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The interaction of a kink and a monochromatic plane wave in one dimensional scalar field theories is

studied. It is shown that in a large class of models the radiation pressure exerted on the kink is negative,

i.e. the kink is pulled towards the source of the radiation. This effect has been observed by numerical

simulations in the �4 model, and it is explained by a perturbative calculation assuming that the amplitude

of the incoming wave is small. Quite importantly the effect is shown to be robust against small

perturbations of the �4 model. In the sine-Gordon (SG) model the time-averaged radiation pressure

acting on the kink turns out to be zero. The results of the perturbative computations in the SG model are

shown to be in full agreement with an analytical solution corresponding to the superposition of a SG kink

with a cnoidal wave. It is also demonstrated that the acceleration of the kink satisfies Newton’s law.
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I. INTRODUCTION

It is by now universally accepted that spatially localized
solutions of nonlinear equations (solitary waves, particle-
like objects) are of great importance in several areas of
physics; we refer to some of the recent monographs [1–3].
The study of localized solutions in various systems in a
single spatial dimension (i.e. in 1þ 1 dimensional space-
time) has proved to be quite fruitful in hydrodynamics,
condensed matter physics, and also for particle physics as a
theoretical laboratory. A special class of nonlinear equa-
tions admits ‘‘genuine’’ soliton solutions that retain their
shape even after interactions and this feature distinguishes
them from more generic particlelike objects. One can
mention the sine-Gordon (SG) equation as a prototype
example admitting genuine soliton solutions. It is of con-
siderable interest both from a theoretical point of view and
for physical applications to study the interactions of these
spatially localized objects (not only of genuine solitons).
There is a well-developed framework for soliton perturba-
tions in integrable and in near-integrable systems [4,5],
where many powerful methods of integrable systems are
available. In generic models, however, one has to resort to
various perturbation techniques and in general also to
numerical simulations. The motion of a localized object
when subjected to a force has been shown to be governed
by Newton’s law for nonrelativistic velocities [4]. It has
turned out that in some cases, such as the SG model,
deformation effects are also important and can lead to
deviations from Newton’s law [6,7].

In this paper we study the motion of particlelike solu-
tions in 1þ 1 dimensional scalar field theories (these
objects are commonly referred to as ‘‘kinks’’) under the
influence of an incident wave. In one of the most studied
scalar models, in the ‘‘ �4’’ theory, we have found that the

kink starts to accelerate in the direction of the incoming
wave. This effect has been first observed in Ref. [8]; in the
present work we study it in much more detail both numeri-
cally and analytically. The unusual behavior of the kink
can be interpreted as being caused by a ‘‘negative radiation
pressure’’ exerted on it.
We have computed the force exerted on the kink by the

radiation in a generic model in perturbation theory, assum-
ing that the amplitude A of the incoming radiation is small.
The leading order force exerted on a kink by a wave
coming from the right (i.e. from x ¼ 1) is then given as
F ¼ �A2q2jRj2, where q is the wave number of the
incident wave and R is the reflection coefficient. This
means that the kink is pushed back by the radiation as
expected. Now in a class of theories containing among
others the �4 and the SG models, the leading order reflec-
tion coefficient is zero, R ¼ 0. In such cases the force is
determined by higher order terms, in fact in the next order
the force is F�OðA4Þ. The basic physical effect respon-
sible for the negative radiation pressure can then be under-
stood as follows. For small enough amplitudes of the
incoming radiation, the kink of the �4 theory is transpar-
ent to the waves to first order in A. This is due to the
reflectionless nature of the effective potential in the kink
background. Because of the nonlinearities, during the in-
teraction higher frequency waves are also generated. Some
of the energy of the incoming wave is transferred to higher
frequency (mostly double frequency) waves. These higher
frequency waves carry more momentum than the incoming
one. In the case of the�4-type models the amplitude of the
transmitted waves with double frequency is larger than that
of the reflected ones. This way a momentum surplus is
created behind the kink, thus pushing it forward. For large
enough amplitudes the radiation pressure becomes
positive.
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Comparing the perturbative result with numerical simu-
lations, reasonably good agreement has been found for
both the nonrelativistic acceleration of the kink and for
the force acting on it. Also for small enough amplitudes of
the incident wave the kink starts to accelerate according to
Newton’s law.

There is no such negative radiation pressure exerted
on the kink in the SG model, although the SG kink
is also transparent to the waves. As it turns out the SG
kink is transparent to all orders in A (this special feature
of the SG model is due to its integrability). In fact there
is an analytical solution found in Ref. [9] corresponding
to the nonlinear superposition of a kink and a travel-
ing wave, which corresponds precisely to the problem
we study. We have compared our perturbative results
for the SG kink with this analytical solution and the
perfect agreement found serves as a good test of our
approach.

In our context the negative radiation pressure appears
because the kink is transparent to small amplitude incom-
ing waves to first order in perturbation theory. Since this
happens only in rather special cases, the structural stability
of the effect should be addressed. We have demonstrated
the robustness of the negative radiation pressure on the
example of a generic perturbation of the �4 model. For an
arbitrarily small perturbation of the�4 theory, to first order
in the amplitude of the incoming wave, the radiation
pressure exerted on the kink becomes positive, just as
expected in a generic theory. The higher order contribu-
tions tend to compensate this however, and we have found
that even for noninfinitesimal perturbations of the �4

model there exists a critical amplitude of the incoming
wave, above which the radiation pressure becomes nega-
tive again. This robustness of the effect makes it worth-
while for further studies.

The organization of the paper is as follows. In Sec. II we
introduce the models and present the first order calculation
of the radiation pressure exerted by an incoming wave on
the kink. In Sec. III we discuss the higher order perturba-
tive calculations of the force and of the kink’s acceleration.
In Sec. IV these results are applied to the �4 and to the SG
model, where an analytic formula for the force exerted on
the kink is derived, and we also elucidate the physical
reasons for the negative radiation pressure. In Sec. V the
basic setup for the numerical simulations used is given and
the analytical results are compared to those obtained by the
numerical simulations. In Sec. VI the structural stability of
the negative radiation pressure with respect to perturba-
tions of the Lagrangian is studied.

Most of the computational details are relegated to three
Appendices. In Appendix A and B some details of the
higher order perturbative computations are given. In
Appendix C we perform a suitable expansion of the ana-
lytical solution of the SG kink on a cnoidal wave pertinent
to our problem.

II. FORMULATION OF THE PROBLEM

A. Models considered

We consider the following class of scalar theories in 1þ
1 space-time dimensions specified by the Lagrangian1

L ¼ 1

2
@��@���Uð�Þ; (1)

where the self-interaction potential Uð�Þ is assumed to
possess at least two degenerate minima (vacua), denoted
by Uð�vacÞ. The equation of motion obtained from the
Lagrangian (1) can be written as

€���00 þU0ð�Þ ¼ 0: (2)

The class of theories (1) admits static, finite energy solu-
tions of the field equations (2). These solutions interpolate
between two vacua of Uð�Þ and are commonly referred to
as a kink or antikink. A kink (or antikink) �sðxÞ is given
explicitly by the following formula:

x� x0 ¼ �
Z �ðxÞ

�ðx0Þ
d�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Uð�Þp : (3)

In this paper we shall mostly work with the �4 where
Uð�Þ ¼ ð�2 � 1Þ2=2, respectively with the sine-Gordon
(SG) where Uð�Þ ¼ 1� cos� models. Note that in the
case of the �4 model, �vac ¼ �ð�1Þ ¼ �1, and �vac ¼
�ð�1Þ ¼ 2�; 0 for the SG equation.
The corresponding kink solutions are well-known:

�s ¼ tanhx; in the �4; respectively; �s

¼ 4 arctan expðxÞ; in the SG model: (4)

These kinks are well (exponentially) localized and their
position x0 is conveniently defined by�sðx0Þ ¼ 0 in the�4

and �sðx0Þ ¼ � in the sine-Gordon models, respectively,
which also corresponds to the maximum of their energy
density.
The energy-momentum tensor of the scalar field theory

(1) is given as

T�� ¼ @��@��� g��L; (5)

whose components are spelled out explicitly for later con-
venience:

T00 ¼ E ¼ 1

2
_�2 þ 1

2
�02 þUð�Þ; (6)

T01 ¼ T10 ¼ �P ¼ �0 _�; (7)

T11 ¼ 1

2
_�2 þ 1

2
�02 �Uð�Þ; (8)

where E and P are the energy and momentum densities,

1Our conventions are: g�� ¼ diagð1;�1Þ, @0f ¼ @tf ¼ _f,
@1f ¼ @xf ¼ f0.
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respectively. The energy-momentum conservation laws
@�T

�
� ¼ 0 can be written as

@tE ¼ @xð�0 _�Þ; (9)

@tP ¼ � 1

2
@xð _�2 þ�02 � 2Uð�ÞÞ: (10)

B. Interaction of the kink with radiation

The physical problem we wish to study is the interaction
of a kink with an incoming (scalar) radiation. We assume
that at least in the case when the radiation can be consid-
ered as a small perturbation, it is a reasonable approxima-
tion to treat the kink as a particle accelerating under the
force coming from the radiation pressure exerted by the
radiation. More precisely we consider the problem that a
monochromatic wave �ðt; xÞ coming from the right (from
x ¼ 1) is incident on an initially static kink at x ¼ 0. The
incident wave �ðt; xÞ itself reduces asymptotically to a
plane wave, i.e.

