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The addition of an adjoint Polyakov loop term to the action of a pure gauge theory at finite temperature

leads to new phases of SUðNÞ gauge theories. For SUð3Þ, a new phase is found which breaks Zð3Þ
symmetry in a novel way; for SUð4Þ, the new phase exhibits spontaneous symmetry breaking of Zð4Þ to
Zð2Þ, representing a partially-confined phase in which quarks are confined, but diquarks are not. The

overall phase structure and thermodynamics is consistent with a theoretical model of the effective po-

tential for the Polyakov loop based on perturbation theory.
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I. INTRODUCTION

It is well established that SUðNÞ gauge theories in
3þ 1 dimensions have a low-temperature phase in which
quarks are confined, and a high-temperature phase where
quarks are deconfined, often referred to as the quark-gluon
plasma phase. The deconfinement phase transition in pure
gauge theories, i.e., without quarks, is understood theo-
retically as a transition between a low-temperature phase
where a global ZðNÞ symmetry is unbroken to a high-
temperature phase where ZðNÞ symmetry is spontaneously
broken [1]. Simulations indicate that the transition from
confined phase to deconfined phase is similar for all
N � 3. The global ZðNÞ symmetry appears to always break
completely, with no residual unbroken subgroup.

The addition of a term of the form

�
Z

d3xhA TrAPð ~xÞ ¼ �T
Z �

0
dt

Z
d3xhA TrAPð ~xÞ (1)

to the Euclidean action of pure SUðNÞ gauge theories at
finite temperature leads to new phases with novel proper-
ties. Here Pð ~xÞ is the Polyakov loop at the spatial point ~x,
given by the usual path-ordered exponential of the tempo-
ral component of the gauge field A0 in the Euclidean time
direction. The temporal origin of P is irrelevant due to the
trace; because the trace is in the adjoint representation, this
additional term respects ZðNÞ symmetry. Of course, this
additional term in the action is neither local nor renorma-
lizable in 3þ 1 dimensions. Thus we must regard this
model as an effective theory defined at fixed lattice spacing
or by some other cutoff. There will be a finite renormal-
ization of the parameter hA in comparing lattice results
with continuum.

This additional term directly changes the effective po-
tential. For a pure SUðNÞ gauge theory, the effective po-
tential Veff can be written as a character expansion of
the form

Veff ¼
X

vR TrRP (2)

where the sum is over all representations of zero N-ality,
i.e., invariant under ZðNÞ. Terms of this form can be in-
duced at one loop by certain topological excitations [2–4]
as well as by particles in the adjoint representation. A one-
loop calculation shows that the contribution to the effective
potential of a heavy particle of mass M in the adjoint
representation, either boson or fermion can be approxi-
mated in 3þ 1 dimensions as

�
�ð2sþ 1ÞM2T2

�2
K2ðM=TÞ

�
TrAðPÞ ¼ �ThA TrAðPÞ

(3)

where T is the temperature and 2sþ 1 accounts for spin
[5]. The parameter hA is positive in this case. The effect of
such particles can be included at lowest order in hA in the
effective potential by the shift vA ! vA � ThA. A positive
value of hA favors the ZðNÞ-breaking deconfined phase.
However, a term with hA negative favors minimization
of TrAP. Because TrAP ¼ jTrFPj2 � 1, the minimiza-
tion TrAP implies TrFP ¼ 0, a defining property of the
confined phase. It is reasonable to expect that a suffi-
ciently negative value of hA might lead to a restoration of
confinement at temperatures above the deconfinement
temperature.
We were motivated to look for this symmetry restora-

tion by recent theoretical work on various aspects of the
Polyakov loop effective potential. In certain super-
symmetric gauge theories on R3 � S1, Davies et al.
[2,3] have shown that finite-temperature monopoles give
rise to a Polyakov loop effective potential that has a
ZðNÞ-symmetric minimum for all values of the S1 circum-
ference, and is therefore in a confined phase. These models
do not precisely represent systems at finite temperature,
because the supersymmetric partners of the gauge fields
obey periodic boundary conditions. Comparable calcula-
tions in nonsupersymmetric SUðNÞ gauge theories at finite
temperature are much more difficult. In SUð2Þ gauge the-
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ory, Diakonov et al. [4] have calculated the contribution
to Veff of finite-temperature instantons with nontrivial hol-
onomy; such instantons have a color magnetic monopole
content. Their work indicates an instability of the decon-
fined phase at sufficiently low temperature. In both of these
examples, topological excitations give rise to a term in the
effective potential corresponding to hA negative.

