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We show that the gauge-invariant transverse-momentum-dependent (TMD) quark distribution function

can be expressed as a sum of all higher-twist collinear parton matrix elements in terms of a transport

operator. From such a general expression, we derive the nuclear broadening of the transverse-momentum

distribution. Under the maximal two-gluon correlation approximation, in which all higher-twist nuclear

multiple parton correlations with the leading nuclear enhancement are given by products of twist-two

nucleon parton distributions, we find the nuclear transverse-momentum distribution as a convolution of a

Gaussian distribution and the nucleon TMD quark distribution. The width of the Gaussian, or the mean

total transverse-momentum broadening squared, is given by the path integral of the quark transport

parameter q̂F which can also be expressed in a gauge-invariant form and is given by the gluon distribution

density in the nuclear medium. We further show that contributions from higher-twist nucleon gluon

distributions can be resummed under the extended adjoint two-gluon correlation approximation and the

nuclear transverse-momentum distribution can be expressed in terms of a transverse-scale-dependent

quark transport parameter or gluon distribution density. We extend the study to hot medium and compare

to dipole model approximation and N ¼ 4 supersymmetric Yang-Mills (SYM) theory in the strong

coupling limit. We find that multiple gluon correlations become important in the strongly coupled system

such as N ¼ 4 SYM plasma.

DOI: 10.1103/PhysRevD.77.125010 PACS numbers: 13.85.Hd, 11.80.La, 25.75.Bh

I. INTRODUCTION

The success of perturbative QCD (pQCD) in describing
hard processes in hadronic interactions relies on the fac-
torization theorem [1] that separates the coherent long dis-
tance interaction between projectile and target from the
incoherent short distance interactions. The physical ob-
servables such as cross sections of deeply inelastic scatter-
ing (DIS) and Drell-Yan (DY) dilepton production can be
expressed as a convolution of hard partonic scattering cross
sections, parton distribution functions and parton fragmen-
tation functions. The hard partonic parts are calculable in
a perturbative expansion in the strong coupling constant
�sðQ2Þ which becomes small for large momentum scale
Q2 of the hard processes [2,3]. Though the parton distri-
bution and fragmentation functions are not calculable in
pQCD since they involve long distance interaction, they
are universal and independent of the specific partonic hard
processes. Therefore, they can be measured in one hard
process and then applied to another, therein lies the pre-
dictable power of pQCD.

The most practiced factorization scheme is collinear
factorization in which one integrates out the transverse
momentum of the initial (final) parton up to a factorization
scale and the final observables will only depend on the
transverse-momentum-integrated or collinear factorized
parton distribution (fragmentation) functions. Such a proof
of factorization has also been extended to semi-inclusive
processes [4,5] that involve finite transverse momentum

of the final hadron or dilepton with the introduction of
transverse-momentum-dependent (TMD) parton distribu-
tion and fragmentation functions. The final observables can
be expressed as a convolution of collinear hard parts (set-
ting the initial parton transverse momenta to zero) and
TMD parton distribution and fragmentation functions [6].
Such TMD parton distribution and fragmentation functions
are important for the study of hadronic interactions with
singly or doubly polarized beams, such as single-spin
asymmetry in semi-inclusive processes in DIS (SIDIS)
[7–9] and proton-proton scattering.
In the proof of factorization [10], in DIS off a nucleon or

nucleus target, for example, one important step is to eikon-
alize all soft interactions between the struck quark and the
target remnant as shown in Fig. 1. The summation of these
soft gluon interactions gives rise to a definition of TMD
quark distribution function in a nucleon or nucleus,

fAq ðx; ~k?Þ ¼
Z dy�

2�

d2y?
ð2�Þ2 e

ixpþy��i ~k?� ~y?hAj � ð0; ~0?Þ

� �þ

2
LTMDð0; yÞ ðy�; ~y?ÞjAi; (1)

where

L TMDð0; yÞ
� Ly

k ð�1; 0; ~0?ÞLy
?ð�1; ~y?; ~0?ÞLkð�1; y�; ~y?Þ

(2)
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is the complete gauge link in TMD quark distribution
function that contains both the transverse [10]

L?ð�1; ~y?; ~0?Þ
� P exp

�
�ig

Z ~y?

~0?
d ~�? � ~A?ð�1; ~�?Þ

�
(3)

and longitudinal gauge link [6]

L kð�1; y�; ~y?Þ � P exp

�
�ig

Z �1

y�
d��Aþð��; ~y?Þ

�
:

(4)

The above gauge links for quark propagation are defined in
the fundamental representation, A� ¼ Aa�T

aða ¼ 1� 8Þ.
Note that in our convention of the definition of the quark
distribution function in Eq. (1), the quark is produced at

ðy�; ~y?Þ [or ð0; ~0?Þ] and propagates toward ð�1; ~y?Þ
[ð�1; ~0?Þ]. The path ordering along the light cone is
then defined from y� to �1.

Even though the parton distribution in Eq. (1) describes
the probability to find a quark with momentum fraction x

and transverse momentum ~k? in a nucleon or nucleus, it
also contains information about final state interaction with
the target remnant encoded through the gauge links. These
gauge links are not only crucial to ensure the gauge invari-
ance of the TMD parton distribution functions in both
light-cone and covariant gauge but also lead to physical
consequences such as single-spin asymmetry in semi-
inclusive DIS and Drell-Yan process [8,10,11]. For DIS
off a nucleus target, they should also contain informa-
tion about transverse-momentum broadening of the struck
quark due to multiple scattering inside the nucleus. The
main purpose of this work is to study nuclear transverse-
momentum broadening in DIS from the TMD quark dis-
tribution functions and extend the result to the case of
quark or jet propagation in a thermal medium as in high-
energy heavy-ion collisions.

