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We revisit the question of microcausality violations in quantum field theory on noncommutative

spacetime, taking OðxÞ ¼ :� ? �:ðxÞ as a sample observable. Using methods of the theory of distribu-

tions, we precisely describe the support properties of the commutator ½OðxÞ;OðyÞ� and prove that, in the

case of space-space noncommutativity, it does not vanish at spacelike separation in the noncommuting

directions. However, the matrix elements of this commutator exhibit a rapid falloff along an arbitrary

spacelike direction irrespective of the type of noncommutativity. We also consider the star commutator for

this observable and show that it fails to vanish even at spacelike separation in the commuting directions

and completely violates causality. We conclude with a brief discussion about the modified Wightman

functions which are vacuum expectation values of the star products of fields at different spacetime points.
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I. INTRODUCTION

In recent years, considerable attention has been given to
the construction of quantum field theories (QFTs) on non-
commutative spacetimes (see, e.g., [1] for a review). The
question of causality is a basic one in the development of
the corresponding conceptual framework. A noncommuta-
tive deformation of the d-dimensional spacetime is for-
mally defined by replacing the coordinates x� of Rd by
operators x̂� satisfying the commutation relations

½x̂�; x̂�� ¼ i���; (1)

where ��� is a real antisymmetric d� d-matrix, constant
in the simplest case. However, this deformation can be
combined with the basic principles of quantum theory in
a variety of fashions. In particular, the issue of causality
cannot be discussed in isolation from that of the imple-
mentation of spacetime symmetries. The relations (1) are
not covariant under the Lorentz transformations, and non-
commutative QFT is usually treated as a specific form of
field theory with a nonlocal interaction breaking the
Lorentz symmetry to a subgroup. In the Lagrangian for-
malism, the theory is defined by replacing the ordinary
product of fields in the interaction terms of the actions with
the Moyal ?-product given by

ð�1 ? �2ÞðxÞ ¼ �1ðxÞ exp
�
i

2
@
 
��

��@
!
�

�
�2ðxÞ: (2)

The star product commutation relation x� ? x� � x� ?
x� ¼ i��� is identified with (1) via the Weyl correspon-
dence between operators and their symbols. There is an
essential distinction between the cases of space-space and
time-space noncommutativity. If the time coordinate is
involved in noncommutativity, then a string theoretical
interpretation of the field theory comes up against the
problem of nonunitarity [2] and inconsistency with the

conventional Hamiltonian evolution [3]. A consistent
Hamiltonian framework for the scalar field theory with
time-space noncommutativity has been proposed in [4].
The definition given there leads to a perturbatively unitary
S-matrix and is interesting by itself, even though its rela-
tionship with string theory is unclear. Field theories with
only space noncommutativity (that is �0� ¼ 0) avoid the
problems with unitarity, and models of this form attract the
most notice because they describe a low energy limit of
string theory in certain backgrounds. However, its causal
structure is different from that of the standard QFT because
the light cone is changed to a light wedge respecting the
residual Lorentz symmetry [5–7]. The main object of the
present paper is to analyze rigorously this modification of
the causal structure.
At present, much consideration is being given to quan-

tization of noncommutative theories with the use of a
‘‘twisted’’ version of the Poincaré covariance. These ef-
forts are aimed at restoring the spacetime symmetries
broken by noncommutativity and developing a covariant
formulation even though the matrix ��� in (1) and (2) is
constant. Within this setting, the issues of locality and
causality were discussed, e.g., in [8–10], but up to now
there is no consensus regarding the implementation of the
twisted covariance in QFT and its physical consequences.
Another way of looking at noncommutative spacetime was
proposed in [11], where an infinite family of fields labeled
by different noncommutativity parameters was considered
and their relative localization properties were investigated.
In [12], locality and causality violations caused by non-

commutativity were illustrated by a star product analogue
of the normal ordered square :�2: of a free scalar field �.
Specifically, Chaichian et al. considered OðxÞ ¼
:� ? �:ðxÞ as a sample observable and found that the
matrix element

h0j½OðxÞÞ;OðyÞ�jx0¼y0 jp1; p2i (3)*soloviev@lpi.ru
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is nonzero only when �0� � 0. More recently, Greenberg
[13] considered the commutator ½OðxÞ; @�OðyÞ� with the
derivatives of O and has shown that it fails to vanish at
equal times even in the case in which �0� ¼ 0. As stated in
[13], this result holds generally when there are time de-
rivatives in the observables. A similar conclusion was
reached in [14], where also a commutator involving time
derivatives was treated, but with the use of a generalization
of the Bogoliubov-Shirkov causality criterion.

In this paper, we analyze the commutator ½OðxÞ;OðyÞ�
more closely, using the techniques of the theory of distri-
butions, which allows describing its support properties
completely. We first consider the case of space-space non-
commutativity, taking for definiteness d ¼ 4 and �12 ¼
��21 � 0, with the other values of the �-matrix equal to
zero. In Sec. III, we show that then the commutator van-
ishes in the spacelike wedge jx0 � y0j � jx3 � y3j. In
Sec. III, we prove that ½OðxÞ;OðyÞ� � 0 everywhere out-
side this wedge. This result demonstrates that the space-
space noncommutativity violates the usual SOð1; 3Þmicro-
causality even if there are no time derivatives in the ob-
servables. In Sec. IV, we show that nevertheless the matrix
elements of the commutator decrease rapidly in the whole
cone ðx� yÞ2 � 0 and behave like expð�jx� yj2=j�jÞ at
large spacelike separation. This is true without regard to
the type of noncommutativity, in both space-space and
time-space cases, and manifests itself after averaging the
observable OðxÞ with sufficiently smooth and rapidly de-
creasing test functions. The best suitable class of test
functions has been found and investigated in [15,16]. A
slightly different class was independently proposed in [17].
In Sec. V, we examine the modified commutator
½OðxÞ;OðyÞ�? ¼ OðxÞ ?OðyÞ �OðyÞ ?OðxÞ, where ? de-
notes now a star multiplication of field operators at differ-
ent spacetime points. Such a modification was also
discussed in the literature. We prove that, contrary to
expectations, the star commutator fails to vanish even in
the spacelike wedge and completely violates causality. Our
study shows, in particular, that the seemingly natural defi-
nition of the star product of fields at different spacetime
points, as an operation dual to the corresponding operation
on test functions, brings the causality principle and the
spectral condition into conflict. Section VI contains con-
cluding remarks.

