of flavors N. A few
years ago it was realized that the alleged phase diagram of
Gross-Neveu (GN) models in the temperature (T) versus
chemical potential (�) plane [2,3] was inconsistent with
the known baryon spectrum. In the standard GN model
with scalar-scalar interaction, this problem was solved in
the meantime with the construction of a soliton crystal
phase (see [4] and references therein) built out of
Dashen-Hasslacher-Neveu baryons [5]. However, there
are still large gaps in our understanding of the model
with continuous chiral symmetry, i.e., the Nambu-Jona-
Lasinio model [6] in two dimensions (NJL2). In the chiral
limit, it is known that solitonic baryons and soliton crystals
do exist here as well, although their properties are quite
distinct from those of the standard GN model [7]. In
particular, an induced fermion number plays an important
role in the NJL2 model [8]. By contrast, in the massive
NJL2 model, very little is known yet about either baryons
or the phase diagram. We are aware of only two works
addressing the issue of baryons at finite bare fermion mass.
Salcedo et al. [9] use an elegant variational ansatz to
reduce the problem to the sine-Gordon kink, both in the
’t Hooft model [10] and the NJL2 model, and point out the
close relationship to the Skyrme picture in higher dimen-
sions [11]. In Ref. [12] the sine-Gordon equation was
subsequently identified as the first term of a systematic
chiral expansion and higher order corrections were deter-
mined with the help of derivative expansion techniques. In
the present work, we try to further improve this situation by
constructing baryons in the (large N) NJL2 model for

arbitrary bare fermion mass, using a combination of ana-
lytical and numerical methods. Our ultimate goal is the
phase diagram of the model which will be discussed else-
where. Like in the GN model, we expect the baryon mass
to play the role of the critical chemical potential where a
soliton crystal phase sets in at zero temperature. Aside
from their importance for the phase diagram, baryons in
the massive NJL2 model are also of interest in their own
right. By varying the bare fermion mass, we have the
unique possibility to interpolate between the Skyrme pic-
ture characteristic for the chiral limit and the nonrelativ-
istic valence picture expected to hold in the heavy fermion
limit.
Let us now pose the baryon problem at largeN in a more

precise fashion. The Lagrangian of the (massive) NJL2

model reads

L ¼ � ði@6 �m0Þ þ g2

2
½ð �  Þ2 þ ð � i�5 Þ2�; (1)

where flavor indices are suppressed as usual, i.e., �  ¼P
N
k¼1

� k k etc. In the large N limit the Hartree-Fock (HF)

approximation [13], or, equivalently, the stationary phase
approximation to the functional integral [5], become exact.
The Dirac-HF equation

ð��5i@x þ �0SðxÞ þ i�1PðxÞÞ � ¼ E� � (2)

for the single particle orbital � has to be solved simulta-
neously with the self-consistency conditions

S ¼ m0 � Ng2
Xocc
�

� � �; P ¼ �Ng2 X
occ

�

� �i�5 �:

(3)

The HF energy

EHF ¼
Xocc
�

E� þ 1

2g2

Z
dx½ðS�m0Þ2 þ P2� (4)

comprises the sum over single particle energies of all
occupied states (including the Dirac sea) and the standard
correction for double counting of the potential energy. The
vacuum problem is a special case of Eqs. (2)–(4) where
S ¼ m (the physical fermion mass), P ¼ 0, and all nega-
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tive energy states are filled. Self-consistency then yields
the gap equation (in units where m ¼ 1, and using the
ultraviolet (UV) cutoff �=2 [12])

�

Ng2
¼ �þ ln�: (5)

Here we have introduced the ‘‘confinement parameter’’ �
[14,15],

� ¼ m0 ln�; (6)

where the name (borrowed from condensed matter physics)
refers to confinement of kink and antikink, not of the
elementary fermions. Trading the bare parameters
ðg2; m0Þ for the physical parameters (m ¼ 1, �) with the
help of Eqs. (5) and (6) is all that is needed to renormalize
the model and eliminate divergences in the baryon prob-
lem. Baryons in the HF approach are characterized by
x-dependent potentials SðxÞ, PðxÞ and one (partially or
fully) occupied extra level as compared to the vacuum.
The observables of most interest to us are the baryon mass,
defined as the difference in HF energies between baryon
state and vacuum, the self-consistent potentials S, P and
the fermion density.

We shall use both analytical and numerical methods,
depending on the parameters. The paper is organized ac-
cordingly. In Sec. II, we remind the reader of the derivative
expansion and collect the results relevant for the vicinity of
the chiral limit. In Sec. III we apply a recently developed
effective field theory for the valence level [16] to get
complementary analytical insight into the nonrelativistic
regime. The full numerical solution of the HF problem
including the Dirac sea is presented in Sec. IV. Section V
contains a short summary and our conclusions.

II. DERIVATIVE EXPANSION

In general the HF problem as defined through Eqs. (2)
and (3) is rather involved. This raises the question whether
one can bypass its full solution, at least in some regions of
parameter space. Near the chiral limit, the potentials S, P
become very smooth. It is then possible to ‘‘integrate out’’
the fermions approximately, using the derivative expansion
technique, see e.g. Refs. [17,18]. This method presupposes
full occupation of each level with N fermions and is
inapplicable for partially occupied levels. It results in a
purely bosonic effective field theory for the complex scalar
field� ¼ S� iPwhich, in the largeN limit, can be treated
classically. Hence, one gets direct access to the HF poten-
tial without need to solve the Dirac-HF equation self-
consistently. The leading order reproduces the sine-
Gordon approach of Ref. [9]. In Refs. [12,19] this program
was carried through to rather high order in the derivative
expansion, yielding a systematic expansion in the ratio of
pion mass to physical fermion mass. The field � was
computed in polar coordinates,

