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Departamento de Matemática, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

(Received 17 October 2007; published 9 June 2008)

In a previous article we have shown the existence of a new independent R4 term, at one loop, in the

type IIA and heterotic effective actions, after reduction to four dimensions, besides the usual square of the

Bel-Robinson tensor. It had been shown that such a term could not be directly supersymmetrized, but we

showed that was possible after coupling to a scalar chiral multiplet. In this article, we study the extended

ðN ¼ 8Þ supersymmetrization of this term, where no other coupling can be taken. We show that such

supersymmetrization cannot be achieved at the linearized level. This is in conflict with the theory one gets

after toroidal compactification of type II superstrings being N ¼ 8 supersymmetric. We interpret this

result in the face of the recent claim that perturbative supergravity cannot be decoupled from string theory

in d � 4, and N ¼ 8, d ¼ 4 supergravity is in the swampland.
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I. INTRODUCTION

String theories require higher order in �0 corrections
to their corresponding low energy supergravity effective
actions. Among these corrections, at order �03, the R4

terms (the fourth power of the Riemann tensor) are present
in type II [1,2] and heterotic [3] superstrings and in M
theory [4]. These corrections need to be supersymmetric;
the topic of their supersymmetrization has been object of
research for a long time [5–8].

These corrections are also present in four-dimensional
supergravity theories. Originally, they were looked at
as candidate counterterms to these theories, which
were believed to be divergent. From the string theory
point of view, they are seen as compactified string
corrections. In any case, these corrections must be super-
symmetric. The number N of four-dimensional super-
symmetries and different matter couplings depend
crucially on the manifold where the compactification is
taken.

The four-dimensional supersymmetrization of R4

terms has been considered both in simple [9–11] and
in extended [12–15] supergravities. Although there
are two independent R4 terms in d ¼ 4, all these
cases only studied one such term: the square of the
Bel-Robinson. Indeed, in another article [16] it is
shown that the other four-dimensional R4 term is
part of a class of terms, which are not supersymmetriz-
able.

That term has not deserved any further attention until
recently. In our previous paper [17], we computed the
dimensional reduction, to four dimensions, on a torus,
of the ten-dimensional R4 terms from type II and heter-

otic superstrings.1 We have then shown that the other
R4 term is part of the heterotic and type IIA effec-
tive actions, at one loop, when compactified to d ¼ 4.
Now, when compactified to d ¼ 4 on a 6-torus T6,
should be respectively N ¼ 4, 8 supersymmetric. Plus,
T6 is the most basic manifold one can think of in order
to compactify a ten-dimensional theory; all the terms
one gets from this compactification are present when
one rather takes a more complicated manifold. This means
the new (or less known) R4 term is present in any com-
pactification to d ¼ 4 of type IIA and heterotic super-
strings.
In our previous work [17], we focused on N ¼ 1

supergravity. By taking a coupling to a chiral multiplet,
we were able to circumvent the argument of [16] and
indeed include the less known R4 term in an N ¼ 1
supersymmetric Lagrangian.
In this work, we focus particularly on maximal N ¼ 8

supergravity, the most restrictive of all the d ¼ 4 theories
(its multiplet is unique, and there are no matter couplings
to take), and one of the main reasons is precisely because
this is the theory which results after compactifying
type IIA supergravity on T6. Besides, the study of
higher-order corrections inN ¼ 8 supergravity is particu-
larly relevant considering the recent claims that this theory
may actually be eight-loop finite [18,19] or even ultraviolet
finite [20,21].
In Sec. II , we will review and summarize some of the

results of [17], concerning R4 terms in d ¼ 10 and their
reduction to d ¼ 4. In Sec. III, we briefly review linearized
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1The R4 term from M theory, when reduced to d ¼ 10 on S1,
results in the one-loop R4 term in type IIA superstring. The
results of [17], therefore, also include the toroidal compactifica-
tion of M theory to d ¼ 4.
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d ¼ 4 extended supergravity in superspace and some
known higher-order linearized extended superinvariants
and the symmetries they should preserve. In Sec. IV, we
proceed with trying to supersymmetrize in N ¼ 8 the
other less known, but existing, R4 term using different
possibilities.

II. R4 TERMS IN d ¼ 10 AND d ¼ 4

A. R4 terms in d ¼ 10

The superstring �03 effective actions contain two inde-
pendent bosonic terms IX, IZ, from which two separate
superinvariants are built [5,22]. These terms are given, at
linear order in the NS-NS (Neveu-Schwarz–Neveu-
Schwarz) gauge field Bmn, by

IX ¼ t8t8R4 þ 1
2"10t8BR

4 ¼: X þ 1
2"10t8BR

4;

IZ ¼ �"10"10R4 þ 4"10t8BR4 ¼: Zþ 4"10t8BR4:

(1)

For the heterotic string, another two independent terms Y1

and Y2 appear at order �03 [5,6,22]. Their parts which
involve only the Weyl tensor are given, respectively, by

Y1 :¼ t8ðtrW 2Þ2; Y2 :¼ t8trW 4 ¼ X

24
þ Y1

4
: (2)

Each t8 tensor has eight free spacetime indices. It acts in
four two-index antisymmetric tensors, as defined in [1,2].
In our case,

t8t8R4 ¼ tmnpqrstutm
0n0p0q0r0s0t0u0Rmnm0n0Rpqp0q0

�Rrsr0s0Rtut0u0 ;

"10t8BR4 ¼ tmnpqrstu"vwm
0n0p0q0r0s0t0u0BvwRmnm0n0Rpqp0q0

�Rrsr0s0Rtut0u0 ;

"10"10R4 ¼ "vw
mnpqrstu"vwm

0n0p0q0r0s0t0u0Rmnm0n0Rpqp0q0

�Rrsr0s0Rtut0u0 : (3)

The effective action of type IIB theory must be written,
because of its well known SLð2;ZÞ invariance, as a product
of a single linear combination of order �03 invariants and
an overall function of the complexified coupling constant
� ¼ C0 þ ie��, C0 being the axion. The order �03 part of
this effective action, which involves only the Weyl tensor,
is given in the string frame by

1ffiffiffiffiffiffiffi�g
p LIIBj�03 ¼ �e�2��03 �ð3Þ

3� 210

�
IX � 1

8
IZ

�

� �03 1

3� 216�5

�
IX � 1

8
IZ

�
: (4)

The corresponding part of the action of type IIA super-
strings has a relative ‘‘ �’’ sign flip in the one-loop term
[23]. This sign difference is because of the different chi-
rality properties of type IIA and type IIB theories, which

reflects on the relative Gliozzi-Scherk-Olive projection
between the left and right movers:

1ffiffiffiffiffiffiffi�g
p LIIAj�03 ¼ �e�2��03 �ð3Þ

3� 210

�
IX � 1

8
IZ

�

� �03 1

3� 216�5

�
IX þ 1

8
IZ

�
: (5)

