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The field theoretic action for gravitational interactions in dþ 2 dimensions is constructed in the

formalism of two-time (2T) physics. General relativity in d dimensions emerges as a shadow of this theory

with one less time and one less space dimensions. The gravitational constant turns out to be a shadow of a

dilaton field in dþ 2 dimensions that appears as a constant to observers stuck in d dimensions. If

elementary scalar fields play a role in the fundamental theory (such as Higgs fields in the standard model

coupled to gravity), then their shadows in d dimensions must necessarily be conformal scalars. This has

the physical consequence that the gravitational constant changes at each phase transition (inflation, grand

unification, electroweak, etc.), implying interesting new scenarios in cosmological applications. The

fundamental action for pure gravity, which includes the spacetime metric GMNðXÞ, the dilaton �ðXÞ, and
an additional auxiliary scalar field WðXÞ, all in dþ 2 dimensions with two times, has a mix of gauge

symmetries to produce appropriate constraints that remove all ghosts or redundant degrees of freedom.

The action produces on-shell classical field equations of motion in dþ 2 dimensions, with enough

constraints for the theory to be in agreement with classical general relativity in d dimensions. Therefore

this action describes the correct classical gravitational physics directly in dþ 2 dimensions. Taken

together with previous similar work on the standard model of particles and forces, the present paper shows

that 2T physics is a general consistent framework for a physical theory. Furthermore, the 2T-physics

approach reveals more physical information for observers stuck in the shadow in d dimensions in the form

of hidden symmetries and dualities, that are largely concealed in the usual one-time formulation of

physics.
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I. GRAVITATIONAL BACKGROUND FIELDS IN
TWO-TIME PHYSICS

Previous discussions on gravitational interactions in the
context of two-time (2T) physics appeared in [1–3]. There
it was shown how to formulate the motion of a particle in
background fields (including gravity, electromagnetism,
and high spin fields) with a target spacetime in dþ 2
dimensions with two times. The previous approach was a
worldline formalism in which consistency with an Spð2; RÞ
gauge symmetry produced some constraints on the back-
grounds. Those restrictions should be regarded as gauge
symmetry kinematical constraints on the background
fields, which can be used to eliminate ghosts and redundant
degrees of freedom by choosing a unitary gauge if one
wishes to do so. Consistent with the notion of backgrounds,
the Spð2; RÞ constraints by themselves did not impose any
conditions on the dynamics of the physical background
fields that survive after choosing a unitary gauge.

In the present paper we construct the off-shell field
theoretic action for gravity in dþ 2 dimensions, which
not only reproduces the correct Spð2; RÞ gauge symmetry
kinematical constraints mentioned above when the fields
are on shell, but also yields the on-shell or off-shell dy-
namics of gravitational interactions. This dþ 2 formula-
tion of gravity is in full agreement with classical general

relativity in ðd� 1Þ þ 1 dimensions, with one time, as
described in the Abstract.
We will use the brief notation GRd to refer to the

emergent form of general relativity, which is the usual
GR with some additional constraints that are explained
below, while the notation GRdþ2 is reserved for the parent
theory from whichGRd is derived by solving the kinematic
constraints. So GRd can be regarded as a lower dimen-
sional holographic shadow of GRdþ2 which captures the
gauge invariant physical sector that satisfies the Spð2; RÞ
kinematic constraints. There are, however, other holo-
graphic shadows of the same GRdþ2 that need not look
like GRd but are related to it by duality transformations.
These shadows, and the relations among them, provide
additional information about the nature of gravity that is
not captured by the usual one-time formulation of physics.
The key element of 2T physics is a worldline Spð2; RÞ

gauge symmetry which acts in phase space and makes
position and momentum [XMð�Þ, PMð�Þ] indistinguishable
at any worldline instant � [3]. This Spð2; RÞ gauge sym-
metry is an upgrade of worldline � reparametrization to a
higher gauge symmetry. It cannot be realized if the target
spacetime has only one time dimension. It yields nontrivial
physical content only if the target spacetime XM includes
two time dimensions. Simultaneously, this larger worldline
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gauge symmetry plays a crucial role to remove all unphys-
ical degrees of freedom in a 2T spacetime, just as worldline
reparametrization removes unphysical degrees of freedom
in a one-time (1T) spacetime. Furthermore, more than two
times cannot be permitted because the Spð2; RÞ gauge
symmetry cannot remove the ghosts of more than two
timelike dimensions.

We could discuss the field theory for gravity directly, but
it is useful to recall some aspects of the worldline Spð2; RÞ
formalism that motivates this construction. The general 2T-
physics worldline action for a spin zero particle moving in
any background field is given by [1]

S ¼
Z

d�

�
@�X

MPMð�Þ � 1

2
Aijð�ÞQijðXð�Þ; Pð�ÞÞ

�
:

(1.1)

This action has local Spð2; RÞ symmetry on the worldline
[1]. The three generators of Spð2; RÞ are described by the
symmetric tensor Qij ¼ Qji with i ¼ 1, 2, and the gauge

field is Aijð�Þ. The background fields as functions of space-
time XM are the coefficients in the expansion of QijðX; PÞ
in powers of momentum, QijðX; PÞ ¼ Q0

ijðXÞ þ
QM

ij ðXÞPM þQMN
ij ðXÞPMPN þ � � � .

In the current paper we wish to describe only the gravi-
tational background. Therefore, specializing to a simplified
version of [1], we take just the following form ofQijðX; PÞ:

Q11 ¼ WðXÞ; Q12 ¼ VMðXÞPM;

Q22 ¼ GMNðXÞPMPN;
(1.2)

which includes the gravitational metric GMNðXÞ, together
with an auxiliary scalar field WðXÞ and a vector field
VMðXÞ. A basic requirement for the Spð2; RÞ gauge sym-
metry of the worldline action is that the generators
QijðX; PÞ must satisfy the Spð2; RÞ Lie algebra under

Poisson brackets. This requirement turns into certain kine-
matical constraints on the background fields [WðXÞ,
VMðXÞ, GMNðXÞ], which are obtained by demanding clo-
sure of Spð2; RÞ under Poisson brackets fA;Bg � @A

@XM �
@B
@PM

þ @A
@PM

@B
@XM as follows [1,2]:

fQ11; Q22g ¼ 4Q12 ! VM ¼ 1
2G

MN@NW; (1.3)

fQ11; Q12g ¼ 2Q11 ! VM@MW ¼ 2W; (1.4)

fQ22; Q12g ¼ �2Q22 ! LVG
MN ¼ �2GMN: (1.5)

In the last line LVG
MN is the Lie derivative of the metric,

which is a general coordinate transformation of the metric
using the vector VMðXÞ as the parameter of transformation,

� 2GMN ¼ VK@KG
MN � @KV

MGKN � @KV
NGMK

(1.6)

¼ �rMVN �rNVM � LVG
MN: (1.7)

The equivalence of the expressions in (1.6) and (1.7) is
seen by replacing every derivative in (1.6) by covariant
derivatives using the Christoffel connection �P

MN , such as
rPV

N ¼ @PV
N þ �N

PQV
Q, and recalling that the covariant

derivative of the metric vanishes, rKG
MN ¼ 0:

rKG
MN ¼ 0 $

�P
MN ¼ 1

2G
PQð�@QGMN þ @MGNQ þ @NGMQÞ: (1.8)

We can deduce that the above relations imply thatGMN can
be written as

GMN ¼ rMVN ¼ 1
2rM@NW: (1.9)

This is proven by inserting the expression for the
Christoffel connection in GMN ¼ rMVN ¼ @MVN �
�P
MNVP and using (1.3), (1.4), (1.5), and (1.6).
There are an infinite number of solutions [1] that satisfy

(1.3), (1.4), (1.5), (1.6), (1.7), (1.8), and (1.9). An example
is flat spacetime,

WflatðXÞ ¼ X � X; VM
flatðXÞ ¼ XM;

GMN
flat ðXÞ ¼ �MN:

(1.10)

This satisfies the Spð2; RÞ relations (1.3), (1.4), (1.5), (1.6),
(1.7), (1.8), and (1.9). In this case the Spð2; RÞ generators
are simply

Qflat
11 ¼ X � X; Qflat

12 ¼ X � P; Qflat
22 ¼ P � P:

(1.11)

This flat background has an SOðd; 2Þ global symmetry
(Killing vectors of the flat metric �MN) whose generators
LMN ¼ XMPN � XNPM commute with the dot products in
(1.11).
The phase space ðXM;PMÞ and the background fields