II. A LIGHT WEDGE INSTEAD OF THE LIGHT
CONE

Let � be a free neutral scalar field of mass m on a
spacetime of d dimensions and let :�2:ðxÞ ¼
limx1;x2!x:�ðx1Þ�ðx2Þ:. By the Wick theorem for normal

ordered products, it follows that

h0j:�2:ðxÞ:�2:ðyÞ:�ðz1Þ�ðz2Þ:j0i
¼ 4wðx� yÞwðx� z1Þwðy� z2Þ þ ðz1 $ z2Þ; (4)

where w is the two-point function of �, i.e.,

wðx� yÞ ¼ h0j�ðxÞ�ðyÞj0i

¼ 1

ð2�Þd�1
Z
dk#ðk0Þ�ðk2 �m2Þe�ik�ðx�yÞ:

(5)

As a consequence, we have

h0j½:�2:ðxÞ; :�2:ðyÞ�:�ðz1Þ�ðz2Þ:j0i
¼ 4i�ðx� yÞwðx� z1Þwðy� z2Þ þ ðz1 $ z2Þ; (6)

where �ðx� yÞ ¼ 1
ið2�Þd�1

R
dk�ðk0Þ�ðk2 �m2Þe�ik�ðx�yÞ

is the Pauli-Jordan function. Let us now consider the
normal ordered expression

OðxÞ ¼ :� ? �:ðxÞ
¼ lim

x1;x2!x
:�ðx1Þ exp

�
i

2
@
 
��

��@
!
�

�
�ðx2Þ:

¼ :�2:ðxÞ þX1
n¼1

�
i

2

�
n 1

n!
��1�1 . . . ��n�n

� :@�1
. . . @�n

�ðxÞ@�1 . . . @�n�ðxÞ:: (7)

Every term in the expansion (7) is well defined as a Wick
monomial in derivatives of �, see [18] or [19]. The tech-
nique developed in [20] allows us to define rigorously their
sum as an operator-valued generalized function acting in
the Hilbert space of �, but we will not dwell on this point
and now restrict our consideration to the vacuum expecta-
tion value

W ðx; y; z1; z2Þ ¼ h0jOðxÞOðyÞ:�ðz1Þ�ðz2Þ:j0i; (8)

which is an analogue of (4). Applying the Wick theorem
again and using the formula

eik�x ? eip�x ¼ e�i½k;p�eiðkþpÞ�x; (9)

where

½k; p� ¼defð1=2Þk����p�;
one can readily see that

W ðx; y; z1; z2Þ ¼ 4
Z
dkdp1dp2 ~wðkÞ

� e�ik�ðx�yÞ�ip1�ðx�z1Þ�ip2�ðy�z2Þ

� Y
i¼1;2

~wðpiÞ cos½k; pi� þ ðz1 $ z2Þ;

(10)

where ~wðkÞ ¼ ðFwÞðkÞ ¼ R
d�eik��wð�Þ. More explicitly,

the Fourier transform of (9) has the form
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~W ðk1; k2;p1; p2Þ ¼ 4ð2�Þdþ3�ðk1 þ k2 þ p1 þ p2Þ
� #ðk01 þ p0

1Þ�ððk1 þ p1Þ2 �m2Þ
� Y

i¼1;2
#ð�p0

i Þ�ðp2
i �m2Þ cos½ki; pi�

þ ðp1 $ p2Þ; (11)

where k1, k2 and p1, p2 are the momentum-space variables
conjugate to x, y and z1, z2, respectively. The function

� ¼ cos½k1; p1� cos½k2; p2� (12)

is a multiplier of the Schwartz space SðR4dÞ and hence the
expression on the right-hand side of (11) and the vacuum
expectation value (8) are well defined as tempered
distributions.

From Eq. (10), it follows that

h0j½OðxÞ;OðyÞ�:�ðz1Þ�ðz2Þ:j0i
¼ 4i

Z
dkdp1dp2

~�ðkÞe�ik�ðx�yÞ�ip1�ðx�z1Þ�ip2�ðy�z2Þ

� Y
i¼1;2

~wðpÞ cos½k; pi� þ ðz1 $ z2Þ; (13)

which agrees with formulas for the matrix element
h0j½OðxÞ;OðyÞ�jp1; p2i in [12,13]. The Fourier transform
of distribution (13) is obtainable by multiplying that of (6)
by the multiplier (12). The distribution (6) is zero every-
where in the cone ðx� yÞ2 < 0, but this is not to say that
the distribution (13) obeys microcausality. Let us turn to
the case of space-space noncommutativity, assuming that
�12 ¼ ��21 ¼ � � 0 and the other elements of the matrix
��� are equal to zero. It is easily seen that then the
distribution (13) satisfies a weakened version of micro-
causality and vanishes in the wedge defined by

jx0 � y0j< jx3 � y3j: (14)

In fact, the Fourier transformation converts multiplication
into convolution1 and hence the value of distribution (13) at
a test function f coincides with the value of (6) at the test
function ð2�Þ�4d ~� � f. Under our assumptions about the
�-matrix, the multiplier (12) does not depend on the var-
iables conjugate to x0, y0, x3, y3 and its Fourier transform
~� is the tensor product of �ðx0Þ�ðy0Þ�ðx3Þ�ðy3Þ and a
distribution in the other variables. Therefore, if suppf is
contained in the wedge (14), then suppð ~� � fÞ also lies in
this wedge and does not intersect the support of distribu-
tion (6). It follows that the distribution (13) vanishes for
such test functions.

III. VIOLATIONS OF MICROCAUSALITY

Now we intend to show that in the case of space-space
noncommutativity, the commutator ½OðxÞ;OðyÞ� does not
vanish outside the wedge (14) and hence the observable
OðxÞ defined by (7) does not satisfy the standard micro-
causality condition.
Theorem 1. Let d ¼ 4 and let �12 ¼ ��21 ¼ � � 0,

with the other elements of the matrix ��� equal to zero.
Suppose that points �x, �y 2 R4 satisfy the inequalities ð �x�
�yÞ2 < 0 and j �x0 � �y0j> j �x3 � �y3j. Then there is a state �
such that ð �x; �yÞ belongs to the support of

M�ðx; yÞ ¼defh0j½OðxÞ;OðyÞ�j�i: (15)

Proof. We take a state of the form

j�i ¼
Z
dz1dz2:�ðz1Þ�ðz2Þ:hðz1Þhðz2Þj0i

¼ ��ðhÞ��ðhÞj0i; (16)

where h 2 SðR4Þ. Then M� is clearly a tempered distri-
bution and by (13) we have

ðM�; f � gÞ ¼ h0j½OðfÞ;OðgÞ�j�i
¼ 8i

Z
dp1dp2

Y
i¼1;2

~wðpiÞ~hðpiÞ

�
Z
dk~�ðkÞ cos½k; p1� cos½k; p2�

� ~fð�k� p1Þ~gðk� p2Þ (17)

for any test functions f, g 2 SðR4Þ. This order of integra-
tion is permissible by the Fubini theorem because integrat-
ing over k0, p0

1, p
0
2 gives an integrable function on R

9. The

function

 p1;p2
ðkÞ ¼ ~fð�k� p1Þ~gðk� p2Þ

belongs to the space SðR4Þ for any p1, p2 2 R4, and the
function

�p1;p2
ðkÞ ¼ cos½k; p1� cos½k; p2�

is a multiplier of SðR4Þ. Therefore the integral over k in
(22) can be written as

ð~�; �p1;p2
�  p1;p2

Þ ¼ 1

ð2�Þ4 ð�; ~�p1;p2
� ~ p1;p2

Þ: (18)

Let � be the linear map defined by ð�pÞ� ¼ 1
2 �

��p�.