� ¼ ð1þ �Þe2i�; (7)

with �, � expressed in terms of the pion mass m� and the
spatial variable � ¼ m�x. For the present purpose, we
express everything in terms of the confinement parameter
�, using the (approximate) relationship

m� ¼ 2
ffiffiffiffi
�

p ð1� 1
3�þ 11

90�
2 � 5

126�
3Þ: (8)

To this order in �, the baryon mass is given by

MB ¼ 4
ffiffiffiffi
�

p
N

�

�
1� 4

9
�þ 9

50
�2 � 101

735
�3

�
; (9)

whereas the result for the potentials translates into

S ¼ 1� 2

cosh2�
þ 2

cosh4�
�

� 2

9

�
20

cosh2�
� 55

cosh4�
þ 41

cosh6�

�
�2;

P ¼ 2 sinh�

cosh2�

�
1� 1

2

�
1þ 2

cosh2�

�
�

þ 1

72

�
47� 276

cosh2�
þ 328

cosh4�

�
�2

�
:

(10)

In the vicinity of the chiral limit, the fermion number is
induced by the topologically nontrivial field � and thus
only resides in the negative energy states. For the fermion
number divided by N (‘‘baryon number’’), the derivative
expansion yields

B ¼
Z

dx

�
�0

�

�
¼ 1

�
½�ð1Þ � �ð�1Þ�; (11)

relating the baryon number to the chiral U(1) winding
number of the field �, much like in the Skyrme model.
One cannot conclude from this result that the induced
fermion density is given by �0=� though. As discussed in
Ref. [8], the fermion density can be determined from the
equation for the partially conserved axial current (PCAC),

@�j
�
5 ¼ 2m0

� i�5 : (12)

Taking the expectation value of Eq. (12) in the baryon
state, using the relationship j�5 ¼ ��	j	 (valid in two

dimensions) and integrating over x, one finds the fermion
density per flavor


 ¼ � 2�

�

Z x

�1
dx0Pðx0Þ: (13)

An expansion in � then yields in the present case


 ¼ 2
ffiffiffiffi
�

p
� cosh�

�
1� 1

6

�
1þ 2

cosh2�

�
�

þ 1

360

�
171� 500

cosh2�
þ 328

cosh4�

�
�2

�
: (14)

Judging from the convergence properties of the series in �,
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we expect expressions (8)–(14) to be quantitatively reliable
up to � � 0:2.

Let us use these results to exhibit some differences
between baryons in massive GN and NJL2 models, respec-
tively. First of all, in the GNmodel, there is no induced, but
only valence fermion density. The negative energy states
cancel exactly when taking the difference between the
fermion density of the baryon and the vacuum [12].
Turning to the NJL2 model, the situation is different. In
Fig. 1 we illustrate the induced fermion density for the case
� ¼ 0:2 and compare it with the naive expectation �0=�.
The difference integrates to 0, in agreement with Eq. (11).
Another pertinent observation is the following. In the GN
model, the scalar potential S is reflectionless for any static
solution [4,20]. This has turned out to be instrumental for
the exact, analytical solvability of the baryon problem. We
can now easily check whether the same is true for the NJL2

model, at least in the region of validity of the derivative
expansion. By solving the Dirac scattering problem with
potential (10), we find that this potential is not transparent,
see Fig. 2 for the case � ¼ 0:2. The transmission coeffi-
cient rises from 0 at low energies to 1 at high energies.
Similar results are obtained at other values of �. This is at
variance with claims in the literature [21] (see, however,
Ref. [22]) and already indicates that the baryon problem in
the NJL2 model is more challenging than in the GN model.

III. NO-SEA EFFECTIVE THEORY

Recently, an approximation has been devised which
yields analytical insight into the regime where the baryon
features one positive energy valence level, while still hav-
ing smooth HF potentials. The idea is to integrate out the
negative energy fermions (i.e., the Dirac sea) and derive an
effective theory for the (positive energy) valence fermions
only. The HF equation for the baryon then reduces to a
single nonlinear (and in general nonlocal) Dirac equation.
This is a tremendous simplification as compared to the full
relativistic HF problem, although somewhat more involved
than the derivative expansion of Sec. II, where the fermions
have been integrated out altogether. For the derivation of
the effective Lagrangian in the massive NJL2 model, we
refer to Ref. [16]. Here we concentrate on the solution of
the nonlinear Dirac equation and the determination of the
parameter region where the proposed truncation is valid.
We proceed as follows. The effective no-sea Lagrangian

consists of a massive free Dirac part and interaction terms
descending from the original scalar and pseudoscalar four-
fermion interactions. As far as terms involving only scalar
interactions are concerned, we keep all contributions in
Eq. (39) of Ref. [16]. The terms involving pseudoscalar
interactions require one additional approximation. The
starting point is the result for the massive NJL2 model,
Eq. (76) of [16], replacing the scalar effective coupling
constant g2eff ¼ �=N by the corresponding expression in

the massive model (cf. Eq. (72) of [16]). If we insist on an
analytical solution as we do in this section, we are only
able to handle the case in which the nonlocality due to one-
pion exchange is of short range. We therefore assume that
the mass term m2

� ¼ 4� dominates the inverse pion propa-
gator and expand in the remaining two terms as follows:

2�

N
� i�5 

1

hþm2
� � 4�

Nð1þ�Þ �  
� i�5 

� 2�

N
� i�5 

1

m2
�

�
1� h

m2
�

þ 4� �  

Nm2
�ð1þ �Þ

�
� i�5 :

(15)