Heterotic string theories in d ¼ 10 have N ¼ 1 super-
symmetry, which allows corrections already at order �0,
including R2 corrections. These corrections come both
from three and four graviton scattering amplitudes and
anomaly cancellation terms (the Green-Schwarz mecha-
nism). Up to order �03, the terms from this effective action,
which involve only the Weyl tensor, are given in the string
frame by

1ffiffiffiffiffiffiffi�g
p Lhetj�0þ�03 ¼ e�2�

�
1

16
�0trR2 þ 1

29
�03Y1

� �ð3Þ
3� 210

�03
�
IX � 1

8
IZ

��

� �03 1

3� 214�5
ðY1 þ 4Y2Þ: (6)

In order to consider these terms in the context of super-
gravity, one should write them in the Einstein frame. To
pass from the string to the Einstein frame, we redefine the
metric in d (noncompact) dimensions through a conformal
transformation involving the dilaton, given by

g�� ! exp

�
4

d� 2
�

�
g��;

R��
�� ! exp

�
� 4

d� 2
�

�
~R��

��;

(7)

with ~R��
�� ¼ R��

�� � 	½�
½�r��r���.

Let IiðR;MÞ be an arbitrary term in the string frame
Lagrangian. IiðR;MÞ is a function, with conformal
weight wi, of any given order in �0, of the Riemann
tensor R and any other fields—gauge fields, scalars, and
also fermions—which we generically designate by M.
The transformation above takes IiðR;MÞ to

eð4=ðd�2ÞÞwi�Iið ~R;MÞ. After considering all the dilaton
couplings and the effect of the conformal transformation
on the metric determinant factor

ffiffiffiffiffiffiffi�g
p

, the string frame

Lagrangian

1

2

ffiffiffiffiffiffiffi�g
p

e�2�

�
�Rþ 4ð@��Þ@��þX

i

IiðR;MÞ
�

(8)

is converted into the Einstein frame Lagrangian

1

2

ffiffiffiffiffiffiffi�g
p �

�R� 4

d� 2
ð@��Þ@��

þX
i

eð4=ðd�2ÞÞð1þwiÞ�Iið ~R;MÞ
�
: (9)
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Next, we will take the terms we wrote above, but reduced
to four dimensions, in the Einstein frame.

B. R4 terms in d ¼ 4

In four dimensions, the Weyl tensor can be decomposed
in its self-dual and antiself-dual parts2

W ���� ¼ Wþ
���� þW�

����;

W�
���� :¼ 1

2

�
W���� � i

2"��

�W 
���

�
:

(10)

The totally symmetric Bel-Robinson tensor is given in four
dimensions by Wþ

����W
�� �
� 
 . In the van der Warden

notation, using spinorial indices [24], to Wþ
����,

W�
���� correspond the totally symmetric W ABCD,

W _A _B _C _D being given by (in the notation of [11])

W ABCD :¼ �1
8W

þ
�����

��
AB�

��
CD;

W _A _B _C _D
:¼ �1

8W
�
�����

��
_A _B
���

_C _D
:

The decomposition (10) is written as

W A _AB _BC _CD _D ¼ �2" _A _B" _C _DW ABCD

� 2"AB"CDW _A _B _C _D: (11)

The Bel-Robinson tensor is simply given by
W ABCDW _A _B _C _D.

In four dimensions, there are only two independent real
scalar polynomials made from four powers of the Weyl
tensor [25], given by

W 2þW 2� ¼ W ABCDW ABCDW
_A _B _C _DW _A _B _C _D; (12)

W 4þ þW 4� ¼ ðW ABCDW ABCDÞ2
þ ðW _A _B _C _DW _A _B _C _DÞ2: (13)

In particular, the Weyl-dependent parts of the invariants IX,
IZ, Y1, Y2, when computed directly in four dimensions (i.e.
replacing the ten-dimensional indices m; n; . . . by the four-
dimensional indices �; �; . . . ), should be expressed in
terms of them. The details of the calculation can be seen
in [17]; the resulting W 4 terms are

IX � 1

8
IZ ¼ 96W 2þW 2�;

X þ 1

8
Z ¼ 48ðW 4þ þW 4�Þ þ 672W 2þW 2�;

Y1 ¼ 8W 2þW 2�;

Y1 þ 4Y2 ¼ X

6
þ 2Y1 ¼ 80W 2þW 2� þ 4ðW 4þ þW 4�Þ:

IX � 1
8 IZ is the only combination of IX and IZ which in d ¼

4 does not contain (13), i.e. which contains only the square
of the Bel-Robinson tensor (12). Interestingly, from (1)
exactly this very same combination is the only one that
does not depend on the ten-dimensional Bmn field and,
therefore, due to its gauge invariance, is the only one that
can appear in string theory at arbitrary loop order.
We should consider another possibility: could there be

any four-dimensional W 4 terms coming from the original
ten-dimensional IX þ 1

8 IZ term in (1), but this time includ-

ing the (four-dimensional) B�� field, as a scalar, after
toroidal compactification and dualization (for a detailed
treatment see [26])? Let us take

@½�B��� ¼ �����@�D: (14)

B�� is a pseudo 2-form under parity; after dualization in
d ¼ 4, D is a true scalar. This way, from the "10t8BR4

term in d ¼ 10, one gets in d ¼ 4, among other terms,
derivatives of scalars and at most an R2 factor. (One also
gets simply derivatives of scalars, without any Riemann
tensor.) An R4 factor would only come, after dualization,
from a higher-order term, always multiplied by derivatives
of scalars. Therefore, we cannot get anyR4 terms this way.
We then write the effective actions (4)–(6) in four di-

mensions, in the Einstein frame (considering only terms
that are simply powers of the Weyl tensor, without any
other fields except their couplings to the dilaton, and
introducing the d ¼ 4 gravitational coupling constant 
):


2ffiffiffiffiffiffiffi�g
p LIIBjR4 ¼ � �ð3Þ

32
e�6��03W 2þW 2�

� 1

211�5
e�4��03W 2þW 2�; (15)


2ffiffiffiffiffiffiffi�g
p LIIAjR4 ¼ � �ð3Þ

32
e�6��03W 2þW 2�

� 1

212�5
e�4��03½ðW 4þ þW 4�Þ

þ 224W 2þW 2��; (16)


2ffiffiffiffiffiffiffi�g
p LhetjR2þR4 ¼ � 1

16
e�2��0ðW 2þ þW 2�Þ

þ 1

64
ð1� 2�ð3ÞÞe�6��03W 2þW 2�

� 1

3� 212�5
e�4��03½ðW 4þ þW 4�Þ

þ 20W 2þW 2��: (17)

These are only the moduli-independent R4 terms. Strictly
speaking, not even these terms are moduli-independent,
since they are all multiplied by the volume of the compac-
tification manifold, a factor we omitted for simplicity. But
they are always present, no matter which compactification
is taken. The complete action, for every different compac-
tification manifold, includes many other moduli-dependent

2We used latin letters— m; n; . . .—to represent ten-
dimensional spacetime indices. From now on, we will be only
working with four-dimensional spacetime indices which, to
avoid any confusion, we represent by greek letters �; �; . . . .
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terms, which we do not consider here: we are mostly
interested in a T6 compactification.