WðXÞ, VMðXÞ, GMNðXÞ are restricted by the Spð2; RÞ rela-
tions (1.3), (1.4), (1.5), (1.6), (1.7), (1.8), and (1.9) as well
as by the requirement of Spð2; RÞ gauge invariance
QijðX; PÞ ¼ 0 in the physical subspace. The latter is de-

rived from the action (1.1) as the equation of motion for the
gauge field Aij. This combination of constraints is just the
right amount to remove ghosts from a 2T spacetime and
end up with a shadow sub-phase-space ðx�; p�Þ with a 1T

spacetime which describes the gauge fixed physical sector.
There are no nontrivial solutions if the higher spacetime
has fewer than two timelike dimensions. This is easy to
verify for the flat example (1.10). Furthermore, if the
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higher spacetime has more than two timelike dimensions,
there are always ghosts. Hence the Spð2; RÞ gauge symme-
try demands precisely two timelike dimensions, no less and
no more.1

The solution of (1.3), (1.4), (1.5), (1.6), (1.7), (1.8), and
(1.9) at the classical level was obtained in [1,2], where it
was shown that the worldline action (1.1) reduces (as one
of the shadows) to the well-known one-time worldline
action of a particle moving in an arbitrary gravitational
background field g��ðx�Þ in d dimensions,

S ¼
Z

d�

�
@�x

�p�ð�Þ � 1

2
A22ð�Þg��ðxð�ÞÞp�ð�Þp�ð�Þ

�
:

(1.12)

This 1T action has enough well-known gauge symmetry to
remove ghosts in 1T physics. This remaining gauge sym-
metry is part of the original Spð2; RÞ.

This fixing of gauges to a unitary gauge demonstrates
that the Spð2; RÞ relations (1.3), (1.4), (1.5), (1.6), (1.7),
(1.8), and (1.9) have the right amount of gauge symmetry
to remove ghosts. Hence the 2T-physics approach provides
a physical theory for gravity formulated directly in the
higher spacetime XM in dþ 2 dimensions with two times
in the form of the action (1.1), as long as the background
fields WðXÞ, VMðXÞ, GMNðXÞ satisfy the Spð2; RÞ kine-
matic constraints (1.3), (1.4), (1.5), (1.6), (1.7), (1.8), and
(1.9) that are also formulated directly in dþ 2 dimensions.

Note, however, that the Spð2; RÞ constraints are not
enough to give the dynamical equations that the gravita-
tional metric g��ðxÞ in ðd� 1Þ þ 1 dimensions should
satisfy. To do this we must build a field theoretic action
in dþ 2 dimensions that not only gives correctly the
Spð2; RÞ kinematic constraints (1.3), (1.4), (1.5), (1.6),
(1.7), (1.8), and (1.9), but also gives dynamical equations
in dþ 2 dimensions for the metric GMNðXÞ, and auxiliary
fields WðXÞ, VMðXÞ, which in turn correctly reproduce the
equations of general relativity for the metric g��ðxÞ. This is
what we will present in the rest of this paper.

II. GRAVITATIONAL ACTION

The first kinematic equation (1.3) will be imposed from
the start, so the auxiliary field VMðXÞ will not be included
as a fundamental one in the action, but instead will be
replaced by VM ¼ 1

2 @MW consistent with (1.3). Recall that

Q11 ¼ WðXÞ ¼ 0 is one of the Spð2; RÞ constraints of the
worldline theory. To implement this constraint covariantly

in dþ 2 dimensions, we follow the methods that were
successful in flat space [4,5]; namely, we include a delta
function as part of the volume element �ðWðXÞÞddþ2X in
the definition of the action of 2T field theory.2 The field W
will appear in other parts of the action as well. In flat space
WðXÞ is a fixed background WflatðXÞ ¼ X � X, but in the
present case it is a field that will be allowed to vary as any
other. In addition to WðXÞ and GMNðXÞ, we will need also
the dilaton field �ðXÞ in order to impose consistency with
the kinematic constraints (1.3), (1.4), (1.5), (1.6), (1.7),
(1.8), and (1.9) required by the underlying Spð2; RÞ. The
dilaton plays a similar role even in flat 2T field theory,
especially when d � 4 [5]. Our proposed action for the 2T
gravity triplet GMN , �, W is

S ¼ SG þ S� þ SW; (2.1)

SG � �
Z

ddþ2X�ðWÞ ffiffiffiffi
G

p
�2RðGÞ; (2.2)

S� � �
Z

ddþ2X�ðWÞ ffiffiffiffi
G

p �
1

2a
@� � @�� Vð�Þ

�
; (2.3)

SW ¼ �
Z

ddþ2X�0ðWÞ ffiffiffiffi
G

p f�2ð4�r2WÞ þ @W � @�2g:
(2.4)

Note that the last term in the action SW contains �0ðWÞ
rather than �ðWÞ. The overall constant � is a volume
renormalization constant that also appears in flat 2T field
theory [5,18,19], and is specified after Eq. (7.19).
Demanding consistency with the Spð2; RÞ kinematic con-
straints (1.3), (1.4), (1.5), (1.6), (1.7), (1.8), and (1.9) will
fix the constant a uniquely to

a ¼ ðd� 2Þ
8ðd� 1Þ : (2.5)

As will be explained below, for this special value of a, the
‘‘conformal shadow’’ in d dimensions has an accidental

2Some studies for conformal gravity in 4þ 2 dimensions
using Dirac’s approach to conformal symmetry [6–17] also use
fields in 4þ 2 dimensions and include a delta function [15,17]
(see also [11]). Their focus is conformal gravity aiming for and
constructing a totally different action. While we have some
overlap of methods with [15,17], we have important differences
right from the start. They impose kinematic constraints as addi-
tional conditions that do not follow from the action, as we did
also in our older work [2]. These are related to the conceptually
more general Spð2; RÞ constraints in 2T physics. The new
progress in 2T field theory since [4,5] is to derive the constraints
as well the dynamics from the action, without imposing them
externally. In our present work, the unusual pieces of the action
SW , with W a field varied like any other, are the new crucial
ingredients in curved space that allow us to derive all Spð2; RÞ
constraints from the action, and lead to the new physical
consequences.

1A more general argument that applies to all backgrounds is
the following. By canonical transformations that do not change
the signature, the first two constraints Q11, Q12 can always be
brought to the flat form, while Q22 has the backgrounds (second
reference in [1]). Then nontrivial solutions require two times.
Another point is that the signature of the Spð2; RÞ parameters,
which is the same as SOð1; 2Þ with one space and two times,
determines the signature of the constraints and of the removable
degrees of freedom from ðXM; PMÞ.

GRAVITY IN TWO-TIME PHYSICS PHYSICAL REVIEW D 77, 125027 (2008)

125027-3



local Weyl symmetry (even though the dþ 2 theory does
not have it).

The action above is a no-scale theory. The dimensionful
gravitational constant will develop spontaneously from a
vacuum expectation value of the dilaton h�i � 0. The
corresponding Goldstone boson as seen by observers in d
dimensions is gauge freedom that is removable by the
accidental Weyl gauge symmetry.

The various factors in the action involving powers of �
are determined as follows. We assign engineering dimen-
sions for XM, GMN , �, W, which are consistent with their
flat counterparts in (1.10), as follows:

dimðXMÞ ¼ 1; dimðGMNÞ ¼ 0;

dimðWÞ ¼ 2; dim� ¼ � d� 2

2
:

(2.6)

Accordingly, powers of the dilaton� are inserted as shown
to insure that the action is dimensionless, dimðSÞ ¼ 0. The
underlying reason for this is a gauge symmetry that we
called the 2T gauge symmetry in field theory [5], which
becomes valid when the factors of � are included. The
dimensions (2.6) will appear in the Spð2; RÞ kinematic
equations that follow from the action, and coincide pre-
cisely with the kinematic constraints (1.4) and (1.5) that are
required by the worldline Spð2; RÞ gauge symmetry. These
turn into homogeneity constraints in flat space, when
VM
flat ¼ XM and X � @Wflat ¼ 2Wflat and X � @GMN

flat ¼ 0,
which are consistent with dimðWÞ ¼ 2, dimðGMNÞ ¼ 0,
respectively, as given in (2.6). The consistency of the kine-
matic equations with each other (equivalently, the gauge
symmetry) restricts the form of self-interactions of the
scalar to the form

Vð�Þ ¼ �ðd� 2Þ
2d

�2d=ðd�2Þ (2.7)

where the arbitrary constant � is dimensionless.