In the study of nuclear matter and quark-gluon plasma in
high-energy lepton-nucleus, hadron-nucleus and nucleus-
nucleus collisions, jet transverse-momentum broadening
plays a crucial role in unravelling the medium properties

through modification of the final jet or hadron spectra (jet
quenching) due to final state interaction between the ener-
getic partons and the nuclear or hot medium [12,13].
Current phenomenological studies of experimental data
[14–18] on jet quenching rely on pQCD calculations of
the parton energy loss or modification of the parton frag-
mentation functions due to gluon radiation induced by
multiple scattering during the parton propagation in the
medium. One important parameter that controls parton
energy loss or medium modification of the jet fragmenta-
tion function is the jet transport parameter q̂ or transverse-
momentum broadening squared per unit of propagation
length [19–25]. Therefore, calculation and measurement
of the jet transport parameter is an important step toward
understanding the intrinsic properties of the QCD medium.
There are many calculations of the jet transverse-

momentum broadening. Early studies dealt with the
mean average transport parameter [21,26] under one par-
ticular gauge without apparent guaranty of gauge invari-
ance. Transverse-momentum broadening in Drell-Yan pair
production in proton-nucleus scattering [27] and a recent
calculation of nuclear transverse-momentum broadening
distribution in DIS [28] were obtained by a direct summa-
tion of multiple scattering in covariant gauge, again with-
out apparent gauge invariance in the final result. One
approach to the parton propagation in medium with a
gauge (mostly) invariant framework is the Wilson line
formulation of multiple parton scattering [23] that resem-
bles the longitudinal gauge link in Eq. (1), but again in the
covariant gauge. Since resummation of all soft gluon in-
teractions is crucial for the gauge-invariant form of the
TMD parton distribution function in Eq. (1), it must con-
tain the nuclear transverse-momentum broadening due to
multiple parton scattering in nuclei. One should be able to
derive a completely gauge-invariant form of the nuclear
transverse-momentum broadening from the nuclear TMD
quark distribution function. This is what we will prove in
this paper. We will derive the nuclear broadening of the
transverse-momentum distribution simply from the gauge-
invariant form of TMD quark distribution function in
Eq. (1) with a given nuclear distribution function. The
broadened distribution will have a Gaussian form as found
in earlier studies, considering only two-gluon field corre-
lations in the nucleons. However, the broadening parame-
ter in our derivation will have an explicit gauge-invariant
form. We will also show that contributions from higher-
twist multigluon correlations in a nucleon can be re-
summed to give a nuclear TMD quark distribution that
depends on the transverse-scale-dependent gluon distribu-
tion density inside the nucleus.
We will briefly summarize our main results here. To

calculate the nuclear transverse-momentum broadening
including all higher-twist nuclear parton matrix elements,
we first express the gauge-invariant TMD quark distribu-
tion function in a nucleus as a sum of collinear higher-twist

FIG. 1. Multiple soft gluon interaction between the struck
quark and the remnant of the target nucleus in DIS.
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nuclear parton matrix elements which can be exponentiated to give

fAq ðxB; ~k?Þ ¼
Z dy�

2�
eixp

þy�hAj � ð0; ~0?Þ�
þ

2
Lkð0; y�; ~0?Þe ~W?ðy�;~0?Þ� ~rk? ðy�; ~0?ÞjAi�ð2Þð ~k?Þ; (5)

where the transport operator ~W?ðy�; ~y?Þ is defined as

~W ?ðy�; ~y?Þ � i ~D?ðy�; ~y?Þ þ g
Z y�

�1
d��Ly

k ð�; y�; ~y?Þ ~Fþ?ð��; ~y?ÞLkð��; y�; ~y?Þ; (6)

and ~D?ðy�; ~y?Þ ¼ ~@? þ ig ~A?ðy�; ~y?Þ is the covariant
derivative. The transport operator is supposed to operate
on both the quark field and the gluon fields within itself and
the transverse coordinate is set to ~y? ¼ ~0? after the
operation.

With a maximal two-gluon correlation approximation,
the high-twist multiparton correlations in a large and
weakly bound nucleus can be expressed as products, which
have the maximum nuclear size (or medium length) de-
pendence, of twist-two nucleon gluon distribution func-
tions. The leading contribution to the nuclear TMD quark
distribution is shown to have a simple form,

fAq ðxB; ~k?Þ ¼ A exp

�Z
d��N q̂Fð�NÞ

r2
k?
4

�
fNq ðxB; ~k?Þ

¼ A

��2F

Z
d2‘?e�ð ~k?� ~‘?Þ2=�2FfNq ðx; ~‘?Þ; (7)

with �2F ¼ R
d��N q̂Fð�NÞ as the total transverse-

momentum broadening squared. Such a distribution also
satisfies a 2D diffusion equation in transverse momentum
~k? with the diffusion constant given by q̂F, the so-called
(twist-two) quark transport parameter,

q̂Fð�NÞ ¼ 2�2�s
Nc

�ANð�NÞ
Z d��

2�pþ ð�2ÞhNjTr½Fþ�ð0; ~0?Þ

�Lkð0; ��; ~0?ÞFþ�ð��; ~0?ÞLy
k ð0; ��; ~0?Þ�jNi;

(8)

which is related to the twist-two collinear nucleon gluon
distribution function. It is also the mean transverse-
momentum broadening squared per unit length and is
proportional to gluon distribution density inside the
nucleus. Here �ANð�NÞ is the single nucleon density inside
the nucleus and pþ is the longitudinal momentum per
nucleon. Inclusion of higher-twist nucleon gluon matrix
elements under an extended adjoint two-gluon correlation
approximation will give rise to a similar nuclear
transverse-momentum distribution with an effective
transverse-scale-dependent (�2? ¼ �r2

k?) transport pa-

rameter,

q̂Fð�N;�2?Þ¼
2�2�s
Nc

�ANð�NÞ
Z d��

2�pþ ð�2Þ

� hNjTr½Fþ�ð0; ~0?ÞLTMDð0;�ÞFþ�ð��; ~�?Þ
�Ly

TMDð0;�Þ�jNi; (9)

which is related to the transverse-scale-dependent gluon
distribution function in a nucleon. Such transverse-scale-
dependent transport parameter constituents power correc-
tions to the Gaussian form of the final nuclear broadening
distribution.
The rest of this paper is organized as follows. In the next

section, we will first formulate the nuclear TMD quark
distribution in terms of collinear nuclear high-twist parton
matrix elements in the light-cone gauge and then derive
the nuclear transverse-momentum broadening distribution
under the maximal two-gluon correlation approximation.
We then include the higher-twist nucleon quark matrix
elements to consider the effect of nucleon intrinsic trans-
verse momentum. The derivation of nuclear broadening of
the TMD quark distribution is generalized to any arbitrary
gauge with the final results expressed in an explicit gauge-
invariant form. Effects of higher-twist gluon distribution
functions are also discussed and are shown to lead to a
transverse-scale-dependent quark transport parameter. In
Sec. III, we will extend the results on nuclear transverse-
momentum broadening to the case of quark propagation in
hot medium and compare our results under the maximal
two-gluon approximation to the dipole model approxima-
tion in the Wilson line approach to multiple parton scat-
tering. We will also compare to the result from N ¼ 4
supersymmetric Yang-Mills (SYM) calculation [29] of the
transverse-momentum broadening and discuss the impor-
tance of multiple gluon correlation in a strongly coupled
system. Finally we will give a summary in Sec. IV.