�ðt; x ! 1Þ ! ARefeið!tþqxÞg; (11)

where A is the asymptotic amplitude. The dispersion rela-
tion between the frequency ! and the wave number q is
easily read off from Eq. (2):

�!2 þ q2 þU00ð�vacÞ ¼ 0: (12)

In order to allow for a perturbative solution of the time-
dependent problem, we shall assume that the amplitude of
the incoming wave A is sufficiently small and expand the
solution of the nonlinear wave equation (2) in power series
of A:

� ¼ �s þ � ¼ �s þ A�ð1Þ þ A2�ð2Þ þ � � � : (13)

To first order in A, the ‘‘radiation’’ �ð1Þ satisfies a linear
wave equation in the background of the kink,

€� ð1Þ � �ð1Þ00 þU00ð�sðxÞÞ�ð1Þ � €�ð1Þ þ L̂�ð1Þ ¼ 0; (14)

where U00ð�sðxÞÞ corresponds to the potential of the

Schrödinger-type operator L̂ ¼ �d2=dx2 þU00ð�sðxÞÞ.
This potential can be written explicitly for the �4 and for
the SG models as

U00ð�sÞ ¼ 4� 6

cosh2x
in the �4; respectively;

U00ð�sÞ ¼ 1� 2

cosh2x
in the SG model:

(15)

Introducing

�ð1Þ ¼ 1

2
ðei!t�qðxÞ þ e�i!t��qðxÞÞ :¼ Ref�qðxÞeið!tÞg;

(16)

Equation (14) can be separated, where the �q are eigen-

functions of the Schrödinger operator L̂

L̂�q :¼
�
� d2

dx2
þU00ð�sðxÞÞ

�
�qðxÞ ¼ !2�qðxÞ: (17)

As it is well-known from elementary quantum mechanics,
for potentials tending to zero for jxj ! 1, the asymptotic
forms of the scattering eigenfunctions are

�qðx ! þ1Þ ¼ eiqx þRe�iqx; (18)

�qðx ! �1Þ ¼ Teiqx; (19)

where R and T are the reflection and transition coeffi-

cients. The first order solution �ð1Þ corresponds to the
incoming radiation field, which reduces asymptotically to
a monochromatic plane wave coming from the right to the
kink. Let us remind the reader at this point that the kink in
any translationally invariant theory possesses a discrete
eigenfunction with eigenvalue! ¼ 0 (a zero mode), which
is called the translational mode. In some cases the

Schrödinger operator L̂ also possesses other discrete ei-
genstates for!> 0. There is one such discrete (or internal)

mode in the �4 model for !d ¼ ffiffiffi
3

p
, and there is none in

SG model.
From the energy conservation law, Eq. (9) it is easily

seen that to first order the change of the total energy of the
kinkþ radiation system in a box of size 2L is

@tE ¼
Z L

�L
dx@tE ¼ A2�ð1Þ0 _�ð1ÞjL�L: (20)

Averaging in time over a period T ¼ 2�=! one finds

h@tEjL�LiT ¼ A2q!ð1� jTj2 � jRj2Þ=2;
where hFiT denotes the average of the quantity F in time
(over a period T).
Assuming that the size of the box is sufficiently large

and that the radiation of the kink itself can be neglected, the
energy contained in the box is conserved, and then it
follows that

jRj2 þ jTj2 ¼ 1: (21)

The rate of change of the total momentum in the box
½�L; L� can be identified with the total force exerted on
the system of kinkþ radiation in its inside. To linear order
in perturbation theory from Eq. (10) this force is found to
be

h@tPjL�LiT ¼ Fð2Þ ¼ 1

2
A2q2ð�1� jRj2 þ jTj2Þ

¼ �A2q2jRj2: (22)

We now show that for not too long times the kink obeys
Newton’s law under the action of the force given by (22). In
order to define the acceleration of the kink we make the
(usual) assumption that for small enough velocities one can
neglect deformation and other effects and approximate the
moving kink by
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�ðx; tÞ ¼ �sðx� XðtÞÞ: (23)

This approximation corresponds to introducing simply a
collective coordinate XðtÞ for the position of the kink.
Therefore for small enough displacements, �ðx; tÞ �
�sðxÞ � XðtÞ�0

sðxÞ. In fact �t :¼ �0
sðxÞ is nothing but the

translational zero mode of the kink, which is orthogonal to
all other linearized (internal and radiation) modes of the

operator L̂. The leading order displacement of the kink is
then easily obtained:

XðtÞ ¼ � ð�tj�Þ
ð�tj�tÞ ; (24)

where ðfjgÞ denotes the natural Hilbert space scalar prod-
uct. The acceleration a to leading order can then be calcu-
lated as follows:

aðnÞ ¼ €XðtÞ ¼ � ð�tj €�ðnÞÞ
ð�tj�tÞ ¼ � ð�tj €�ðnÞ þ L̂�ðnÞÞ

ð�tj�tÞ ; (25)

where �ðnÞ is the lowest order approximation, i.e. the small-
est n for which the acceleration is nonzero. [Note that in

Eq. (25) L̂�t ¼ 0 has been used.] To compute higher order
corrections to the acceleration is nontrivial, since in our
approximation the time dependence of the kink has been
encoded in the single collective coordinate XðtÞ, whereas
one has to take into account distortion, radiation, etc.,
effects. In the generic case discussed above n ¼ 2.
Therefore to lowest order in perturbation theory (PT) the
force (22) is quadratic in the amplitude A and clearly
according to our definition (25) the acceleration of the
kink is also OðA2Þ. Then the second order perturbative

solution �ð2Þ is needed. A not too difficult computation
[see Eqs. (A7) and (A11) in Appendix A] yields

msa
ð2Þ ¼ �A2ð�tj €�ð2Þ

0 Þ ¼ A2

4
ðU000ð�sÞ�q��qj�tÞ

¼ �A2q2jRj2; (26)

where the relation ð�tj�tÞ ¼ ms has been used, with ms

denoting the mass of the static kink. The method to project
unto the translational mode to compute the kink’s accel-
eration was also used in Ref. [10] where the dynamics of a
kink in the �4 model with a perturbed potential was
studied. One sees that to leading order in PT the accelera-

tion of the kink að2Þ is indeed given by Newton’s law Fð2Þ ¼
msa

ð2Þ. In particular one can see that the kink is pushed
back under the action of the force coming from the radia-
tion pressure as expected. Therefore it is consistent to
identify the time-averaged momentum flow in the box
Eq. (22) with the total force acting on the kink to leading
order. When the radiation field can be treated as a small
perturbation the effect of the momentum flow on the
radiation field itself can be neglected as a first approxima-
tion. One would then expect that for small enough ampli-
tudes of the incident radiation, it is a reasonably good

approximation to the solution of Eq. (2), that an initially
static kink starts to accelerate as a nonrelativistic particle
of massms. It is natural to expect that other effects, such as
the radiation by the kink, its distortion, etc., show up only
in higher orders. We remind the reader that identifying the
force exerted by the radiation on the kink with the total
momentum flow in the box is valid only to leading order
(and after time averaging), and also for relatively short
time intervals. The force (22) is quadratic both in the
amplitude of the incoming wave and in the reflection
coefficient, in complete analogy to the well-known radia-
tion pressure in classical electrodynamics.
It is quite illuminating to compare the prediction for the

acceleration of the kink (2) by solving numerically the
nonlinear wave equation (2) for a few common one dimen-
sional field theories. On Fig. 1 we have depicted the
positions of the kinks in the �4, sine-Gordon, and �8

(where Uð�Þ ¼ 1
4 ð�2 � 1Þ4) models interacting with an

incoming radiation from þ1. It is somewhat surprising
that the kink has been pushed by the radiation pressure
only in the very last example, in agreement with Eq. (22).
As it can be seen on Fig. 1 the time average of the
acceleration of the kink in the SG model is zero; the kink
is steadily oscillating around its initial position. Most
remarkably the kink in the �4 model accelerates towards
the source of radiation and it is this interesting effect that
we interpret as negative radiation pressure. Taking into
account other collective coordinates such as the shape
mode would not substantially influence our main results,
therefore we have chosen to ignore them. Note that the
acceleration of the kink in the �8 model is noticeably
larger as compared to the �4 one, for the same amplitude
of the incoming wave (A ¼ 0:14). In fact, while according
to Eq. (22) the acceleration of the kink is quadratic in the
amplitude A, this is only true for the �8 model. The
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FIG. 1. Position of the kinks in the �4, sine-Gordon, and �8

models as a function of time. The position of the �8 kink was
scaled by 0.1.
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acceleration of the �4 kink turns out to be proportional to
A4.

Motivated by the unexpected results shown on Fig. 1 we
shall investigate the interaction of a kink with radiation in
more detail in order to give an explanation of the negative
radiation pressure. It is immediately clear that the deriva-
tion of the force obtained in Eq. (22) is only valid if its
leading contribution comes from the linear approximation.
In the case when jRj � 1 the validity of this assumption is
questionable since then the higher order terms may con-
tribute in an important way; therefore the first order result
in Eq. (22) is not necessarily correct. As a matter of fact it
is rather well-known that in both the �4 and in the SG
models the potentials (15) are reflectionless, i.e.R ¼ 0, for
all frequencies. Therefore in such models the dynamics of
the kinks are determined by higher order terms.

III. COMPUTATION OF THE FORCE ON THE
KINK UP TO OðA4Þ

In this section we shall outline the computation of the
force acting on the kink as well as its acceleration to higher
orders of perturbation theory. As we shall show below the
next nontrivial correction to the force turns out to be of
OðA4Þ. Fortunately one does not have to go up to fourth
order in perturbation theory.

By expanding the equation of motion of the kink (2) in
power series of the amplitude of the incoming wave A,
corresponding to (13), the nth order solution of the equa-
tion of motion is determined by the inhomogeneous linear
equations

€� ðnÞ þ L̂�ðnÞ ¼ fðnÞ; (27)

where the source terms fðnÞ can be calculated from the
lower order terms in the perturbation series; see
Appendix A for details. To define the solution of the
perturbative equations (27) uniquely, we impose in each
order that there are no incoming waves from the left (x <
0), as boundary conditions. These correspond to the physi-
cal problem of an incoming wave from the right-hand side
of the kink. We remark that to avoid resonances in higher
orders, the frequency ! has also to be expanded as

! ¼ !ð0Þ þ A!ð1Þ þ A2!ð2Þ þ � � � : (28)

The total force acting on the system kinkþ radiation
inside the segment ½�L; L� can be calculated to higher
orders in A from the energy and momentum conservation
laws similarly to the leading order computation. We com-
pute the rate of change of the total momentum inside the
box ½�L; L� to obtain the total force acting on the system,
which after averaging in time can be consistently identified
to leading order with the force acting on the kink just as in
the calculation in the previous section.