III. EQUATIONS OF MOTION FOR GMN

We first concentrate on SG. Using the variational for-
mulas

�
ffiffiffiffi
G

p ¼ �1
2

ffiffiffiffi
G

p
GMN�G

MN;

�RðGÞ ¼ fRMN þ ðGMNr2 �rMrNÞg�GMN;
(3.1)

and doing integration by parts as needed, we obtain the
following variation of SG with respect to the metric:

�GðSGÞ ¼ �
Z

ddþ2X�ðWÞ�2�Gð
ffiffiffiffi
G

p
RðGÞÞ

¼ �
Z

ddþ2X
ffiffiffiffi
G

p
�GMNðVG

MNÞ; (3.2)

VG
MN � �ðWÞ�2ðRMN � 1

2GMNRÞ
þ ðGMNr2 �rMrNÞð�ðWÞ�2Þ: (3.3)

The last term will generate terms proportional to �ðWÞ,
�0ðWÞ, �00ðWÞ as follows:

ðGMNr2 �rMrNÞð�ðWÞ�2Þ
¼ f�ðWÞ½GMNr2�2 �rM@N�

2�
þ �0ðWÞ½2GMN@W � @�2 � 2@MW@N�

2

þ�2ðGMNr2W �rM@NWÞ�
þ �00ðWÞ�2½GMN@W � @W � @MW@NW�g: (3.4)

Additional terms in the action are needed to modify the
expressions proportional to �0ðWÞ, �00ðWÞ because requir-
ing �GðSGÞ to vanish on its own would put severe and
inconsistent constraints on GMN and � that are incompat-
ible with the Spð2; RÞ kinematic conditions in (1.3), (1.4),
(1.5), (1.6), (1.7), (1.8), and (1.9). This is the first reason for
introducing the additional term SW which miraculously
produces just the right structure of variational terms that
make the Spð2; RÞ constraints (1.3), (1.4), (1.5), (1.6), (1.7),
(1.8), and (1.9) compatible with the equations of motion
derived from the action. Actually, SW performs a few more
miracles involving the variations of� andW as well, as we
will see below.
Thus let us study the variation of SW with respect to

�GMN ,

�GðSWÞ ¼ �
Z

ddþ2X�0ðWÞf½4�G

ffiffiffiffi
G

p

� @Mð�Gð
ffiffiffiffi
G

p
GMNÞ@NWÞ��2

þ �Gð
ffiffiffiffi
G

p
GMNÞ@MW@N�

2g: (3.5)

After an integration by parts this gives �GðSWÞ ¼
�
R
ddþ2X

ffiffiffiffi
G

p
�GMNðVW

MNÞ with
VW
MN � afþ�0ðWÞ½2@MW@N�

2 �GMNð2�2 þ @W �@�2Þ�
þ�00ðWÞ�2½@MW@NW� 1

2GMN@W �@W�g: (3.6)

We will also need the variation of S� with respect to
�GMN , but this contains only �ðWÞ,

�GðS�Þ ¼ �
Z

ddþ2X
ffiffiffiffi
G

p
�GMNðV�

MNÞ; (3.7)

V�
MN � �ðWÞ

�
1

2a
@M�@N�

þGMN

�
� 1

4a
@� � @�þ 1

2
Vð�Þ

��
: (3.8)

The vanishing of the total variation �GðSG þ SW þ S�Þ ¼
�
R
ddþ2X

ffiffiffiffi
G

p
�GMNðVMNÞ ¼ 0 gives
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VMN ¼ �ðWÞVð0Þ
MN þ �0ðWÞVð1Þ

MN þ �00ðWÞVð2Þ
MN ¼ 0;

(3.9)

Vð0Þ
MN �

�
�2

�
RMN � 1

2
GMNR

�

þ ðGMNr2�2 �rM@N�
2Þ 1

2a
@M�@N�

þGMN

�
� 1

4a
@� � @�þ 1

2
Vð�Þ

��
; (3.10)

Vð1Þ
MN � �2½GMNð�6þr2W þ @W � @ ln�2Þ

� rM@NW�; (3.11)

Vð2Þ
MN � 1

2�
2GMNð@W � @W � 4WÞ: (3.12)

The vanishing expression 1
2�

2GMN½�8�0ðWÞ �
4W�00ðWÞ� ¼ 0, that follows from the identity w�00ðwÞ ¼
�2�0ðwÞ, has been added to VMN to obtain the forms of

Vð1Þ
MN , V

ð2Þ
MN as shown.

Next, taking into account the remarks in the footnote,3

we refine the three equations of motion implied by
Eq. (3.9). Each field is expanded in powers of WðXÞ. For
this, imagine parametrizing XM in terms of some conve-
nient set of coordinates such that w � WðXÞ is one of the
independent coordinates. Denoting the remaining dþ 1
coordinates collectively as u, schematically we can write
GMNðXÞ ¼ GMNðu;wÞ, �ðXÞ ¼ �ðu; wÞ, and WðXÞ ¼ w.
Then we may expand

GMNðu; wÞ ¼ GMNðu; 0Þ þ wG0
MNðu; 0Þ þ 1

2w
2G00

MNðu; 0Þ
þ � � � (3.13)

and similarly for �ðu;wÞ ¼ �ðu; 0Þ þ � � � . In 2T field
theory in flat space, the zeroth order terms analogous to
GMNðu; 0Þ and �ðu; 0Þ were the physical part of the field,
while the rest, which we called the ‘‘remainders,’’ was
gauge freedom, and could be set to zero. In this paper we
will assume that there is a similar justification for setting
the remainders to zero (or some other convenient gauge
choice) after the variation of the action has been performed
as in (3.9), (3.10), (3.11), and (3.12). A procedure for
dealing with the remainders in this fashion could be justi-

fied in the case of 2T field theory in flat space.4 In any case,
setting all the remainders to zero is a legitimate solution of
the classical equations of interest in this paper. Proceeding
under this assumption, we keep only the zeroth order terms
in the expansions (3.13). Then, in view of footnote 3, the
three classical equations of motion implied by Eq. (3.9) are

½Vð0Þ
MNðXÞ�WðXÞ¼0 ¼ 0; ½Vð1Þ

MNðXÞ�WðXÞ¼0 ¼ 0;

½Vð2Þ
MNðXÞ�WðXÞ¼0 ¼ 0:

(3.14)

We see immediately from Eq. (3.12) that the equation of

motion Vð2Þ
MNðu; 0Þ ¼ 0,

@W � @W ¼ 4W; (3.15)

reproduces the second Spð2; RÞ kinematic constraint (1.4),
noting that we have already incorporated the first Spð2; RÞ
kinematic constraint (1.3) in the form VM ¼ 1

2 @MW as

stated in the beginning of Sec. II. We now turn to the

equation of motion (3.11), Vð1Þ
MNðu; 0Þ ¼ 0,

½GMNð�6þr2W þ @W � @ ln�2Þ � rM@NW�WðXÞ¼0 ¼ 0:

(3.16)

If we can show that ð�6þr2W þ @W � @ ln�2Þ ¼ 2,
then (3.16) reproduces the third Spð2; RÞ constraint (1.5),
(1.6), (1.8), and (1.9). This is proven as follows. The
variation of the action with respect to� produces on-shell

conditions for �; among these, Eq. (4.6), Fð1Þ ¼ 0, is
solved by @W � @ ln�2 ¼ 8að6�r2WÞ. We insert this in
(3.16) and then contract Eq. (3.16) with GMN to obtain an
equation for only r2W, whose solution is a constant
r2W ¼ 6ðdþ 2Þð8a� 1Þ½ð8a� 1Þðdþ 2Þþ 1��1. There-
fore @W � @ ln�2 ¼ 48a½ð8a� 1Þðdþ 2Þ þ 1��1 is also a
constant. These lead to the on-shell value ð�6þr2Wþ
@W �@ ln�2Þ ¼ 6ð8a� 1Þ½ð8a� 1Þðdþ 2Þþ 1��1, which
takes the desired value of 2 provided a ¼ d�2

8ðd�1Þ as given
by Eq. (2.5). With this unique a we obtain the on-shell

4This was justified in [5] by the fact that there is a more
symmetric starting point for 2T field theory in the form of a
BRST gauge field theory [4] analogous to string field theory. It is
after gauge fixing and simplifying the BRST field theory that one
obtains the simpler and more intuitive form of 2T field theory
used in [5]. Then the working procedure for the simpler form
was to first allow all the remainders as part of the simplified
action and, only after varying the action, set the remainders to
zero (or nonzero but homogeneous). This is the correct proce-
dure in any gauge theory, i.e. do not forget the variation with
respect to the gauge degrees of freedom. It agrees with the
consequences of the original, fully gauge invariant, BRST gauge
field theory, as well as the covariantly first quantized worldline
theory, at the level of the classical field equations of motion.
Possible consequences of the remainders, if any, at the second
quantization level (path integral) were not fully clarified, and this
is part of ongoing research. We do not know yet if the remainder
could play a physically relevant role.