The result is added to the GN model effective Lagrangian.
At this stage it is difficult to predict the precise range of
applicability of the approximation due to the unavoidable
issue of self-consistency. We will return to this question
once we have solved the nonlinear Dirac-HF equation. The
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FIG. 1. Thick solid line: induced fermion density (14); dashed
line: leading order term �0=�; thin line: difference, according to
derivative expansion (� ¼ 0:2).
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FIG. 2. Reflection coefficient R (falling curve) and transmis-
sion coefficient T (rising curve) for baryon HF potential (10)
versus momentum (� ¼ 0:2).
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final effective Lagrangian reads (m ¼ 1)

Leff ¼ � ði@6 � 1Þ þ �

2N

1

ð1þ �Þ ð
�  Þ2 � �

24N

1

ð1þ �Þ2 ðh
�  Þð �  Þ þ �2

6N2

1

ð1þ �Þ3 ð
�  Þ3

þ 11�

1440N

ð1þ 6�=11Þ
ð1þ �Þ3 ðh2 �  Þð �  Þ � �2

12N2

ð1þ �=2Þ
ð1þ �Þ4 ðh �  Þð �  Þ2 þ �3

6N3

ð1þ �=4Þ
ð1þ �Þ5 ð �  Þ4 þ �

2N�
ð � i�5 Þ2

� �

8N�2
ðh � i�5 Þð � i�5 Þ þ �2

2N2�2

1

ð1þ �Þ ð
� i�5 Þ2ð �  Þ: (16)

By construction, it is to be used in the positive energy
sector only, since the effects of the negative energy states
are already encoded in the Lagrangian. For a single baryon,
the ensuing Euler-Lagrange equation is the nonlinear Dirac
equation for the (normalized) valence spinor,

ð��5i@x þ �0Sþ i�1PÞ 0 ¼ E0 0;
Z

dx y
0 0 ¼ 1:

(17)

Assuming the valence level to be occupied with filling
fraction 	 ¼ n=N (where n is the valence fermion number)
and using � ¼ �	 for ease of notation (all �’s disappear),
the scalar and pseudoscalar potentials are expressed self-
consistently as (0 ¼ @x)

S ¼ 1� �s0
ð1þ �Þ �

�s000
12ð1þ �Þ2 �

�2s20
2ð1þ �Þ3

� 11�ð1þ 6�=11ÞsIV0
720ð1þ �Þ3

� �2ð1þ �=2Þ
6ð1þ �Þ4 ð2s000s0 þ ðs00Þ2Þ �

2�3ð1þ �=4Þs30
3ð1þ �Þ5

� �2p2
0

2�2ð1þ �Þ ;

P ¼ ��p0

�
� �p00

0

4�2
� �2p0s0
�2ð1þ �Þ (18)

through scalar (s0) and pseudoscalar (p0) valence level
condensates

s0 ¼ � 0 0; p0 ¼ � 0i�5 0: (19)

It seems hopeless to solve the complicated nonlinear Dirac
equation (17)–(19) in closed analytical form. However,
since the Lagrangian (16) is an approximate one, it is
sufficient to solve the equation perturbatively in some
formal expansion parameter. We choose to expand in 	
and postpone till later the discussion of the validity of the
truncation scheme. In order to solve the Dirac equation, we
then find that we first have to solve a simple nonlinear
differential equation, followed by a sequence of inhomo-
geneous, linear differential equations. The lengthy analyti-
cal computations can be done conveniently with computer
algebra (we used MAPLE); therefore, we skip the details and
record only the final results. The baryon mass (computed

from the classical field energy) has the following power
series expansion in � ¼ �	:

�
MB

N
¼ �� �3

24ð1þ �Þ2 þ
ð�2 � 15�� 8Þ�5

1920�ð1þ �Þ5

� ð�4 � 302�3 þ 265�2 þ 376�þ 88Þ�7

322560�2ð1þ �Þ8 :

(20)

The energy E0 of the valence level is closely related toMB.
According to standard HF theory, the single particle energy
can be interpreted as removal energy of a fermion, or
equivalently

E0 ¼ @MB

@n
: (21)

This is indeed what we find in the calculation, so that there
is no need to spell out E0. Next we turn to the HF potentials
(18) derived from the self-consistent valence level spinor
 0. For the scalar and pseudoscalar potentials, we obtain

S ¼ 1þ s22
cosh2�

�2 þ
�
s42

cosh2�
þ s44

cosh4�

�
�4

þ
�
s62

cosh2�
þ s64

cosh4�
þ s66

cosh6�

�
�6;

P ¼
�
p33

cosh3�
�3 þ

�
p53

cosh3�
þ p55

cosh5�

�
�5

�
sinh�;

(22)

with �-dependent coefficients snm, pnm relegated to the
appendix in order to keep the paper readable (the subscripts
n, m denote the powers of � and 1= cosh�, respectively).
The spatial variable � ¼ yx in Eq. (22) involves a scale
factor

y ¼ �

2ð1þ �Þ �
ð�2 � 3�� 2Þ�3

48�ð1þ �Þ4

þ ð3�4 � 226�3 � 65�2 þ 68�þ 24Þ�5

11520�2ð1þ �Þ7 : (23)

One verifies that it is related to the single particle energy E0

via

E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

q
: (24)

This last relation can be understood in physics terms as
follows. Asymptotically, the valence wave function falls
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off exponentially with the � value (imaginary momentum)
of the bound state. Because of self-consistency, the same
parameter will govern the asymptotic exponential decay of
the potentials in a no-sea HF calculation. This is exactly
what Eq. (24), together with the shape of the potentials S
and P, guarantees.