C. R4 terms and d ¼ 4 supersymmetry

We are interested in the full supersymmetric completion
of R4 terms in d ¼ 4. In general, each superinvariant
consists of a leading bosonic term and its supersymmetric
completion, given by a series of terms with fermions.

The supersymmetrization of the square of the Bel-
Robinson tensor W 2þW 2� has been known for a long
time, in simple [9,10] and extended [12,15] four-
dimensional supergravity. For the termW 4þ þW 4�, there
is a ‘‘no-go theorem,’’ which goes as follows [16]: for a
polynomial IðW Þ of the Weyl tensor to be supersymme-
trizable, each one of its terms must contain equal powers of
Wþ

���� and W�
����. The whole polynomial must then

vanish when either Wþ
���� or W�

���� do.

The derivation of this result is based onN ¼ 1 chirality
arguments, which require equal powers of the different
chiralities of the gravitino in each term of a superinvariant.
The rest follows from the supersymmetric completion.
That is why the only exception to this result is W 2 ¼
W 2þ þW 2�: in d ¼ 4, this term is part of the Gauss-
Bonnet topological invariant (it can be made equal to it
with suitable field redefinitions). This term plays no role in
the dynamics, and it is automatically supersymmetric; its
supersymmetric completion is 0 and therefore does not
involve the gravitino.

The derivation of [16] has been obtained using N ¼ 1
supergravity, whose supersymmetry algebra is a subalge-
bra of N > 1. Therefore, it should remain valid for ex-
tended supergravity too. But one must keep in mind the
assumptions that were made, namely, the preservation by
the supersymmetry transformations of R symmetry which,
for N ¼ 1, corresponds to U(1) and is equivalent to
chirality. In extended supergravity theories, R symmetry
is a global internal UðN Þ symmetry, which generalizes
(and contains) U(1) from N ¼ 1.

Preservation of chirality is true for pure N ¼ 1 super-
gravity, but to this theory and to most of the extended
supergravity theories, one may add matter couplings and
extra terms that violate U(1) R symmetry and yet can be
made supersymmetric, inducing corrections to the super-
symmetry transformation laws that do not preserve U(1) R
symmetry.

That was the procedure taken in [17], where theN ¼ 1
supersymmetrization of (14) was achieved by coupling this
term to a chiral multiplet. A similar procedure may be
taken in N ¼ 2 supergravity, since there exist N ¼ 2
chiral superfields which must be Lorentz and SU(2) scalars
but can have an arbitrary U(1) weight, allowing for super-
symmetric U(1) breaking couplings.

Such a result should be more difficult to achieve for
N � 3, because there are no generic chiral multiplets. But
for 3 � N � 6 there are still matter multiplets which one

can couple to the Weyl multiplet. Those couplings could
eventually (but not necessarily) break U(1) R symmetry
and lead to the supersymmetrization of (13).
An even more complicated problem is the N ¼ 8

supersymmetrization of (13). The reason is the much
more restrictive character of N ¼ 8 supergravity, com-
pared with lower N . Besides, its multiplet is unique,
which means there are no extra matter couplings one can
take in this theory. Plus, in this case, the R-symmetry group
is SU(8) and not U(8): the extra U(1) factor, which in
N ¼ 2 could be identified with the remnant N ¼ 1 R
symmetry and, if broken, eventually turn the supersymmet-
rization of (13) possible, does not exist. Apparently, there
is no way to circumvent inN ¼ 8 the result from [16]. In
order to supersymmetrize (13) in this case, one should then
explore the different possibilities that were not considered
in [16]. Since that article only deals with the term (13) by
itself, one can consider extra couplings to it and only then
try to supersymmetrize. This procedure is very natural,
taking into account the scalar couplings that multiply
(13) in the actions (16) and (17).
We now proceed with trying to supersymmetrize (13)

but, first, we review the superspace formulation ofN � 4
supergravities and also some known higher-order super-
invariants in these theories.

III. LINEARIZED SUPERINVARIANTS IN d ¼ 4
SUPERSPACE

In this section, we review the superspace formulation of
pure N � 4 linearized supergravity theories and some of
the known higher-order superinvariants, including a little
discussion on the symmetries they should preserve. We
will only be working at the linearized level, for simplicity.
One typically decomposes the UðN Þ R symmetry into

SUðN Þ � Uð1Þ and considers only SUðN Þ for the super-
space geometry. U(1) is still present, but not in the super-
space coordinate indices. The only exception is for
N ¼ 8; the more restrictive supersymmetry algebra re-
quires in this case the R-symmetry group to be SU(8), and
there is no U(1) to begin with. We always work therefore in
this section in conventional extended superspace with
structure group SLð2;CÞ � SUðN Þ.

A. Linearized N � 4, d ¼ 4 supergravity in
superspace

The field content of N � 4 supergravity is essentially
described by a superfield Wabcd [27,28], totally antisym-
metric in its SUðN Þ indices, its complex conjugate �Wabcd

and their derivatives.
Still at the linearized level, one has the differential

relations

rAaW
bcde ¼ �8	½b

a W
cde�
A ; rAaW

bcd
B ¼ 6	½b

a W
cd�
AB ;

rAaW
bc
BC ¼ �4	½b

a W
c�
ABC; rAaW

b
BCD ¼ �	b

aWABCD;

rAaWBCDE ¼ 0; (18)
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and

ra
_A
WBCDE ¼ 2irB _AW

a
CDE; ra

_A
Wb

BCD ¼ irB _AW
ab
CD;

ra
_A
Wbc

BC ¼ �irB _AW
abc
C ; ra

_A
Wbcd

B ¼ iNabcd
B _A

: (19)

This last relation defines the superfield Nabcd
A _A

which, there-

fore, also satisfies

Nabcd
A _A

¼ rA _AW
abcd; (20)

rAaN
bcde
B _B

¼ �8	½b
a rA _BW

cde�
B : (21)

Here we should notice that these relations are valid for
Nabcd

A _A
, but not for its complex conjugate �NA _Aabcd. In other

words, rAa
�NB _Bbcde is another independent relation, like its

Hermitian conjugate r _AaN
bcde
B _B

, as we will see below

[27,28].
The spinorial indices in the differential relations (18) are

completely symmetrized. Indeed, at the linearized level,
the corresponding terms with contracted indices vanish,
through the Bianchi identities

rA
_A
Wa

ABC ¼ 0; (22)

rA
_A
WABCD ¼ 0; (23)

rA
_BNbcde

B _B
¼ 0: (24)