3An expression of the form AðwÞ�ðwÞ þ BðwÞ�0ðwÞ þ
CðwÞ�00ðwÞ ¼ 0, as in (3.9), is equivalent to three equations
since �ðwÞ, �0ðwÞ, �00ðwÞ are three separate distributions. To
carefully separate the equations one considers the Taylor expan-
sion in powers of w, such as CðwÞ ¼ Cð0Þ þ C0ð0Þwþ
1
2C

00ð0Þw2 þ � � � , and similarly for BðwÞ and AðwÞ. Then by
using the properties of the delta function as a distribution (i.e.
under integration with smooth functions) w�0ðwÞ ¼ ��ðwÞ,
w�00ðwÞ ¼ �2�0ðwÞ, and w2�00ðwÞ ¼ 2�ðwÞ, we obtain the fol-
lowing three equations: Cð0Þ ¼ 0, Bð0Þ � 2C0ð0Þ ¼ 0, and
Að0Þ � B0ð0Þ þ C00ð0Þ ¼ 0.
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values as follows,

½@W � @ ln�2�WðXÞ¼0 ¼ �2ðd� 2Þ;
r2W ¼ 2ðdþ 2Þ; ½GMN ¼ 1

2rM@NW�WðXÞ¼0;

(3.17)

which is precisely the third Spð2; RÞ kinematic constraint
(1.5), (1.6), (1.7), (1.8), and (1.9).

Hence, we have constructed an action consistent with
the Spð2; RÞ conditions (1.3), (1.4), (1.5), (1.6), (1.7), (1.8),
and (1.9), and the condition Q11 ¼ WðXÞ ¼ 0. These were
the necessary kinematic constraints to remove all the
ghosts in the two-time theory for gravity. They produce a
shadow that describes gravity in ðd� 1Þ þ 1 dimensions as
in Eq. (1.12) in the worldline formalism, and also in the
field theory formalism as discussed before [2] and which
will be further explained below.

The remaining field equation Vð0Þ
MNðu; 0Þ ¼ 0 in

Eq. (3.10) now gives the desired dynamical equation that
has the form of Einstein’s equation in dþ 2 dimensions,

½RMNðGÞ � 1
2GMNRðGÞ�WðXÞ¼0 ¼ ½TMNð�; GÞ�WðXÞ¼0;

(3.18)

with an energy-momentum source TMNð�; GÞ provided by
the dilaton field

TMN ¼
�
� 1

2a
ð@M ln�Þð@N ln�Þ

þ 1

2
GMN

�
1

2a
@ ln� � @ ln�� Vð�Þ

�2

�

� 1

�2
ðGMNr2�2 �rM@N�

2Þ
�
: (3.19)

The unique value of the constant a (2.5) will be required
also by additional Spð2; RÞ relations as will be seen below.
Under the assumption that the dilaton field � is invertible
(certainly so if it has a nonzero vacuum expectation value),
we have divided by the field� to extract TMN . Once all the
kinematic constraints obtained above and below are taken
into account, this correctly reduces to general relativity in
d dimensions as a shadow (see below). So, S ¼
SG þ S� þ SW is a consistent action that produces the
correct gravitational classical field equations directly in
dþ 2 dimensions.

IV. EQUATIONS OF MOTION FOR �

We now turn to the variation of the action with respect to
the dilaton � to extract its equations of motion. After
integration by parts that produce �0ðWÞ, �00ðWÞ terms, we
obtain

��ðS�Þ ¼ �
Z

ddþ2X
ffiffiffiffi
G

p
��

�
�ðWÞ

�
� 1

a
r2�� V 0ð�Þ

�

� 1

a
�0ðWÞ@W � @�

�
; (4.1)

��ðSWÞ ¼ �
Z

ddþ2X
ffiffiffiffi
G

p
��2f�0ðWÞð4�r2WÞ

� r � ð@W�0ðWÞÞg (4.2)

¼ �
Z

ddþ2X
ffiffiffiffi
G

p
��f�0ðWÞ�ð24� 4r2WÞ

þ �00ðWÞ�ð�2@W � @W þ 8WÞg; (4.3)

where we have added the vanishing expression
�½16�0ðWÞ þ 8W�00ðWÞ� ¼ 0 to obtain a convenient
form. Including ��ðSGÞ, which contains only �ðWÞ, we
obtain the total variation ��ðS� þ SW þ SGÞ ¼
�
R
ddþ2X

ffiffiffiffi
G

p
��FðXÞ, which gives the equation of mo-

tion F ¼ 0,

F � �ðWÞFð0Þ þ �0ðWÞFð1Þ þ �00ðWÞFð2Þ ¼ 0; (4.4)

Fð0Þ � 2R�� 1

a
r2�� V0ð�Þ; (4.5)

Fð1Þ � � 1

a
@W � @�þ 4�ð6�r2WÞ; (4.6)

Fð2Þ � �2�½@W � @W � 4W�: (4.7)

As in the discussion before, we seek a solution when the
remainders of the fields vanish. Then the three on-shell

equations are Fð0Þ ¼ Fð1Þ ¼ Fð2Þ ¼ 0. The expression

Fð2Þ ¼ 0 is satisfied since it is identical to Eq. (3.15) which
amounts to the Spð2; RÞ kinematic constraints (1.3) and

(1.4). The condition Fð1Þ ¼ 0 produces a kinematic con-
straint @W � @ ln�2 ¼ 8að6�r2WÞ for the field � as
used in the derivation of Eq. (3.17). After inserting the
on-shell value r2W ¼ 2ðdþ 2Þ from Eq. (3.17) for the
special value of a, the constraint becomes

Fð1Þ ¼ ½@W � @�þ ðd� 2Þ��WðXÞ¼0 ¼ 0: (4.8)

In the flat limit of Eq. (1.10) this reduces to Fð1Þ
flat ¼ ½2X �

@þ ðd� 2Þ�� ¼ 0, which is a homogeneity constraint on
� consistent with the assigned dimension of the field� in
Eq. (2.6). Therefore, this is another consistency condition
that requires the value of a in Eq. (2.5). We will see below,
when we study variations with respect to the field W, that
there is a stronger, independent gauge symmetry argument
that fixes uniquely the same value of a.
The dynamical equation for � is now determined by

setting Fð0Þ ¼ 0 with the special a,
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�
r2�þ d� 2

8ðd� 1Þ ðV
0ð�Þ � 2�RðGÞÞ

�
WðXÞ¼0

¼ 0:

(4.9)

Here there is an interesting point to be emphasized. The
precise coefficient of �R (which is 2a) is the one that
would normally appear for the conformal scalar in d di-
mensions, but note that the Laplacian and the curvature
RðGÞ in our case are in dþ 2 dimensions not in d dimen-
sions. If the coefficient had been the one appropriate for
dþ 2 dimensions, namely,� d

4ðdþ1Þ , then there would have
been a local Weyl symmetry that could eliminate �ðXÞ
from the theory by a local Weyl rescaling. However, this is
not the case presently. Nevertheless, we will identify later
an accidental local Weyl symmetry for the ‘‘conformal
shadow’’ in d dimensions (that is, not Weyl in the full dþ
2 dimensions). This partially local ‘‘accidental’’ Weyl
symmetry will indeed eliminate the fluctuations of �ðXÞ
in the shadow subspace, but still keeping some dependence
of� in the extra dimensions. In this way, the special value
of a will allow us to eliminate the massless Goldstone
boson that arises due to the spontaneous breakdown of
scale invariance in the shadow subspace.

V. EQUATIONS OF MOTION FOR W

The part of the action SG þ S� contains W only in the
delta function, so its variation is proportional to �0ðWÞ,

�WðSG þ S�Þ ¼ �
Z

ddþ2X
ffiffiffiffi
G

p ð�WÞ�0ðWÞ

�
�
�2RðGÞ þ 1

2a
@� � @�� Vð�Þ

�
:

(5.1)

Varying W in SW produces terms proportional to �0ðWÞ,
�00ðWÞ, and �000ðWÞ as follows:

�WðSWÞ ¼ �
Z

ddþ2X
ffiffiffiffi
G

p
�Wf�00ðWÞ½�2ð4�r2WÞ

þ @W � @�2� � r � @½�2�0ðWÞ�
� r � ½�0ðWÞ@�2�g (5.2)

¼ �
Z

ddþ2X
ffiffiffiffi
G

p
�Wf�0ðWÞ½�2r2�2�

þ �00ðWÞ½�2ð16� 2r2WÞ � 2@W � @�2�
þ �000ðWÞ�2½�@W � @W þ 4W�g: (5.3)

We have added the vanishing expression �2½12�00ðWÞ þ
4W�000ðWÞ� ¼ 0 to obtain a convenient form. Thus the �W

variation of the total action has the form �WðSG þ S� þ
SWÞ ¼ �

R
ddþ2X

ffiffiffiffi
G

p
�WZðXÞ, which leads to the equation

of motion ZðXÞ ¼ 0,

Z � �0ðWÞZð1Þ þ �00ðWÞZð2Þ þ �000ðWÞZð3Þ ¼ 0; (5.4)

Zð1Þ � �2RðGÞ � 2r2�2 þ 1

2a
@� � @�� Vð�Þ; (5.5)

Zð2Þ � �2ð16� 2r2WÞ � 2@W � @�2; (5.6)

Zð3Þ � ��2½@W � @W � 4W�: (5.7)

It is remarkable that, if we use the on-shell kinematic
equations of motion for W and � (3.15), (3.17), and

(4.8), we get ½Zð2Þ�W¼0 ¼ Zð3Þ ¼ 0. Then, if we also use
the dynamical equations for both GMN and � (3.18) and

(4.9), we also obtain ½Zð1Þ�W¼0 ¼ 0. These remarkable
identities are possible only if a has precisely the special
value in Eq. (2.5).
Therefore minimizing the action with respect toW does

not produce any new kinematic or dynamical on-shell
conditions for the fields. Hence, the on-shell value of
WðXÞ is arbitrary, indicating the presence of a gauge
symmetry only for the special value of a ¼ d�2

8ðd�1Þ .