II. NUCLEAR TRANSVERSE-MOMENTUM
BROADENING

We will consider DIS off a large nucleus as depicted in
Fig. 1. In the infinite momentum frame, the nucleus has a

longitudinal momentum p ¼ ½pþ; 0; ~0?� per nucleon and
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a quark with fractional longitudinal momentum xB ¼
Q2=2pþq� is knocked out by a virtual photon with four

momentum q ¼ ½�Q2=2q�; q�; ~0?�. The differential
cross section for e�ðl1Þ þ AðApÞ ! e�ðl2Þ þ qðkÞ þ X
can be written as

El2Ek
d�

d3l2d
3k

¼ �2
EM

2�s

1

Q4
L�	ðl1; l2ÞEk

dW�	

d3k
(10)

where s ¼ ðpþ l1Þ2 and �EM is the fine structure constant
in electrodynamics. The SIDIS hadronic tensor W�	 is

defined as

W�	 ¼ 1

2

X
X

hAjJ�ð0Þjk; Xihk; XjJ	ð0ÞjAi2��4

� ðpþ q� k� pXÞ; (11)

and J�ðyÞ ¼ eq � ðyÞ�� ðyÞ is the hadronic electromag-

netic current. The leptonic tensor L�	 is defined as usual
and is given by

L�	ðl1; l2Þ ¼ 4½l�1 l2	 þ l	1l2
� � ðl1 � l2Þg�	�: (12)

The struck quark carrying large negative longitudinal
momentum q� will suffer multiple soft scattering with the
rest of the nucleus before hadronization into hadrons. We
assume that the virtuality of the photonQ2 is very large and
consider now only the lowest order of the hard partonic
part. The soft interaction as shown in Fig. 1 can be re-
summed and the final leading-twist SIDIS tensor [6],

dW�	

d2k?
¼ Hð0Þ

�	ðxBp; qÞfAq ðxB; ~k?Þ; (13)

can be factorized as the product of the lowest hard partonic

part Hð0Þ
�	ðxBp; qÞ,

Hð0Þ
�	ðxBp; qÞ ¼ e2q Tr½p6 ��ðxBp6 þ q6 Þ�	� �

2p � q : (14)

and the nuclear TMD quark distribution function

fAq ðxB; ~k?Þ as defined in Eq. (1). Since the final state

interactions are already included in the nuclear TMD quark
distribution function as the gauge links, one should be able
to derive the nuclear transverse-momentum broadening.

A. Nuclear TMD quark distribution function
in light-cone gauge

One important feature of the complete and gauge-
invariant nuclear TMD quark distribution function in

Eq. (1) is the transverse gauge linkL?ð�1; ~y?; ~0?Þwhich
depends on the transverse gauge potential ~A?ð�1; ~�?Þ at
�1 along the light cone. Without it, the gauge links in the
TMD quark distribution would completely vanish in the
light-cone gauge and one will be misled to assume that
the final state interactions become absent. Furthermore the
TMD quark distribution without the transverse gauge link
is no longer gauge invariant under residual gauge trans-
formation since the transverse gauge potential at infinity
does not vanish in the light-cone gauge [30] and is closely
related to the singularity of the gluon propagator in the
light-cone gauge which has to be properly regularized.
Therefore, the effects of final state interaction are actually
encoded in the transverse gauge link in the light-cone
gauge and cannot be casually discarded. For this reason,
we will first derive the nuclear transverse momentum
broadening in light-cone gauge and repeat the derivation
later in an arbitrary gauge.
Let us first consider the nuclear TMD quark distribution

function in the light-cone gauge Aþ ¼ 0. In this gauge all
the longitudinal gauge links vanish and we are left with
only the transverse gauge link in the TMD quark distribu-
tion function. We first insert a � function into the TMD
quark distribution function,

fAq ðx; ~k?Þ ¼
Z
d2‘?fAq ðx; ~‘?Þ�ð2Þð ~k? � ~‘?Þ: (15)

Using a Taylor expansion of the � function,

�ð2Þð ~k? � ~‘?Þ ¼ e� ~‘?� ~rk?�ð2Þð ~k?Þ; (16)

the quark transverse-momentum distribution can be writ-
ten as

fAq ðx; ~k?Þ ¼
Z dy�

2�

d2y?
ð2�Þ2 d

2‘?eixp
þy��i ~‘?� ~y?hAj � ð0; ~0?Þ�

þ

2
Ly

?ð�1; ~y?; ~0?Þ ðy�; ~y?ÞjAie� ~‘?� ~rk?�ð2Þð ~k?Þ

¼
Z dy�

2�

d2y?
ð2�Þ2 d

2‘?eixp
þy��i ~‘?� ~y?hAj � ð0; ~0?Þ�

þ

2
ei
~@y?� ~rk?Ly

?ð�1; ~y?; ~0?Þ ðy�; ~y?ÞjAi�ð2Þð ~k?Þ; (17)

after partial integration in the transverse coordinate ~y?. Since both the quark field and the transverse gauge link depend on
~y?, we have
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i ~@y?L
y
?ð�1; ~y?; ~0?Þ ¼ Ly

?ð�1; ~y?; ~0?Þ½�g ~A?ð�1; ~y?Þ þ i ~@y?�

¼ Ly
?ð�1; ~y?; ~0?Þ

�
i ~D?ðy�; ~y?Þ þ g

Z y�

�1
d�� ~Fþ?ð��; ~y?Þ

�
; (18)

where ~D?ðy�; ~y?Þ ¼ ~@y? þ ig ~A?ðy�; ~y?Þ is the covariant
derivative. In the last step of the above equation we used
the following identity,

~A?ð�1�; y?Þ ¼ ~A?ðy�; y?Þ �
Z y�

�1
d��@þ ~A?ð��; y?Þ;

(19)

and @þ ~A? ¼ ~Fþ? in the light-cone gauge. Completing the
integration over the transverse momentum ~‘? in Eq. (17)
will now produce a �-function �ð2Þð ~y?Þ which will set
transverse coordinate ~y? ¼ ~0? at which the transverse
gauge link will disappear. We have then

fAq ðx; ~k?Þ ¼
Z dy�

2�
eixp

þy�hAj � ð0Þ

� �þ

2
e
~W?ðy�Þ� ~rk? ðy�ÞjAi�ð2Þð ~k?Þ: (20)