A positive value of hA decreases the deconfinement
temperature. For negative values of hA, we have found new
phases for both SUð3Þ and SUð4Þ. In the case of SUð3Þ, the
new phase breaks Zð3Þ symmetry in an unfamiliar way,
characterized by a negative value for the Polyakov loop in
the fundamental representation hTrFPi< 0. In the case of
SUð4Þ, the global Zð4Þ symmetry is spontaneously broken
to Zð2Þ. The residual Zð2Þ symmetry ensures that for the
fundamental representation hTrFPi ¼ 0, but hTrRPi � 0
for representations R that transform trivially under Zð2Þ,
such as the 6 and the 10.

II. SIMULATION RESULTS FOR SUð3Þ
The lattice action we have studied for SUð3Þ and

SUð4Þ is
S ¼ SW þX

~x

HA TrAPð ~xÞ (4)

where SW is the Wilson action, defined conventionally as
the sum over plaquettes. The sum in the second term is over
all spatial sites, and naively HA ¼ hAa

3. Most of our sim-
ulations were performed on 243 � 4 lattices, on a range of
Wilson action � values ranging from 5.7 to 6.8. Although
we motivate the additional parameter HA as arising from
heavy adjoint fermions, there is no renormalization of the
gauge coupling as there would be with dynamical fer-
mions. Thus the lattice spacing in physical units will be
similar to that of the pure gauge theory. At � ¼ 6:5, this
leads to a spatial lattice size slightly larger than a fermi.
This would be dangerously small for simulations with
light dynamical quarks. However, the size is adequate
here, because the deconfinement temperature of the pure
gauge theory is higher than, for example, the chiral tran-
sition temperature for light fundamental quarks. We have
checked our results on a larger lattice of size 323 � 4with a
smaller number of configurations, and have obtained re-
sults similar to those discussed below. The phase structure
seen for Nt ¼ 4 was also observed in simulations with
Nt ¼ 2 and 6.

The programs used for these simulation were developed
using the programming framework FermiQCD [6]. Be-
cause the augmented lattice action S depends quadratically
on the timelike link variable U0 via the adjoint represen-
tation, the efficient heatbath methods developed for the
standard lattice action cannot be used. We have used in-
stead a recently developed SUðNÞ over-relaxation algo-
rithm [7] combined with the Metropolis algorithm. The
over-relaxation algorithm, which operates on the full

SUðNÞ group rather than subgroups, proved to be fast
and effective. Other algorithms which have been developed
for fundamental plus adjoint actions could also be used
[8,9]. A typical simulation on a 243 � 4 lattice consisted of
10 000 equilibration sweeps followed by 60 000 sweeps
during which 2000 measurements were performed.
The approximate phase diagram for SUð3Þ is shown in