Then

~�p1;p2
ð�Þ ¼

Z
dkeik���p1;p2

ðkÞ

¼ ð2�Þ
4

4
½�ð���ðp1 þ p2ÞÞ

þ �ð�þ�ðp1 þ p2ÞÞ þ �ð���ðp1 � p2ÞÞ
þ �ð�þ�ðp1 � p2ÞÞ�:

1To be more precise, we use the relations ðu; ~gÞ ¼ ð~u; gÞ andf�g ¼ ð2�Þ�d ~� � ~g, which hold for any g 2 SðRdÞ, u 2 S0ðRdÞ
and for each multiplier �.
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Furthermore, we have

~ p1;p2
ð�Þ ¼

Z
dkeik�� p1;p2

ðkÞ

¼
Z
dkdxdyeik��þið�k�p1Þ�xþiðk�p2Þ�yfðxÞgðyÞ

¼ ð2�Þ4
Z
dxdye�ip1�x�ip2�y

� �ð�� xþ yÞfðxÞgðyÞ
¼ ð2�Þ4e�iðp1�p2Þ��=2’p1;p2

ð�Þ;
where

’p1;p2
ð�Þ ¼

Z
dXe�iðp1þp2Þ�XfðXþ �=2ÞgðX� �=2Þ:

(19)

In what follows, we set �y ¼ � �x and �x3 ¼ �y3 ¼ 0. This
does not result in any loss of generality because the distri-
bution (13) is invariant under translations and under boosts
in the x3-direction. If suppf is contained in the
"-neighborhood of �x and suppg is contained in the
"-neighborhood of � �x, then only points X with k X k�
" contribute in the integral in (19) and the functions ’p1;p2

,
~ p1;p2

have support in the 2"-neighborhood of the point 2�x.

We also note that the operation consisting in convolution

with ~�p1;p2
displaces supp ~ p1;p2

ð�Þ by the vectors

��ðp1 � p2Þ. Now we specify the choice of h, setting

�p 1 ¼ 2 �x2=�; �p2 ¼ �2�x1=�; �p3 ¼ 0;

�p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ð �p1Þ2 þ ð �p2Þ2

q
;

so that � �p ¼ ð0; �x1; �x2; 0Þ. We take ~hðpÞ to be a nonneg-
ative function supported in a neighborhood U of �p and

such that ~hð �pÞ> 0. We choose U so small that the set of
points 2�x��ðp1 � p2Þ, where p1 and p2 run through U,

is separated from the cone �V ¼ f� 2 R4 : �2 	 0g by a
positive distance. Then for any p1; p2 2 U, one of the four

functions obtained from ~ p1;p2
by convolution with ~�p1;p2

has support in a neighborhood of �� ¼ ð2�x0; 0; 0; 0Þ,
whereas the other three of them are supported in the space-
like region and do not contribute in the right-hand side of

(18) if " is small enough. Inside the cone �V, the distribution
�ð�Þ is a regular function and we have the well-known
representation

�ð�Þ ¼ m

4�
ffiffiffiffiffi
�2

p �ð�0ÞJ1ðm
ffiffiffiffiffi
�2

q
Þ; � 2 V:

We first assume that J1ð2mj �x0jÞ � 0 and impose two addi-

tional restrictions on supp~h. Namely, we chooseU so small

that J1ðm
ffiffiffiffiffi
�2

p Þ has a constant sign on the set

f� 2 R4 : � ¼ 2�x��ðp1 þ p2Þ; p1; p2 2 Ug (20)

and furthermore the inequality

jðp1 � p2Þ � �xj<�=4 (21)

holds for all p1, p2 2 U. We put fðxÞ ¼ gð�xÞ and assume
that fðxÞ 	 0, fð �xÞ � 0. Then the function ’p1;p2

ð�Þ is real
because the product fðXþ �=2Þfð�X þ �=2Þ is invariant
under the reflection X ! �X. If " is sufficiently small,
then ’p1;p2

ð�Þ is nontrivial and nonnegative for all p1,

p2 2 U. From (21), it follows that Re ~ p1;p2
ð�Þ also has

these properties. The support of the shifted function
 p1;p2

ð���ðp1 þ p2ÞÞ lies in the 2"-neighborhood of

the set (20) and, if " is sufficiently small, then J1ðm
ffiffiffiffiffi
�2

p Þ
has a constant sign on this support. Therefore the expres-

sion Reð�; ~�p1;p2
� ~ p1;p2

Þ has a constant sign for all p1,

p2 2 supp~h. We conclude that for arbitrarily small neigh-
borhoods of the points �x and �y, there exist test functions f
and g supported in these neighborhoods and such that
h0j½OðfÞ;OðgÞ�j�i � 0. This amounts to saying that
ð �x; �yÞ belongs to suppM�. If J1ð2mj �x0jÞ ¼ 0 and U is

small enough, then the function J1ðm
ffiffiffiffiffi
�2

p Þ has a constant
sign on the set (20) except for � ¼ 2�x0, and we arrive at the
same conclusion with a different choice of f. Namely, we
can take f to be a nonnegative function supported in the
"=2-neighborhood of the point ( �x0 � "=2, �x1, �x2, �x3),
where the minus sign corresponds to positive �x0 and the
plus sign corresponds to negative �x0. This completes the
proof of Theorem 1.
Remark 1. It is worth noting that this theorem also holds

for �x0 ¼ �y0, �x3 ¼ �y3, ð �x� �yÞ2 < 0. In other words, the
support of the commutator under study contains even the
equal-time points which lie outside the wedge (14). The
proof proceeds along the same lines, but in this case f
should be chosen so that its support is contained in the
"=2-neighborhood of the point ð"=2; �x1; �x2; 0Þ.
Remark 2. Theorem 1 implies, in particular, that the

power series expansion of the distribution (13) in � does
not converge in the topology of the space S0 of tempered
distributions. In fact, every term of this expansion is ob-
tainable from (6) by applying a finite-order differential
operator and hence is zero everywhere in the region ðx�
yÞ2 < 0. If the expansion were convergent in S0, its limit
should also vanish in this region. A weaker topology, in
which the expansion in powers of � converges, is indicated
in [16].