Here we define the transport operator ~W?ðy�; ~y?Þ in the
light-cone gauge as

~W ?ðy�; ~y?Þ � i ~D?ðy�; ~y?Þ þ g
Z y�

�1
d�� ~Fþ?ð��; ~y?Þ:

(21)

Note that in the light-cone gauge, the transport operator is
translational invariant,

~W ?ðy�; ~y?Þ ¼ ~W?ð0; ~y?Þ; (22)

along the light cone. For brevity in notation we will sup-
press the transverse coordinates whenever they are set to
zero in the field operators,

O ðy�; ~0?Þ � Oðy�Þ: (23)

Equation (20) is a general result for the transverse-
momentum quark distribution function in the light-cone
gauge. In the case of a large nucleus target, we can make
further simplifications under the assumption of a weakly
bound nucleus. We first expand the exponential factor in

Eq. (20) in power of the transport operator ~W?ð0Þ. The
expectation value of any odd power of the operator under
any unpolarized nuclear state should vanish under the
parity invariance. We therefore are left only with the
even-power terms of the expansion,

M 2n � 1

ð2nÞ! hAj
� ð0Þ�

þ

2
½ ~W?ðy�Þ � ~rk?�2n ðy�ÞjAi:

(24)

We will neglect the covariant derivative first in the
transport operator and consider first the twist-four nuclear
matrix elements (n ¼ 1),

M2 ¼ g2

2

Z
dy�eixpþy�

Z y�

�1
d��1

Z y�

�1
d��2 hAj � ð0Þ

� �þ

2
Fþið��1 ÞFþjð��2 Þ ðy�ÞjAi: (25)

Because a nucleus consists of nucleons which are color
singlet states, the quark and gluon fields could either be all
attached to a single nucleon or to two separate nucleons. In
the first case, all four parton fields in the above correlation
matrix elements are confined to the size of a nucleon y�,
��1 , ��2 � rN . On the other hand, if quark and gluon fields
are confined to two separate nucleons, y�; j��j ¼ j��1 �
��2 j � rN, the overall position of the gluon field ��N ¼
ð��1 þ ��2 Þ=2 will follow the second nucleon and are
only confined to the size of the nucleus RA. Therefore,
the quark-gluon correlation function in this case will have a

nuclear enhancement of the order RA=rN � A1=3 as com-
pared to the first case where both quark and gluon fields are
confined to a single nucleon. As a two-parton correlation
approximation for a large nucleus target we will only keep
the matrix elements with the nuclear enhancement. Wewill
also neglect the correlation between different nucleons and
assume the large nucleus as a weakly bound. The leading
contribution to the above quark-gluon correlation function
will be then,

M 2 � A
Z
dy�eixpþy�hNj � ð0Þ�

þ

2
 ðy�ÞjNi g

2

2

�
Z 0

�1
d��1

Z 0

�1
d��2

1

Nc

�hhTr½Fþið��1 ÞFþjð��2 Þ�iiA: (26)

If we further assume the large and weakly bound nucleus as
a homogenous system of nucleons,

hhTr½Fþið��1 ÞFþjð��2 Þ�iiA
¼ hhTr½Fþið0ÞFþjð��2 � ��1 Þ�iiA (27)

and the nuclear length is much larger than nucleon size due
to confinement, j��j � ��N , we can approximate the
quark-gluon correlation as [31,32]

M 2 � AfNq ðxÞ�g
2

2

Z 0

�1
d��N�ANð�NÞ

Z d��

2pþ

� hNjFþ�ð0ÞF�þð��ÞjNi
�ij
2

1

2Nc

¼ AfNq ðxÞ
�ij
4

Z
d��N q̂Fð�NÞ; (28)

where
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hh� � �iiA ¼
Z d3pN

ð2�Þ32pþ fAðpN; �NÞhNj � � � jNi

¼ 1

2pþ �
A
Nð�NÞhNj � � � jNi; (29)

denotes the ensemble (medium) average and �ANð�NÞ is the
spatial nucleon density inside the nucleus normalized to
the atomic number A. The quark transport parameter
q̂Fð�NÞ is defined as

q̂Fð�NÞ ¼ � g2

2Nc
�ANð�NÞ

Z d��

2pþ hNjFþ�ð0ÞF�þð��ÞjNi

¼ 2�2�s
Nc

�ANð�NÞ½xfgNðxÞ�x¼0; (30)

and the gluon distribution function in a nucleon is

xfNg ðxÞ ¼ �
Z 1

�1
d��

2�pþ e
ixpþ��hNjFþ�ð0ÞFþ�ð��ÞjNi;

(31)

where the summation over the gluon’s color index in the
matrix element is implied in the definition of the gluon
distribution function.

The TMD quark distribution function in Eq. (1) is a
leading-twist result in terms of the momentum scale (Q2)
dependence of the DIS process. Among higher-twist cor-
rections, one has neglected those from the transverse phase
factors such as

eix?p
þð��1 ���2 Þ; x? ¼ k2?

2pþq�
¼ xB

k2?
Q2

; (32)

that the propagating quark accumulates in the above two-
gluon correlation matrix element. They generally lead
to contributions that are proportional to higher-twist nu-
clear parton matrix elements and are power suppressed
Oð1=Q2nÞ, n 	 1. One can resurrect these higher-twist
contributions by substituting k2? with its average value and

setting the fractional momentum x ¼ x? in the nucleon
gluon distribution function in the quark transport parame-
ter in Eq. (30). This will introduce the Q2 or energy
dependence of the quark transport parameter [32]. For
the rest of this paper we will focus our attention to the
leading-twist TMD nuclear quark distribution.

In the above approximation of the twist-four nuclear
quark-gluon matrix we have neglected multiple nucleon
correlation in a large nucleus. Such an approximation is
violated for small x where quark-gluon and gluon-gluon
fusion from different nucleons become important and can
lead to modification of the quark distribution function and

gluon saturation in a large nucleus [33–35]. We also ne-
glected the real part of the nucleon gluon matrix elements
which is responsible for Pomeron-like elastic (or diffrac-
tive) scattering and the nuclear shadowing of the quark and
gluon distribution functions [36–39]. One can effectively
take into account these effects by using a nuclear modified
quark distribution function fAq ðxBÞ � AfNq ðxBÞ and satu-
rated gluon distribution function in the transport parameter
q̂F which could lead a nontrivial nuclear and energy de-
pendence [32].
For other higher-twist nuclear matrix elements, we simi-

larly consider only the case where quark and gluon fields
are attached to different nucleons inside the nucleus.