Using �ðx; tÞ ¼ �s þ � in Eq. (10) and integrating over
the interval ½�L; L�, one finds

@tP¼�1

2

�
_�2þ�02�U00ð�Þ�2� 1

3
U000ð�Þ�3����

�
jL�L;

(29)

where we have omitted terms which are exponentially
small for L 	 1. Choosing L to be sufficiently large, one
can use the asymptotic form of the higher order solutions to
find the rate of change of the averaged momentum inside
the segment ½�L; L� just as for the lowest order case.
Assuming that @tP ¼ 0 toOðA2Þ in Eq. (29) (reflectionless
case) one finds that all terms of order OðA3Þ also drop out,
i.e. there is no momentum flow to this order into the seg-
ment (for more details see Appendix A). Therefore the first
nontrivial contribution to Eq. (29) is of order OðA4Þ, im-

plying that one would also need �ð3Þ, i.e. one should
compute up to third order in perturbation theory. This
complicates considerably the problem, even if only the

asymptotic forms of the �ðkÞ are needed. For some compu-
tational details of the higher order calculations we refer to
Appendix A. Remarkably though one can in fact eliminate
the contributions coming from the third order terms from
the momentum balance in the segment ½�L; L� by exploit-
ing the law of energy conservation. As it will be shown
below all the information needed to calculate the force
acting on the kink is actually encoded in the asymptotic

form of the time-dependent part of �ð2Þ.
Denoting by �ðnÞ

m the mth coefficient in the Fourier
expansion of � in the OðAnÞ order, the OðA2Þ order solu-
tions can be written as

�ð2Þ ¼ e2i!t�ð2Þ
þ2 þ �ð2Þ

0 þ e�2i!t�ð2Þ
�2: (30)

We also note that for reflectionless potentials �ð2Þ

þ2 ¼ �ð2Þ

�2.

The asymptotic form of the time-dependent part of the

second order term �ð2Þ has the form

�ð2Þ
þ2ðx ! �1Þ ¼ U000ð�vacÞ

24U00ð�vacÞ�
2þq þ �22;�kðqÞ��k;

(31)

where

�22;kðqÞ ¼ � 1

8W

Z 1

�1
dx0�k�

2
qU

000ð�sÞ; (32)

k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4!2 �U00ð�vacÞ

p
is the wave number corresponding

to 2!, andW¼�k�
0
�k��0

k��k¼�2ik is the Wronskian.

In a way �22;kðqÞ encodes the reflection and transition

coefficients due to the nonlinear effects. The details of
the computation of Eq. (29) up to OðA4Þ can be found in
Appendix A, leading to the result

h@tPiT ¼ Fð4Þ

¼ �A4½2k2ðj�2
22;þkj � j�2

22;�kjÞ
� 2q2Reð�31;�qÞ�; (33)

where the pertinent contribution from the third order terms
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is encoded in a single coefficient �31;�q, defined in

Eq. (A25). In Eq. (33) we have identified the time average
of the overall momentum h@tPiT flowing into the segment
½�L; L�, with the force F exerted by the incoming radia-
tion on the kink.

In the case of reflectionless potentials the first nonvan-
ishing contribution to the acceleration comes from the
OðA4Þ terms. Considering for simplicity such theories
where the kink is spatially antisymmetric (this includes
both�4 and the SG models) a straightforward computation
yields

msa
ð4Þ ¼ �A4ð €�ð4Þ

0 j�tÞ
¼ ReðU000ð�sÞ½�ð3Þ

1 ��q þ �ð2Þ
2 �ð2Þ

�2�
þUðivÞð�sÞ�ð2Þ

2 �2�q=4j�tÞ; (34)

i.e. it is sufficient to compute the second and third order
solutions (see Appendix A for more details). By a direct
computation we have checked that with the definition of
the force in Eq. (33) acting on the kink within our pertur-
bative framework, Newton’s law

Fð4Þ ¼ msa
ð4Þ (35)

still holds, at least up to the fourth orderOðA4Þ. In our view
this result lends strong support to identify the time average
of the momentum flow in the segment ½�L;L� with the
force acting on the kink to leading order in PT.

We give here a derivation of Newton’s law, which also
indicates the limits of its validity. Using the following
simple identity

€��0
s ¼ @tð _��0 � _��0Þ ¼ �@tðP þ _��0Þ; (36)

by integrating over a segment ½�L; L� one easily obtains
the relationZ L

�L
dx €��t ¼ � _PL �

Z L

�L
dx@tð _��0Þ; (37)

where _PL denotes the momentum change inside the seg-
ment ½�L; L�. We shall approximate the left-hand side of

Eq. (37) simply by ð €�j�tÞ :¼ �msa since the difference
between them is exponentially small in L. After averaging
in time we obtain

FL ¼ msa�
Z L

�L
dxh@tð _��0ÞiT; (38)

where FL denotes the total force acting on the box. Now in
perturbation theory the solution � can be decomposed as

� ¼ �pðt; xÞ þ �0ðxÞ � 1

2
at2�tðx; tÞ; (39)

where �pðt; xÞ is periodic in time and it is at least of order

OðAÞ, �t corresponds to the ‘‘accelerating part’’ (with
initially constant acceleration), and �0ðxÞ is the time-

independent part. This holds to order OðA2Þ when að2Þ �

0, respectively to order OðA4Þ when að2Þ ¼ 0,

�p ¼ A�ð1Þ þ A2�ð2Þ þOðA3Þ;
�0ðxÞ ¼ A2�ð2Þ

0 ðxÞ þOðA4Þ;
�t ¼ An�tðxÞ þOðAnþ2Þ;

(40)

where n ¼ 2 if að2Þ � 0, and n ¼ 4 if að2Þ ¼ 0. The leading
order correction is / aAnþ1, which depends on time aver-
aging and indicates the limits of the validity of our simple
approach.
Let us note here that the mass of the kink gets renor-

malized due to its interaction with the radiation field. A
standard calculation for the first correction to the kink mass

gives m
 ¼ ms þ A2�mð2Þ � � � , i.e. to lowest nontrivial
order �m is proportional to A2, therefore to OðA4Þ it does
not show up in Eq. (35). Nevertheless the numerical simu-
lations (see Sec. V) indicate that the effective mass of the
kink is quite close to the renormalized mass m
.
The computation of the rate of change of the energy

inside the segment is completely analogous to the previous
momentum balance calculation and we find

h@tEi ¼ �A4½4!kðj�2
22;kj þ j�2

22;�kjÞ þ 2!qReð�31;�qÞ�:
(41)

Assuming that after averaging, at least for some initial time
the kink can be considered as a rigidly accelerating parti-
cle, if it was initially at rest, i.e. vðt ¼ 0Þ ¼ 0 then obvi-
ously

h@tEijt¼0 ¼ mv _vjt¼0 ¼ 0: (42)

This equation together with Eq. (41) can be now used to
eliminate the coefficient�31;�q from Eq. (33), and then one

obtains a remarkably simple formula determining the force
acting on the kink:

Fð4Þ ¼ 2A4k½ðk� 2qÞj�2
22;�kj � ðkþ 2qÞj�2

22;kj�: (43)

By a direct computation of the energy we have verified that
h@tEijt¼0 is indeed zero up to OðA6Þ, which shows the
validity of Eq. (42).
To conclude this section, we have calculated the force

exerted by an incoming wave on the kink to the first non-
trivial order in perturbation theory in the class of models
where the linearization around the kink yields a reflection-
less potential. It is important to emphasize that for the class
of models where the effective potential is reflectionless, the
force exerted on the kink turns out to be proportional to
F�OðA4Þ. This is to be contrasted to more generic mod-
els where the effective potential is reflective, in which case
F�OðA2Þ.
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IV. NEGATIVE RADIATION PRESSURE IN THE �4

MODEL

In this section we apply the previously obtained general
results to compute explicitly the force exerted on the kink
by an incoming wave in the �4 and in the SG models.

In the �4 model the full nonlinear equation for the
‘‘radiation’’ � is

€�þ L̂�þ 6�s�
2 þ 2�3 ¼ 0: (44)

The first order solution �ð1Þ in Eq. (16) can be explicitly
given both in the �4 and in the SG models as

��4

q ¼ 3tanh2x� 1� q2 � 3iq tanhxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðq2 þ 1Þðq2 þ 4Þp eiqx;

where q2 þ 4 ¼ !2; (45)

and

�sG
q ¼ iq� tanhxffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ 1
p eiqx; where q2 þ 1 ¼ !2: (46)

The second order solution [OðA2Þ] given by Eq. (30) con-

tains the zero frequency term �ð2Þ
0 , which in general de-

pends both on t and x. In the present case it is consistent to

assume that �ð2Þ
0 is time-independent (see Appendix A for a

proof), moreover it can be written explicitly. The second
order ‘‘transition and reflection’’ coefficients �22;kðqÞ in

Eq. (32) can also be calculated analytically and the result is

�22;kðqÞ ¼ � 3

2
�
q2 þ 4

q2 þ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 4

k2 þ 1

s
1

k sinhð2qþk
2 �Þ ; (47)

where q2 ¼ !2 � 4, k2 ¼ 4ð!2 � 1Þ. Using Eq. (47) it is
now easy to find the averaged force (43) exerted on the �4

kink by an incident wave of frequency !; we obtain

Fð4Þ ¼ 9�2A4!6

kð4!2 � 3Þð!2 � 3Þ2
�

!�
sinh2�!�

� !þ
sinh2�!þ

�

with !� :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 � 1

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 � 4

p
: (48)

Introducing fð4Þ ¼ Fð4Þ=A4, the behavior of the function

fð4Þð!Þ for ! ! 2 (i.e. small values of q) is given as

fð4Þð! ! 2Þ � 0:3749
ffiffiffiffiffiffiffiffiffiffiffiffiffi
!� 2

p
while fð4Þð!Þ ! 3=4 for

large values of !. Quite interestingly the force acting on
the kink is positive, therefore it accelerates towards the
source of radiation. This is the effect we refer to as negative
radiation pressure. The origin of the negative radiation
pressure can be understood by noticing that for all frequen-
cies ! the amplitude of the (nonlinearly) reflected wave
j�22;þkj is smaller than the amplitude of the transmitted

wave j�22;�kj, i.e. �2
22;k � �2

22;�k. In first order perturba-

tion theory, such an effect would not be possible because of
the identity (21) expressing energy conservation at the
linear level.