IV. �-LOCALITY

We now show that the distribution M�ðx; yÞ, if
smoothed properly, has a rapid decrease in the whole
cone ðx� yÞ2 < 0 for all � ranging a dense set in the
subspace of two-particle states. More precisely, it behaves
like expð�jx� yj2=j�jÞ at large spacelike separation of the
arguments.2 This is true irrespectively of the form of the

2Here and in the sequel we use the notation j�j ¼ P
�<�j���j.
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matrix ��� and, in particular, for both space-space and
time-space noncommutativity.

A simple and well-known way of describing the behav-
ior of a distribution at infinity is by considering its con-
volution with test functions decreasing sufficiently fast. In
order to reveal the indicated decrease of M�, it is natural
to use test functions satisfying the inequalities

j@	fðxÞj � C	e
�jx=Aj2 ; (22)

where A is small in comparison to
ffiffiffiffiffiffij�jp

. In our case,
however, the test functions should also be sufficiently
smooth, as it is argued in [15,16]. The distribution (13) is
obtained from the distribution (6) by applying the infinite-
order differential operator

D� ¼ cos

�
1

2
@x�@z1

�
cos

�
1

2
@y�@z2

�
; (23)

where

@x�@z ¼def @

@x�
���

@

@z�
:

The function space defined by (22) is not invariant under
the action of the basic Moyal operator defining the
?-product and under the action of D�. In other words,
these operators spoil in general the behavior of its elements
at infinity. Theorem 2 of [15] characterizes those subspaces
of the Schwartz space that are invariant under the Moyal
operator and shows that the smoothness properties of their
elements should be matched with the decrease properties to
ensure this invariance. A special role is played by the space

denoted in [21] by S1=21=2, which consists of the infinitely

differentiable functions satisfying

j@	fðxÞj � CBj	j		=2e�jx=Aj2 ; (24)

where C, B, A are positive constants depending on f and
the usual multi-index notation is used. This space is the

union of the Banach spaces S1=2;B1=2;A with the norms

k f kA;B¼ sup
	;x
ejx=Aj2

j@	fðxÞj
Bj	j		=2

; (25)

and a sequence fn is said to be convergent to zero in S
1=2
1=2 if

there are A and B such that fn 2 S1=2;B1=2;A and k fn kA;B! 0

as n! 1. The space S1=21=2 is invariant under both the

Fourier operator and the Moyal operator and these opera-
tors are continuous in its topology.

Theorem 2. Let � be a free scalar field on Rd and let
OðxÞ ¼ :� ? �:ðxÞ, with the ?-product defined by an ar-

bitrary real antisymmetric matrix ���. Let f, g, h1, h2 2
S1=2;B1=2;A, where A > 0 and 0<B< 1=

ffiffiffiffiffiffiffiffiffi
ej�jp

. Suppose that a

is a spacelike vector in Rd separated from the cone �V by an
angular distance 
 ¼ inf�2	0j�� a=jajj. Then the matrix

element

ðM�; fa � g�aÞ ¼ h0j½OðfaÞ;Oðg�aÞ�j�i; (26)

where faðxÞ ¼ fðx� aÞ and j�i ¼ ��ðh1Þ��ðh2Þj0i, sat-
isfies the estimate

jðM�; fa � g�aÞj � C�;A0 k f kA;Bk g kA;B e�2j
a=A0j2
(27)

for each A0 > A.
Proof. We denote the vacuum expectation value (6) byM

and set ’ ¼ f � g � h1 � h2, ’a ¼ fa � g�a � h1 � h2.
Then

ðM�; fa � g�aÞ ¼ ðM;D�’aÞ: (28)

Theorem 1 of [16] shows that under the condition B<

1=
ffiffiffiffiffiffiffiffiffi
ej�jp

the operator D� maps the space S1=2;B1=2;A continu-

ously into the space S1=2;B
0

1=2;A , where B
0 ¼ B

ffiffiffi
2
p

. In particular,

k D�’ kA;B0� C k ’ kA;B , which gives the inequality

j@	ðD�’Þðx� a; yþ a; z1; z2Þj
� C k ’ kA;B B0j	j		=2e�ðjx�aj2þjyþaj2þjz1j2þjz2j2Þ=A2

: (29)

Clearly,M is a tempered distribution supported in the cone

�V� R3d ¼ fðx; y; z1; z2Þ 2 R4d : ðx� yÞ2 	 0g:
Therefore there exists an integer N and a constant C0 such
that, for each test function  2 SðR4dÞ, we have

jðM; Þj � C0 k  kN; �V�R3d ; (30)

where

k  kN; �V�R3d ¼ sup
j	j�N

sup
�V�R3d

ð1þ jxj þ jyj þ jz1j þ jz2jÞN

� j@	 ðx; y; z1; z2Þj: (31)

We put  ¼ D�’a and denote x� y by �. Combining
(28)–(31), we obtain

jðM�; fa � g�aÞj
� C00 k ’ kA;B sup

�V�R3d

ð1þ jxj þ jyj þ jz1j þ jz2jÞN

� e�ðjx�aj2þjyþaj2þjz1j2þjz2j2Þ=A2

� Ch1;h2 k f � g kA;B sup
�2 �V

ð1þ j�jÞNe�j��2aj2=ð2A2Þ: (32)

To complete the proof it suffices to observe that

j�� 2aj 	 2
jaj; j�� 2aj 	 
j�j for all � 2 �V:

The obtained estimate (27) is the stronger, the smaller A.

However the space S1=2;B1=2;A becomes trivial if AB is too

small. For the readers’ convenience, a proof of this simple

fact is given in the appendix. If AB> 2=
ffiffiffi
e
p

, then S1=2;B1=2;A is

nontrivial and, in particular, contains the Gaussian function

e�2jx=Aj2 . Because of the restriction B< 1=
ffiffiffiffiffiffiffiffiffi
ej�jp

in the

assumptions of Theorem 2, the best result is at A

2

ffiffiffiffiffiffij�jp
. It can be interpreted as demonstrating that the
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matrix element (26) decreases like e�j
aj2=ð2j�jÞ at large
spacelike separation of the test functions along the direc-
tion a, which refines the statement made at the beginning
of this section.