M 2n � AfNq ðxÞ 1

ð2nÞ!Nc hhTr½
~W?ðy�Þ � ~rk?�2niiA

¼ AfNq ðxÞ 1

ð2nÞ!Nc hhTr½
~W?ð0Þ � ~rk?�2niiA: (33)

Again we will only keep the dominant terms that have the
maximum nuclear enhancement for each given power 2n
(or twist) of the transport operator. Such contributions
come from contracting one pair of the gluonic fields with
one nucleon inside the large nucleus. Because of color
confinement, the relative longitudinal coordinate of the
gluon pair is limited to the size of the nucleon while the
average coordinate is set by the position of the nucleon
which can be anywhere inside the nucleus. Therefore, each
pair of the gluon fields will give rise to one power of

nuclear enhancement factor RA � A1=3.
We will also neglect all terms that contain any power of

the covariant derivative ~D?ð0Þ in ~W?ð0Þ since they are
subleading in the nuclear enhancement comparing to the
same twist nuclear matrix elements without any covariant
derivatives. We call the above approximation maximal
two-gluon correlation approximation since we reduce the
multiple gluon correlations in the nucleus to products of
two-gluon correlations that have the maximum nuclear size
enhancement. The leading contribution to the 2n gluon
correlation function is then

1

Nc
hhTr½ ~W?ðy�Þ � ~rk?�2niiA

� ð2nÞ!
2nn!

�
g2

2Nc

�1

2pþ
Z
d��N�ANð�NÞd��

� hNjFþ�ð0ÞF�þð��ÞjNi
r2
k?
2

�
n
: (34)

This is essentially the extension of the approximation for
twist-four quark-gluon correlation in a large nucleus to the
case of quark-n-gluon correlation in which we assume the
correlation of 2n gluon fields is approximately the product
of n two-gluon correlators (or gluon distribution func-
tions). In the above equation, the combinatorial factor for
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grouping 2n number of gluon field operators into n pairs,

ð2n� 1Þ!! ¼ ð2nÞ!
2nn!

;

and the color factor for 2n gluon insertions,

1

NcðN2
c � 1Þn Tr½Ta1 � � �TanTan � � �Ta1� ¼ CnF

ðN2
c � 1Þn

¼ 1

ð2NcÞn ;

are used. Summation over polarization and color indices in
the matrix elements for quark and gluon distributions are
implied. For gluon propagation, the above color factor
should be CnA=ðN2

c � 1Þn instead.
Using the definition of the quark transport parameter in

nuclear matter q̂Fð�NÞ as defined in Eq. (30), we can now
express the power expansion of the matrix elements as

M2n � 1

ð2nÞ!
Z
dy�eixpþy�hAj � ð0Þ�

þ

2

�
�
g
Z y�

�1
d�� ~Fþ?ð��Þ � ~rk?

�
2n
 ðy�ÞjAi

� AfNq ðxÞ 1n!
�Z

d��N q̂Fð�NÞ
r2
k?
4

�
n
; (35)

With the above simplification of the dominant con-
tributions to the nuclear matrix elements, we obtain the
transverse-momentum distribution of the struck quark in
DIS off a large nucleus from Eq. (20),

fAq ðx; ~k?Þ � AfNq ðxÞ exp
�Z

d��N q̂Fð�NÞ
r2
k?
4

�
�ð2Þð ~k?Þ

(36)

in terms of collinear factorized (or transverse-momentum
integrated) quark distribution functions and the quark
transport parameter q̂F which in turn is related to the gluon
distribution density inside the nucleus. This result is also
recently obtained by Majumder and Müller [28] via direct
resummation of all twist diagrams in a covariant gauge
calculation.

From Eq. (37) one can then calculate the total
transverse-momentum broadening of the struck quark due
to multiple scattering inside the nuclear matter,

�2F ¼ 1

AfNq ðxÞ
Z
d2k?k2?f

A
q ðx; ~k?Þ ¼

Z
d��N q̂Fð�NÞ;

(37)

which is the same as the twist-four contribution [40].
Though other multiple parton scatterings contribute to
the modified transverse-momentum distribution, they do
not affect the broadening of the mean transverse momen-
tum squared within the maximal two-gluon correlation
approximation.
If we define transverse (coordinate) distribution as

fAq ðx; ~y?Þ ¼
Z
d2k?ei

~k?� ~y?fAq ðx; ~k?Þ; (38)

the corresponding nuclear quark transverse distribution is

fAq ðx; ~y?Þ ¼
Z dy�

2�
eixp

þy�hAj � ð0Þ

� �þ

2
e�i ~y?� ~W?ðy�Þ ðy�ÞjAi

� AfNq ðxÞhhe�i ~y?� ~W?ðy�ÞiiA
� exp

�
�

Z
d��N q̂Fð�NÞ

y2?
4

�
AfNq ðxÞ; (39)

which has a Gaussian form in the transverse coordinate ~y?.
It is then easy to obtain nuclear TMD quark distribution
function as

fAq ðx; ~k?Þ � AfNq ðxÞ 1

��2F

exp½�k2?=�2F�; (40)

which is again a Gaussian with width given by the total
transverse-momentum broadening squared �2F.

B. Effect of nucleon TMD quark distribution

In terms of twist expansion in the collinear factorization,
one can consider the nuclear modified transverse-
momentum distribution in Eq. (36) as the summation of
all twist contributions. However, it contains only contribu-

tions with the dominant nuclear enhancement An=3 in the
2ðnþ 1Þ-twist multiple parton correlation inside a large
nucleus. Such dominant multiparton correlations in a large
nucleus are shown to be made up of the products of
leading-twist nucleon parton distributions. We have ne-
glected higher-twist contributions to the nucleon parton
distribution, for example, the intrinsic transverse momen-
tum of quarks inside a nucleon.
Since the expression for the TMD nuclear parton distri-

bution function in Eq. (20) is general, it should contain
these higher-twist effects. To isolate the contributions of
the intrinsic quark transverse momentum inside a nucleon,
we will make the following expansion of the matrix ele-
ment in Eq. (20):
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hAj � ð0Þ�
þ

2
e
~W?ðy�Þ� ~rk? ðy�ÞjAi ¼ X1

n¼0

1

ð2nÞ! hAj
� ð0Þ�

þ

2
½ ~W?ðy�Þ � ~rk?�2n ðy�ÞjAi

� X1
n¼0

1

ð2nÞ!
Xn
m¼0

ð2nÞ!
ð2mÞ!ð2n� 2mÞ!

1

Nc
hhTr½ ~W?ðy�Þ � ~rk?�2miiAAhNj � ð0Þ

�þ

2

� ½ ~W?ðy�Þ � ~rk?�2n�2m ðy�ÞjNi

� X1
m¼0

1

m!