Fig. 1 for Nt ¼ 4. The order parameter is TrFP, where
phases related by a global Zð3Þ rotation are equivalent. It
is convenient to project the order parameter onto the real
axis. There are three distinct phases: a deconfined phase
where the projected expectation value satisfies hTrFPi> 0,
a confined phase where hTrFPi ¼ 0, and an interme-
diate phase with hTrFPi< 0, which we refer to as the
skewed phase. The standard practice for projecting the
configuration-averaged value of TrFP onto the real axis
by maximizing <½zTrFP� over all z 2 ZðNÞ must be
slightly modified due to the presence of the skewed phase.
The correct procedure is to find the z 2 ZðNÞ that max-
imizes j<½zTrFP�j, and then use<½zTrFP� with that value
of z as the projected order parameter. Without this addi-
tional step, configurations in the skewed phase are incor-
rectly assigned to the deconfined phase. In addition to the
order parameter itself, generalized susceptibilities associ-
ated with the Polyakov loop in several representations were
also obtained. The adjoint susceptibility arises naturally as
the second derivative of the free energy with respect to hA,
and was the least noisy of the susceptibilities. The loca-
tions of the phase transitions were determined from the
behavior of the order parameter and the peaks of the ad-
joint Polyakov loop susceptibility, checked against the
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FIG. 1. SUð3Þ phase diagram in the ��HA plane. The
dotted line represents a simple extrapolation.
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histograms of the fundamental Polyakov loop. The dashed
line in the phase diagram is an extrapolation. The phase
transition between the skewed and confined phases is very
difficult to resolve in this region, because the discontinuity
in the order parameters becomes very small. We will use
the notation Hc1 for the values of HA on the boundary
between the deconfined and skewed phases, andHc2 for the
boundary between the skewed and confined phases.

Figures 2–6 show histograms of the order parameter
hTrFPi for various values of HA at � ¼ 6:5. At HA ¼
�0:06, there is clear evidence for the new intermediate
phase where hTrFPi< 0. The skewed phase breaks Zð3Þ
symmetry, as shown clearly by the histogram at HA ¼
�0:08, where all three possible skewed phases appear.
The appearance of significant tunneling between the three
phases on a 243 � 4 lattice is an indication that the tran-

FIG. 2. SUð3Þ Polyakov loop histogram at � ¼ 6:5,
HA ¼ �0:05.

FIG. 4. SUð3Þ Polyakov loop histogram at � ¼ 6:5,
HA ¼ �0:08.

FIG. 5. SUð3Þ Polyakov loop histogram at � ¼ 6:5,
HA ¼ �0:1.

FIG. 3. SUð3Þ Polyakov loop histogram at � ¼ 6:5,
HA ¼ �0:06.
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sition from the skewed phase to the confined phase is very
weak. The skewed phase differs from the deconfined phase
not only in the orientation of the histograms, but also in
the smaller magnitude of hTrFPi for the skewed phase.
Near Hc1, the orientation of fluctuations in histograms of
the skewed phase is predominantly tangential, but be-
comes more radial as Hc2 is approached. The transition
between the deconfined and skewed phase is clearly first

order because the order parameter shows a marked jump
when changing sign. The transition between the skewed
phase and the confined phase is likely to be first order,
because it is associated with the universality class of the
three-dimensional Potts model and its generalizations via
Svetitsky-Yaffe universality. However, in simulations
hTrFPi shows a very small change at the skewed-confined
transition, particularly near the apparent tricritical point.
Empirically, for a given value of Nt, the skewed phase
shows up clearly only for Ns=Nt � 6. On a 123 � 6 lattice,
for example, the skewed phase always appears to coexist
with either the deconfined phase or the confined phase. A
detailed finite-size scaling analysis on very large lattices
would be required to resolve the order of this transition
with confidence.
Figure 7 shows the projected value of hTrFPi for various

values of HA at � ¼ 6:5. The presence of three distinct
phases is clear. Note that the transition between the skewed
and deconfined phases is much more abrupt than the tran-
sition between the skewed and confined phases. The ad-
joint susceptibility �M for � ¼ 6:5 is shown in Fig. 8.
There is a clear peak between the deconfined and skewed
phases, and a much smaller peak separating the skewed and
confined phases.