V. THE STAR COMMUTATOR

In Refs. [8,22], a framework for noncommutative QFTs
was formulated in terms of the vacuum expectation values
of ?-products of field operators at different spacetime
points. This product is formally written as

�ðx1Þ ? . . . ? �ðxnÞ ¼
Y
a<b

eði=2Þ@xa�@xb�ðx1Þ � � ��ðxnÞ:

(33)

It is generally agreed that a mathematically rigorous theory
of quantum fields on noncommutative spacetime shall
adopt the basic assumption of the traditional axiomatic
approach [18,19] that quantum fields are operator-valued
distributions. In other words, it is customary to assume that
in this case, too, there is a linear mapping of the Schwartz
space SðRdÞ (or another suitable test function space) into
the operators of the Hilbert space of states: f ! �ðfÞ. This
raises the question of a rigorous definition of the formal
expression (33) in agreement with this assumption. First of
all, we note that there is a multilinear mapping
SðRdÞ � � � � � SðRdÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

n

! SðRndÞ associated naturally

with the Moyal ?-product ðf1; . . . ; fnÞ ! f1 ? � � � ? fn.
It is defined by

ðf1; . . . ; fnÞ ! f1ðx1Þ ? � � � ? fnðxnÞ
¼ 1

ð2�Þdn
Z
dk1 . . . dkn ~f1ðk1Þ � � � ~fnðknÞ

� e
�iP

a

ka�xaY
a<b

e�ði=2Þka����kb� : (34)

The notation f1ðx1Þ ? � � � ? fnðxnÞ is accepted in the lit-
erature, though it seems reasonable to denote the function
(34) by f1 �? . . . �? fn. The ordinary product of n func-
tions f1; . . . ; fn is obtained from ðf1 � . . . � fnÞ
ðx1; . . . ; xnÞ by the identification x1 ¼ . . . ¼ xn, and their
Moyal product is obtained from (34) in the same fashion.
Sometimes we will write f1 �? . . . �? fn instead of
f1ðx1Þ ? � � � ? fnðxnÞ to avoid confusion and for short. If
the test functions are sufficiently smooth, then (34) can be
rewritten as

f1ðx1Þ ? � � � ? fnðxnÞ ¼
Y
a<b

eði=2Þ@xa�@xb f1ðx1Þ � � � fnðxnÞ:

(35)

In particular, the power series expansion of the expression
on the right-hand side of (35) in � converges to the function

(34) in the space S1=2ðRdnÞ whose elements satisfy the
inequalities (22) for each A > 0 (with a constant C	 de-

pending on f and A). The topology of S1=2 is defined by the
system of norms corresponding to these inequalities. As

shown in [15,16], S1=2 is the largest subspace of the
Schwartz space with such a convergence property. The
operation ðf1; . . . ; fnÞ ! f1 �? � � � �? fn generates a
dual operation over the distributions uj 2 S0ðRdÞ, which
is equivalent to multiplication of ~u1 � . . . � ~un by the
multiplier

�n ¼
Y

1�a<b�n
e�ði=2Þka����kb� : (36)

In particular, in the case of two distributions we have

ðu �? vÞðx; yÞ � uðxÞ ? vðyÞ

¼ 1

ð2�Þ2d
Z
dkdqe�ik�x�iq�y�i½k;q�~uðkÞ~vðqÞ;

(37)

with the above notation ½k; q� ¼ ð1=2Þk����q�. This op-
eration over distributions can also be considered as an
extension of the operation (35) over test functions by

continuity. The extension is unique, because S1=2 is dense
in S0.
Now let � be an operator-valued tempered distribution

defined on a dense invariant domain D in the Hilbert space
H , with the vacuum vector �0 2 D. By the standard
arguments [18] based on the Schwartz kernel theorem,
the vector

�nðfÞ ¼
Z
dx1 . . . dxn�ðx1Þ � � ��ðxnÞfðx1; . . . ; xnÞ�0

(38)

and the operator
R
dx1 . . . dxn�ðx1Þ � � ��ðxnÞfðx1; . . . ; xnÞ

are well defined for each f 2 SðRdnÞ. In particular, the
operator

Z
dx1 . . . dxn�ðx1Þ � � ��ðxnÞf1ðx1Þ ? � � � ? fnðxnÞ; (39)

is uniquely defined for any system of functions fa 2
SðRdÞ, a ¼ 1; . . . ; n. An analogous statement holds in the
case when SðRdÞ is replaced by another nuclear space
which is a topological algebra under the ?-product, for

instance, by the space S1=2ðRdÞ. If we hold to the basic
principle of the calculus of generalized functions and
define the action of the differential operator in (33) by
duality, then

Z
dx1 . . . dxn�ðx1Þ ? � � � ? �ðxnÞf1ðx1Þ � � � fnðxnÞ

¼
Z
dx1 . . . dxn�ðx1Þ � � ��ðxnÞf1ðx1Þ ? . . . ? fnðxnÞ:

(40)

As a consequence, we obtain the relation

M.A. SOLOVIEV PHYSICAL REVIEW D 77, 125013 (2008)

125013-6



Z
dx1 . . . dxnW

ðnÞ
? ðx1; . . . ; xnÞf1ðx1Þ � � � fnðxnÞ

¼
Z
dx1 . . .dxnW

ðnÞðx1; � � � ; xnÞf1ðx1Þ ? . . . ? fnðxnÞ;
(41)

where WðnÞðx1; . . . ; xnÞ ¼ h�0; �ðx1Þ � � ��ðxnÞ�0i is the
usual Wightman function and

WðnÞ? ðx1; . . . ; xnÞ ¼defh�0; �ðx1Þ ? � � � ? �ðxnÞ�0i: (42)

We note that (41) can also be written as

ðWðnÞ? ; f1 � � � � � fnÞ ¼ ðWðnÞ; f1 �? � � � �? fnÞ:
Clearly, the two-point function Wðx; yÞ coincides with
W?ðx; yÞ due to the translation invariance. Indeed, writing
Wðx; yÞ ¼ wðx� yÞ, we haveZ
dxdywðx�yÞfðxÞ?gðyÞ

¼ 1

ð2�Þd
Z
dxdydkdq ~wðkÞ�ðkþqÞe�ik�x�iq�yfðxÞ?gðyÞ

¼ 1

ð2�Þd
Z
dkdq ~wðkÞ�ðkþqÞ~fð�kÞ~gð�qÞe�i½k;q�

¼
Z
dxdywðx�yÞfðxÞgðyÞ;

because e�i½k;q� ¼ 1 for k ¼ �q. But for n > 2, the distri-

butions WðnÞ and WðnÞ? differ from one another.
Let us consider the definition (40) more closely, taking a

free field� as a simplest example. Let wðx� yÞ be its two-
point function. It is easy to see that if the product �ðxÞ ?
�ðyÞ is defined by (40), then

h0j�ðxÞ ? �ðyÞ:�ðz1Þ�ðz2Þ:j0i
¼ wðx� z1Þ ? wðy� z2Þ þ wðx� z2Þ ? wðy� z1Þ:

(43)

Indeed, by the Wick theorem we have

h0j�ðxÞ�ðyÞ:�ðz1Þ�ðz2Þ:j0i ¼ wðx� z1Þwðy� z2Þ
þ wðx� z2Þwðy� z1Þ:

(44)

Let f, g, h1, h2 be functions in the Schwartz space. Using
(37), (40), and (44), we obtain

Z
dxdydz1dz2h0j�ðxÞ ? �ðyÞ:�ðz1Þ�ðz2Þ:j0ifðxÞgðyÞh1ðz1Þh2ðz2Þ

¼
Z
dz1dz2

Z
dxdy½wðx� z1Þwðy� z2Þ þ wðx� z2Þwðy� z1Þ�fðxÞ ? gðyÞh1ðz1Þh2ðz2Þ

¼
Z
dz1dz2

Z dkdq

ð2�Þ2d ½e
ik�z1þiq�z2 þ eik�z2þiq�z1� ~wðkÞ ~wðqÞe�i½k;q� ~fð�kÞ~gð�qÞh1ðz1Þh2ðz2Þ

¼
Z
dxdydz1dz2½wðx� z1Þ ? wðy� z2Þ þ wðx� z2Þ ? wðy� z1Þ�fðxÞgðyÞh1ðz1Þh2ðz2Þ; (45)

which proves our claim. The formula (43) is also obtain-
able by applying formally the operator eði=2Þ@x�@y to (44). In
momentum space, the distribution (43) takes the form

ð2�Þ2d ~wðkÞ ~wðqÞe�i½k;q�½�ðkþ p1Þ�ðqþ p2Þ
þ �ðkþ p2Þ�ðqþ p1Þ�; (46)

where the variables k, q, p1, p2 are, respectively, conjugate
to the coordinate-space variables x, y, z1, z2. We note that
(46) differs from the Fourier transform of the distribution
(44) only by the factor e�i½k;q�.

In [17,22], it was assumed that in the case of space-space
noncommutativity, the star commutator ½�ðxÞ; �ðyÞ�� ¼
�ðxÞ ? �ðyÞ ��ðyÞ ? �ðxÞ obeys microcausality with re-
spect to the commuting coordinates ðx0; x3Þ, i.e.,
½�ðxÞ; �ðyÞ�� ¼ 0 everywhere in the wedge fðx; yÞ 2 R2d :
jx0 � y0j< jx3 � y3jg. We shall show that this assumption

contradicts the spectral condition if the product (33) is
defined by duality, as indicated above.
Theorem 3. Let� be a free neutral scalar field on Rd and

let� be a two-particle state of the form (16). If the product
�ðxÞ ? �ðyÞ is defined by (40), then the distribution

h0j½�ðxÞ; �ðyÞ�?j�i (47)

does not vanish on any open set and so its support coincides
with the whole space R2d.
Proof. From (46), it follows that the Fourier transform of

h0j�ðxÞ ? �ðyÞj�i is of the form
2 ~wðkÞ ~wðqÞe�i½k;q� ~hðkÞ~hðqÞ: (48)

The Fourier transform of h0j�ðyÞ ? �ðxÞj�i is obtained
from (48) by interchanging k and q. Hence that of the
matrix element (47) has the form
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� 4i ~wðkÞ ~wðqÞ sin½k; q�~hðkÞ~hðqÞ
and differs from ~w � ~w only by the factor

�4i sin½k; q�~hðkÞ~hðqÞ which is a multiplier of the
Schwartz space and does not vanish on suppð ~w � ~wÞ if
� � 0. The support of ~w � ~w is contained in the properly
convex cone Vþ � Vþ. Therefore, the distribution (47) is
the boundary value of a function analytic in the tubular
domain R2d þ iðV� � V�Þ (see, e.g., [19], Theorem B.7).
Applying the generalized uniqueness theorem (ibid.,
Theorem B.10), we conclude that this distribution does
not vanish on any nonempty open set, because otherwise
it would be identically zero on R2d. Theorem 3 is proved.

Now we return to the sample observableOðxÞ defined by
(7) and consider the star commutator

½OðxÞ;OðyÞ�? ¼ OðxÞ ?OðyÞ �OðyÞ ?OðxÞ: (49)

Theorem 4. Let, as in Theorem 1, d ¼ 4, �12 ¼ ��21 �
0, and the other elements of the matrix ��� be equal to
zero. Then the star commutator (49) does not vanish in the
wedge defined by (14).

Proof. Let ð �x; �yÞ be contained in the wedge (14) together
with a neighborhood U� V. In what follows we set U ¼
Uc �Unc, V ¼ Vc � Vnc, where the labels c and nc in-
dicate, respectively, sets in the planes ðx0; x3Þ and ðx1; x2Þ.
For definiteness, we assume that j �x0 � �y0j< �x3 � �y3 and

Uc � Vc � VR; (50)

where VR is the right component of the spacelike cone in
R2. We shall show that there exist test functions f, g
supported in U, V and a state � of the form (16) such
that the matrix element

h0j
Z
dxdy½OðxÞ;OðyÞ�?fðxÞgðyÞj�i (51)

is different from zero. Applying the operator eði=2Þ@x�@y to
(10), we obtain

h0jOðxÞ ?OðyÞ:�ðz1Þ�ðz2Þ:j0i
¼ 4

Z
dkdp1dp2 ~wðkÞe�ik�ðx�yÞ�ip1�ðx�z1Þ�ip2�ðy�z2Þ

� e�i½k;p1þp2��i½p1;p2�
Y
i¼1;2

~wðpiÞ cos½k; pi�

þ ðz1 $ z2Þ: (52)

On the other hand, applying eði=2Þ@y�@x to W ðy; x; z1; z2Þ
gives

h0jOðyÞ ?OðxÞ:�ðz1Þ�ðz2Þ:j0i
¼ 4

Z
dkdp1dp2 ~wðkÞe�ik�ðy�xÞ�ip1�ðy�z1Þ�ip2�ðx�z2Þ

� e�i½k;p1þp2��i½p1;p2�
Y
i¼1;2

~wðpiÞ cos½k; pi�

þ ðz1 $ z2Þ: (53)