The surprising effect of negative radiation pressure on
the kink exists only because of the presence of nonlineari-
ties. In the linear approximation the kink is transparent to
the incident wave, therefore it does not accelerate. Because
of the nonlinear terms, part of the energy of the incoming
wave is transformed into a wave whose frequency is twice
that of the original one. This double frequency wave has a
larger ratio of momentum to energy density than the inci-
dent wave with smaller frequency, hence it carries more
momentum than the originally incident one. This way a
surplus of momentum is created behind the kink, which
pushes it towards the direction of the incoming wave. The
above is of course only an intuitive explanation of the
negative radiation pressure on the kink. The effect of
negative radiation pressure has been clearly observed in
our numerical simulations of the �4 model (see Sec. V).
Next we compute the acceleration of the �4 kink using

Eq. (34) derived in the previous section. We need to
compute in fact the projection of the second and third order
solutions on the translational mode �t. We have computed
them numerically by two different methods, using the
integral representation based on the explicitly known
Green’s function and also by direct numerical integration
of the corresponding equations (27). We show separately
the three projections in (34) on Fig. 2 (divided by
ð�tj�tÞ ¼ 4=3Þ. It is worthwhile to point out that all the
three projections are positive.
Let us now turn to the sine-Gordon kink and evaluate the

force of orderOðA4Þ. In the case of the sine-Gordon model
our numerical results did not show any net radiation pres-
sure, the SG kink was oscillating around its initial position
(cf. Figure 1). Interestingly in the SG model the second
order waveform can be calculated in closed form

�ð2Þ
þ2 ¼

�iqþ tanhðxÞ
16ð1þ q2Þ coshðxÞ e

2iqx; (49)

from which one can immediately see that the coefficients
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FIG. 2. Three projections obtained in second and third order in
PT [used in Eq. (34)].
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�22;�k determined by the asymptotic behavior of �ð2Þ in
Eq. (31) are zero. This implies that the radiation exerts no
force at all on SG kink at least up to this order. Clearly this
interesting fact should be related to the special feature of
the SG model, namely, its integrability. As a matter of fact
there is a remarkable analytic solution corresponding to the
nonlinear superposition of a kink with a travelling (cnoi-
dal) wave in the SG model obtained by Shin [9] using the
Darboux transformation method. In Appendix C we give a
short review of Shin’s solution which is somewhat com-
plicated, and we demonstrate that one can expand it in a
parameter which can be identified with the asymptotic
amplitude of the incoming wave. This way we have veri-
fied that both the first and the second order solutions
obtained by our perturbative calculations agree perfectly
with the Taylor expansion of the analytical solution. This
comparison has also served as a test of the validity of our
perturbative method.

V. NUMERICAL SIMULATION

In the present section we outline the numerical method
used to solve the nonlinear wave equation (2) describing
the interaction of a kink with an incident wave. We shall
present the results of the numerical simulations for the �4

theory in the form of figures and tables.
We have discretized Eq. (2) in the spatial variable x as

�ðnh; tÞ :¼ �nðtÞ. The second derivative was approxi-
mated using the following five point scheme:

�00 � D�n

¼ 1

12h2
ð��n�2 þ 16�n�1 � 30�n

þ 16�nþ1 ��nþ2Þ þOðh4Þ: (50)

This way Eq. (2) reduced to a system of ordinary differen-
tial equations:

€�n ¼ D�n �U0ð�nÞ: (51)

We have simply put this coupled infinite system into a
finite box of size 2L, which was then solved using a
standard fourth order Runge-Kutta method.

Our initial conditions have been chosen to correspond to
a kink together with a first order travelling wave

�ðx; t ¼ 0Þ ¼ �sðxÞ þ 1

2
A�qðxÞ þ c:c:; (52)

_�ðx; t ¼ 0Þ ¼ 1

2
i!A�qðxÞ þ c:c:; (53)

and we have fixed the boundary values of �ðx; tÞ at x ¼
�L as

�ðx ¼ �L; tÞ ¼ �1: (54)

The evolution time of the system was restricted to be
smaller than L, to avoid the unphysical influence of the

reflected waves from the artificial boundaries at x ¼ �L
on the kink’s motion. The position of a static kink in the�4

theory can be quite unambiguously identified with the
location of its zero which coincides with the maximum
of its energy density. It is less clear how to define the
position of an interacting kink. In our case one has to
separate first the field of the kink from that of the radiation,
which can already be problematic and the position of the
kink is not very well defined; in general the maximum of
the energy density and the zero of �ðx; tÞ do not coincide.
For small enough amplitudes the kink is only slightly
perturbed and therefore its topological zero is still a rather
satisfactory definition as the position of the kink and we
have used this definition in our work.
We have plotted the position of the zero of �ðx; tÞ as a

function of time for the frequency ! ¼ 3:0 and for the
amplitude of the wave A ¼ 0:12 on Fig. 3. On this figure
one can clearly see that the trajectory of the zero of �ðx; tÞ
is quite close to a parabola, corresponding to the expected
nonrelativistic acceleration of the kink. A numerical fit
confirms that a parabola of the form at2=2 to the trajectory
is a good approximation indeed. The fitted value of the
acceleration in this case was anum ¼ 9:72� 10�5 which is
not that far from the result of our analytical calculations in
Eq. (34), giving atheor ¼ 9:02� 10�5. Taking into account
that in the analytical calculation only the leading terms
have been used, this agreement appears to us satisfying.
Next we have checked if the measured acceleration is
indeedOðA4Þ as predicted by the leading order perturbative
result (34). On Fig. 4 we have plotted the fitted acceleration
for ! ¼ 3:0 divided by A4 for the amplitudes of incoming
wave varying between 0:1  A  0:3. As one can see for
0:1  A  0:22 the curve is close to being flat implying
that the dominant term is indeed proportional to A4. This
proportionality breaks down when the value of the ampli-
tude increases to about A � 0:24. For A ¼ 0:25 even the
sign of the fitted acceleration changes. In Table I we have
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FIG. 3. The position of the zero of �ðx; tÞ in �4 theory as a
function of time for A ¼ 0:12, ! ¼ 3:0.
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compared the numerically obtained values of the accelera-
tion to the theoretical ones for a range of amplitudes.

From Table I one can see that the agreement between the
calculated and the fitted values of the acceleration is rea-
sonably good up to values of A < 0:22. These results
confirm that for amplitudes of the incoming wave in the
range 0:1  A  0:22 the kink accelerates nonrelativisti-
cally, and also that its acceleration scales as A4. Next we
exhibit the numerically obtained acceleration in function
of the frequency ! on Fig. 5, together with the theoretical
curve, and some results are given in Table II.

The first thing one might notice on Fig. 5 is the presence
of three resonancelike structures completely absent from
the theoretical curve which is a monotonously increasing
function of !. The largest resonance is not very far from
2!d � 3:46 which indicates that it is likely to be related to
the coupling between internal (or shape) mode of the kink
and radiation. A plausible explanation of the important
change in the acceleration at frequencies when the shape
mode couples strongly to the incoming wave is the follow-
ing. At such a ‘‘resonance’’ frequency the shape mode
accumulates a substantial amount of energy, which is
then radiated symmetrically in both directions. Far from

the kink this produces the same effect as a reflected wave,
thus at such resonant frequencies the kink is not
transparent.
On Fig. 6 the path of the kink is plotted for a value of the

frequency near the resonance. As one can see the motion of
the kink is somewhat irregular there. All in all the discrep-
ancy between the results of the perturbative computations
to leading nontrivial order and those of the numerical
simulation does not exceed 10% for a large range of
frequencies with the exception of three resonances. It
seems to us that this agreement is satisfactory in view of
the approximations used.
As it can be seen from Table I, the numerically found

acceleration is systematically larger than the leading order
theoretical one. Clearly higher order effects could play a
role here, and the simplest one to be taken into account is
the renormalization of the kink mass due to the radiation
field. The lowest order OðA2Þ contribution to the mass

�mð2Þ is negative for all frequencies, i.e. the effective

mass m
 ¼ mþ A2�mð2Þ <m which goes into the right
direction. It is quite difficult to obtain a sufficiently precise
numerical value for the effective mass; nevertheless we
have obtained some indicative results. The numerically

TABLE I. Fitted and theoretical values of the acceleration for
! ¼ 3:0.

Amplitude A Fitted acceleration Theoretical value

0.10 0.000 048 2 0.000 043 54

0.12 0.000 097 7 0.000 090 29

0.16 0.000 318 8 0.000 285 37

0.18 0.000 529 6 0.000 457 10

0.20 0.000 832 5 0.000 696 70

0.22 0.001 254 1 0.001 020 05

0.24 0.001 730 0 0.001 444 69

0.26 0.001 480 6 0.001 989 86

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 2  2.5  3  3.5  4

A
cc

el
er

at
io

n 
a

Frequency ω

FIG. 5. Fitted acceleration divided by A4 for A ¼ 0:16 (solid
line) and the acceleration calculated analytically (dashed line).

TABLE II. Fitted acceleration divided by A4 for A ¼ 0:16.

Frequency ! Fitted acceleration aA�4 Theoretical value

2.50 0.4285 0.339 743

2.70 0.4472 0.388 489

2.90 0.4397 0.421 959

3.10 0.4865 0.446 130

3.30 0.3510 0.464 260

3.50 0.4761 0.478 267

3.70 0.3310 0.489 349

3.90 0.4322 0.498 290

4.30 0.4672 0.505 624
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FIG. 4. Fitted acceleration divided by A4 for ! ¼ 3:0 as a
function of A.
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computed momentum balance (force) inside a box
½�20; 20� is presented on Fig. 7. Dividing this force by
the measured acceleration we obtain the effective massm
.
The mass obtained in this case is m


num ¼ 0:954ms. An

analytical calculation yields ��mð2Þ ¼ 3A2ð!2 �
2Þ=ð!2 � 3Þ, which gives m


theor ¼ 0:962ms, so there is a

reasonable degree of agreement between the two.
In conclusion the numerical results show that our per-

turbative calculations are quite reliable for amplitudes A <
0:2 and for frequencies far from resonance points. Finally
on Fig. 8 the behavior of the acceleration divided by A4 of
the �4 kink for a range of amplitudes and frequencies of
the incoming wave is depicted. From this figure it can be
seen that the acceleration stays positive over an impres-
sively large portion of the ðA;!Þ plane.