For N � 6, Wabcd is a complex superfield, which to-

gether with �Wabcd, describes at � ¼ 0 the 2ðN
4

Þ real

scalars of the theory. In N ¼ 8 supergravity, the super-

fieldWabcd represents at � ¼ 0 the ð 8
4
Þ ¼ 70 scalars of the

full nonlinear theory. On shell, it satisfies the reality con-
dition [27,28]

Wabcd ¼ 1

4!
"abcdefgh �Wefgh: (25)

Since Nabcd
A _A

¼ rA _AW
abcd, from the previous relation

one also has on shell, in linearized N ¼ 8 supergravity

Nabcd
A _A

¼ 1

4!
"abcdefgh �NA _Aefgh: (26)

Among the derivatives of Wabcd, there is the superfield
WABCD, which from the differential relations (18) is related
to Wabcd at the linearized level by WABCD /
rAarBbrCcrDdW

abcd þ . . . The Weyl tensor appears as
the � ¼ 0 component of WABCD:

WABCDj ¼ W ABCD: (27)

Also, Wb
BCDj is the Weyl tensor of theN gravitinos,Wbc

BCj
is the field strength of ðN

2
Þ vector fields andWbcd

B j are the

ðN
3

Þ Weyl spinors.

InN ¼ 6, 7 supergravity, there exist extra ðN
6

Þ vector
fields, described by �WBCbcdefgj. InN ¼ 5, 6, 7 supergrav-

ity there also exist additional ðN
5

Þ Weyl spinors, de-

scribed by �WBbcdefj.3 In N ¼ 8 supergravity, these

superfields do not represent new physical degrees of free-
dom, because then we have the following relations:

�W Bbcdef ¼ 1
2"bcdefghaW

gha
B ;

�WBCbcdefg ¼ 1
6"bcdefghaW

ha
BC:

(28)

The differential relations satisfied by these superfields can
be derived, inN ¼ 8, from (28) and the previous relations
(18) and (19). For N � 6 supergravities, which are trun-
cations of N ¼ 8, these relations are obtained from the
N ¼ 8 corresponding ones, but considering that (25),
(26), and (28) are not valid anymore (i.e. by considering
Wabcd and �Wabcd as independent superfields). This is the
way one can derive the differential relations that are miss-
ing in (18) and (19), like rAa

�Wbcde ¼ � 2
3
�WAabcde, and so

on.
Again, for 4 � N � 8, on shell (which in linearized

supergravity is equivalent to setting the SUðN Þ curvatures
to zero), one has among others the field equations

rA _AWab
AB ¼ 0; (29)

rA _ANabcd
A _A

¼ 0: (30)

At the component level, at � ¼ 0 (30) represents the field
equation for the scalars in linearized supergravity.
Eqs. (25), (26), and (30) are only valid on shell, and are
logically subjected to �0 corrections. Plus, most of the
equations in this section include nonlinear terms that we
did not include here, but which can be seen in [27,28].

B. Higher-order superinvariants in superspace and
their symmetries

Next, we will be analyzing linearized higher-order
superinvariants in superspace.
There are known cases in the recent literature of appar-

ent linearized R4 superinvariants in ten-dimensional
type IIB supergravity that did not become true superinvar-
iants [29,30]. One may therefore wonder if that could not
happen in our case. But in d ¼ 4, the structure of the
transformation laws and the invariances of the supermul-
tiplets are relatively easier and better understood than in
d ¼ 10, which guarantees us that the existence of the full
superinvariants from the linearized ones is not in jeopardy,

3In N ¼ 7 supergravity, there also exists an additional

ððN
7

Þ ¼ 1Þ gravitino. Indeed, the N ¼ 7 and N ¼ 8 multip-

lets are identical.

ONE LOOP SUPERSTRING EFFECTIVE ACTIONS AND . . . PHYSICAL REVIEW D 77, 125011 (2008)

125011-5



although they may not fully preserve their symmetries. We
summarize here the explanation that can be found in [14].

For N � 3, one can get a full nonlinear superspace
invariant from a linearized one simply by inserting a factor
of E, the determinant of the supervielbein. This is also true
forN � 4, but here some remarks are necessary, as fields
that transform nonlinearly may be present. In these cases,
the classical equations of motion of the theory are invariant
under some global symmetry group G. The theory also has
a local H invariance, H being the maximal compact sub-
group of G. The supergravity multiplet includes a set of
Abelian vector fields with a local U(1) invariance. Because
of this invariance, the U(1) potentials corresponding to the
vector fields cannot then transform under H and must be
representations of G.

In all these cases in the full nonlinear theory the scalar
fields, represented in superspace byWabcd, are elements of
the coset space G=H. They do not transform linearly under
G, but they still transform linearly under H. One can use
the local H invariance to remove the nonphysical degrees
of freedom by a suitable gauge choice. In order for this
gauge to be preserved, nonlinear G transformations must
be compensated by a suitable local H transformation de-
pending on the scalar fields. Because of this, linearized
superinvariants can then indeed be generalized to the non-
linear case by inserting a factor of E, the determinant of the
supervielbein, but they will not have the full G symmetry
of the original equations of motion. If we want the non-
linear superinvariants to keep this symmetry, we must
restrict ourselves to superfields that also transform linearly,
like those that occur directly in the superspace torsions.

In full nonlinear N ¼ 8 supergravity [31] G ¼ E7ð7Þ, a
real noncompact form of E7 whose maximal subgroup is
SLð2;RÞ � Oð6; 6Þ but whose maximal compact subgroup
is H ¼ SUð8Þ. The 70 scalars are elements of the coset
space E7ð7Þ=SUð8Þ. Nonperturbative quantum corrections

break E7ð7Þ to a discrete subgroup E7ðZÞ, which implies

breaking the maximal subgroup SLð2;RÞ � Oð6; 6Þ to
SLð2;ZÞ � Oð6; 6;ZÞ. Oð6; 6;ZÞ is the T-duality group of
a superstring compactified on a six-dimensional torus;
SLð2;ZÞ extends to the full superstring theory as an
S-duality group. In [32], evidence is given that E7ðZÞ
extends to the full superstring theory as a U-duality group.
It is this U duality that requires (from a string theory point
of view) that all the 70 scalars of the T6 compactification of
superstring theory are on the same footing, even if origi-
nally, in the d ¼ 10 theory, the dilaton is special.

Analogously, for N ¼ 4 supergravity coupled to m
vector multiplets, we have G ¼ SLð2;RÞ � Oð6; mÞ, H ¼
Uð1Þ � Oð6Þ � OðmÞ. The conjectured full duality group
for the corresponding toroidally compactified heterotic
string, with m ¼ 16, is SLð2;ZÞ � Oð6; 22;ZÞ.