We note in passing that the asymptotic expansions for
the scalar potential S at small �, Eq. (10), and at large � or
small 	, Eq. (22), have the same functional form. This is
not true for the pseudoscalar potential P where Eq. (10)
involves even, Eq. (22) odd powers of 1= cosh�.

We have tested the above results in two different ways. If
we switch off the pseudoscalar coupling, we can carry out
the same calculation for the massive GN model and repro-
duce the well-known exact results to the expected accu-
racy. A more specific test of the NJL2 model calculation is
provided by the divergence of the axial current implying
[8]

@x
 ¼ � 2�

�
P: (25)

Here 
 denotes the fermion density per flavor consisting of
the valence density and the induced part from the Dirac sea
(n ¼ 	N),


 ¼ 	 y
0 0 � 1

2�
@xP: (26)

Equations (25) and (26) yield the following nontrivial
identity relating the valence fermion density to the pseu-
doscalar HF potential,

	@xð y
0 0Þ ¼ � 2�

�
Pþ 1

2�
@2xP: (27)

In our calculation it is violated at order 	7. For the sake of
completeness, let us quote the separate results for the

valence fermion density 
val ¼ 	 y
0 0,

�
val ¼ v22
cosh2�

�2 þ
�
v42

cosh2�
þ v44

cosh4�

�
�4

þ
�
v62

cosh2�
þ v64

cosh4�
þ v66

cosh6�

�
�6; (28)

and for the induced fermion density 
ind ¼ � 1
2� @xP,

�
ind ¼
�

i42
cosh2�

þ i44
cosh4�

�
�4

þ
�

i62
cosh2�

þ i64
cosh4�

þ i66
cosh6�

�
�6; (29)

where the coefficients can again be found in the appendix.
Let us now discuss the range of validity of our trunca-

tion. The most obvious candidate is the regime

�� 1 ðregime IÞ (30)

and arbitrary 	. In this case we can read off from our results
that �  � 1=�, � i�5 � 1=�2, andh� 1=�2. Inspection

of the coefficients in Leff then shows that we have kept all
terms up to order 1=�8 in an asymptotic expansion for
large �. Since the identity (27) is violated at order 1=�7 we
can trust the results (expanded in 1=�) up to order 1=�6. By
way of example, we note for future reference the asymp-
totic behavior ofMB for �! 1 and full occupation of the
valence level (	 ¼ 1) complementary to Eq. (9),

MB

N
¼ 1� �2

24�2
þ �2

12�3
� �2ð240� �2Þ

1920�4

þ �2ð16� �2Þ
96�5

� �2ð67200� 13776�2 þ �4Þ
322560�6

:

(31)

Another case of interest is weak occupation of the valence
level, i.e., taking the formal expansion in 	 literally. Here,
�  � 	2, � i�5 � 	3, h� 	2, and all terms up to order
	8 are kept in Leff . A necessary condition for this to be
valid is 	� 1. Because of the expansion of the propagator
in Eq. (15), inverse powers of � appear in the coefficients,
and we have to require in addition 	2 � �. In this regime,
all terms are then consistently kept and, according to the
test based on Eq. (27), the results are trustworthy up to
order 	6. This 2nd regime of applicability may be summa-
rized as

	� minð1; ffiffiffiffi
�

p Þ ðregime IIÞ: (32)

If the condition 	� ffiffiffiffi
�

p
does not hold, the nonlocality of

the effective action becomes long range and our approxi-
mation breaks down.
We wind up this section with a summary of the analyti-

cal results obtained in Secs. II and III. From a practical
point of view, it is fairly easy to judge the quality of an
effective theory by comparing successive orders in the
expansion. This is illustrated in Fig. 3 where we plot the
baryon mass (per flavor)MB=N as computed from Eqs. (9)
and (20) versus 	 and �. We only display the result if the
highest order correction kept contributes less than 0.002 of
the total result (other numerical values for the tolerance
would give qualitatively similar plots). This shows clearly
that the derivative expansion (curve starting at 	 ¼ 1, � ¼
0) and the no-sea effective theory (tilted surface) are valid
in disjoint regions of the diagram, separated by a gap.
Needless to say, the no-sea calculation is also valid at
higher values of � not shown here. The structure of the
baryons is very different, depending on which asymptotic
expansion we look at. Baryons described by the derivative
expansion have no filled positive energy level, so that
baryon number is entirely due to the fermion number
induced in the Dirac sea. If on the other hand the no-sea
effective theory applies, there has to be a positive energy
valence level, and the valence fermion density dominates
over the induced one, cf. the powers of � in Eqs. (28) and
(29). Our formulas also show that in the limit of large � for
fixed 	, or in the limit of small 	 for fixed �, the pseudo-
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scalar terms are suppressed and the NJL2 results converge
to those of the GN model. In fact, a nonrelativistic ap-
proximation to the Dirac equation would be perfectly
adequate in this regime. The region where the uppermost
filled level reaches the middle of the gap and crosses zero
energy lies in the white part of Fig. 3 and has to await a
numerical treatment, to which we now turn.