From (52) and (53), it follows that

h0j½OðxÞ;OðyÞ�?:�ðz1Þ�ðz2Þ:j0i
¼ 8i

Z
dkdp1dp2

~�ðkÞe�ik�ðx�yÞ�ip1�ðx�z1Þ�ip2�ðy�z2Þ

� cosð½k; p1 þ p2� þ ½p1; p2�Þ
Y
i¼1;2

~wðpiÞ cos½k; pi�

� 8i
Z
dkdp1dp2

~�1ðkÞe�ik�ðx�yÞ�ip1�ðx�z1Þ�ip2�ðy�z2Þ

� sinð½k; p1 þ p2� þ ½p1; p2�Þ
Y
i¼1;2

~wðpiÞ cos½k; pi�

þ ðz1 $ z2Þ; (54)

where ~�1ðkÞ ¼ ~wðkÞ þ ~wð�kÞ ¼ 2��ðk2 �m2Þ. The dis-
tribution defined by the first integral on the right-hand side
of (54) and that obtained from it by the transposition z1 $
z2 vanish in the wedge (14) by the argument that was used
at the end of Sec. II. Now we consider the distribution

W ðx� y; x� z1; y� z2Þ
¼ �8i

Z
dkdp1dp2 ~wðkÞe�ik�ðx�yÞ�ip1�ðx�z1Þ�ip2�ðy�z2Þ

� sinð½k; p1 þ p2� þ ½p1; p2�Þ
Y
i¼1;2

~wðpiÞ cos½k; pi�:

(55)

Clearly, it is not identically zero because there are points k,
p 2 supp ~w such that cos½k; p� � 0 and sin½k; 2p� � 0.
Moreover, there exists a function h 2 SðR4Þ such that
the distribution

Tðx; yÞ ¼
Z
dz1dz2W ðx� y; x� z1; y� z2Þhðz1Þhðz2Þ

(56)

is also nonzero. The spectral condition supp ~w � �Vþ im-
plies that T is the boundary value of a function analytic in
the tubular domain defined by

Im ðx� yÞ 2 V�; Im x 2 V�; Im y 2 V�:
(57)

By the generalized uniqueness theorem, T does not vanish
on any open subset of R8 and, in particular, on U� V.
Every test function supported in U� V can be approxi-
mated by linear combinations of functions of the form f �
g, where suppf � U, suppg � V. Therefore, there are f, g
supported in these neighborhoods and such that ðT; f �
gÞ � 0. The matrix element (51) is writtenZ
dxdydz1dz2ðW ðx� y; x� z1; y� z2Þ
þW ðy� x; x� z1; y� z2ÞÞfðxÞgðyÞhðz1Þhðz2Þ (58)

and, to complete the proof, it suffices to show that the
expression (58) is equal to 2ðT; f � gÞ. Clearly, we can
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assume that each of the functions f, g, h is the product of
functions of the commuting coordinates and of the non-
commuting coordinates which are, respectively, labeled c
and nc below. Let

W cðxc � yc; xc � zc1; yc � zc2Þ
¼def

Z
dxncdyncdznc1 dz

nc
2 W ðx� y; x� z1; y� z2Þ

� fncðxncÞgncðyncÞhncðznc1 Þhncðznc2 Þ; (59)

and let � ¼ xc � yc, �1 ¼ xc � zc1, �2 ¼ yc � zc2. If � 2
SðR4Þ, then by the spectral condition the distribution
T�ð�Þ ¼

R
W cð�; �1; �2Þ�ð�1; �2Þd�1d�2 is the boundary

value of a function analytic in the tubular domain whose
base is the lower cone f� 2 R2 : �2 > 0; �0 < 0g. This
analytic function is invariant under Lorentz boosts and,
by the simplest two-dimensional version of the Bargman-
Hall-Wightman theorem [18,19], admits analytic continu-
ation to an extended domain which contains all spacelike
points of R2. The analytic extension is invariant under the
reflection �! �� and hence

R
d�T�ð�Þ ð�Þ ¼R

d�T�ð��Þ ð�Þ for every  2 SðR2Þ whose support is

contained in VR. It follows thatZ
d�d�1d�2W cð�; �1; �2Þ’ð�; �1�2Þ

¼
Z
d�d�1d�2W cð��; �1; �2Þ’ð�; �1�2Þ

for every ’ 2 SðR6Þ whose support is contained in VR �
R2 � R2. The function

’ð�; �1; �2Þ ¼
Z
fcðXÞgcðX� �ÞhcðX � �1Þ

� hcðX� �� �2ÞdX (60)

has support in this wedge by construction and, for this
function, we have

ðW c; ’Þ ¼
Z
dxdydz1dz2W ðx� y; x� z1; y� z2Þ

� fðxÞgðyÞhðz1Þhðz2Þ:
Thus the expression (58) is indeed equal to 2ðT; f � gÞ.
Theorem 4 is proved.

VI. CONCLUDING REMARKS

At the present time, there is no agreement regarding the
physical interpretation of the ?-product of quantum fields
at different spacetime points. In this connection we shall
make some remarks about the proposals to formulate a
framework for quantum field theories on noncommutative
spacetime in terms of the n-point vacuum expectation
values of such products (see, e.g., Refs. [8,22]). Let � be
a scalar field with test functions in SðRdÞ and with an
invariant dense domain D in the Hilbert space H , con-

taining the vacuum state �0. If the star-modified

Wightman functions WðnÞ? of � are defined by (42) and
(40), then we always can construct a field �� such that

h�0; ��ðx1Þ��ðx2Þ � � ���ðxnÞ�0i ¼ WðnÞ? ðx1; x2; . . . ; xnÞ:
(61)

Indeed, let g 2 SðRdÞ, f 2 SðRdnÞ, and let �nðfÞ be a
vector of the form (38). We set

��ðgÞ�0 ¼ �ðgÞ�0;

��ðgÞ�nðfÞ ¼ �nþ1ðg �? fÞ; n 	 1;
(62)

where

ðg �? fÞðy; x1; . . . ; xnÞ ¼def
Yn
a¼1

eði=2Þ@y�@xa gðyÞfðx1; . . . xnÞ:

(63)