III. THEORY FOR SUð3Þ
A simple theoretical approach based on the effective

potential Veff for Polyakov loop eigenvalues reproduces
the phase structure observed in simulations for SUð3Þ and
SUð4Þ. The effective potential has two parts. The first part
is the one-loop expression for the free energy of gluons
moving in a nontrivial, constant Polyakov loop back-
ground. The one-loop free energy density was first eval-
uated by Gross, Pisarski, and Yaffe [10], and byWeiss [11].
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FIG. 8. Adjoint susceptibility �M for � ¼ 6:5.
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FIG. 6. SUð3Þ Polyakov loop histogram at � ¼ 6:5,
HA ¼ �0:11.
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It is convenient to work in a gauge where A0 is a constant
element of the SUðNÞ Lie algebra so that the background
Polyakov loop is given simply by P ¼ expði�A0Þ. The
second contribution to the effective potential in our model
is simply the term �hAT TrAP that we have added to the
gauge Lagrangian. At temperature T, our expression for
Veff is given by

Veff ¼ �2
1

2
TrA

Z d3k

ð2�Þ3 T
X
n

ln½ð!n � A0Þ2 þ k2�

� hAT TrAP (5)

where the sum is over Matsubara frequencies!n ¼ 2�nT.
A useful form is

Veff ¼
XN
j;k¼1

�
1� �jk

N

��
��2T4

45
þ T4

24�2
j��jkj2ð2�

� j��jkjÞ2
�
� hAT

���������XN
j¼1

ei�j
��������2�1

�
(6)

where the angles �j are the eigenvalues of �A0 and

j��jkj is j�j � �kjmod2�. Thus Veff is the sum of a one-

loop term plus another term treated classically.
The phase diagram is found by minimizing Veff as a

function of the Polyakov loop eigenvalues. The two terms
that make up Veff have identical local extrema, and the
problem of minimizing Veff can be reduced to finding the
minimum over this set. In the case of SUð3Þ, it is sufficient
to consider Veff as TrFP varies along the real axis. In this
case, the eigenvalues of P may be taken to be the set
f1; expði�Þ; expð�i�Þg, and TrFP may be written as 1þ
2 cosð�Þ. The effective potential is given by

Veffð�; T; hAÞ ¼ T4

6�2
ð8�2ð�� �Þ2 þ�2ð�� 2�Þ2Þ

� hATðð1þ 2 cosð�ÞÞ2 � 1Þ: (7)

The extrema of Veff occur at � ¼ 0, � ¼ 2�=3, and � ¼
�. The values of TrFP for these values of � are 3, 0, and
�1, and we identify them with the deconfined, confined,
and skewed phases, respectively. The set of eigenvalues
f1; expð2�i=3Þ; expð�2�i=3Þg is the unique set invariant
under global Zð3Þ transformations [12,13].

It is clear that the phase structure depends only on the
dimensionless variable hA=T

3. As hA is lowered from
zero, there is a first-order transition from the deconfined
phase to the skewed phase. Setting the effective potential at
� ¼ 0 and � ¼ � equal, we find that the transition from
the deconfined phase to the skewed phase takes place at
hc1=T

3 ¼ ��2=48 ’ �0:206. As hA decreases, another
first-order transition, this time between the skewed and
confined phases, occurs at hc2=T

3 ¼ �5�2=162 ’
�0:305. We plot the potential as a function of TrFP for
values in the three phase in Figs. 9–11, corresponding to
HA=T

3 ¼ 0, �0:24, �0:35.

We cannot directly relate hA and the corresponding
lattice parameter HA, because there is an unknown multi-
plicative renormalization relating the two. However, the
ratio hc2=hc1 is approximately 1.48. If we assume that the
relation of h to H is approximately independent of h, we
can compare with the results obtained from simulation. As
shown in Fig. 1, the ratios Hc2=Hc1 obtained vary from
1.27 at � ¼ 6:2 to 1.44 at � ¼ 6:8, with a maximum value
of 1.73 in between.
As noted previously, our simulations show a pronounced

asymmetry in the skewed phase between the fluctuations of
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FIG. 9. Effective potential versus TrFP for the deconfined
phase at hA=T
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FIG. 10. Effective potential versus TrFP for the skewed phase
at hA=T
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the imaginary and the real parts of TrFP. Fluctuations in
the projected imaginary part are associated with motion in
the �8 direction, while fluctuations in the projected real
part are due to motion in both the �8 and �3 directions. It is
thus interesting that in the skewed phase, theory predicts an
asymmetry in the screening masses obtained from small
fluctuations in the eigenvalues of P. This is quite different
from the behavior in the confined and deconfined phases,
where theory predicts no asymmetry. We have

m3

m8
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2hA=T

3

�1� 6hA=T
3

s
: (8)