IV. NUMERICAL DIRAC-HARTREE-FOCK
CALCULATION

A. Hamiltonian in discretized momentum space

We first set up the Dirac Hamiltonian in the form of a
matrix which can readily be diagonalized numerically.
Consider the Hamiltonian

H ¼ �5

1

i

@

@x
þ �0SðxÞ þ i�1PðxÞ (33)

with given scalar and pseudoscalar potentials. We choose
the representation

�0 ¼ 1; �1 ¼ �i2; �5 ¼ �0�1 ¼ 3 (34)

of the � matrices leading to a real symmetric Hamiltonian
matrix below. In order to discretize the spectrum of H, we
work in a finite interval of length L and impose antiperi-
odic boundary conditions for fermions, resulting in the
discrete momenta

kn ¼ 2�

L

�
nþ 1

2

�
ðn 2 ZÞ: (35)

We decompose the potentials into Fourier series,

SðxÞ ¼ X
‘

S‘e
i2�‘x=L; PðxÞ ¼ i

X
‘

P‘e
i2�‘x=L: (36)

Guided by the analytical results at small and large � of the
preceding sections, we assume that parity is not sponta-
neously broken in the baryon. A proper choice of the origin
in coordinate space then leads to the following symmetry
relations for the scalar and pseudoscalar potentials:

SðxÞ ¼ Sð�xÞ; PðxÞ ¼ �Pð�xÞ: (37)

Together with the reality conditions for S and P, we then
find that the coefficients S‘, P‘ are real and satisfy

S�‘ ¼ S‘; P�‘ ¼ �P‘; P0 ¼ 0: (38)

The zero mode S0 of SðxÞ acts like a mass term and will be
denoted bym (not to be confused with the physical fermion
mass in the vacuum set equal to 1 throughout this paper).
We decompose the Hamiltonian as follows:

H ¼ H0 þ V; H0 ¼ �5

1

i

@

@x
þ �0m;

V ¼ �0ðSðxÞ �mÞ þ i�1PðxÞ;
(39)

and diagonalize the free, massive Hamiltonian H0 first,

H0j�; ni ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n þm2

q
j�; ni: (40)

Here, � ¼ �1 is the sign of the energy and kn the discrete
momentum. The free eigenspinors are given by

hxj�; ni ¼ 1ffiffiffiffiffiffiffiffiffiffi
2LE

p
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ �k

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� �k

p
�
eikx (41)

with the shorthand notation k ¼ kn, E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
.

Evaluating matrix elements of V in this basis, we find

h�0; n0jVj�; ni ¼ 1

2
ffiffiffiffiffiffiffiffi
EE0p X

‘�0

�n�n0;‘ðAðþÞ
‘ S‘ þ Að�Þ

‘ P‘Þ

(42)

(k0 ¼ kn0 , E
0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðk0Þ2 þm2

p
) with

Að�Þ
‘ ¼ �0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0 þ �0k0

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� �k

p � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ �k

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0 � �0k0

q
:

(43)

As H0 is diagonal, we can now easily construct the full
matrix h�0; n0jHj�; ni. We truncate the basis at some mo-
mentum index �N, keep positive and negative energy states
with labels � �N � 1; . . . ; �N, and diagonalize the resulting
ð4 �N þ 4Þ � ð4 �N þ 4Þ-dimensional, real symmetric matrix
H numerically.

B. Perturbation theory deep down in the Dirac sea

It is possible and in fact necessary to treat the negative
energy states deep down in the Dirac sea perturbatively.
First, this restricts the Hamiltonian matrix to be diagonal-
ized numerically to manageable size. Second, there is a
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FIG. 3. Analytical results for the baryon mass as a function of
filling fraction 	 and confinement parameter �. Shown are only
results which are stable at the 0.2% level if one removes the
highest order correction term. Curve starting at � ¼ 0, 	 ¼ 1:
derivative expansion. Tilted surface: no-sea effective theory.
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logarithmic UV divergence in the sum over negative en-
ergy states which gets cancelled by a similar divergence in
the double counting correction. This cancellation has to be
accomplished analytically before we can hope to reliably
extract the finite part. We therefore compute the eigenval-
ues of H in 2nd order perturbation theory in V, in the large
volume limit L! 1. For the negative energy continuum
states, we find

Epert ¼ �EðkÞ � X‘max

‘¼1

EðkÞ2S2‘ þ k2P2
‘ � 2k‘EðkÞS‘P‘

ðk2 � k2‘ÞEðkÞ
(44)

with EðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
and k‘ ¼ �‘=L. This result is valid

for k� �‘max=L, where the inverse denominators do not
blow up. By comparing the perturbative eigenvalues with
the ones from diagonalization, we can check whether we
have taken into account a sufficient number of basis states
and identify any eigenvalues affected by the truncation.
The result is an optimal energy Emin, the energy of the
lowest single particle level in the Dirac sea computed by
matrix diagonalization.

C. Computation of the baryon mass

The baryon mass has to be evaluated relative to the
vacuum, i.e., as a difference of the HF energies (4) of the
baryon and the vacuum. In the NJL2 model (like in the
standard GN model, for that matter) the self-consistent
potentials in the vacuum are SðxÞ ¼ 1, PðxÞ ¼ 0 in appro-
priate units. The gap equation (5) serves to eliminate the
bare coupling constant from the double counting correction
in Eq. (4). For the present discussion it is helpful to split the
calculation of the baryon mass into four distinct pieces

MB=N ¼ �E1 þ�E2 þ�E3 þ �E4 (45)

defined as follows. We first evaluate the sum over single
particle energies for occupied states resulting from matrix
diagonalization (subtracting the vacuum),

�E1 ¼
XEmax

Emin

ðE� � Evac
� Þ: (46)

Emin has been introduced before, Emax denotes the energy
of the highest occupied level in the baryon. The vacuum
single particle energies Evac

� are computed in a finite inter-
val (length L) from the free massive theory with m ¼ 1.
Next we decompose the perturbative single particle ener-
gies (44) according to their UV behavior,

Epert ¼ �EðkÞ � X‘max

‘¼1

S2‘ þ P2
‘

EðkÞ

� X‘max

‘¼1

Eðk‘Þ2S2‘ þ k2‘P
2
‘ � 2k‘EðkÞS‘P‘

ðk2 � k2‘ÞEðkÞ
: (47)