Then (61) is satisfied. Clearly, WðnÞ? 2 S0ðRdnÞ and, for
each ~f 2 SðRdnÞ,

ð ~WðnÞ? ; ~fÞ ¼ ð ~WðnÞ; �n � ~fÞ;
whereWðnÞ is the ordinary n-point Wightman function of�

and �n is given by (36). The distributions WðnÞ? , i.e., the
vacuum expectation values of the ordinary products of the

operators ��, have the same spectral properties as WðnÞ
because the multiplication by �n leaves these properties
unchanged. If the field � is Hermitian, then so are ��.
Indeed, for any g 2 SðRdÞ, f 2 SðRdnÞ, h 2 SðRdmÞ, we
have

h�mðhÞ;�nþ1ðg �? fÞi ¼ h�mþ1ð �g �? hÞ;�nðfÞi; (64)

where the bar over g denotes the complex conjugation.
This identity is easily verified by using the antisymmetry of
��� and going to the momentum-space representation

because ~Wðmþnþ1Þðq1; . . . ; qm; k; p1; . . . ; pnÞ contains the
factor �ðkþP

m
1 qb þ

P
n
1 paÞ due to the translation invari-

ance. For the same reason the modified Wightman func-
tions satisfy the ordinary positive definiteness conditions

XN
m;n¼1

ðWðmþnÞ? ; fym � fnÞ 	 0; (65)

where fn are arbitrary elements of SðRdnÞ and

fyðx1; . . . ; xnÞ¼def fðxn; . . . ; x1Þ . To prove (65), it is enough

to observe that ðWðmþnÞ; g � fÞ ¼ ðWðmþnÞ; g �? fÞ for any
g 2 SðRdmÞ and f 2 SðRdnÞ, where g �? f is defined by

ðg �? fÞðy1; . . . ; ym; x1; . . . ; xnÞ

¼Ym
b¼1

Yn
a¼1

eði=2Þ@yb�@xa gðy1; . . . ; ymÞfðx1; . . . xnÞ: (66)

However the transformation and local properties of ��

differ radically from those of �.
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For the case of a free field �, an alternate description of
its associated field�� is given in [11]. Namely, the creation
and annihilation operators of these fields are related by

a�ðpÞ ¼ eði=2Þp�PaðpÞ; ay� ðpÞ ¼ e�ði=2Þp�PayðpÞ;
where P is the energy-momentum operator. The operators

a�ðpÞ, ay� ðpÞ satisfy the deformed commutation relations

a�ðpÞa�ðp0Þ ¼ e�ip�p0a�ðp0Þa�ðpÞ;
ay� ðpÞay� ðp0Þ ¼ e�ip�p0ay� ðp0Þay� ðpÞ;
a�ðpÞay� ðp0Þ ¼ eip�p

0
ay� ðp0Þa�ðpÞ þ 2!p�ðp� p0Þ:

As discussed above, the field�� is essentially nonlocal, but
fields with different � have interesting relative localization
properties found by Grosse and Lechner [11]. On the other
hand, Fiore and Wess [8] argued that the twisted Poincaré
covariance can be implemented in the theory of a free field
on noncommutative spacetime in a manner compatible
with microcausality only if the canonical commutation
relations (CCR) of creation and annihilation operators are
suitably deformed. This deformation compensates the
spacetime noncommutativity and the vacuum expectation
values of the ?-products defined in [8] coincide with the
usual Wightman functions of a free field on commutative
spacetime. In other words, we obtain a mathematically
self-consistent formulation, but without a new physics
and in fact even without noncommutativity. The same
disappointing conclusion has been drawn in [8] for inter-
acting fields treated perturbatively. The axiomatic scheme
proposed for the star-modified Wightman functions in [22]
differs from that of [8] and does not include a deformation
of the CCR algebra. But then the spectral condition comes
into conflict with causality as is evident from the foregoing.

It is quite possible that microcausality should be re-
placed by a weaker condition in order to develop a satis-
factory framework for quantum field theory on
noncommutative spacetime. We believe that the above-
stated �-locality condition is a possible candidate for this
role because it precisely describes the nonlocal character of
the Moyal ?-product. Conditions of this kind were previ-
ously used in nonlocal QFT and, together with the relativ-
istic covariance and the spectral condition, they ensure the
existence of CPT symmetry as well as the usual spin-
statistics relation for nonlocal fields, see [23]. An extension
of these results to the noncommutative setting is discussed
in [24], where analogous theorems are proved for the case
of a charge scalar field and space-space noncommutativity
with the residual SO0ð1; 1Þ � SOð2Þ-symmetry.
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APPENDIX

Lemma. If AB> 2=
ffiffiffi
e
p

, then the space S1=2;B1=2;A is non-

trivial. If AB<
ffiffiffiffiffiffiffiffi
2=e

p
, then it contains only the trivial

function which is identically zero.

Proof. If f 2 S1=2;B1=2;A, then the function fðxÞ ¼ fðxÞ,
where  > 0, belongs to the space S1=2;B1=2;A=. Therefore, if a

pair ðA0; B0Þ is admissible, i.e., defines a nontrivial space,
then all the pairs ðA; BÞ for which AB ¼ A0B0 are also

admissible. Let us show that e�jxj2 belongs to any space

S1=2;B1=2;A with A ¼ ffiffiffi
2
p

and B>
ffiffiffiffiffiffiffiffi
2=e

p
. Because e�jxj2 ¼Q

je
�x2j , it suffices to consider the one-variable case. By

the Cauchy inequality,

j@	e�x2 j � 	!

r	
max
j��xj¼r

e�Re�2 (A1)

for each r > 0. Setting � ¼ xþ rei� and using the ele-
mentary relation cos2� ¼ 2cos2�� 1, we get

Re �2 ¼ x2 þ 2xr cos�þ r2 cos2� 	 x2

2
� r2:

Therefore,

j@	e�x2 j � 	!e�x2=2inf
r>0

er
2

r	
¼ 	!e�x2=2

�
2e

	

�
	=2
: (A2)

By the Stirling formula, we have 	! � C�ð1=eþ �Þ			 for
any � > 0. The first statement of Lemma is thus proved.
Now we prove the second statement. Here again, it is

sufficient to consider the one-variable case. From the in-

equalities (24), it follows that every f 2 S1=2;B1=2;AðRÞ is an

entire analytic function and hence

fð�Þ ¼X
	

1

	!
ð�� xÞ	@	fðxÞ (A3)

for any x, � 2 R. Using (24) and (A3), and choosing �B>
B, we estimate fð�Þ in the following way:

jfð�Þj � Ce�jx=Aj2
X
	

1

	!
B			=2j�� xj	

� C0e�jx=Aj2sup
	

1

	!
�B			=2j�� xj	; (A4)

where C0 ¼ C
P
	ðB= �BÞ	 <1. Using the inequality 	! 	

ð	=eÞ	, we can replace the upper bound in (A4) by the
function Mðe �Bj�� xjÞ, where

MðrÞ ¼ sup
	>0

r	

		=2
¼ er

2=ð2eÞ:

Because the point x can be taken arbitrarily, (A4) implies
that fð�Þ � 0 if 1=A2 > e �B2=2. This completes the proof.
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