The four-dimensional supergravity theories we have
been considering can be seen as low energy effective field
theories of toroidal compactifications of type II or heterotic

superstring theories. The true moduli space of these string
theories is the moduli space of the torus factored out by the
discrete T-duality group �T . For the case where the left-
moving modes of the string are compactified on a p torus
Tp and the right-moving modes on a q torus Tq [33], the
moduli space is

SOðp; qÞ
SOðpÞ � SOðqÞ

�
�T;

with �T ¼ SOðp; q;ZÞ.
In particular, for type II theories compactified on T6, the

moduli space is

SOð6; 6Þ
SOð6Þ � SOð6Þ

�
�T; (31)

with �T ¼ SOð6; 6;ZÞ.
For heterotic theories, left-moving modes are compacti-

fied onT6 and right-moving modes onT22, resulting for the
moduli space

SUð1; 1Þ
Uð1Þ � SOð6; 22Þ

SOð6Þ � SOð22Þ
�
�T;

with �T ¼ SOð6; 22;ZÞ. The factor SUð1;1Þ
Uð1Þ is a separated

component of moduli space spanned by a complex scalar
including the dilaton, which lies in the gravitational mul-
tiplet and does not mix with the other toroidal moduli,
lying in the 22 Abelian vector multiplets.

C. Some known linearized higher-order
superinvariants

In Ref. [34], a general (for all N ) formalism for con-
structing four-dimensional superinvariants by integrating
over even-dimensional submanifolds of superspace
(’’superactions’’) was developed. Using this formalism,
we will review some known linearized higher-order
Riemann superinvariants. We will mostly be concerned
with N ¼ 8 superinvariants, although the results can be
easily extended to 4 � N � 8. For a more detailed treat-
ment, see [34,35].
We will start by considering W 2 ¼ W 2þ þW 2�, the

leading �0 correction in the heterotic string effective ac-
tion. Its N ¼ 8 supersymmetrization at the linearized
level is given, up to numerical factors, by

Z
�WefghW

efghd8�þ H:c:

/ ra
A 	 	 	 rd

DrA
a 	 	 	 rD

d ðWefgh �WefghÞ þ H:c:

/ WABCDWABCD þ H:c:: (32)

The spinorial derivatives should be antisymmetrized, but
from (18), one realizes that indeed happens, since all spinor
indices are symmetrized and all SU(8) indices are anti-
symmetrized. In order to understand why W 2, and no
other dynamical terms, indeed result from (32), some
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preliminary basic calculations are necessary. From the
differential relations (18), one can see that, at the linearized
level, each Wabcd present cannot be acted by more than
four (either dotted or undotted) spinorial derivatives

rAarBbrCcrDdrEeW
fghi ¼ 0;

ra
_A
rb

_B
rc

_C
rd

_D
re

_E
�Wfghi ¼ 0:

(33)

From the same relations, one also easily derives

ra
Arb

Brc
Crd

DðWefgh �WefghÞ ¼ �384WabcdWABCD

þ vector and fermion terms

þ . . . (34)

In (32), one acts on (34) with four more spinorial deriva-
tives, which from (18) do not act on WABCD: they act
exclusively on Wabcd and in the fermion and vector terms,
in such a way that by the end eachWefgh, �Wefgh is acted by

four and only four derivatives, such that the only possible
final result is given by W 2 ¼ W 2þ þW 2�. From (33),
any other possibility would vanish.

Because of the integration measure d8�, (32) is not even
an integral over half superspace; yet, this expression is
indeed N ¼ 8 supersymmetric (and so are its N < 8
truncations). To verify that we recall that at � ¼ 0 the
spinorial superderivatives equal the supersymmetry trans-
formations

rBbj ¼ QBbj; rb
_B
j ¼ Qb

_B
j:

That rb
_B
r _A1

a1 	 	 	 r
_A4
a4ra1

_A1
	 	 	 ra4

_A4
Wefgh �Wefgh ¼ 0 is ob-

vious from (33). This way the supersymmetry variation
of (32) is proportional to

rb
_B
½rA1

a1 	 	 	 rA4
a4ra1

A1
	 	 	 ra4

A4
Wefgh �Wefgh�

/ rb
_B
ðWABCDWABCDÞ

¼ 4iWABCDrA _BW
b
BCD

¼ 4irA _BW
ABCDWb

BCD; (35)

where in the last line we have used (23). This means (32) is
indeed supersymmetric, as it transforms as a spacetime
derivative. We notice that W 2þ þW 2� is, by itself, super-
symmetric [the completion is zero, as we noticed: no other
terms result from (32)]. This is no surprise since, up to
nondynamical Ricci terms, W 2 is a topological invariant
in d ¼ 4.

The method of [34] was also used to obtain the N ¼ 8
supersymmetrization of W 2þW 2� at the linearized level,
which from (34) and its conjugate is given by [13]

Z
ðWa1a2a3a4W

a1a2a3a4Þ2d8�d8�

/
Z
½r _A1

a1 	 	 	 r
_A4
a4ra1

_A1
	 	 	 ra4

_A4
Wb1b2b3b4W

b1b2b3b4�

� ½rc1
A1
	 	 	 rc4

A4
rA1

c1 	 	 	 rA4
c4 Wd1d2d3d4W

d1d2d3d4� þ . . .

/ WA1A2A3A4WA1A2A3A4
W

_A1
_A2

_A3
_A4W _A1

_A2
_A3

_A4
þ . . .

(36)

The ‘‘ . . .’’ represent extra terms at the linearized level
resulting when the dotted and undotted derivatives act
together in the same scalar superfield. Because of all these
extra terms the N ¼ 8 supersymmetry of (36) is not so
obvious, but it has been shown to be true [35].

IV. W 4þ þW 4� AND EXTENDED
SUPERSYMMETRY

In this section, we turn our attention to the new higher-
order term W 4þ þW 4� and try to supersymmetrize it at
the linearized level using different methods.
We will only be working at the linearized level, for

simplicity. Therefore, we will not be particularly con-
cerned with the string loop effects considered in the dis-
cussion on the string effective actions, because of their
dilaton couplings, which are necessarily highly nonlinear.
We will be mainly concerned with the new R4 term in
linearized supergravity, not worrying about the dilatonic
factor in front of it to begin with (later this factor will be
considered).

A. Superfield expression of W 4þ þW 4�
In the same way as W 4 ¼ ðW 2þ þW 2�Þ2 ¼ W 4þ þ

W 4� þ 2W 2þW 2�, the way of writing W 4 as � ¼ 0
components of superfields can also be seen—at the line-
arized level—as the ‘‘square’’ of the superfield expression
of W 2 ¼ W 2þ þW 2�, given by (32). This way, by ‘‘tak-
ing the square’’ of (32), one obtains (36) and

½rc1
A1
	 	 	 rc4

A4
rA1

c1 	 	 	 rA4
c4

�Wd1d2d3d4W
d1d2d3d4�2 þ H:c:

/ ðWA1A2A3A4WA1A2A3A4
Þ2 þ H:c: (37)

From (33), one sees that, in order for (37) not to vanish,
each Wabcd must be acted by four and only four spinorial
derivatives. This way, by the same arguments we used for
(32) we see that from (37) one gets only a sum of products
of four WABCD terms, eventually with different index con-
tractions. Because of the uniqueness of W 4 terms we
mentioned—only (12) and (13)—the final result must be
W 4þ þW 4�.
Therefore, (37) represents the expression of W 4þ þ