VI. OFF-SHELL GAUGE SYMMETRY

Let us now prove that indeed there is an off-shell gauge
symmetry without using any of the kinematic or the
dynamical equations of motion. A gauge transformation
of the total action has the form ��S ¼
�
R
ddþ2X

ffiffiffiffi
G

p ðVMN��G
MN þ F���þ Z��WÞ, where

VMN , F, Z are given in Eqs. (3.9), (4.4), and (5.4), respec-
tively, but taken off shell. We explore a gauge transforma-
tion of the form

��G
MN ¼ �GMN; ��� ¼ 	�; ��W ¼ �W;

(6.1)

with local functions �ðXÞ, 	ðXÞ that will be determined
below in terms of �ðXÞ. We collect the coefficients of
�ðWÞ, �0ðWÞ, �00ðWÞ in the gauge transformation ��S after
using the delta function identities w�0ðwÞ ¼ ��ðwÞ,
w�00ðwÞ ¼ �2�0ðwÞ, and w�000ðwÞ ¼ �3�00ðwÞ. This gives

VMN��G
MN þ F���þ Z��W

¼ f�ðWÞ½�GMNVð0Þ
MN þ 	�Fð0Þ ��Zð1Þ�

þ �0ðWÞ½�GMNVð1Þ
MN þ 	�Fð1Þ � 2�Zð2Þ�

þ �00ðWÞ½�GMNVð2Þ
MN þ 	�Fð2Þ � 3�Zð3Þ�g: (6.2)

We first analyze the term proportional to �00ðWÞ. After
inserting the off-shell quantities Vð2Þ

MN , Fð2Þ, Zð3Þ in
Eqs. (3.12), (4.7), and (5.7), we see that the �00ðWÞ term
can be written as a total divergence5 plus a term propor-
tional to �0ðWÞ:

5Use the identity r � ½@W�0ðWÞA�2� ¼ �00ðWÞ�
ð@W � @W � 4WÞA�2 þ �0ðWÞ½r � ð@WA�2Þ � 8A�2�.
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�00ðWÞ½�GMNVð2Þ
MN þ 	�Fð2Þ � 3�Zð3Þ�

¼ �00ðWÞ�2ð@W � @W � 4WÞ
�
�

2
ðdþ 2Þ � 2	þ 3�

�

(6.3)

¼ r �
�
@W�0ðWÞ

�
�

2
ðdþ 2Þ � 2	þ 3�

�
�2

�

þUð1Þ�0ðWÞ (6.4)

where

Uð1Þð�;	;�Þ ¼
�
�2

�
�

2
ðdþ 2Þ � 2	þ 3�

�
ð8�r2WÞ

� @W � @
�
�2

�
�

2
ðdþ 2Þ � 2	þ 3�

���
:

The total divergence can be dropped in ��S sinceR
ddþ2X

ffiffiffiffi
G

p ðr �QÞ ¼ R
ddþ2X@Mð

ffiffiffiffi
G

p
GMNQNÞ ! 0.

Therefore, in the gauge transformation (6.2) the part pro-
portional to �00ðWÞ can be eliminated at the expense of

adding Uð1Þ�0ðWÞ to the part proportional to �0ðWÞ. Now
we have 3 functions ð�;	;�Þ at our disposal to fix to zero
the 2 remaining terms of the gauge transformation (6.2),
namely,

0 ¼ �GMNVð0Þ
MN þ 	�Fð0Þ ��Zð1Þ; (6.5)

0 ¼ �GMNVð1Þ
MN þ 	�Fð1Þ � 2�Zð2Þ þUð1Þð�;	;�Þ:

(6.6)

Clearly there is freedom to fix �, 	 in terms of an arbitrary
� to insure the off-shell gauge symmetry of the action
��S ¼ 0.

The analysis of the equations of motion in the previous
section had indicated thatWðXÞ was arbitrary on shell. The
discussion in this section shows that this freedom also
extends to off shell, since according to (6.1), we can use
the gauge freedom �ðXÞ to choose WðXÞ arbitrarily as a
function of X.

VII. GENERAL RELATIVITYAS A SHADOW

From the gauge transformations (6.1) we see that the
gauge symmetry indicates that WðXÞ is gauge freedom, so
it can be chosen arbitrarily as a function of XM before
restricting spacetime by the condition WðXÞ ¼ 0 in dþ 2
dimensions. This freedom is related to the production of
multiple d dimensional shadows of the same dþ 2 dimen-
sional system.

Our action is also manifestly invariant under general
coordinate transformations in dþ 2 dimensions, which
can be used to fix components of the metric GMNðXÞ.
This freedom will also be used in the production of
shadows.

To proceed to generate a shadow of our theory in d
dimensions, it is useful to choose a parametrization of

the coordinates XM in dþ 2 dimensions in such a way as
to embed a d dimensional subspace x� in the higher space
XM. There are many ways of doing this, to create various
shadows with different meanings of ‘‘time’’ as perceived
by observers that live in the fixed shadow x�. This was
discussed in the past for the particle level of 2T physics and
recently for the field theory level [18,19]. A particular
parametrization which is useful to explain massless parti-
cles and conformal symmetry in flat space [6–8] as a
shadow of Lorentz symmetry in flat ðdþ 2Þ dimensions
was commonly used in our past work. We will call this the
‘‘conformal shadow.’’ The parametrization in this section,
which should be understood to correspond to one particular
shadow, is a generalization of the conformal shadow to
curved space.
We choose a parametrization of XM in terms of dþ 2

coordinates named ðw; u; x�Þ. In the new curved space
ðw; u; x�Þ, where the basis is specified by @M ¼
ð@w; @u; @�Þ, we use general coordinate transformations

to gauge fix dþ 2 functions among the GMNðw; u; x�Þ,
namely, Gwu ¼ 1, Guu ¼ Gw� ¼ 0, so that the metric
takes the following form:

GMN ¼
MnN w u �
w
u
�

Gww �1 0
�1 0 Gu�

0 G�u G��

0
@

1
A : (7.1)

In this basis we make a choice forWðXÞwhich specifies the
conformal shadow. Namely, we take WðXÞ ¼ w as one of
the coordinates,

WðXÞ ¼ Wðw; u; x�Þ ¼ w: (7.2)

We compute @MWðXÞ in this basis and find

@MW ¼ ð1; 0; 0ÞM: (7.3)

Now we apply the Spð2; RÞ kinematical constraint 4W ¼
@W � @W, derived from field theory in Eq. (3.15) or from
the worldline theory in (1.3) and (1.4),

4W ¼ GMN@MW@NW ¼ GMNð1; 0; 0ÞMð1; 0; 0ÞN ¼ Gww:

(7.4)

This determines

Gwwðw; u; x�Þ ¼ 4w: (7.5)

Next we apply the Spð2; RÞ kinematical constraint (1.9)
which was also derived in field theory in Eq. (3.17). We
will use the equivalent form in (1.6), �2GMN ¼
VK@KG

MN � @KV
MGKN � @KV

NGMK, where we insert
VM as obtained from (1.3),

VMðw; u; x�Þ ¼ 1
2G

MN@NW ¼ ð2w;�1
2; 0ÞM: (7.6)

Then we get VM@M ¼ ð2w@w � 1
2@uÞ, and the kinematic

constraint (1.6) takes the form
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� 2GMN ¼ ð2w@w � 1
2@uÞGMN � 2�M

wG
wN � 2�N

wG
Mw:

(7.7)