�
g2

2Nc

1

2pþ
Z
d��Nd��ANð�NÞhNjFþ�ð0ÞF�þð��ÞjNi

r2
k?
4

�
m X1
n¼m

A

ð2n� 2mÞ!

� hNj � ð0Þ�
þ

2
½ ~W?ðy�Þ � ~rk?�2n�2m ðy�ÞjNi

¼ exp

�Z
d��N q̂Fð�NÞ

r2
k?
4

�
AhNj � ð0Þ�

þ

2
e
~W?ðy�Þ� ~rk? ðy�ÞjNi; (41)

where the approximation for the expectation value of m
pair of gluon fields in a nucleus in Eq. (34) is used.
Substituting the above matrix element into Eq. (20), we
obtain the nuclear TMD parton distribution function,

fAq ðx; ~k?Þ ¼ A exp

�Z
d��N q̂Fð�NÞ

r2
k?
4

�
fNq ðx; ~k?Þ; (42)

which is now related to the TMD parton distribution func-
tion of the nucleon, fNq ðx; ~k?Þ. Comparing to the Eq. (36),
in which the nucleon TMD quark distribution is assumed to
be just a � function, the nucleon intrinsic transverse mo-
mentum in the above equation is the result of the inclusion
of a subset of nonleading (in nuclear enhancement) higher-
twist contributions.

From the above nuclear TMD quark distribution one can
derive a diffusion equation [21,28] for the evolution of the
quark transverse-momentum distribution with the nuclear
size (or propagation length),

@fAq ðx; ~k?Þ
@��N

¼ 1

4
q̂Fð�NÞr2

k?f
A
q ðx; ~k?Þ; (43)

with the diffusion constant given by the quark transport pa-
rameter q̂Fð�NÞ. Apparently, this is the reason why q̂Fð�NÞ
is often referred to as quark transport coefficient [21].

In coordinate space, nuclear quark transverse distribu-
tion can be obtained from Eqs. (20) and (42) by partial
integration,

fAq ðx; ~y?Þ ¼
Z dy�

2�
eixp

þy�hAj � ð0Þ

� �þ

2
e�i ~W?ðy�Þ� ~y? ðy�ÞjAi

� AfNq ðx; ~y?Þhhe�i ~y?� ~W?ðy�ÞiiA
� exp

�
�
Z
d��N q̂Fð�NÞ

y2?
4

�
AfNq ðx; ~y?Þ; (44)

as the product of the nucleon transverse distribution and a
Gaussian. The final quark transverse-momentum distribu-
tion can then be obtained from the Fourier transform of the
above,

fAq ðx; ~k?Þ ¼ A

��2F

Z
d2‘?e�ð ~k?� ~‘?Þ2=�2FfNq ðx; ~‘?Þ; (45)

as a convolution of the nucleon TMD quark distribution
and a Gaussian with a width �2F given by the path integral
of the quark transport parameter or the total transverse-
momentum broadening squared [Eq. (37)]. This is also a
solution to the diffusion equation with an initial condition
at ��N ¼ 0 given by the nucleon TMD quark distribution

function, AfNq ðx; ~k?Þ.

C. Arbitrary gauge

In an arbitrary gauge, one has to include both the longi-
tudinal and transverse gauge links in the gauge-invariant
definition of the TMD parton distribution function in
Eq. (1). Following the same procedure as in the light-
cone gauge, one can rewrite the nuclear TMD quark dis-
tribution function as

fAq ðx; ~k?Þ¼
Z dy�

2�

d2y?
ð2�Þ2d

2‘?eixp
þy��i ~‘?� ~y?hAj � ð0; ~0?Þ

��þ

2
LTMDð0;yÞ ðy�; ~y?ÞjAie� ~‘?� ~rk?�ð2Þð ~k?Þ

¼
Z dy�

2�

d2y?
ð2�Þ2d

2‘?eixp
þy��i ~‘?� ~y?hAj � ð0; ~0?Þ

��þ

2
ei
~@y?� ~rk?LTMDð0;yÞ ðy�; ~y?ÞjAi�ð2Þð ~k?Þ:

(46)

The transverse differentiation should act on both the quark
field operator  ðy�; ~y?Þ and the gauge linkLTMDð0; yÞ. We
will use the following identity [Eq. (A27) in Appendix A],
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i ~@y?LTMDð0; yÞ ¼ LTMDð0; yÞ ~W?ðy�; ~y?Þ (47)

with the gauge covariant form of the transport operator
~W?ðy�; ~y?Þ given by

~W?ðy�; ~y?Þ � i ~D?ðy�; ~y?Þ
þ g

Z y�

�1
d��Ly

k ð��; y�; ~y?Þ ~Fþ?ð��; ~y?Þ
�Lkð��; y�; ~y?Þ; (48)

which transforms like a covariant derivative ~D?ðy�; ~y?Þ
under any gauge transformation. One can recover from the
above the equivalent identity in the case of light-cone
gauge in Eq. (18) by setting Aþ ¼ 0. These identities
have been used to relate the T-odd and spin-dependent
part of the quark distribution function to twist-three parton
matrix elements [41,42]. These twist-three matrix elements
are related to the first moments in transverse momentum of
the TMD parton distribution function and the twist-three
contribution to DIS process.

Completing the integration over the transverse momen-

tum ~k? and coordinate ~y?, we can recast the nuclear TMD
parton distribution function as

fAq ðx; ~k?Þ ¼
Z dy�

2�
eixp

þy�hAj � ð0Þ

� �þ

2
Lkð0; y�Þe ~W?ðy�Þ� ~rk? ðy�ÞjAi�ð2Þð ~k?Þ:

(49)

It is in exactly the same form as the expression in the light-
cone gauge in Eq. (20) except that there is the longitudinal
gauge link which is necessary to ensure the gauge invari-
ance of the above form of nuclear TMD parton distribution

function. The transport operator ~W?ðy�Þ � ~W?ðy�; ~0?Þ is
now given by its more general form in Eq. (48). Integrating
over the transverse momentum, one obtains the collinear
factorized (or transverse-momentum integrated) quark dis-
tribution function,

fAq ðxÞ ¼
Z dy�

2�
eixp

þy�hAj � ð0Þ�
þ

2
Lkð0; y�Þ ðy�ÞjAi;

(50)

that is also gauge invariant under any arbitrary gauge trans-
formation. In the explicit calculation of the transverse-
momentum broadening via cut diagrams as in Ref. [28],
these gauge links arise from the resummation of an extra
number of collinear gluons on either side of the cut in
addition to the soft gluons with transverse momentum that
contribute to the transverse momentum of the final quark.