W 4� in terms of superfields, up to some numerical factor.
The fact that one can write this or any other term as a
superfield component does not necessarily mean that it can
be made supersymmetric; for that one has to show how to
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get it from a superspace invariant. In the present case, for
(37), the most obvious candidate for such a superinvariant
is

Z
ðWabcd �WabcdÞ2d16�þ H:c: (38)

By its structure (it requires integration over 16 �s), one can
see that (38) is only valid forN ¼ 8 supergravity. One can
write a similar expression but which is also valid for lower
N by replacingWabcd by some of its spinorial derivatives,
while correspondingly lowering the number of �s in the
measure. An expression that is equivalent (at the linearized
level) to (37) but that is valid for 4 � N � 8 is

Z
Wabcd �WabcdW

ABCDWABCDd
8�þ H:c:: (39)

Here we notice that although both (38) and (39) are
equivalent in N ¼ 8 as linearized component expansions
(up to some different numerical factor), they represent two
distinct expressions at the nonlinear level. Using (18), (19),
and (23), one can compute the supersymmetry variation of
the result of the � integrations, which from (33) in both
cases is uniquely given by (37). This variation, at the
linearized level, is

ra
_A
½ðWBCDEWBCDEÞ2 þ ðW _B _C _D _EW _B _C _D _EÞ2�
¼ �8irB _AðWFGHIWFGHIW

BCDEWa
CDEÞ

þ 16iWFGHIrB _AðWFGHIW
BCDEWa

CDEÞ: (40)

This supersymmetry transformation is not a total derivative
and cannot be transformed into one. Therefore, neither (38)
nor (39) represent a valid linearized superinvariant. This
result is expected: it is just the confirmation of the predic-
tion from [16] in N ¼ 8 which, as we said, is not easy to
circumvent. Also, as we saw at the linearized level, (38)
only gives W 4þ þW 4� and no other terms. If (38) were
supersymmetric, this would meanW 4þ þW 4� was super-
symmetric by itself, which does not make sense since it
does not represent a topological invariant in d ¼ 4, like
W 2 does. Therefore, the supersymmetrization of W 4þ þ
W 4�, if it exists, must come in a different way.

B. Attempts of supersymmetrization without
modification of the linearized Bianchi identities

We now try to find out possible ways of supersymme-
trizingW 4þ þW 4� at the linearized level inN � 4, d ¼
4 supergravity in superspace. The known solution to the
superspace Bianchi identities [27,28] (equivalent to the
x-space supersymmetry transformations) is only valid on
shell for pure supergravity (without any kind of string
corrections).

In principle, in order to supersymmetrize a higher-order
term in the Lagrangian, one needs higher-order corrections
to the superspace Bianchi identities (so one does to the
x-space supersymmetry transformation laws), which

should be of the same order in �0. In this section, we
attempt to supersymmetrize (13) assuming that the solution
to the Bianchi identities for pure supergravity remains
valid. This a matter of simplicity: the complete solution
to the Bianchi identities involves, even without any �0
corrections, many nonlinear terms that we have not con-
sidered [27,28]. The �0 corrections to the supersymmetry
transformations are necessarily nonlinear and should affect
and generate only nonlinear terms; it does not make sense
to consider them if we are looking only for linearized
superinvariants.
First, we check if it is possible to make some change in

(39) in order to make it supersymmetric. We notice that the
result in (40) only tells us that (39) is not supersymmetric
by itself; it does not mean that it is not part of some
superinvariant. In fact, maybe there exists some counter-
term � that can be added to (39) in order to cancel the
supersymmetry variation (40), so that the sum of (39) and
� is indeed supersymmetric. In order for� to exist, it must
then satisfy, for some �e

A _A _E
,

re
_E
½ððWABCDWABCDÞ2 þ H:c:Þ þ�� ¼ rA _A�e

A _A _E
: (41)

Together with (40) this is a very difficult differential equa-
tion, to which we did not find any solution in terms of
known fields, both for � and �e

A _A _E
.

The second possibility in order to try to cancel the
supersymmetry variation (40) is to multiply (39) by some

factors �, ��, such that the product is supersymmetric. In

this case, �, �� must satisfy, for some �e
A _A _E

,

re
_E
½ ��ðWABCDWABCDÞ2 þ H:c:� ¼ rA _A�e

A _A _E
: (42)

In this case, the factors �, �� must satisfy some restric-
tions, both by dimensional analysis (we want an �03 term)
and by component analysis [we want to supersymmetrize
W 4þ þW 4� in the Einstein frame (16) and (17), with a
factor of expð�4�Þ and at most some other scalar cou-
plings resulting from the compactification from d ¼ 10].
Therefore, the only acceptable (and actually very natural)

factors �, �� are simply functions of Wabcd, �Wabcd.
In any case, again (42) is a very difficult differential

equation, which we tried to solve in terms of each of the
different known fields. We were not able to find any

solution, both for �, �� and �e
A _A _E

, as one can see by

considering (40), which cannot be canceled simply by
taking factors of Wabcd, �Wabcd.
Therefore, one cannot supersymmetrize (13) using only

the linearized (on-shell) solution to the Bianchi identities
in pure supergravity. This result is not so expected and is
not a confirmation of the prediction from [16] in N ¼ 8,
which applies to (13) by itself and not when it is multiplied
by a scalar factor. In the following subsection, we will use
the full nonlinear solution to the Bianchi identities, but still
at �0 ¼ 0.
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C. Attempts of supersymmetrization with nonlinear
�0 ¼ 0 Bianchi identities

The generic effective action (9) has a series of terms that

we designated by Iið ~R;MÞ. Some of these terms can be
directly supersymmetrized: they constitute the ‘‘leading
terms,’’ each one of them corresponding to an independent
superinvariant. The remaining terms are part of the super-
symmetric completion of the leading ones.

In general, it is very hard to determine the number of
independent superinvariants. This problem becomes even
more difficult in the presence of �0 correction terms,
because one single superinvariant includes terms at differ-
ent orders in�0. For the complete supersymmetrization of a
given higher-derivative term of a certain order in �0, typi-
cally an infinite series of terms of arbitrarily high order in
�0 shows up. This series may be truncated to the order in�0
in which one is working, but when supersymmetrizing the
terms of higher order in �0 the contributions from the
lower-order terms must be considered. The reason is, of
course, the �0 dependence of the supersymmetry trans-
formations. This has been explicitly shown for (12) and
for N ¼ 1, 2 in [10,15]. At any given order in �0, there-
fore, there are new leading terms (i.e. new superinvariants),
and other terms that are part of superinvariants at the same
order and at lower order.