The last term on the right-hand side behaves asymptoti-

cally like 1=k2 and can be integrated over momenta with-
out cutoff. The resulting convergent integral defines the
contribution �E2 to the baryon mass,

�E2 ¼ �2L
Z 1

kmin

dk

2�

� X‘max

‘¼1

Eðk‘Þ2S2‘ þ k2‘P
2
‘ � 2k‘EðkÞS‘P‘

ðk2 � k2‘ÞEðkÞ
(48)

and can be computed analytically (kmin is determined by
Emin introduced above). The first two terms in Eq. (47),
after vacuum subtraction, give rise to an elementary, log-
arithmically divergent integral which has to be regularized
with the same cutoff as the gap equation and will be
denoted by �E3,

�E3 ¼ �2L
Z �=2

kmin

dk

2�

�
EðkÞ þ X‘max

‘¼1

S2‘ þ P2
‘

EðkÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 1

p �

¼ � L

2�

�
m2 � 1þ 2

X‘max

‘¼1

ðS2‘ þ P2
‘Þ
�
ln�þ�~E3:

(49)

�~E3 is the finite part which can again be computed analyti-
cally. Finally, �E4 is the (vacuum subtracted) double
counting correction,

�E4 ¼ L

2�

�
m2 � 1þ 2

X‘max

‘¼1

ðS2‘ þ P2
‘Þ
�
ð�þ ln�Þ

� �L

�
ðm� 1Þ: (50)

In the sum�E3 þ�E4 the ln� terms are cancelled exactly
and a finite result for MB=N, Eq. (45), is obtained.

D. Finding the self-consistent potential

In nonrelativistic HF calculations, one usually deter-
mines the self-consistent potential iteratively. Starting
from some guess, one solves the HF equation, computes
the new HF potential, and repeats this procedure until it has
converged. This method was also employed in Ref. [9] for
the ’t Hooft model, using a lattice discretization in coor-
dinate space. We do not have this option here. The reason is
the fact that we work in the continuum and have already
sent the UV cutoff to1 and the bare coupling constant to 0.
As is clear from the self-consistency relations (3), in this
case the HF potential is determined by the far UV region
where lowest order perturbation theory holds. Therefore,
we always get back the potential which we put in, irre-
spective of what we choose. If we would keep the cutoff
finite like on the lattice, we could in principle use an
iteration, but the convergence would slow down with in-
creasing cutoff. A way out of this problem was found in
Ref. [23] for the GN model where the HF energy of the
baryon was simply minimized with respect to the potential
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SðxÞ. Technically, the minimization was done with respect
to the Fourier coefficients S‘ of SðxÞ. In theNJL2 case there
are twice as many parameters due to the pseudoscalar
potential, so that this method would be rather cumbersome.
Moreover, owing to the analytical calculations in Secs. II
and III, we already have a fairly good qualitative idea of
what the potentials should look like. Hence, the following
strategy has turned out to be more economic. We write
down a parametrization of S and P which is both flexible
and well suited to the known limiting cases. We then vary
with respect to the parameters. Since we are only interested
in a limited precision, a relatively small number of parame-
ters is sufficient, provided the parametrization is judi-
ciously chosen. The convergence can be checked by
comparing runs with different numbers of parameters. A
natural ansatz for trial functions in the present problem is
given by

SðxÞ ¼ XK
k¼1

ck
cosh2k�

; PðxÞ ¼ XK
k¼1

dk sinh�

cosh2kþ1�
(51)

(� ¼ yxÞ. This is clearly compatible with the no-sea effec-
tive theory, see Eq. (22). The derivative expansion would
suggest even powers of 1= cosh� in PðxÞ at low � rather
than odd powers, see Eq. (10), but this makes almost no
difference in practice, once we keep a sufficient number of
terms. The coefficients ck, dk and the scale parameter y
serve as variational parameters. The baryon mass com-
puted as explained above is a function of these parameters
and is minimized in the (2K þ 1)-dimensional parameter
space via some standard algorithm.

E. Numerical results

All the results shown below were obtained by keeping
the first three terms in each sum, Eq. (51), and varying with
respect to 6 coefficients (ck, dk) and the scale parameter y.
We found that a matrix dimension 804� 804 (correspond-
ing to �N ¼ 200 in Sec. IVA) and box size L ¼ 20 (in units
where m ¼ 1) were adequate. The minimum in the 7-
dimensional space was found with a standard conjugate
gradient method involving 70 iteration steps. We first
tested the whole procedure for several values of 	, � where
the analytical approaches are expected to be reliable. For
example, at � ¼ 0:2, 	 ¼ 1 the derivative expansion gives
MB ¼ 0:522 27 and the numerical HF calculation MB ¼
0:522 48. This is satisfactory, especially since the numeri-
cal value is the result of subtracting large numbers (of the
order of 10 000) due to the Dirac sea, cf. Eq. (46). The
scalar and pseudoscalar HF potentials are indistinguishable
on a plot if one compares the derivative expansion with the
full HF calculation; therefore, we do not show them here.
At � ¼ 5:0, 	 ¼ 1 the no-sea effective theory yieldsMB ¼
0:988 47 as compared to the numerical HF calculation
MB ¼ 0:988 50, again with excellent agreement of the
self-consistent potentials. We also tested the HF calcula-
tion against the no-sea effective theory at small filling. For