This ratio varies from 1.59 at hc1 to 0.69 at hc2. This is on
the order of the variation seen in the fluctuations of the real
and imaginary parts of TrFP, and probably accounts for the
behavior seen in the histograms. This prediction for the
mass ratio can be checked more directly in simulations by
comparing the masses obtained from the correlation func-
tions of the real and imaginary parts of the projected
Polyakov loop in the skewed phase.
The pressure can be calculated from simulations along a

path of constant �, using

p2

T4 � p1

T4
¼ N3

t

Z 2

1
dHAhTrAPi: (9)

A detailed comparison of the pressure for all values of hA
would require knowledge of the relation between hA and
HA. However, it is relatively simple to compare the change
in the pressure from hA ¼ HA ¼ 0 to the deconfined-
skewed phase boundary as well as the change in pressure
across the skewed phase. Using Veff , we find that the
predicted change in p=T4 from hc1 to 0 is �2=6 ’ 1:64;
from hc2 to hc1 the net change is 0, as shown by Fig. 12. For
comparison, the corresponding results from simulations at
� ¼ 6:5 are 1:64� 0:03 and �0:18� 0:07. In each case,
the error is completely dominated by systematic error due
to uncertainty in the location of the critical values of HA,
with statistical error at least an order of magnitude smaller.

IV. SIMULATION RESULTS FOR SUð4Þ
We have also simulated SUð4Þ lattice gauge theories,

again primarily on 243 � 4 lattices. As in the case of
SUð3Þ, we find a new phase in the region hA < 0, but the
nature of the new phase is completely different. In this new,
partially-confined phase, global Zð4Þ symmetry is sponta-
neously broken to Zð2Þ. In this phase, particles in the
fundamental representation (‘‘SUð4Þ quarks’’) are still
confined, but bound states of two such particles (‘‘SUð4Þ
diquarks’’) are not. Each irreducible representation of
SUðNÞ has an N-ality: if z 2 ZðNÞ, P ! zP induces a
change TrRP ! zkTrRP, where k is the N-ality of the rep-
resentation R. The characteristic feature of the partially-
confined phase in SUð4Þ is that the expected value of
Polyakov loops in k ¼ 1 representations is zero, but not
in k ¼ 2 representations such as the 6 and the 10.
The breaking of Zð4Þ down to Zð2Þ for sufficiently

negative HA is manifest in histograms of the Polyakov
loop in the fundamental representation as a clustering of
data around either the x or y axis, but not both, as shown in
Figs. 13–16. Note that Fig. 14 reflects a single tunneling
event. The Zð2Þ character of this new phase is very clearly
shown in Fig. 17, which shows the behavior of the real and
imaginary part of the Polyakov loop versus Monte Carlo
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FIG. 11. Effective potential versus TrFP for the confined
phase at hA=T
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time for one long run with 20 000 measurements and
multiple tunneling events. As the figure reveals, there are
significant fluctuations in either the real or the imaginary
part, but not both simultaneously, characteristic of Zð4Þ
breaking to Zð2Þ. In this phase, the expectation value of
TrFP

2 is nonzero, being positive when the fluctuations in
TrFP are along the real axis, and negative when TrFP
fluctuates along the imaginary axis.

As HA becomes more negative. the histograms show
decreasing amplitude in the fluctuations of TrFP. It is
possible that there is a second phase transition from the
Zð2Þ phase to the confined phase as HA becomes more
negative, but we have not found direct evidence for this. As
we discuss below, our simple theoretical model does not
predict a second transition for this theory, at least not at
high temperatures where it is valid.

FIG. 14. SUð4Þ Polyakov loop histogram at � ¼ 11:1,
HA ¼ �0:11.

FIG. 13. SUð4Þ Polyakov loop histogram at � ¼ 11:1,
HA ¼ �0:1.

FIG. 15. SUð4Þ Polyakov loop histogram at � ¼ 11:1,
HA ¼ �0:12.