Each time the supersymmetry transformation laws of
single fields include linear terms, it should be possible to
determine how to supersymmetrize an expression written
only in terms of these fields already at the linearized level.
A leading term of an independent superinvariant should
then be invariant already at the linearized level. If this
linearized supersymmetrization cannot be found for the
term in question, but it still has to be made supersymmet-
ric, it cannot be a leading term, and must emerge only at the
nonlinear level, as part of the supersymmetric completion
of some other term. That must be the case of (13), which
we have tried to supersymmetrize directly at the linearized
level, and we did not succeed. For the remainder of this
section, we will examine that possibility.

Since the �0 corrections necessarily introduce nonlinear
terms in the supersymmetry transformations, and since one
should not consider any higher-order term before consid-
ering all the corresponding lower-order terms, before look-
ing for higher-order corrections to the supersymmetry
transformations, one should first look at their nonlinear
�0 ¼ 0 terms. Here, we will only be concerned with the
nonlinear terms of the on-shell relations, i.e. of those
relations that will probably acquire �0 corrections (25),
(26), and (30).

The first two linearized equations, (25) and (26), refer
to the 70 scalar fields of N ¼ 8 supergravity. As we
mentioned, in the nonlinear theory, these fields are
given by the coset space E7ð7Þ=SUð8Þ; they transform non-

linearly under E7ð7Þ, but they still transform linearly

under SU(8) [31]. On shell, in superspace, at order �0 ¼

0, going from the linearized to the full nonlinear theory
corresponds to replacing the constraint ‘‘SU(8) curva-
ture=0’’ by ‘‘ E7ð7Þ curvature ¼ 0’’. A complete treatment

can be found in [27,28].
The superspace field Eq. (30) reflects the linearized field

equation of the scalar fields in 4 � N � 8 supergravity,
including the dilaton. For the action (9), the complete
dilaton equation is given by

r2�� 1

2

X
i

eð4=ð2�dÞÞð1þwiÞ�Iið ~R;MÞ ¼ 0: (43)

At order �0 ¼ 0, among the terms Iið ~R;MÞ, there should
be those which contain field strengths corresponding to
each of the vector fields present in the theory. Plus, still at
order �0 ¼ 0 there are couplings of the scalars to fermions,
which we never considered explicitly but must be reflected
in their field equations. In that order in �0, the N ¼ 8
nonlinear version of (30), the field equation for the scalars,
is given by [27,28]

rA _ANabcd
A _A

¼ W
_A _B
ef Wabcdef

_A _B
þ 12WAB½abWcd�

AB

� 3

2
iW

_A
efgW

Ae½abNcd�fg
A _A

� 2

3
iW

_A
efgW

A½abcNd�efg
A _A

þ i

12
W

_A
efgW

AefgNabcd
A _A

þ 4-fermion terms:

(44)

As one can see, this expression does not contain any non-
linear term that is exclusively dependent on the Weyl
tensor. As one can confirm in [27,28], the same is true
for each of the differential relations considered in (18) and
(19). Therefore, we cannot expect (13) to emerge from the
nonlinear completion of some (necessarily �03) linearized
superinvariant. One must really understand the �0 correc-
tions to the Bianchi identities. Since these corrections are
necessarily nonlinear, this means one cannot supersymme-
trize (13) at the linearized level at all. Here, one must
notice that never happened for the previously known
higher-order terms, which all had its linearized
superinvariant.

D. Corrections to the solution of the linearized
Bianchi identities in N � 4, d ¼ 4 superspace:

Some considerations

In each of the three effective actions (15)–(17), only the
W 2þW 2� term contains the transcendental coefficient
�ð3Þ. This term must then have its own superinvariant, as
no other term has such a coefficient. Therefore, the changes
in the supersymmetry transformation laws the other terms
generate do not have such a coefficient and could not, by
themselves, cancel the supersymmetry variation of (12).
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Since the numerical coefficient in front of (13) in the
d ¼ 4 effective actions (16) and (17) is not transcendental,
this term may eventually not need its own superinvariant
and be part of some other superinvariant, with a different
leading bosonic term, maybe even of a lower order in �0,
being related to (13) by an �0-dependent supersymmetry
transformation. But even if such relation is valid in d ¼ 4,
that does not mean at all it should keep being valid in d ¼
10.

One can try to generate a higher-order (in �0) term from
a lower-order, higher-derivative superinvariant; maybe the
higher-order term would lie on the orbit of its supersym-
metry transformations. But in order to generate the higher-
order term this way, one obviously needs to know the
�0-corrected supersymmetry transformation laws.

One possibility would be to see if (13) could be obtained
from the supersymmetrization of the W 2 term in (32), of
order �0. But this term does not come from type II theories,
which only admit �03 corrections and higher; it only comes
from the heterotic theories. Therefore, a W 2 term must
only be present as a correction to N ¼ 4 supergravity: it
can also be written as an N ¼ 8 invariant, given by (32),
but in this case, its stringy origin is not so obvious. Indeed,
R2 terms show up from the R4 terms we are considering
when we compactify string theory on a Calabi-Yau mani-
fold [23], but for the moment we are only considering
toroidal compactifications with maximal d ¼ 4
supersymmetry.

There are other different terms one can consider. For
instance, when going from the string frame (8) to the
Einstein frame (9) with the transformation (7), one gets
from a polynomial of the Riemann tensor a dilaton cou-
pling and powers of derivatives of �. The �03 effective
action should contain, besides (12) and (13), the terms
ððr�r��Þðr�r��ÞÞ2, ðr�r��Þðr�r��Þðr2�Þ2 and

ðr2�Þ4.
Taking as an example the �03 term ðr2�Þ4, it can be

represented in superspace as part of ½ðrA _ANabcd
A _A

Þ�
ðrB _B

�NB _B
abcdÞ�2j, which can indeed be supersymmetrized:

from (18) and (19), this term should come from (36) by
acting in each Wabcd with two undotted and two dotted
spinorial derivatives (the same for �Wabcd). This should then
be one of the terms represented by the dots in (36).

One therefore may expect the supersymmetrization of
the higher-derivative term IðRÞ (which in the case we are
interested includesW 4þ þW 4�) to lie in the orbit of some
power of r2� or some other superinvariant of lower order
in �0, so that one term may result from the other via an �0
dependent supersymmetry transformation. If that is the
case, one needs to find the �0 corrections to the (on-shell)
solution of the superspace Bianchi identities, namely, to
the nonlinear versions of (25) and (26), and especially (30).

Let us take, for example, the nonlinear dilaton field
equation. Considering the pure gravitational �0 corrections
expressed in the effective actions (15)–(17), we are able to

‘‘guess’’ the expected corrections to (44), knowing the field
content of Wabcd and its derivatives. Neglecting for the
moment the numerical coefficients, one can see that some
of the expected corrections to (44) (only the purely gravi-
tational ones, i.e. those depending only on the Weyl tensor)
are of the form

rA _ANabcd
A _A

j�0þ�03 / �0Wabcd½WABCDWABCD þ H:c:�
þ �03Wabcd½ððWABCDWABCDÞ2 þ H:c:Þ
þ ðWABCDWABCDÞðW _A _B _C _DW _A _B _C _DÞ�
þ . . . (45)

Of course, this equation must be completed with other
contributions, which may be derived, including the numeri-
cal coefficients, from (16) and (17), once they are com-
pleted with the other leading �0 corrections that do not
depend only on the Riemann tensor.
It remains to be seen how are these corrections compat-

ible with the superspace Bianchi identities. This would
allow us to determine the �0 corrections one needs to
introduce in the other superspace field equations in order
to the superspace Bianchi identities remain valid to this
order in�0. This is a technically very complicated problem,
which we are not addressing in the present work.