� ¼ 0:2, 	 ¼ 0:2 the analytical value MB ¼ 0:197314
compares well with the numerical result MB ¼
0:197 337. These examples give strong support to the
numerical method as well as to the (independent) analyti-
cal calculations.
Regarding the phase diagram, the question of most

immediate interest is the dependence of MB on � for full
occupation 	 ¼ 1. This is expected to yield a critical (2nd
order) curve in the phase diagram at T ¼ 0. In Fig. 4 we
show the numerical points together with the asymptotic
expansions, using both derivative expansion and no-sea
effective theory. In Fig. 5 we compare this newly calcu-
lated baryon mass in the massive NJL2 model with the
known one from the massive GN model, choosing a some-
what smaller range of � as compared to Fig. 4 to highlight

0
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0.8

1

1 2 3 4

FIG. 4. Circles: numerical results for baryon mass at 	 ¼ 1
versus �. Curves: analytical asymptotic predictions (derivative
expansion to the left, no-sea effective theory to the right).
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FIG. 5. Comparison of baryon mass for large N GN (upper
curve) and NJL2 (lower curve) models, at 	 ¼ 1. These curves
can be regarded equally well as zero temperature phase bounda-
ries in the ð�;�Þ plane.
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the differences. The two curves shown reflect directly the
critical lines in the ð�;�Þ plane at T ¼ 0 of the respective
phase diagrams. As a by-product of the calculation of
baryon masses we also get the single particle energy of
the valence levels, i.e., discrete levels inside the mass gap.
It is instructive to compare these energies between the GN
and NJL2 models as well. Figure 6 shows the pair of
(charge conjugation) symmetric states in the GN model
which come together at zero energy at � ¼ 0 (this point

corresponds to a kink and antikink at infinite separation).
The baryons in the NJL2 model also feature a pair of
discrete states which approach those of the GN model at
large �. At small �, they converge to the lower edge of the
mass gap, the upper level crossing zero near �0 ¼ 0:3.
Both of these valence levels are fully occupied. Below �0

one would talk about induced fermion number (the number
of negative energy levels changes as compared to the
vacuum), whereas above �0 one has ordinary valence
fermions like in the GN model. Note however that nothing
discontinuous happens at the ‘‘spectral flow’’ point �0.
This picture nicely illustrates the transition from the mass-
less baryon at � ¼ 0 (with the baryon number given by the
winding number of the pion field, like in the Skyrmion
case) to the weakly bound nonrelativistic baryon emerging
at large � in either GN or NJL2 models. The latter one is
apparently insensitive to the original type of chiral sym-
metry, be it U(1) or Z2.
The HF potentials belonging to these calculations are

shown in Figs. 7–10. Figure 7 is a 3d-plot containing full
information on how S and P depend on x for 20 different
values of �. The 3 different projections of this plot onto the
coordinate planes show the x dependence of S (Fig. 8) and
P (Fig. 9) in more detail, as well as parametric contour
plots in the ðS; PÞ plane (Fig. 10). We can infer from this
last figure that the chiral winding number jumps from 1 to 0
slightly below � ¼ 0:7, where the contour plot hits the
origin (close to the 5th curve from the outside). Note that
this does not coincide with the value �0 ¼ 0:3 where the
upper valence level crosses zero, so that induced fermion
number is not directly related to winding number of � ¼
S� iP for larger bare fermion masses. This is in agreement
with the general observation that the integer part of in-
duced fermion number is not topological, being sensitive to
spectral flow [24].
Although it is presumably not relevant for the phase

diagram, we now turn to baryons with a partially occupied
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0.5 1 1.5 2 2.5 3 3.5

FIG. 6. Energies of valence levels for GN model (dashed
curves) and NJL2 model (solid curves) versus �, illustrating
how the NJL2 baryon interpolates between a Skyrme-type
baryon with induced fermion number and a conventional, non-
relativistic, valence-type baryon.
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FIG. 7. HF potentials S, P versus x in a 3d plot. The curves
correspond to � ¼ 0:3; . . . ; 1:0 in steps of 0.1 and � ¼
1:2; . . . ; 3:4 in steps of 0.2. The outermost curve has the smallest
value of �. The curves at large � accumulate around S ¼ 1,
P ¼ 0 and are not well resolved, see also Figs. 8–10.
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FIG. 8. Projection of Fig. 7 onto the ðx; SÞ plane, showing how
the shape of the scalar potential evolves with �.
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valence level. The HF calculation can be done exactly as
before, except that the single particle energy of the upper
valence level is weighted by the occupation fraction 	
when calculating the baryon mass. We have carried out
detailed studies of the 	 dependence for the three values
� ¼ 0:2, 0.6, 1.0 and compared the HF results with the no-
sea effective theory expected to describe correctly the 	!
0 behavior. The results for the baryon mass are shown in
Figs. 11–13 and again underline the value of the much
simpler analytical results.

The self-consistent potentials as a function of 	 are
illustrated for the case � ¼ 0:2 in Fig. 14 (the other cases
are qualitatively similar). This 3d plot corresponds to
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FIG. 10. Projection of Fig. 7 onto the ðS; PÞ plane.
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FIG. 9. Analogous to Fig. 8, but for the ðx; PÞ plane and
pseudoscalar potential.
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FIG. 11. Baryon mass in the NJL2 model versus filling frac-
tion 	 of upper valence level, for � ¼ 0:2. Circles: numerical
HF calculation, curve: analytical prediction based on the no-sea
effective theory.
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FIG. 12. Same as Fig. 11, but for � ¼ 0:6.
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FIG. 13. Same as Fig. 11, but for � ¼ 1:0.
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Fig. 7, except that now the different curves are obtained by
varying 	 at fixed � rather than � at fixed 	. The similarity
between Figs. 7 and 14 is quite remarkable. Depleting the
valence level has apparently a very similar effect as in-
creasing the bare fermion mass, i.e., it drives the NJL2

baryon into the nonrelativistic regime where it becomes
indistinguishable from the GN baryon.