We check that Gww ¼ 4w, Gwu ¼ 1, Guu ¼ Gw� ¼ 0 all
satisfy these kinematical conditions automatically, while
the remaining components, G�u, G��, must depend on u,
x, and w only in the following specific form:

G��ðw; u; x�Þ ¼ e4uĝ��ðx; e4uwÞ; (7.8)

G�uðw; u; x�Þ ¼ e4u��ðx; e4uwÞ: (7.9)

As explained following Eq. (3.13), in an expansion in
powers of w only the zeroth order term is kept in our
solution. So, for our purposes here, G��ðw; u; x�Þ ¼
e4ug��ðxÞ and G�uðw; u; x�Þ ¼ e4u��ðxÞ are independent
ofw. Even though we have already used up all of the gauge
freedom of general coordinate transformations to fix dþ 2
functions of ðw; u; x�Þ as in Eq. (7.1), there still remains
general coordinate symmetry to reparametrize arbitrarily
the subspace ðu; x�Þ in such a way that the form of the
metric in Eq. (7.1) remains unchanged. This allows us to fix
d functions of ðu; x�Þ arbitrarily as gauge choices.
Therefore, for thew independent components of the metric
at w ¼ 0, we can make the gauge choice

G�uð0; u; x�Þ ¼ 0 ! ��ðxÞ ¼ 0: (7.10)

We are left with only the degrees of freedom of the metric
g��ðxÞ in d dimensions given by

G��ð0; u; x�Þ ¼ e4ug��ðxÞ: (7.11)

There still remains gauge symmetry for general coordinate
transformations in the x� subspace. In this form it is easy to
compute the determinant ofGMN , given in (7.1). This gives
detðG�1Þ ¼ �e4du detðg�1ðxÞÞ, or

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðw; u; x�Þp ¼ e�2du

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðxÞ

q
: (7.12)

As a final check we compute that r2W ¼ 2ðdþ 2Þ is also
satisfied as required by Eq. (3.17), as follows:

r2W ¼ 1ffiffiffiffi
G

p @Mð
ffiffiffiffi
G

p
GMN@NWÞ ¼ 1ffiffiffiffi

G
p @Mð

ffiffiffiffi
G

p
GMw@wwÞ

(7.13)

¼ 1ffiffiffiffi
G

p @wð
ffiffiffiffi
G

p
GwwÞ þ 1ffiffiffiffi

G
p @uð

ffiffiffiffi
G

p
GuwÞ (7.14)

¼ @wð4wÞ � e2du@ue
�2du ¼ 4þ 2d: (7.15)

The metric GMNðXÞ given in Eqs. (7.1), (7.5), (7.10), and
(7.11) shows that, after imposing the kinematic constraints
at the classical level, the conformal shadow is described
only in terms of the degrees of freedom g��ðxÞ in d

dimensions.
We now go through similar arguments to impose the

kinematic constraint (4.8) for �. This takes the form

0 ¼
�
VM@M þ d� 2

2

�
�

¼
�
2w@w � 1

2
@u þ d� 2

2

�
�ðw; u; xÞ: (7.16)

The solution is �ðw; u; xÞ ¼ e�ðd�2Þu
̂ðx; e�4uwÞ, in
which the zeroth order term in the expansion in powers
ofw is identified as the physical field
ðxÞ in d dimensions,

�ð0; u; xÞ ¼ eðd�2Þu
ðxÞ: (7.17)

After solving the kinematic constraints we have arrived
at the conformal shadow with only the degrees of freedom
g��ðxÞ, 
ðxÞ. We can now evaluate the full action for the
shadow. The volume element becomes

ddþ2X
ffiffiffiffi
G

p
�ðWðXÞÞ ¼ dwduðddxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðxÞ

q
e�2du�ðwÞ:

(7.18)

Every term in the Lagrangian density is now independent
of w and has the same overall factor e2du as the only
possible dependence on u. Specifically, �2 is proportional

to e2ðd�2Þu and RðGÞ is proportional to e4u, so �2RðGÞ is
proportional to e2du, etc. Both thew and u dependences are
explicit. So the action in dþ 2 dimensions produces the
following shadow action in d dimensions,

SG þ S� þ SW ¼
�
�
Z

du

�Z
ðddxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðxÞ

q
LdðxÞ;

(7.19)

where the overall renormalization constant � is chosen so
that ð�R

duÞ ¼ 1. The factor of � can be interpreted as a
renormalization of Planck’s constant @ since in the path
integral @ appears only in the form S=@.
The shadow Lagrangian in d dimensions LdðxÞ takes the

form

Sðg;
Þ ¼
Z

ddx
ffiffiffiffiffiffiffi�g

p �
1

2a
g��@�
@�
þ R
2 � Vð
Þ

�
:

(7.20)

Recall that the special value of a was required to generate
consistently all of the Spð2; RÞ kinematic constraints. Then

ðxÞ is the conformal scalar in d dimensions. As discussed
earlier following Eq. (4.9), this action has an accidental

localWeyl symmetry given by Sð~g; ~
Þ ¼ Sðg;
Þ under the
gauge transformation

~g ��ðxÞ ¼ e2�ðxÞg��ðxÞ; ~
ðxÞ ¼ e�ððd�2Þ=2Þ�ðxÞ
ðxÞ:
(7.21)

This gauge freedom can be used to gauge fix 
ðxÞ except
for an overall constant that absorbs dimensions. Assuming

ðxÞ has a nonzero vacuum expectation value 
0, we may

write 
2ðxÞ ¼ 
2
0e

ðd�2Þ�ðxÞ and gauge fix the fluctuation

�ðxÞ ¼ 0. Note that �ðxÞ would have been the Goldstone
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boson for dilatations, but in the present theory it is not a
physical degree of freedom.

We can try to trace back the origin of this accidental
Weyl symmetry. It is related to the gauge symmetry dis-
cussed in Sec. VI. That symmetry was already used to
gauge fix WðXÞ ¼ w. There remains leftover gauge sym-
metry that does not change w, but can change the w
independent parts of the fields �, GMN which describe
the shadow. So, the conformal shadow ends up having the
accidental Weyl symmetry.

It is important to emphasize that the action in dþ 2
dimensions does not have a Weyl symmetry; therefore �
could not be removed locally. In fact, as seen from (7.17),
even after gauge fixing 
ðxÞ, as well putting the theory on

shell, the original field becomes �ðw; u; xÞ ¼
eðd�2Þu
̂ðx; e4uwÞ ¼ eðd�2Þu
0 þOðwÞ, so even on shell
it still depends on the spacetime coordinate u in dþ 2
dimensions (also onw before settingw ¼ 0). Thus, the full
� is not a trivial pure gauge freedom in our theory.

The shadow that emerged with a constant
0 has exactly
the form of general relativity with a possible cosmological
constant contributed by 
�2

0 Vð
0Þ, if this quantity is non-

vanishing,

Sðg;
0Þ ¼
Z

ddx
ffiffiffiffiffiffiffi�g

p ð
2
0RðgÞ � Vð
0ÞÞ: (7.22)

What is left behind from 
ðxÞ in the shadow is only the

constant 
0 of mass scale Mðd�2Þ=2. This constant cannot
be determined within the theory we have outlined so far.
With our potential Vð
Þ in Eq. (2.7), minimizing the action
with respect to 
ðxÞ, and then gauge fixing to 
ðxÞ ¼ 
0,
does not produce a new equation for 
0 other than the one
obtained by minimizing the action with respect to the

metric g��, namely, RðgÞ ¼ 1
2
0

V 0ð
0Þ ¼ �
4=ðd�2Þ
0 . An

effective potential Vð
Þ with a nontrivial minimum could
determine
0. We assume that a nontrivial minimum arises
self-consistently from either quantum fluctuations (dimen-
sional transmutation [20]) or from the completion of our
theory into string theory or M theory (with two times).