FIG. 16. SUð4Þ Polyakov loop histogram at � ¼ 11:1,
HA ¼ �0:125.
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V. THEORY FOR SUð4Þ
We have examined within our simple theoretical model

the possible occurrence of four different phases in SUð4Þ:
the confined phase, which has full Zð4Þ symmetry; the de-
confined phase; a partially-confined, Zð2Þ-invariant phase;
and a skewed phase similar to the skewed phase of SUð3Þ.
Only the deconfined phase and the Zð2Þ phase are predicted
by our simple theoretical model.

The properties of the Zð2Þ-invariant phase may be
understood by considering the one-parameter class of
eigenvalues invariant under Zð2Þ; the eigenvalues in
this class may be written as f�;�� �;�þ �; 2�� �g,
and the corresponding Polyakov loops have the form
diag½ei�;�e�i�;�ei�; e�i��. The one-loop effective poten-
tial as a function of � becomes

Veff ¼ ��2T4

3
þ T4

6�2
½ð�� 2�Þ2ð�þ 2�Þ2 þ �4

þ ð2�� 2�Þ2ð2�Þ2� þ hAT (10)

which has its minimum within this class at � ¼ 0. The
confined phase, which has Zð4Þ symmetry, is realized at
� ¼ �=4 but is never the minimum of Veff . This behavior is
easy to understand: both the confined and Zð2Þ-invariant
phases have the same dependence on hA, so the stable
phase is the one that minimizes the contribution of the
gauge bosons. The deconfined phase does not fall into the
Zð2Þ-invariant class: with all eigenvalues set to 0, the value
of the effective potential in the deconfined phase is

Vd ¼ ��2T4

3
� 15hAT: (11)

There is a first-order transition between the deconfined and
Zð2Þ-invariant phases at hA=T3 ¼ ��2=48 ’ �0:205 617.
The value of �ðp=T4Þ between hA ¼ 0 and the critical
point is �2=3 ’ 3:289. The value we obtained from simu-
lations at � ¼ 11:0 was 2:21� 0:07, where again the
systematic error dominates, due to uncertainty in the loca-
tion of the transition.

In order to realize the confined phase, it may be neces-
sary to add an additional term proportional to TrAP

2 ¼
TrFP

2TrFP
þ2 � 1 in order to force both TrFP and TrFP

2

to zero, but this has not yet been checked in simulations. In
addition to the transition line separating the deconfined
phase from the Zð2Þ phase, there must also be a line of
transitions in the ��HA plane separating the Zð2Þ phase
from the low-temperature confined phase with Zð4Þ sym-
metry. This transition could be either first or second order.
We have not yet mapped out this phase boundary via sim-
ulation. It is possible that this transition line is predomi-
nantly vertical in the ��HA plane. As previously noted,
our simple theoretical model does not include a mechanism
for this transition.

VI. CONCLUSIONS

We have considerable evidence, from lattice simula-
tion and from theory, for the existence of new phases of
finite-temperature gauge theories, and for the restoration
of the confined phase at high temperatures when extra,
ZðNÞ-invariant, Polyakov loop terms are added to the
gauge action. In SUð3Þ, a novel skewed phase was found,
and in SUð4Þ, we found a phase where Zð4Þ is spontane-
ously broken to Zð2Þ. In the general case of SUðNÞ, there is
good reason to expect a very rich phase structure may exist.
A simple theoretical model based on perturbation theory

at high temperatures has proven surprisingly accurate in
predicting the observed phase structure and thermodynam-
ics. Although successful, the model has significant short-
comings. Fluctuations in A0 are not considered, nor is the
renormalization of hA. Most importantly, our simple model
does not include in Veff whatever mechanism is responsible
for confinement at low temperatures when hA ¼ 0. It is
therefore invalid at low temperatures. Nevertheless, theory
and simulation are in reasonable agreement on a wide
range of properties. Our model can also make predictions
for string tensions and ’t Hooft loop surface tensions, and

FIG. 17 (color online). Real and imaginary parts of SUð4Þ Polyakov loop versus Monte Carlo time at � ¼ 11:1, HA ¼ �0:11.
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these predictions can be checked in lattice simulations. The
introduction of hA as an extra parameter also affects the
action of calorons, topologically stable solutions of the
classical field equations, and thus may offer rich possibil-
ities for explorations in instanton physics.