In order to summarize the results obtained in the present
work, we have combined all the available points from the
numerical HF calculations with the analytical results taken
from Fig. 3, see Fig. 15. The numerical points start to fill
the white gap in Fig. 3 and match perfectly onto the
analytical predictions in the region where these can be
trusted. This can be seen more clearly in the 2d plots of
Figs. 4 and 11–13. We do not show any results for � > 2
where the asymptotic formula (31) is fully adequate.
Notice that when the present work was started, only the
short solid curve starting at 	 ¼ 1, � ¼ 0 had been known
from the derivative expansion [12].

V. SUMMARYAND CONCLUSIONS

This paper is part of an ongoing effort to establish the
phase diagram of (large N) Gross-Neveu type models.
Ultimately, we would like to construct the phase diagram
of the massive NJL2 model in ð�;�; TÞ space in a similarly
complete fashion as what has already been achieved for the
massive GN model. One important building block which
was still missing were the baryons in the massive NJL2

model. The only source of information so far was the
derivative expansion, restricted to the vicinity of the chiral
limit and to completely filled single particle levels. After
briefly reviewing these results, we have identified another
parameter region where systematic analytical approxima-
tions can be performed, namely, the nonrelativistic regime
(heavy fermions or weak filling of the valence level). Here,
a recently developed no-sea effective theory has proven to
be very efficient. The gap between these two asymptotic
approaches could only be filled at the expense of full
numerical HF calculations including the Dirac sea. As a
result, we have obtained a rather comprehensive picture of
how the baryon evolves from a Skyrme-type topological
object in the chiral limit to a nonrelativistic valence bound
state. The transition from induced fermion number to
valence fermion number has a simple interpretation in
terms of spectral flow as a function of the confinement
parameter, as discussed in connection with Fig. 6. In the
heavy fermion limit, it becomes irrelevant whether the
model had originally a U(1) or Z2 chiral symmetry, and
the results for the massive NJL2 and GN models converge.
As compared to the massive GNmodel with its complete

analytical solution, the analysis of the massiveNJL2 model
is significantly more involved. Although the self-consistent
potentials which we find numerically appear to have simple
shapes, we have not been able to come up with an analyti-
cal solution. One source of difficulty is the fact that the
potentials in the NJL2 model are not reflectionless. Related
to this, even in those limits where we have analytical
control, the potentials do not lead to any known exactly
solvable Dirac equation. If this problem is analytically
tractable at all, the techniques must be quite different
from those which have been successful in the GN model
case.
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FIG. 14. HF potentials S, P versus x in a 3d plot. The 17
curves correspond to 	 ¼ 0:2; . . . ; 1:0 in steps of 0.05. The
outermost curve has the largest value of 	.
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FIG. 15. Baryon mass as a function of filling fraction 	 and
confinement parameter �. The numerical HF results (circles)
have been combined with the analytical results of Fig. 3, com-
pleting the picture of what is known by now.
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Finally, coming back to the phase diagram, we have in
fact determined one particular phase boundary in the
present work. Like in the GN model, the T ¼ 0 base line
of the phase diagram in ð�;�; TÞ space is expected to be
given by the curveMBð�Þ of Figs. 4 and 5. Another piece of
information about the phase diagram is the vicinity of the
tricritical point discussed recently in Ref. [25]. To com-
plete this picture remains quite a challenge.

APPENDIX: RESULTS FOR COEFFICIENTS
DEFINED IN SEC. III

Here we collect the �-dependent coefficients which
enter the results of the no-sea effective theory in Sec. III.
Coefficients for the scalar potential S, Eq. (22),

s22 ¼ � 1

4ð1þ �Þ2 ;

s42 ¼ 5�2 þ 3�þ 2

96�ð1þ �Þ5 ;

s44 ¼ � 3�þ 4

64�ð1þ �Þ4 ;

s62 ¼ � 91�4 � 102�3 þ 275�2 þ 276�þ 88

23040�2ð1þ �Þ8 ;

s64 ¼ 81�3 þ 13�2 � 140�� 24

9216�2ð1þ �Þ7 ;

s66 ¼ � 45�2 � 136�� 60

9216�2ð1þ �Þ6 :

(A1)

Coefficients for the pseudoscalar potential P, Eq. (22),

p33 ¼ 1

8�ð1þ �Þ2 ; p53 ¼ �ð3�þ 2Þð�� 3Þ
192�2ð1þ �Þ5 ;

p55 ¼ �� 2

64�2ð1þ �Þ4 : (A2)

Coefficients for the valence fermion density 
val, Eq. (28),

v22 ¼ 1

4ð1þ �Þ ;

v42 ¼ � �2 þ �þ 1

48�ð1þ �Þ4 ;

v44 ¼ �þ 4

64�ð1þ �Þ3 ;

v62 ¼ 2�4 þ 10�3 þ 49�2 þ 37�þ 11

2880�2ð1þ �Þ7 ;

v64 ¼ � 15�3 þ 151�2 þ 76�þ 48

9216�2ð1þ �Þ6 ;

v66 ¼ 9�2 � 40�þ 12

9216�2ð1þ �Þ5 :

(A3)

Coefficients for the induced fermion density 
ind, Eq. (29),

i42 ¼ 1

16�ð1þ �Þ3 ;

i44 ¼ � 3

32�ð1þ �Þ3 ;

i62 ¼ � 2�2 � 5�� 4

192�2ð1þ �Þ6 ;

i64 ¼ 4�2 � 7�� 8

128�2ð1þ �Þ6 ;

i66 ¼ � 5ð�� 2Þ
256�2ð1þ �Þ5 :

(A4)
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