Although we could not determine 
0 �Mðd�2Þ=2 within
the classical considerations here, this 
0 that appears as a
constant shadow of �ðXÞ to observers in x space is evi-
dently related to Newton’s constant Gd, the Planck con-
stant �d, or the Planck scale lp in d dimensions


2
0 ¼

1

16Gd

¼ 1

2�2
d

¼ 2

ð2lpÞd�2
�Md�2: (7.23)

VIII. GRAVITATIONAL NONCONSTANT, NEW
COSMOLOGY?

We now outline the coupling of our gravity triplet
ðW;�; GMNÞ to matter fields of the Klein-Gordon
[SiðXÞ], Dirac [�ðXÞ], and Yang-Mills [AMðXÞ] types. In

flat 2T field theory these must have the following engineer-
ing dimensions [5]:

dimðXMÞ ¼ 1; dimðSiÞ ¼ � d� 2

2
;

dimð�Þ ¼ � d

2
; dimðAMÞ ¼ �1:

(8.1)

The general 2T field theory of these fields in flat space in
dþ 2 dimensions was given in [5]. The matter part of the
theory in curved space follows from the flat theory in [5] by
making the substitutions indicated in Table I.
The dilaton� couples to Yang-Mills fields and fermions

only as follows:

SðAÞ ¼ � 1

4

Z
ðddþ2XÞ

� ffiffiffiffi
G

p
�ðWÞ�2ðd�4Þ=ðd�2Þ TrðFMNF

MNÞ; (8.2)

SYukawað�; Si;�Þ ¼ gi
Z
ðddþ2XÞ�ðWÞ��ððd�4Þ=ðd�2ÞÞ

� VMð ��L�M�
RSi þ H:c:Þ: (8.3)

The dilaton disappears in these expressions when dþ 2 ¼
6. In addition, even when dþ 2 ¼ 6, the dilaton can also
couple to other scalars SiðXÞ in the potential energy
Vð�; SÞ with the only condition that Vð�; SiÞ has length
dimension (� d) when dimð�Þ ¼ dimðSiÞ ¼ �ðd� 2Þ=2.
This is the only place the extra field � appeared in flat
space in the standard model [5], so that field may or may
not be the dilaton6 � ¼ �.
We now emphasize an important property of the scalars

Si (including the Higgs field in the standard model). It turns
out that, for consistency with the Spð2; RÞ conditions (1.3),
(1.4), (1.5), (1.6), (1.7), (1.8), and (1.9), the quadratic part
of the Lagrangian for any real scalar SiðXÞ must have
exactly the same structure as the one for the dilaton field
�. So, the quadratic part of the action for any scalar must
have the form of the dilaton action Sð�Þ ¼ SGð�Þ þ
S�ð�Þ þ SWð�Þ in Eqs. (2.1), (2.2), (2.3), and (2.4), except
for substituting � ! Si, and except for an overall normal-
ization constant.7 This structure has been indicated in the
table above, where the piece symbolically written as
LðW; S2i Þ or LðW;�2Þ is the piece that contributes to the
action SW in Eq. (2.4), which appears with a �0ðWÞ rather
than �ðWÞ,

6An important additional field that was required when dþ
2 � 6 even in flat space was a ‘‘dilaton.’’ It was named � in [5]
and had dimension dimð�Þ ¼ � d�2

2 like any other scalar field
�, Si. A natural as well as economical assumption (although not
necessary) is to identify the scalar field � that appeared in the
4þ 2 dimensional standard model with the dilaton field � ¼ �
that now appears as part of the gravity triplet ðW;�; GMNÞ.

7A complex scalar would be constructed from two real scalars,
’ ¼ ðS1 þ iS2Þ=

ffiffiffi
2

p
.
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�ðWÞLðW; S2i Þ ¼ �0ðWÞfS2i ð4�r2WÞ þ @W � @S2i g:
(8.4)

Furthermore the same special a ¼ ðd� 2Þ=8ðd� 1Þ must
appear in the action of any scalar.

This last requirement is related to the underlying
Spð2; RÞ, and is most directly understood by analyzing
the consistency of the equations of motion for the fields
GMN, Si, and W in the same footsteps as Secs. III, IV, and
V. The Spð2; RÞ constraint is that we must always obtain the
same kinematic equations of motion, in particular, GMN ¼
1
2rM@MW in Eqs. (1.9) and (3.17), independent of the field

content in the action. This is a strong condition that de-
mands the stated structure for the Lagrangian for any scalar
field Si. Of course, in flat space this is immaterial since
RðGÞ is zero, but it has an important physical effect on the
meaning of the gravitational constant, as perceived by
observers in the shadow worlds in d dimensions, as we
will see below.

There remains, however, the freedom of an overall nor-
malization which, for physical reasons, must be taken as
specified in the table above. Namely, for the dilaton, the
sign of the term �2RðGÞ must be positive since this is
required by the positivity condition of gravitational energy
in the conformal shadow as seen from Eq. (7.22). Since the
dilaton is gauge freedom in the conformal shadow, the sign
or normalization of the term 1

2aG
MN@M�@N� is not cru-

cial. However, for the remaining scalar fields the sign and
normalization of the kinetic term � 1

2G
MN@MSi@NSi must

be fixed by the requirements of unitarity (no negative norm
fluctuations) and a conventional definition of the norm.

It is interesting that there is a physical consequence. We
consider again the conformal shadow and try to interpret
the physical structure for observers in the smaller d dimen-
sional space. The conformal shadow is obtained by the
same steps as before by takingWðXÞ ¼ w. We concentrate
only on the scalars and the metric. These fields have the
following shadows:

GMNðw; u; xÞ ¼
MnN w u �
w
u
�

4w �1 0
�1 0 0
0 0 e4ug��ðxÞ

0
@

1
A ;

(8.5)

�ðw; u; xÞ ¼ eðd�2Þu
ðxÞ; Siðw; u; xÞ ¼ eðd�2ÞusiðxÞ:
(8.6)

The action in the conformal shadow at w ¼ 0 is then8

Sðg;
;siÞ ¼
Z

ddx
ffiffiffiffiffiffiffi�g

p �
1

2a
g��@�
@�


� 1

2
g��@�si@�si þð
2 �as2i ÞR�Vð
;siÞ

�
:

(8.7)

Because of the special value of a, there is one overall local
Weyl symmetry which can be used to fix the gauge


ðxÞ ¼ 
0 (8.8)

as discussed above. So, 
ðxÞ disappears, while the remain-
ing scalar fields siðxÞ are correctly normalized and are
physical. The modified Einstein equation that follows
from this action is

TABLE I. Matter in curved space. The dilaton is normalized with an extra ð�aÞ�1.

Quantity Flat Curved

Metric �MN GMNðXÞ
Volume element ðddþ2XÞ�ðX2Þ ðddþ2XÞ ffiffiffiffi

G
p

�ðWðXÞÞ
Explicit X XM VM ¼ 1

2G
MN@NW

Gamma matrix, vielbein �M Ea
MðXÞ�a

Spin connection �M@M� EMc�cð@M þ 1
4 �ab!

ab
M ðXÞÞ�

Real scalar field Si � 1
2@MSi@

MSi � 1
2G

MN@MSi@NSi � aS2i RðGÞ � aLðW;S2i Þ
Dilaton � (extra � 1

a factor) þ 1
2aG

MN@M�@N�þ�2RðGÞ þ LðW;�2Þ

8We must be careful that the equations of motion derived from
this action are consistent with the original equations of motion in
dþ 2 dimensions. In fact, this is not trivial. The shadow extends
to w, u space through first and second order terms in the
expansion in powers of w, such as

g��ðx; we4uÞ ¼ g��ðxÞ þ we4u~g��ðxÞ þ w2e8u~~g��ðxÞ þ � � � ;
�ðx; we4uÞ ¼ 
ðxÞ þ we4u ~
ðxÞ þ w2e8u ~~
ðxÞ þ � � � ;
Siðx; we4uÞ ¼ siðxÞ þ we4u~siðxÞ þ w2e8u~~siðxÞ þ � � � :

The Riemann tensor RMNPQðGÞ constructed from GMNðw; u; xÞ
contains the modes ~g��, ~~g�� even after setting w ¼ 0 because
there are derivatives with respect to w. Thus, we emphasize that
R����ðGÞ at w ¼ 0 depends on g��, ~g��, and ~~g��, so it is not
the same as R����ðgÞ, and similarly for other components.
Consistency with the full set of equations of motion given above
requires also the modes ~
, ~~
, ~si, ~~si. However, all extra modes
get determined in terms of only g��, 
, si self-consistently
through the full set of equations of motion in dþ 2 dimensions.
The self-consistent dynamics in shadow space x� is then
determined only by g��ðxÞ, and the interactions among fields
involve only 
ðxÞ and siðxÞ. Their consistent interactions, as
derived from the original equations of motion, are then described
by the shadow action given here. These technical details will be
given in a separate paper.
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R�� � 1
2g��R ¼ T��ð
0; siÞ; (8.9)

with the energy-momentum tensor given by

T�� ¼ 1

ð
2
0 � a

P
i
s2i Þ

�X
i

�
1

2
@�si@�si � 1

4
g��@si � @si

�

� 1

2
g��Vð
0; siÞ þ a

X
i

ðg��r2s2i �r�@�s
2
i Þ
�
:

(8.10)

The trace of this energy-momentum tensor is

g��T�� ¼ ðd� 2Þ
8ð
2

0 � a
P
i
s2i Þ

�
� 4d

d� 2
Vð
0; siÞþ 2

X
i

sir2si

�
:

(8.11)

After using the equations of motion r2si ¼ @V=@si þ
2asiR, the special value of a, and the homogeneity of the
potential ð
 @V

@
 þP
isi

@V
@si
Þ ¼ 2d

d�2V, we compare to the

trace of Eq. (8.9), ð1� d=2ÞR ¼ g��T��, and solve for

R. We obtain

RðgÞ ¼ 1

2
0

@Vð
0; siÞ
@
0

: (8.12)

The same result is obtained if one starts with the equation
of motion for
ðxÞ and then chooses the gauge
ðxÞ ! 
0.
Therefore the 
 equation of motion is recovered from the
equations of motion of the other fields, showing
consistency.