The interpretation of these additional phases of finite-
temperature gauge theories is, to a degree, associated with
the issue of a physical implementation of a negative
value for hA. The existence of a partially confining,
Zð2Þ-invariant phase in SUð4Þ might have been expected
[12], and the interpretation of the order parameters is clear.
The interpretation of the skewed phase in SUð3Þ is less
certain. As in the deconfined phase, the global symmetry of
the Polyakov loop is lost in the skewed phase. Our theo-
retical analysis indicates that, on average, two of the three
Polyakov loop eigenvalues are degenerate, suggesting a
possible interpretation of the skewed phase as some form
of SUð2Þ �Uð1Þ Higgs phase.

The issues underlying the interpretation of parameters
and phases is connected with the association of finite-
temperature gauge theories with universality classes of
spin systems [1]. It has always been assumed implicitly
that the mapping from gauge theories to spin systems is
into but perhaps not onto. There are phases of SUðNÞ and
ZðNÞ spin systems which are not easily obtainable from
physical finite-temperature gauge theories. For example,
the antiferromagnetic phase of a spin system can be ob-
tained from the strong-coupling effective action of a lattice
gauge theory with g2 < 0 and Nt odd, a construction with
no obvious continuum limit. However, phases can often be
reached in different ways in the space of parameters. The
skewed phase we have found in SUð3Þ gauge theory is
very similar to the anticenter phase found in SUð3Þ spin
systems by Wozar et al. [14]. Although the term in the spin
Hamiltonian that produces the anticenter phase is associ-
ated with the 15 representation rather than the adjoint term
we have used, we are confident that the two phases will
prove to be related. At this time, it is simply unclear what
physical principles, if any, limit the map between spin
systems and gauge theories.

Changes in phase structure as the boundary conditions
are varied have also been seen for fermions in the funda-
mental representation in SUð3Þ [15]. For both fundamental
and adjoint representation fermions with periodic bound-
ary conditions, the basic physics is similar. At high tem-
peratures, the gauge field contribution to the effective
potential tends to maximize TrAP, while the fermionic con-
tribution tends to minimize TrRP, where R is either the
fundamental or adjoint representation. In both cases, it is
the conflict between these two terms that gives rise to an
interesting phase structure. In the case of fermions in the
fundamental representation where N is odd, periodic
boundary conditions give rise to phases which break
charge conjugation symmetry, signaled by an imaginary
part to the expectation value of TrFP [15]. These phases
have a net baryonic current [16]. For adjoint fermions,
charge conjugation symmetry is not broken, because a
global ZðNÞ transformation rotates TrFP to the real axis.
In the case of adjoint Majorana fermions, there is no
conserved fermion number current. Thus the phase struc-
tures that flow from the same fundamental physics are
distinct for fermions in the fundamental and adjoint repre-
sentations of SUð3Þ. As we have seen in the case of SUð4Þ,
for higher values of N adjoint fermions do not necessarily
behave in the same way as the case of SUð3Þ.
We believe that the ability to create new phases in a

controlled way may become an important tool in under-
standing the properties of finite-temperature gauge theo-
ries. For example, simulations indicate that the confined
phase obtained in SUð3Þ at high T with hA < 0 is con-
nected to the conventional confined phase at low T with
hA ¼ 0. The possibility of a confined phase in a region
where perturbation theory is valid is by itself enormously
interesting. As larger gauge groups are considered, the
number of possible new phases increases. For example,
in SUð6Þ, we can consider partial breaking of Zð6Þ to either
Zð2Þ or Zð3Þ: At high temperatures, analytic calculations of
both string tensions and ’t Hooft loop surface tensions can
be carried out in these different phases of SUð6Þ for poten-
tial comparison with simulation [17].
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