VI. STABILITY OF THE EFFECT UNDER
PERTURBATIONS

In this section we shall demonstrate that the effect of
negative radiation pressure has a certain degree of robust-
ness with respect to perturbations of the original�4 model.
This fact makes the effect, which is in itself interesting,
much more relevant for physical applications. At first sight
it is not so obvious that this effect could survive a small
perturbation of the model at all, since a generic perturba-
tion, no matter how small it be, destroys the reflectionless
nature of the potential in Eq. (14). This way a first order
perturbative contribution (in the amplitude A) is generated.
Therefore the leading term in the expression for the force
changes under the influence of a generic perturbation from
being of order OðA4Þ in Eq. (43) to OðA2Þ as in Eq. (22).
We shall show that although a small but generic perturba-
tion of the�4 model changes the leading term for the force
to being of order OðA2Þ; indeed, for an important fre-
quency range still the OðA4Þ term will dominate if the
amplitude is larger than a critical (minimal) value A >
Acrit. We shall consider a concrete example of perturbation
which illustrates that the critical amplitude Acrit can turn
out to be small and that the negative radiation pressure
stays practically unaffected.
To start with we shall consider a generic perturbation of

the field equation (2) of the form

€���00 þU0ð�Þ þ 	�U0ð�Þ ¼ 0; (55)

where 	 is a small parameter and �U0ð�Þ is the perturba-
tion. We look for the solution of the perturbed Eq. (55)
again expanded in a power series in the amplitude of the
incoming wave,

� ¼ �sðxÞ þ A�ð1Þðx; tÞ þ � � � ; (56)

where �sðxÞ denotes the static kink solution of the per-

turbed field equation (55) and �ð1Þðx; tÞ satisfies the field
equation linearized around �sðxÞ,

€� ð1Þ � �ð1Þ00 þU00ð�sÞ�ð1Þ þ 	�U00ð�sÞ�ð1Þ ¼ 0: (57)
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FIG. 7. Momentum balance inside the segment ½�20; 20� for
! ¼ 3:0 and A ¼ 0:12. The slope of the fitted straight line
(corresponding to a sort of averaging) is �1:24� 10�5, corre-
sponding to an effective mass m
 ¼ 0:954m.
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Now we also expand the solution of Eq. (55) in 	 determin-
ing the perturbation of the original theory

�sðxÞ ¼ �ð0Þ
s þ 	�ð1Þ

s þ � � � ;
�ð1Þ ¼ �ð10Þ þ 	�ð11Þ þ � � � ;

(58)

where �ð0Þ
s ðxÞ is the static kink of the unperturbed Eq. (2),

and �ð10Þðx; tÞ is a solution of the linearization of the

unperturbed field equation around �ð0Þ
s ðxÞ, i.e. €�ð10Þ þ

L̂�ð10Þ ¼ 0. The equations for the first order corrections
in the perturbative parameter 	 are

��ð1Þ00
s þU00ð�ð0Þ

s Þ�ð1Þ
s þ �U0ð�ð0Þ

s Þ ¼ 0; (59)

€�ð11Þ � �ð11Þ00 þU00ð�ð0Þ
s Þ�ð11Þ

þU000ð�ð0Þ
s Þ�ð1Þ

s �ð10Þ þ �U00ð�ð0Þ
s Þ�ð10Þ ¼ 0: (60)

Let us recall that �ð10Þðx; tÞ ¼ 1
2 e

i!t�ð0Þ
q þ c:c:, and look for

the solution as �ð11Þ ¼ 1
2 e

i!t�ð1Þ
q þ c:c:, where �ð1Þ

q ðxÞ sat-
isfies the following equation:

ðL̂�!2Þ�ð1Þ
q þ ½�U00ð�ð0Þ

s Þ þU000ð�ð0Þ
s Þ�ð1Þ

s ��ð0Þ
q ¼ 0:

(61)

Since Eq. (61) is an inhomogeneous equation of the form
of Eq. (A13) its general solution can be obtained from
Eq. (A14). In order to obtain the force we need the reflec-
tion coefficient R, therefore it is sufficient to compute the

asymptotic behavior of �ð1Þ
q for large jxj, which is found to

be given as

�ð1Þ
q ðx ! þ1Þ ¼ ��ð0Þ�q

W

Z 1

�1
dx½�U00ð�ð0Þ

s Þ

þU000ð�ð0Þ
s Þ�ð1Þ

s ��ð0Þ2
q

:¼ 
ð1Þ
R �ð0Þ�q; (62)

�ð1Þ
q ðx ! �1Þ ¼ ��ð0Þ

þq

W

Z 1

�1
dx½�U00ð�ð0Þ

s Þ

þU000ð�ð0Þ
s Þ�ð1Þ

s ��ð0Þ
q �ð0Þ�q

:¼ 
ð1Þ
T �ð0Þ

q : (63)

The expressions 	
ð1Þ
R and 	
ð1Þ

T are the first nontrivial
corrections to the reflection (R) and transition (T) coeffi-
cients. Recall that in the reflectionless case, such as in the
�4 model, R ¼ 0 and jTj ¼ 1. From Eq. (62) it immedi-
ately follows that in the perturbed field equation (55) the
kink is not transparent anymore. The leading contribution
to the force is then determined by the first order linear term
in the amplitude A. As found in Eq. (22) the dominant part

of the force acting on the kink Fð2Þ is proportional to the
square of the reflection coefficient, i.e.

Fð2Þ :¼ A2fð2Þ ¼ �q2jR2jA2 � �q2	2j
ð1Þ
R j2A2: (64)

The above equation holds if j	
ð1Þ
R j; j	
ð1Þ

R j � 1, which is

true for sufficiently small values of 	 and for a certain
range of q. The first perturbative correction in 	 to the force

of orderOðA4Þ in the amplitude Fð4Þ � A4fð4Þ [cf. Eq. (43)]
will be at least of order OðA4	2Þ therefore this term can be
neglected in the following. The leading contribution to the
force acting on the kink due to a perturbation of a theory
with reflectionless potential is given as

F ¼ A2ð�q2	2j
ð1Þ
R j2 þ A2fð4ÞÞ: (65)

Assuming that fð4Þ > 0 (i.e. that the radiation pressure is
negative in the unperturbed model) it follows from Eq. (65)
that the amplitude of the incoming wave must be larger
than a critical value A > Acrit for a fixed value of 	 to
ensure F > 0, i.e. that the effect of the negative radiation
pressure be present. The value of the critical amplitude is

determined by the condition Fð2Þ þ Fð4Þ ¼ 0, leading to

Acrit ¼ 	qj
ð1Þ
R jffiffiffiffiffiffiffiffi

fð4Þ
q : (66)

Clearly the result in (66) is meaningful in our perturbative
framework, only if Acrit � 1.
We now apply the above general results to the�4 theory

[whereU0ð�Þ ¼ 2�ð�2 � 1Þ]. We have chosen the follow-
ing perturbation for �U0ð�Þ:

�U0ð�Þ ¼ �ð�2 � 1Þ2: (67)

Recall that �ð0Þ
s ðxÞ is nothing but the static kink in the

unperturbed �4 theory, so

�ð0Þ
s ðxÞ ¼ tanhx: (68)

The first order correction in 	 to the static kink is deter-
mined by Eq. (59), which can be analytically solved

�ð1Þ
s ðxÞ ¼ � 1

6

tanhx

cosh2x
: (69)

One can also evaluate the integral (62) analytically, and the
first order result in Oð	Þ for the reflection coefficient is
given as


ð1Þ
R ¼ 2�ið4þ q2Þ

15 sinh�q
: (70)

Evaluating the critical amplitude in Eq. (66) for some
values of the perturbation parameter 	, one finds for 	 ¼
0:1 and q ¼ 1:2 (corresponding to! � 2:33) Acrit � 0:021
and Acrit � 0:041 for 	 ¼ 0:2. For increasing values of the

frequency !, 
ð1Þ
R ! 0 exponentially fast therefore Acrit

becomes very small.
In order to confirm the existence of the critical amplitude

and compare its magnitude with the one found in Eq. (66),
we have performed some numerical simulations on the
perturbed �4 model (67). It is not an easy numerical task
to measure the critical amplitude since the acceleration
tends to be very small for A� Acrit and therefore long-
time evolution with large spatial resolution is needed. The
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value of the perturbation parameter 	 cannot be chosen to
be too small either since then Acrit becomes so small that
we cannot measure it. Also the initial conditions used in the
simulations of the perturbed �4 theory gave some nonzero
contribution to the initial velocity of the kink. The mea-
sured values of the accelerations were as small as 10�9,
10�8. For 	 ¼ 0:1 and ! ¼ 2:33 we have found that
Acrit ¼ 0:0168� 0:0001, and Acrit ¼ 0:0292� 0:0002 for
	 ¼ 0:2. The measured values for Acrit do not agree very
precisely with the prediction of Eq. (66), the discrepancies
being about 20% and 30% for 	 ¼ 0:1 and 	 ¼ 0:2 re-
spectively. Nevertheless we consider the numerically
found values to be consistent with Eq. (66) for the follow-
ing reasons. Acrit=	 still varies considerably (by�13%) for
the two considered values of 	, indicating that higher order
corrections are still important here. For the smaller value of
	 the discrepancy between the measured value and the
result of Eq. (66) is also smaller. In any case we have
been able to demonstrate the existence of a critical ampli-
tude in the perturbed �4 model above which the radiation
pressure becomes negative. The measured value of Acrit is
consistent with the theoretical estimate in Eq. (66).
Moreover the negative radiation pressure persists for rather
large values of the perturbation parameter 	. For example
in our numerical simulations for A ¼ 0:1 and ! ¼ 3:0 the
radiation pressure became positive only for either 	 > 1:3
or 	 <�1:2. We have shown that for a rather large range in
the magnitude of a generic perturbation of the �4 model,
the phenomenon of negative radiation pressure persists.