E. W 4þ þW 4�, U duality, and N ¼ 8 supergravity

As we mentioned before, the no-go theorem for the
supersymmetrization of (13) given in [16] is based on
N ¼ 1 chirality arguments. In order to circumvent these
arguments, a reasonable possibility is to try to construct a
superinvariant that violates the U(1) symmetry or (for
N > 1) some of the R symmetry. But the superfield ex-
pression corresponding to (13) given by (37) is even U(1)
symmetric, as WABCD is U(1) invariant. (This is more
clearly derived in N ¼ 1 superspace [17], but it is easily
understood if one thinks that from (27) WABCDj is a com-
ponent of the Riemann tensor.) The best one can aim at is to
break U(1) or part of the SUðN Þ by taking a different
integration measure, as suggested in [34] and as we tried
with (39). InN ¼ 8 superspace, one can keep trying extra
couplings of the scalar superfields Wabcd combined with
different nonstandard integration measures. But it is easier
if we are allowed to consider other multiplets than the
gravitational, whose couplings automatically violate U
(1). That is not possible in N ¼ 8 supergravity, both
because there are no other multiplets than the gravitational
to consider, and because the extra U(1) symmetry does not
exist. We recall that N � 6 theories have a UðN Þ sym-
metry, which is split into SUðN Þ � Uð1Þ, but the more
restrictive N ¼ 8 theory has originally only an SU(8)
symmetry. This may be part of the origin of all the diffi-
culties we faced when trying to supersymmetrize (13) in
N ¼ 8.
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But the main obstruction to this supersymmetrization is
that, opposite toW 2þW 2�, the termW 4þ þW 4� does not
seem to be compatible with the full R-symmetry group
SU(8). In Ref. [36], a complete study has been made of all
possible higher-order terms in N ¼ 8 supergravity, nec-
essarily compatible with SU(8), and (13) does not appear in
the list of possible terms.

Indeed, as we saw in the discussion of Sec. III B, only
the local symmetry group of the moduli space of compac-
tified string theories should be preserved by the four-
dimensional perturbative string corrections. As we saw in
(31), for T6 compactifications of type II superstrings, this
group is given by SOð6Þ � SOð6Þ 
 SUð4Þ � SUð4Þ, which
is a subgroup of SU(8). Most probably the perturbative
string correction term W 4þ þW 4� only has this SUð4Þ �
SUð4Þ symmetry. If that is the case, in order to super-
symmetrize this term besides the supergravity multiplet,
one must also consider U-duality multiplets [37], with
massive string states and nonperturbative states. These
would be the contributions we were missing.

But in conventional extended superspace, one cannot
simply write down a superinvariant that does not preserve
the SUðN Þ R symmetry, which is part of the structure
group. One can only consider higher-order corrections to
the Bianchi identities that preserve SUðN Þ, like the ones
from (45), but these corrections would not be able to
supersymmetrize (13). N ¼ 8 supersymmetrization of
this term would then be impossible; the only possible
supersymmetrizations would be at lower N , eventually
consider U-duality multiplets.

The fact that one cannot supersymmetrize in N ¼ 8 a
term that string theory requires to be supersymmetric,
together with the fact that one needs to consider nonper-
turbative states (from U-duality multiplets) in order to
understand a perturbative contribution may be seen as
indirect evidence that N ¼ 8 supergravity is indeed in
the swampland, as proposed in [38]. We believe that topic
deserves further study.

V. CONCLUSIONS

We had shown in [17] that type IIA and heterotic string
theories predict the term W 4þ þW 4� to show up at one
loop when compactified to four dimensions. Nonetheless,
an older article [16] stated that this term, by itself, simply
could not be made supersymmetric in d ¼ 4. In [17], we
worked out its N ¼ 1 supersymmetrization, by coupling
it to a chiral multiplet. In this article, we considered the
more complicated problem of its N ¼ 8 supersymmetri-
zation. We obtained the superfield expression of that term,
given by (37), and we have shown that expression indeed
was not part of a superinvariant.

Since that term in d ¼ 10 should come coupled to a
dilaton, and it may acquire other scalar couplings after
compactification to d ¼ 4, in order to try to circumvent
the argument of [16], we tried to construct a superinvariant

that included this term, together with a proper scalar cou-
pling, in general 4 � N � 8 superspace. We concluded
that the supersymmetrization of this term at the linearized
level, by itself, cannot be achieved, something that was
always possible for the previously known higher-derivative
string corrections.
We proposed some changes to the on-shell solution to

the superspace Bianchi identities in order to include the
lowest order �0 corrections. We did not present the whole
set of possible �0 corrections to the Bianchi identities, nor
did we try to solve them in order to check the consistency
of these corrections and to determine their coefficients. In
N ¼ 8 superspace, one can only have SU(8) invariant
terms, and we arguedW 4þ þW 4� should be only SUð4Þ �
SUð4Þ invariant. If that is the case, in order to supersym-
metrize this term besides the supergravity multiplet, one
must introduce U-duality multiplets, with massive string
states and nonperturbative states. N ¼ 8 supersymmetri-
zation of (13) may not be possible at all, which may be
another argument favoring the hypothesis that N ¼ 8
supergravity is in the swampland [38]. This is a very
fundamental topic of study, together with the recent claims
of possible finiteness of N ¼ 8 supergravity. Plus, as we
concluded from our analysis of the dimensional reduction
of order �03 gravitational effective actions, the new R4

term (13) has its origin in the dimensional reduction of the
corresponding term in M theory, a theory of which there is
still a lot to be understood. We believe therefore that the
complete study of this term and its supersymmetrization
deserves further attention in the future.
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APPENDIX: SUPERSPACE CONVENTIONS

The superspace conventions for index manipulations
and complex conjugations are essentially the same as in
[15]. Underlined (resp. in square brackets) indices are
symmetrized (resp. antisymmetrized) with weight one, i.e.

XAB ¼ XAB þ XBA

2
; X½ab� ¼ Xab � Xba

2
:

At the linearized level, when interchanging superspace
covariant derivatives, we take all the supertorsions/curva-
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tures to zero with the exception of

T
Aa _B

bm ¼ �2i	b
a�

m
A _B
: (A1)

For a complete treatment of superspace supergravity at the

nonlinear level, including the solution to the superspace
Bianchi identities, we refer the reader to [27,28]. In the
paper, we just summarize the results we need.
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