When the si are small fluctuations, 
�2
0 approximates

the overall factor in T��. Then the gravitational constant is

determined approximately by 
0, as specified in
Eq. (7.23).

However, if Vð
0; siÞ has nontrivial minima that lead to
nontrivial vacuum expectation values for some of the
hsii ¼ vi, then in that vacuum the gravitational constant
is determined by

16Gd ¼ ð
2
0 � av2

i Þ�1 (8.13)

rather than only 
�2
0 . The massless Goldstone boson,

which is removed by the Weyl symmetry, is then a combi-
nation of 
 and the scalars si that developed vacuum
expectation values.

Such phase transitions of the vacuum can occur in the
history of the universe as it expands and cools down. This
is represented by an effective Vð
; siÞ that changes with
temperature. So, the various vi may turn on as a function of
temperature viðTÞ or, equivalently, as a function of time.
Among the phase transitions to be considered are inflation,
possible grand unification symmetry breaking, electroweak

symmetry breaking, as well as some others that are pos-
sible in the context of string theory to determine how we
end up in 4 dimensions with a string vacuum state compat-
ible with the standard model.
It would be interesting to pursue the possibility of a

changing effective gravitational constant, as above, since
this cosmological scenario is now well motivated by 2T
physics. This scenario may not have been investigated
before.

IX. COMMENTS

As naively expected, extra timelike dimensions poten-
tially introduce ghosts (negative probabilities) as well as
the possibility of causality violation, leading to interpreta-
tional problems. However, 2T physics overcomes these
problems by introducing the right set of gauge symmetries,
thus correctly describing the physical world, including the
physics of the standard model of particles and forces
[5,21], and now general relativity.
At the same time, 2T physics also gives additional

physical information which is not encoded in 1T physics.
This is because according to 2T physics there is a larger
spacetime in dþ 2 dimensions XM, where the fundamental
rules of physics are encoded. These rules include a com-
plete symmetry of position-momentum XM, PM according
to the principles of a local Spð2; RÞ with generators
QijðX; PÞ. This leads effectively to gauge symmetries in

dþ 2 dimensions that can remove degrees of freedom and
create a holographic shadow of the dþ 2 universe in d
dimensions x�. There are many such shadows, and since
observers in different shadows use different definitions of
time, they interpret their observations as different 1T dy-
namics. However, the shadows are related since they rep-
resent the same higher dimensional universe. These
predicted relations would be interpreted as dualities by
observers that live in the lower dimension x� who use
1T-physics rules. With hard work, observers in the smaller
x� space could discover enough of these dualities among
the shadows to reconstruct the dþ 2 dimensional, highly
symmetric universe. Two-time physics provides a road
map for this reconstruction by predicting the properties
of the shadows.
Examples of some simple dualities in d dimensions,

which arise from flat dþ 2 dimensional spacetime, in the
context of field theory such as the standard model, were
discussed in [18,19]. In the flat case, each shadow has
SOðd; 2Þ global symmetry as hidden symmetry, where
this SOðd; 2Þ is the shadow of the global Lorentz symmetry
in dþ 2 dimensions as identified in Eq. (1.11). So clues of
the higher spacetime can also appear within each shadow
in the form of hidden symmetries. Examples of these in
field theory were also discussed in [18,19].
In curved spacetime, the details of the shadow, as seen

by observers stuck in the smaller spacetime x�, depends
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partially on the choice of W as a function of ðw; u; x�Þ. In
this paper we discussed the ‘‘conformal shadow’’ defined
by Wðw; u; x�Þ ¼ w in Eq. (7.2) and the gauge fixed form
of the metric (7.1). Together, these define the timeline in
the shadow space x� as some curve embedded in the two-
time spacetime in dþ 2 dimensions. A different choice of
gauges leads to a different shadow space with a different
timeline. The same dynamics in dþ 2 dimensions XM

tracked as a function of one timeline can appear to be quite
different from one-time dynamics relative to another time-
line. Evidently, there are many choices that correspond to
many embeddings of d dimensional spacetime x� (with
one time) into dþ 2 dimensional spacetime XM (with two
times), and these are expected to lead to dualities that relate
the different-looking one-time dynamics. Depending on
the nature of the higher curved space XM, there could be
hidden symmetries that would be seen in each smaller x�

space as clues of the extra space and time.
The kinds of predictions above can be used to generate

multiple tests of 2T physics. This line of investigation is at
its infancy and is worth pursuing vigorously.

In addition to the above, the emergent 1T-physics con-
formal shadow seems to come with certain natural con-
straints, which remarkably are not in contradiction with
known phenomenology so far. On the contrary, they lead to
some new guidance for phenomenology:

(i) The standard model is correctly reproduced as a
shadow,9 but in addition, the Higgs sector is required
to interact with an additional scalar � that induces
the electroweak phase transition as discussed in [5]
(� could be the dilaton �, but not necessarily;
see footnote 6). This leads to interesting physics
scenarios at CERN LHC energy scales (an additional
new neutral scalar) or cosmological scales (inflaton
candidate, dark matter candidate) as suggested in
[5].10 The supersymmetric11 version [21] of this
2T-physics feature with extra required scalars
leads to richer, phenomenologically interesting
possibilities.

(ii) The gravitational constant could be time dependent
as described in the previous section. This is because
according to 2T physics, if there are any fundamen-
tal scalars siðxÞ at all, they all must be conformal
scalars coupled to the curvature term R with the

special coefficient ð�aÞ as in the last line of the
table above. It would be interesting to study the
effects of this scenario in the context of cosmology.

There are many open questions. In particular, quantiza-
tion in the path integral formalism is still awaiting clarifi-
cation of the gauge symmetries so that Faddeev-Popov
techniques can be correctly applied. Other issues include
the question of whether there might be some physical role,
either at the classical or quantum levels, for the remainders
in the expansion of the fields in powers of W, as in
Eq. (3.13).
Having accomplished a formulation of gravity as well as

supersymmetry in 2T field theory [21], it is natural to next
try supergravity. In particular, the 2T generalization of 11-
dimensional supergravity is quite intriguing and worth a
few speculative comments. If constructed, such a theory
will provide a low energy 2T-physics corner of M theory.
This would be a theory in 11þ 2 dimensions whose global
supersymmetry can only be OSpð1j64Þ, so it should be
related to S theory [30]. We remind the reader that S theory
gives an algebraic BPS-type setting based on OSpð1j64Þ
for the usual M-theory dualities among its corners, with 11
dimensions, or 10 dimensions with type IIA, IIB, heterotic,
type-I supersymmetries. A corresponding 2T-physics the-
ory would provide a dynamical basis that could give
shadows-type meaning to these famous dualities, as out-
lined in [31].
Finally, let us emphasize that the fundamental concept

behind 2T physics is the momentum-position symmetry
based on Spð2; RÞ. Despite the fact that the worldline
approach in Eq. (1.1) treats position and momentum on
an equal footing, the field theoretic approach that we have
discussed blurs this symmetry, although the constraints
implied by the Spð2; RÞ symmetry in the form of the kine-
matic constraints were still maintained. There should be a
more fundamental approach with a more manifest position-
momentum symmetry, perhaps with fields that depend both
on XM and PM, and in that case, perhaps based on non-
commutative field theory. Basic progress along this line
that included fields of all integer spins was reported in [32].
If this avenue could be developed to a comparable level as
the current field theory formalism, it is likely that it will go
a lot farther than our current approach.
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9The theta term �F � F can be reproduced as a shadow in 3þ
1 dimensions from 2T field theory in 4þ 2 dimensions (to
appear). So a previous claim of the resolution of strong CP
violation without an axion [5] is retracted.
10Scenarios that include such a scalar field in both theoretical
and phenomenological contexts have been discussed indepen-
dently in recent papers [22–27] that mainly appeared after [5].
11It was suggested in the second reference in [5] that a confor-
mal scalar of the type �, with the required SO(4,2), could
provide an alternative to supersymmetry as a mechanism that
could address the mass hierarchy problem. This possibility has
been more recently discussed in [28,29].
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