Finally coming to the perturbation of SGmodel, we have
shown that to order OðA4Þ the force is zero. In fact using
the analytic solution of Shin [9] we conclude that the force
is zero to all orders. Therefore our derivation for the critical
amplitude does not apply to the particular case of the SG
model. We have observed that the kink only oscillates
around its initial position, and the average of its velocity
is zero. This implies that even a small perturbation of the
SG model may change this qualitative behavior and deter-
mine the motion of the kink.

VII. CONCLUSIONS

We have studied the interaction of a kink in 1þ 1
dimensional scalar models with an incoming wave in
perturbation theory. We have shown that in a certain class
of theories (such as the �4 model), the kink is pulled
towards the direction of the incident radiation, instead of
being pushed back. This interesting phenomenon consti-
tutes an interesting example of negative radiation pressure,
which in this case is due to the nonlinearities and to higher
order effects. Comparing the results of the perturbative
calculations to numerical simulations in various field theo-
retical models (mostly in �4 and in SG) a rather good
agreement was found for not too large values of the am-
plitude of the incoming wave (up to A � 0:2). We have
also addressed the important problem of structural stability

of the negative radiation pressure with respect to generic
perturbations of the theory. In models where the reflection
coefficient is small we have established the existence of a
critical amplitude above which the kink experiences nega-
tive radiation pressure. This is closely related to the robust-
ness of the effect which has been demonstrated on the
example of a perturbation of the �4 model. We have found
in fact that even for large perturbation there exists a critical
amplitude of the incoming wave above which the radiation
pressure becomes negative.
In the SG model the radiation pressure turns out to be

zero. In this model there is an analytical solution corre-
sponding to the superposition of a kink and an incoming
(cnoidal) wave [9], and we could confirm the correctness of
our perturbative results by comparing them to the expan-
sion of the exact solution.
We have also shown that under the action of the aver-

aged force exerted by the radiation the kinks accelerate in
all these models according to Newton’s law.
It is clearly an important open question if the effect of

negative radiation pressure is also present in other, in
particular, higher dimensional theories. Our preliminary
results suggest that this phenomenon is also present at least
in two other models of quite some physical interest: in the
2þ 1 dimensional complex �4 theory (Goldstone’s
model) and in the Abelian-Higgs model admitting vortices.
This suggests that this effect might not be so rare as one
could have expected at first sight.
The phenomenon of negative radiation pressure is rele-

vant not only for the interaction of a single kink with
radiation but also for a system of many kinks. Since the
interaction of well-localized kinks is rather weak (e.g. for
two�4 kinks at a distance L the force between them is F�
e��L), the radiation pressure can play an important role in
many kink systems. One would expect, for example, that in
a dilute many-kink system the negative radiation pressure
might lead to attractive interactions which can dominate
for certain separations.
It would clearly be interesting to investigate this effect

also for domain walls (or higher dimensional branes).

ACKNOWLEDGMENTS

We thank Professor H. J. Shin for making the
MATHEMATICA notebook file with the computations for

his paper [9] available to us, and Professor Z. Horváth
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APPENDIX A: DETAILS OF THE CALCULATION
OF HIGHER ORDER PERTURBATIONS

In this appendix we shall present some of the details of
the second and third order perturbative calculations neces-
sary to find the force acting on the kink and its acceleration.
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All equations arising in perturbation theory are second
order linear inhomogeneous partial differential equations
of the form

€� ðnÞ þ L̂�ðnÞ ¼ fðnÞðUðkÞð�sÞ; �ðlÞÞ; (A1)

where the inhomogeneous term must be computed from
the solutions obtained in order lower than OðAnÞ. To avoid
presenting too complicated general formulae, we start by
writing out explicitly the second order equations. They are
obtained by simply substituting the perturbative expansion
for the field�ðx; tÞ Eq. (13) and for the frequency (28) into
the equation of motion (2)

€� ð2Þ � 2!ð0Þ!ð1Þ�ð1Þ þ L̂�ð2Þ

¼ � 1

8
U000ð�sÞð�2

qe
2i!t � 2�q��q � �2�qe

�2i!tÞ:
(A2)

On the right-hand side of Eq. (A2) there are two source
terms oscillating with frequency �2! and a time-
independent term. Therefore we can seek the solutions of
Eq. (A2) in the form

�ð2Þðx; tÞ ¼ �ð2Þ
þ2ðxÞe2i!t þ �ð2Þ

�2ðxÞe�2i!t þ �ð2Þ
0 ðx; tÞ:

(A3)

Denoting themth coefficient in Fourier’s expansion of � of

order OðAnÞ by �ðnÞ
m , we obtain the following equations:

� 2!ð0Þ!ð1Þ�ð1Þ ¼ 0; (A4)

€� ð2Þ
0 þ L̂�ð2Þ

0 ¼ � 1

4
U000ð�sÞ�q��q; (A5)

ðL̂� 4!ð0Þ2Þ�ð2Þ
�2 ¼ � 1

8
U000ð�sÞ�2�q: (A6)

The first equation gives immediately !ð1Þ ¼ 0, i.e. there is
no correction to frequency in the first order. Projecting
Eq. (A5) onto the translational mode �t, and using the

identity ðL̂ €�ð2Þ
0 j�tÞ ¼ ðL̂�tj €�ð2Þ

0 Þ
 ¼ 0, we obtain

ð €�ð2Þ
0 j�tÞ ¼ � 1

4
ðU000ð�sÞ�q��qj�tÞ: (A7)

As we shall show now the right-hand side of Eq. (A7)
vanishes precisely for reflectionless potentials. To prove
this we shall take the derivative of the eigenvalue problem

of the linear operator L̂�
� d2

dx2
þU00ð�sðxÞÞ

�
�qðxÞ ¼ !2�qðxÞ; (A8)

then multiply it with ��q and integrating leads toZ
dx��qðL̂�!2Þ�0

q ¼ �ðU000ð�sðxÞÞ�q��qj�0
sÞ:
(A9)

Integration by parts (over some interval ð�L; LÞ) of the
left-hand side of the above equation and using Eq. (A8)
satisfied by ��q gives

ð�0
q�

0�q � ��q�
00
qÞjL�L ¼ �ðU000ð�sÞ�q��qj�tÞ; (A10)

where we have also used that the translational mode �t ¼
�0

s. Finally it is easy to calculate the boundary values in
(A10) by using the asymptotic form for �q (18) and (19)

leading to the interesting identity

4q2jRj2 ¼ �ðU000ð�sÞ�q��qj�tÞ: (A11)

This demonstrates that for reflectionless potentials, i.e.
R � 0, ðU000ð�sÞ�q��qj�tÞ ¼ 0. Therefore it is fully con-

sistent to assume €�ð2Þ
0 ¼ 0 in Eq. (A5) when R � 0. It is

not difficult to obtain the asymptotic form of �ð2Þ
0 ðxÞ since it

has a limit for x ! 1:

�2
0ðx ! �1Þ ¼ � U000ð�vacÞ

4U00ð�vacÞ : (A12)

To obtain the asymptotic form of the solution of Eq. (A6)
we make use of the Green’s function for the inhomoge-
neous problem. Since all inhomogeneous equations we
have to solve can be written as

L̂�ðnÞ
m ¼ fðnÞm ðxÞ; (A13)

we give their solution satisfying our boundary conditions
in a general form:

�ðnÞ
m ðxÞ ¼ ����ðxÞ

W

Z x

�1
dx0��ðx0ÞfðnÞm ðx0Þ

� ��ðxÞ
W

Z 1

x
dx0���ðx0ÞfðnÞm ðx0Þ; (A14)

where �� are the solutions of the homogeneous equation

(eigenfunctions of L̂), � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2!2 �U00ð�vacÞ

p
is the

wave number corresponding to the frequency m! and
W ¼ ���

0�� � �0
���� ¼ �2i� is the Wronskian.2 To ob-

tain the asymptotic form of the solutions we write the
integrals as a difference, e.g.

Z x

�1
dx0��ðx0ÞfðnÞm ðx0Þ ¼

�Z 1

�1
�

Z 1

x

�
dx0��ðx0ÞfðnÞm ðx0Þ:

(A15)

The integral over the real line can be calculated using the
method of residua while the second one can be calculated

using the asymptotic form of �� and fðnÞm . This way we
obtain the asymptotic form of the solution of Eq. (A6)

2Note that as there is no first order space derivative in the
equations of motion, the Wronskian is independent of x, and thus
can be calculated from the asymptotic form of �q and ��q.
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�ð2Þ
þ2ðx ! �1Þ ¼ U000ð�vacÞ

24U00ð�vacÞ�
2þq þ �22;�kðqÞ��k;

(A16)

where k is the wave number corresponding to the fre-
quency 2!, and

�22;kðqÞ ¼ � 1

8W

Z 1

�1
dx0�k�

2
qU

000ð�sÞ: (A17)

The solution for the negative frequency can be found as a

complex conjugation of the above solution ð�ð2Þ
�2 ¼ �ð2Þ


þ2 Þ.
All the coefficients of the homogeneous part will be

denoted as

�mn;�ðqÞ ¼ � 1

W

Z 1

�1
dx0��ðx0ÞfðnÞm ðx0Þ: (A18)

The third order equations have the following forms:

ðL̂� 9!ð0Þ2Þ�ð3Þ
�3 ¼ � 1

6
UðivÞð�sÞ�ð1Þ3

�1 �U000ð�sÞ�ð1Þ
�1�

ð2Þ
�2;

(A19)

ðL̂�!ð0Þ2Þ�ð3Þ
�1 ¼ �U000ð�sÞð�ð1Þ

�1�
ð2Þ
0 þ �ð1Þ

�1�
ð2Þ
�2Þ

� 1

2
UðivÞð�sÞ�ð1Þ2

�1 �
ð1Þ
�1 þ 2!ð0Þ!ð2Þ�ð1Þ

�1:

(A20)