Following the same steps as in the case of light-cone
gauge, we will be able to derive from Eq. (49) the nuclear
modified transverse-momentum distribution function in an
arbitrary gauge as given in Eqs. (42) and (45). The corre-
sponding quark transport parameter q̂F is simply replaced
by a gauge-invariant form

q̂Fð�NÞ ¼ 2�2�s
Nc

�ANð�NÞ½xfNg ðxÞ�x¼0;

xfNg ðxÞ ¼ �2
Z d��

2�pþ e
ixpþ��hNjTr½Fþ�ð0Þ

�Lkð0; ��ÞF�þð��ÞLkð��; 0Þ�jNi; (51)

where the gluon field is expressed in the fundamental
representation Fþ� ¼ Faþ�Ta. Note that the above defini-
tion of the gauge-invariant gluon distribution function in
the fundamental color representation is equivalent to the
definition in the adjoint representation [43,44],

xfNg ðxÞ ¼ �
Z d��

2�pþ e
ixpþ��hNjFaþ�ð0Þ

�LA
kabð0; ��ÞFb�þ ð��ÞjNi; (52)

where

L A
k ð0; ��Þ � exp

�
�ig

Z 0

��
d
�Acþð
�; ~0?ÞtcA

�
; (53)

with ðtcAÞab ¼ �ifabc, is the longitudinal gauge link in the
adjoint representation. One can similarly introduce the
transverse gauge link in the adjoint representation

L A
?ð�1; ~�?; ~0?Þ� exp

�
�ig

Z ~�?

~0?
d ~�? � ~Ac?ð�1; ~�?ÞtcA

�
;

(54)

and the TMD gluon distribution function,

xfNg ðx; ~k?Þ ¼ �
Z d2�?

ð2�Þ2

� d��

2�pþ e
ixpþ���i ~�?� ~k?hNjFaþ�ð0; ~0?Þ

�LA
TMDabð0; �ÞFb�þ ð��; ~�?ÞjNi;

¼ �
Z d��

2�pþ e
ixpþ��hNjFaþ�ð0Þ

� ½e ~WA
?ð��Þ� ~rk? �abFb�þ ð��ÞjNi�ð2Þð ~k?Þ; (55)

where

LA
TMDabð0; �Þ ¼ LAy

kacð�1; ��; ~0?ÞLAy
?cdð�1; ~�?; ~0?Þ

�LA
kdbð�1; ��; ~�?Þ; (56)

and

~WA
?abð��; ~�?Þ� i ~DA

?abð��; ~�?Þ
þg

Z ��

�1
d
�LAy

kacð
�;��; ~�?Þ

� ~FAþ?ceð
�; ~�?ÞLA
kebð
�;��; ~�?Þ; (57)

is the transport operator in the adjoint representation. The

covariant derivative DA
? and gluon field strength ~FAþ? in

the adjoint representation are defined as
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~DA
?abð��; ~�?Þ ¼ �ab ~@? þ ig ~Ac?ð��; �?ÞðtcAÞab;

~FAþ?ab � ~Fcþ?ðtcAÞab; (58)

respectively. The corresponding transverse coordinate
gluon distribution is then

xfNg ðx; ~y?Þ ¼ �
Z d��

2�pþ e
ixpþ��hNjFaþ�ð0Þ

� ½e�i ~y?� ~WA
?ð��Þ�abFb�þ ð��ÞjNi: (59)

D. Effect of nucleon TMD gluon distribution

In the maximal two-gluon correlation approximation,
we approximate the higher-twist nuclear parton matrix
elements with products of twist-two nucleon parton matrix
elements [see Eqs. (33) and (34)]. Higher-twist nucleon
quark matrix elements and quark-gluon correlations lead to
intrinsic transverse-momentum distribution inside the nu-
cleon. However, we have so far neglected contributions
from higher-twist nucleon gluon matrix elements that in-

volve covariant derivative ~D? or multigluon correlation
within a nucleon. These matrix elements have nonleading
nuclear length dependence as compared to the products of
twist-two gluon distributions. In order to consider the
effect of these higher-twist nucleon gluon matrix elements,
we separate the covariant derivative from the transport
operator in light-cone gauge (to simplify notations),

~W?ðy�Þ ¼ ~F?ðy�Þ þ i ~D?ðy�Þ;
~F?ðy�Þ � g

Z y�

�1
d�� ~Fþ?ð��Þ:

(60)

Note that [see Eq. (A29) for arbitrary gauge in
Appendix A]

D?iðy�Þ ~F?ðy�Þ ¼ g
Z y�

�1
d��DA

?ið��Þ ~Fþ?ð��Þ

þ ~F?ðy�ÞD?iðy�Þ
� DA

?i ~F?ðy�Þ þ ~F?ðy�ÞD?iðy�Þ;
(61)

where ~DA
?F ¼ ~@?Fþ ig½ ~A?; F� is the covariant deriva-

tive in the adjoint representation. Since one can factor out
the covariant derivatives of the quark field together with
other higher-twist nucleon quark-gluon matrix elements
into the TMD nucleon quark distribution function, one

can effectively replace the covariant derivative ~D? with

its adjoint form ~DA
? in the Taylor expansion of the nuclear

gluon matrix element

fðy?Þ ¼ 1

Nc
hhTre�i ~y?� ~W?ðy�ÞiiA; (62)

which should be a function of y2? because of the parity

invariance of the unpolarized nucleus state. We will again
neglect nucleon correlations and assume homogeneity in
the nucleus. However, we now relax the maximal two-
gluon correlation approximation to include higher-twist
nucleon matrix elements that contain covariant derivatives
and multiple gluon correlations. They are considered sub-
leading in the nuclear length dependence in the above
Taylor expansion. We denote fnðy?Þ as the nth term in
the Taylor expansion of the matrix elements. Therefore, the
linear term in y2? is

f1ðy?Þ ¼ � 1

2

1

Nc
hhTr½ ~y? � ~W?ðy�Þ�2iiA

¼ � y2?
4

1

2Nc
hh ~Wa

?ðy�Þ � ~Wa
?ðy�ÞiiA

¼ � y2?
4
�2F: (63)

Note that the medium averaged value of matrix elements
linear in F?ðy�Þ should vanish.
For the quadratic term in y2?, we first separate the gluon

correlation into connected and disconnected parts,

f2ðy?Þ ¼ 1

4!Nc
hhTr½ ~y? � ~W?ðy�Þ�4iiA

¼
�
y2?
4

�
2 1

2!Nc
hhTr½ ~W?ðy�Þ�4iiA

¼
�
y2?
4

�
2 1

2!