Taking into account the asymptotic forms of �ðnÞ
m Eq. (A20)

can be rewritten as

ðL̂�!ð0Þ2Þ�ð3Þ
1 ðx ! �1Þ ¼ � 1

2
U000�22;�kðqÞ��q��k

þ �þq

�
5U0002

48U00 �
UðivÞ

16

þ!ð0Þ!ð2Þ
�
; (A21)

where derivatives of U has to be taken at � ¼ �vac. Note
that the left-hand side of the above equation is the same as
for harmonic oscillator with frequency q. On the right-
hand side there is a source term which oscillates with the
resonant frequency. Therefore the following condition
must be fulfilled to cancel this resonance term:

!ð2Þ ¼ � 1

!ð0Þ

�
5U0002

48U00 �
UðivÞ

16

�
: (A22)

This gives the first correction to the frequency. (Note that
the values of the derivatives of the potential must be taken
at vacuum.) Having this we can write the asymptotic form
of the Eq. (A20) in much simpler form

ðL̂�!ð0Þ2Þ�ð3Þ
þ1ðx ! �1Þ ¼ � 1

2
U000�22;�kðqÞ��q��k

(A23)

which leads to the solution

�ð3Þ
1 ðx ! �1Þ ¼ � �22;kU

000

p2� þU00 �!ð0Þ2 ��k��q

þ �31;�q��q; (A24)

where p� ¼ �k� q. A computation similar to the above
yields

�ð3Þ
3 ðx ! �1Þ ¼ 1

384U00 ðU00UðivÞ þU0002Þ�3
q

� 1

2

U000�22;k

p2� � 9!ð0Þ2 þU00 ��k�q

þ �33;�s��s; (A25)

where s is the wave number corresponding to the frequency
3!. As one can see in the third order solution there are only
terms which oscillate with time, therefore its projection
onto the translational mode gives no contribution (after
averaging in time) to the time-independent part of the
acceleration. The next time-independent term appears at

fourth order, OðA4Þ. Then, the equation for �ð4Þ
0 has the

form

€�ð4Þ
0 þ L̂�ð4Þ

0 ¼ � 1

2
U000ð�sÞð2�ð1Þ

1 �ð3Þ
�1 þ 2�ð1Þ

�1�
ð3Þ
1

þ 2�ð2Þ
2 �ð2Þ

�2 þ �ð2Þ2
0 Þ � 1

2
UðivÞð�sÞð�ð1Þ2

1 �ð2Þ
�2

þ 2�ð1Þ
1 �ð1Þ

�1�
ð2Þ
0 þ �ð1Þ2

�1 �
ð2Þ
2 Þ

� 1

4
UðvÞð�sÞ�ð2Þ2

1 �ð2Þ2
�1 : (A26)

Now computing the projection of �ð4Þ
0 to the translational

mode �t, exploiting the obvious reflection symmetries
some of the terms in Eq. (A26) do not contribute, and we
are led to the following result:

ð €�ð4Þ
0 j�tÞ ¼ �ReðU000ð�sÞð�ð3Þ

1 ��q þ �ð2Þ
2 �ð2Þ

�2Þ

þ 1

4
UðivÞð�sÞ�ð2Þ

2 �2�qj�tÞ: (A27)

APPENDIX B: NEWTON’S LAW

In this appendix we show by explicit computation that
Newton’s law holds to leading order in PT. We start by
calculating the projection of the second time derivative of

the perturbation €� onto the translational mode of the kink.
Computing the second order acceleration in PT, by pro-

jecting €� on the translational mode, one obtains

ðmaÞ2 ¼
Z L

�L
�0

sU
000ð�sÞ�ð1Þ

1 �ð1Þ
�1dx

¼ U00ð�sÞ�ð1Þ
1 �ð1Þ

�1jL�L �
Z L

�L
U00ð�sÞð�ð1Þ0

1 �ð1Þ
�1

þ �ð1Þ
1 �ð1Þ0

�1 Þ: (B1)

Next looking at the relevant component of the stress-
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energy tensor,

ð�T11Þ2 ¼ �ð2Þ0
0 U0ð�sÞ þU00ð�sÞ�ð1Þ

1 �ð1Þ
�1 � �ð1Þ0

1 �ð1Þ0
�1

� _�ð1Þ
1

_�ð1Þ
�1 þ�0

s�
ð2Þ0
0 ; (B2)

one sees that the first and the last terms give negligible
contributions ð�T11ÞjL�L, if L is sufficiently large. The
second term is exactly the boundary term in (B1). To prove
the equality, let us put

� �ð1Þ0
1 �ð1Þ0

�1 jL�L ¼ �
Z L

�L
ð�ð1Þ00

1 �ð1Þ0
�1 þ �ð1Þ0

1 �ð1Þ00
�1 Þ;

and note that _�ð1Þ
1 ¼ i!�ð1Þ

1 . Therefore, the remaining terms

in ð�T11Þ2jL�L are equal to

Z L

�L
ð�ð1Þ0

1 ð €�ð1Þ
�1 � �ð1Þ00

�1 Þ þ �ð1Þ0
�1 ð €�ð1Þ

1 � �ð1Þ00
1 ÞÞ

¼ �
Z L

�L
ð�ð1Þ0

1 U00ð�sÞ�ð1Þ
�1 þ �ð1Þ0

�1U
00ð�sÞ�ð1Þ

1 Þ;

where we used the equation of motion ^ðL�!2Þ�ð1Þ
�1 ¼ 0.

Comparing this with the last term in (B1) completes the
proof.

If the acceleration is vanishing to second order, the first
nontrivial contribution to it can only come form the fourth
order. This is because neither ma nor T11 has a zero
frequency part in the third order. The fourth order accel-

eration is given by ðmsaÞ4 ¼ �h €�ð4Þ
0 i where €�ð4Þ

0 can be

replaced by its source term [see Eq. (A26)]. This should be
equal to ð�T11Þ4jL�L, where

ð�T11Þ4¼U00ð�sÞ
�
1

2
�ð2Þ2
0 þ�ð2Þ

2 �ð2Þ
�2þ�ð1Þ

�1�
ð3Þ
1 þ�ð1Þ

1 �ð3Þ
�1

�

þU000ð�sÞ
�
�ð1Þ
1 �ð1Þ

�1�
ð2Þ
0 þ1

2
�ð1Þ2
�1 �

ð2Þ
2 þ1

2
�ð1Þ2
1 �ð2Þ

�2

�

�1

2
_�ð2Þ2
0 � _�ð2Þ

2
_�ð2Þ
�2� _�ð1Þ

�1
_�ð3Þ
1 � _�ð1Þ

1
_�ð3Þ
�1

�1

2
�0ð2Þ2
0 ��0ð2Þ

2 �0ð2Þ
�2 ��0ð1Þ

�1�
0ð3Þ
1 ��0ð1Þ

1 �0ð3Þ
�1

þUðivÞð�sÞ14�
ð1Þ2
1 �ð1Þ2

�1 þ4!!ð2Þ�ð1Þ
1 �ð1Þ

�1: (B3)

We remark that to remove the resonance terms from the

source of �ð3Þ
�1, the value of !ð2Þ is nonzero. This term

induces a fourth order correction to ðT11Þ2. Explicitly it is
given by

ð�T11Þ4res ¼ 4!!ð2Þ�ð1Þ
1 �ð1Þ

�1jL�L:

To establish Newton’s law to this order proceeds essen-
tially the same way as in the second order case. Performing
the partial integrations in the integral ðmaÞ4 gives all the
terms in the energy-momentum tensor containing the po-
tential as boundary terms. The integral terms after the
partial integration in ðmaÞ4 are

�
Z L

�L
U00ð�sÞ

�
ð�ð2Þ

2 �ð2Þ
�2Þ0 þ

1

2
ð�ð2Þ

0 �ð2Þ
0 Þ0 þ ð�ð1Þ

�1�
ð3Þ
1 Þ0

þ ð�ð1Þ
1 �ð3Þ

�1Þ0
�
�

Z L

�L
U000ð�sÞ

�
1

2
ð�ð1Þ

�1�
ð1Þ
�1�

ð2Þ
2 Þ0

þ 1

2
ð�ð1Þ

1 �ð1Þ
1 �ð2Þ

�2Þ0 þ ð�ð1Þ
1 �ð1Þ

�1�
ð2Þ
0 Þ0

�

�
Z L

�L

1

4
UðivÞð�sÞð�ð1Þ

1 �ð1Þ
1 �ð1Þ2

�1 Þ0: (B4)

Note, that the terms in the integrands are the source terms
of equations of motion (14), (A5), (A6), and (A20).
Replacing them with the right-hand side of these equations
of motion, and reorganizing the terms, one gets total de-
rivatives, the integrals of which are the remaining terms of
ð�T11ÞjL�L.
Equation (B3) can be used to obtain the momentum in

the segment ½�L; L� to order OðA4Þ. The rate of change of
the momentum is given by Eq. (10) and in fact we need its
integrated form Eq. (29). Direct substitution of the series
(13) and expansion into powers of A show that for reflec-
tionless potentials the first nonvanishing term is of order

OðA4Þ, therefore @tP ¼ A4@tP
ð4Þ. We need to calculate the

energy-momentum tensor at the boundaries of the segment

T11 proportional to A4, �Tð4Þ
11 jL�L. It is sufficient to use the

asymptotic form of the solutions (A12), (A16), (A24), and
(A25) together with the frequency correction (A22). The
calculation of the boundary term leads to a complicated
expression, which after averaging in time gives the leading
term for the force

F ¼ �A4½2k2ðj�2
22;þkj � j�2

22;�kjÞ � 4q2 Re�31;�q�:
(B5)

At the end of this appendix, we will show that to leading
order the energy of the accelerating kink is 1

2mv2 indeed, as

used in Sec. III. Writing� ¼ �s þ �, and using Eq. (7) we
obtain

	 ¼ 1

2
�02

s þUð�sÞ þ�0
s�

0 þU0ð�sÞ�þ 1

2
_�2 þ 1

2
�02

þ 1

2
U00ð�sÞ�2 þ 1

6
U000ð�sÞ�3 þ 1

24
UðivÞð�sÞ�4:

(B6)

The linear terms in � give no contribution because �s

solves the static equation of motion. The only time-
dependent nonperiodic terms (up to the fourth order) are

those containing �ð4Þ
0 ¼ � 1

2at
2�0

s þ � � � . In the fourth

order, there are no such terms. In the sixth order, the
quadratic terms in � give a contribution that is proportional

to the equation of motion of �ð2Þ
0 multiplied by �ð4Þ

0 (in one

term one has to perform a partial integration). The term
1
6U

000ð�sÞ�3 gives a term proportional to �ð1Þ
1 �ð1Þ

�1�
ð4Þ
0 �s,

which is antisymmetric, therefore its integral is 0. The
last term contains no sixth order contribution proportional
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to �ð4Þ
0 . Finally in the eighth order, the quadratic terms give

the contribution 1
2mv2.

APPENDIX C: SUPERPOSITION OF THE SG KINK
WITH A CNOIDALWAVE

In this appendix we review first the remarkable analytic
solution corresponding to the nonlinear superposition of a
SG kink and a traveling wave. This solution has been
obtained by H. J. Shin by Darboux transformation methods
[9]. In Ref. [9] light-cone coordinates ðz; �zÞ are used, which
are related to ðt; xÞ used in this paper as

z ¼ �xþ t

4
ffiffiffiffi



p ; �z ¼ �x� t

4
ffiffiffiffi



p : (C1)

The sine-Gordon equation is written in Ref. [9] as

@�z@z ~� ¼ 2
 sin2 ~�; (C2)

with the scale parameter 
 kept for bookkeeping purposes.
Solutions of the SG equation using our conventions and

those of Ref. [9] are related by�ðx; tÞ ¼ 2 ~�ðz; �zÞ. In light-
cone coordinates the static kink solution of Eq. (C2) is
given by

~� s ¼ 2 arctane�2
ffiffiffi



p
ðzþ�zÞ: (C3)

The solution of interest for our purposes is called type 2
in Ref. [9], and it can be written in the following way:

@z ~�ðz; �zÞ ¼ 2k

ffiffiffiffi



V

s
cnð�; k2Þ

þ 4

ffiffiffiffi



V

s
cnðu; k2Þ

snðu; k2Þ dnðu; k2Þ
S

S2 þ 1
; (C4)

where the function S is defined as

S ¼ � ak snðu; k2Þ cnð� � u; k2ÞX þ b dnðu; k2ÞY
bk snðu; k2Þ cnð� þ u; k2ÞY þ a dnðu; k2ÞX ;

(C5)

with

X ¼ expðM �zþ kN�Þ�tð� � uÞ;
Y ¼ expð�M �z� kN�Þ�tð� þ uÞ; (C6)

M ¼ ffiffiffiffiffiffiffiffi
V


p �
cnðu; k2Þ

snðu; k2Þ dnðu; k2Þ þ
dnðu; k2Þ snðu; k2Þ

cnðu; k2Þ
� 2k2

snðu; k2Þ cnðu; k2Þ
dnðu; k2Þ

�
;

N ¼ �0
tðuÞ

k�tðuÞ þ
cnðu; k2Þ

2k dnðu; k2Þ snðu; k2Þ

� k
snðu; k2Þ cnðu; k2Þ

dnðu; k2Þ ;

(C7)

and

� ¼ 2

ffiffiffiffi



V

s
ðz� V �zÞ: (C8)

In Eqs. (C4)–(C7), a, b, k, u, and V are constants, sn, cn
and dn denote Jacobi’s elliptic functions,�tðuÞ is given by

�tðuÞ ¼ #4

�
�u

2ðK � iK0Þ ; q̂
�

¼ 1þ 2
X1
n¼1

ð�Þnq̂n2 cos
�

n�u

K � iK0

�
; (C9)

where K ¼ Kðk2Þ is the complete elliptic integral K0 ¼
Kð1� k2Þ and the nome q̂ is given as q̂ ¼
exp½��K0=ðK � iK0Þ�. The notations and conventions of
the special functions are those of Abramowitz and Stegun
[11], and due to this, there are some notational differences
with Ref. [9]. (The nonstandard notation used here for the
nome q̂ is to avoid confusion with the wave number q.)

Remarkably sin2 ~� can also be expressed in a simple
form,

sin2 ~� ¼ 4SU½1� 2k2 sn2ð�; k2Þ�
� 2 ~Uk snð�; k2Þ dnð�; k2Þ; (C10)

where U ¼ ðS2 � 1Þ=ðS2 þ 1Þ2 and ~U ¼ 1� 8S2=ðS2 þ
1Þ2.
The solution (C4) [or equivalently (C10)] depends es-

sentially on four parameters: u, k, V, and b=a. We have to
point out here that the parameter k in Eq. (C4) should not
be confused with the wave number, also denoted by k in the
previous sections of this paper. In fact as it turns out it can
be related to the amplitude as k ¼ A=2, therefore it is a
suitable expansion parameter to study the small amplitude
limit. In this appendix we shall carry out the small k
expansion of the solution (C4) in order to compare it to
the perturbative one. The solution should be transformed
first to a form that is more suitable to be expanded for small
k. As it stands �tðuÞ is not well-suited for the small k
expansion since q̂ ! �1 for k ! 0. It is more convenient
to transform it by a modular transformation to the follow-
ing form:

�tðuÞ ¼ ei�=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� iK0=K

p
exp

�
�u2

4KðK0 þ iKÞ
�
#4

�
�u

2K
; q̂

�
;

(C11)

where the nome is now given by q̂ ¼ expði�K0=KÞ. It is
now straightforward to perform the k ! 0 expansion.
Since S depends only onX=Y, the common singular parts
can be dropped and the remaining functions are analytic in
k. Thus in the solution (C4)X, Y, and kN can be replaced
by

X 0 ¼ expðM �zþ kN0�Þ�ð� � uÞ; (C12)
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Y 0 ¼ expð�M �z� kN0�Þ�ð� þ uÞ; (C13)

and

kN0 ¼ kN � �u

2KðK0 þ iKÞ

¼ �0ðuÞ
�ðuÞ þ

cnðu; k2Þ
2 dnðu; k2Þ snðu; k2Þ

� k2
snðu; k2Þ cnðu; k2Þ

dnðu; k2Þ ; (C14)

where �ðuÞ is given as

�ðuÞ ¼ #4

�
�u

2K
; q̂

�
: (C15)

The leading (zeroth) order expansion (i.e. k ¼ 0) should
clearly yield an isolated kink. An easy computation gives

M0 ¼
ffiffiffiffiffiffiffiffi
V


p ðcotuþ tanuÞ; ðkN0Þ0 ¼ 1

2
cotu; (C16)

together with

X 0
0 ¼ exp

�
�z

ffiffiffiffiffiffiffiffi
V


p
tanuþ z

ffiffiffiffi



V

s
cotu

�
¼ eX; (C17)

Y 0
0 ¼ exp

�
��z

ffiffiffiffiffiffiffiffi
V


p
tanu� z

ffiffiffiffi



V

s
cotu

�
¼ e�X; (C18)

S0 ¼ � bY0
0

aX0
0

¼ � b

a
expð�2XÞ: (C19)

Putting the above together we find

@z ~�0 ¼ �4

ffiffiffiffi



V

s
cotu

e�2Xb=a

1þ e�4Xðb=aÞ2 ;

~�0 ¼ 2 arctan exp

�
�2Xþ log

b

a

�
:

(C20)

Comparing this result to a Lorentz boosted kink at x0,

�v ¼ 4 arctan exp

�
x� x0 � vtffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p

�
;

we find that

log
b

a
¼ �x0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p ;

ffiffiffiffi
V

p
tanu ¼ 1þ vffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p : (C21)

In what follows, we will look at the case in which the kink
is at rest in the origin, thus x0 ¼ 0, v ¼ 0 and therefore we

set a ¼ b ¼ 1 and
ffiffiffiffi
V

p
tanu ¼ 1. Note, that to leading

order X ¼ �x=2.
Proceeding to the first order expansion in k one obtains

~� 1 ¼ � cos2u sin� � sin2u tanhx cos�: (C22)

Therefore the first order correction to the solution can be
written as

~� 1 ¼ ð�qe
i!t þ ��qe

�i!tÞ; (C23)

where !þ q ¼ ffiffiffiffi
V

p
, !� q ¼ 1=

ffiffiffiffi
V

p
. Comparing ~�1 to

Eq. (16) one can see that the amplitude of the wave is
given by A ¼ 2k, indeed.
The expansion to second order in k is somewhat more

complicated but straightforward. Here we just present the
final result:

~� 2 ¼ �t
4uþ sin4u

8 sin2u

1

coshx
þ ex

�
2

cosh2x
� 1

�

� ð2exx coshxþ cosð!t� qxÞ sinð2uÞðe2x sinð!t� qx� 2uÞ þ sinð!t� qxþ 2uÞÞÞ
1� 6e2x þ e4x

: (C24)

From the first term in Eq. (C24) one can see that to this
order, the kink now moves with a constant velocity

v2 ¼ 4uþ sin4u

8 sin2u
:

In order to obtain a static kink, v should be cancelled by the
addition of suitable, second order correction to the parame-
ter

ffiffiffiffi
V

p
tanu, i.e.

ffiffiffiffi
V

p
tanu ¼ 1� k2v2. ~�2 can be further

simplified by introducing the wave number q instead of u
and !:

�ð2Þ ¼ �ð2Þ
2 e2i!t þ �ð2Þ

�2e
�2i!t þ �ð2Þ

0

¼ eið2!tþ2qxÞð�iqþ tanhxÞ
16 coshxð1þ q2Þ þ e�ið2!tþ2qxÞðiqþ tanhxÞ

16 coshxð1þ q2Þ
þ 1

8 coshx

�
tanhx

1þ q2
� 2x

�
; (C25)

which coincides precisely with the solution obtained using
the perturbative method in Eq. (49).
Let us finally note that the time-averaged (i.e. zero

frequency part) motion of the zero of the kink can be
also calculated in a closed form. The condition is � ¼ 0
and implies

M �zþ kN0� ¼ 0; (C26)

leading to

vþ 1

v� 1
¼ z

�z
¼ �M� kN02

ffiffiffiffiffiffiffiffi
V


p

2kN0 ffiffiffiffiffiffiffiffiffiffi

=V

p : (C27)

This means that the velocity of the kink v is constant,
which is a free parameter of the solution (C10).
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