�
�2

2F þ 1

Nc
hhTr½ ~W?ðy�Þ�4iiAC

�

�
�
y2?
4

�
2
�
1

2!
�2

2F þ�4F

�
; (64)

using the identity for generators of the fundamental repre-
sentation,

TaTb ¼ 1

2Nc
�ab þ 1

2
dabcT

c þ i

2
fabcT

c; (65)

where the connected parts of the matrix elements hh� � �iiAC
exclude the singlet contribution in the above color decom-
position. We call �4F twist-four quark transport parameter
which contains all the twist-four nucleon gluon matrix
elements in the connected part of the nuclear gluon matrix
elements.
In evaluating the connected parts of the nuclear gluon

matrix elements, we will now adopt what we call extended
two-gluon correlation approximation, in which we separate
two-gluon fields out of the nuclear matrix elements,
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�4F ¼ 1

2Nc
hhTr½ ~W?ðy�Þ�4iiAC � 2

2Nc
hhTr½ ~F?ðy�Þ �W2

?ðy�Þ ~F?ðy�Þ�iiAC

¼ 1

Nc
hhTrf ~F? � ½F 2

? þ 2 ~F? � i ~DA
? þ ði ~DA

? � ~F?Þ þ ðiDA
?Þ2� ~F?giiAC

¼ 1

2Nc
hh ~F a

? � ½ðF OÞ2ab þ 2ði ~DA
? � ~F O

?Þab þ ði ~DA
? � ~F O

?Þab þ ðiDA
?Þ2ab� ~F b

?iiA � 1

2Nc
hh ~F a

? � ½WO
?�2ab ~F b

?iiA; (66)

or

�4F ¼
Z d��1 d�

�
2

2�pþ �ANð�NÞ
�g2

2Nc

� hNj ~Faþ?ð��1 Þ � ½WO
?�2ab ~Fbþ?ð��2 ÞjNi: (67)

Note that there are 2 pairs of gluons for the extended two-
gluon correlation approximation and we have excluded the
disconnected contribution (singlet) from the trace opera-
tion. We have defined the octect gluon field strength

~F O
?ab � 1

2
~F c
?ðdcab � ifcabÞ (68)

and the corresponding transport operator

~W O
?ab � ~FO

?ab þ i ~DA
?ab: (69)

Again we have dropped terms linear in F?ðy�Þ.
Similarly, one can also get the third term in the Taylor

expansion of the transverse distribution,

f3ðy2?Þ ¼
�1

6!Nc
hhTr½ ~y? � ~W?ðy�Þ�6iiA

¼ �
�
y2?
4

�
3 1

3!Nc
hhTr½ ~W?ðy�Þ�6iiA

¼ �
�
y2?
4

�
3 1

3!

�
�3

2F þ 3�2F

1

Nc
hhTr½ ~W?ðy�Þ�4iiAC

þ 1

Nc
hhTr½ ~W?ðy�Þ�6iiAC

�

�
�
y2?
4

�
3
�
1

3!
�3

2F þ �2F�4F þ 1

2!
�6F

�
: (70)

We again assume the extended two-gluon correlation ap-
proximation,

�6F � 2

3!Nc
hhTr½ ~W?ðy�Þ�6iiAC

� 6

3!Nc
hhTr½ ~F?ðy�Þ � ~W4

?ðy�Þ ~F?ðy�Þ�iiAC

¼ 1

2Nc
hh ~F a

? � ½ ~WO
?�4ab ~F b

?iiA

¼
Z d��1 d�

�
2

2�pþ �ANð�NÞ
�g2

2Nc

� hNj ~Faþ?ð��1 Þ � ½WO
?�4ab ~Fbþ?ð��2 ÞjNi: (71)

Following the same procedure and the extended two-
gluon approximation, we can obtain other terms in the
Taylor expansion and the final form of the transverse
expansion,

fðy2?Þ � 1� y2?
4
�2F þ

�
y2?
4

�
2
�
1

2!
�2

2F þ �4F

�
�

�
y2?
4

�
3

�
�
1

3!
�3

2F þ �2F�4F þ 1

2!
�6F

�
þOðy8?Þ

¼ exp

�
� y2?

4

�
�2F � y2?

4
�4F þ

�
y2?
4

�
2

� 1

2!
�6F þ � � �

��

� exp

�
� y2?

4
�Fðy2?Þ

�
: (72)

As one can observe, inclusion of higher-twist nucleon
gluon matrix elements in the medium averaged products
of the transport operator will give rise to a transverse-
distance-dependent (TDD) quark transport parameter,

�Fðy2?Þ �
Z
d��N q̂Fð�N; y2?Þ

¼
Z d��1 d�

�
2

2�pþ �ANð�NÞ
�g2

2Nc

X1
n¼0

ð�1Þn
n!

�
y2?
4

�
n

� hNj ~Faþ?ð��1 Þ � ½WO
?�2nab ~Fbþ?ð��2 ÞjNi; (73)

that depends on higher-twist nucleon gluon matrix ele-
ments. Such TDD quark transport parameter effectively
contributes to power corrections to the nuclear transverse-
momentum distribution and renders it a non-Gaussian
form, especially in the small transverse momentum or large
transverse coordinate region. However, these contributions
have subleading nuclear length dependence as compared to
those associated with the leading-twist quark transport
parameter �2F. Since the leading-twist (twist-two) trans-
port parameter is proportional to the collinear nucleon
gluon distribution function, such TTD transport parameter
might be related to the TTD gluon distribution function.
It is helpful, therefore, to make a similar Taylor expan-

sion of the TDD gluon distribution function from Eq. (59),
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½xfNg ðx; y2?Þ�x¼0 ¼
Z d��

2�pþ hNj ~Faþ?ð0Þ � ½e�i ~y?� ~WA
?ð��Þ�ab ~Fbþ?ð��ÞjNi

¼
Z d��

2�pþ
X1
n¼0

ð�1Þn
ð2nÞ! hNj

~Faþ?ð0Þ � ½ ~y? � ~WA
?ð��Þ�2nab ~Fbþ?ð��ÞjNi

¼
Z d��

2�pþ
X1
n¼0

ð�1Þn
n!

�
y2?
4

�
nhNj ~Faþ?ð0Þ � ½WA

?ð��Þ�2nab ~Fbþ?ð��ÞjNi: (74)

Comparing the above Taylor expansion of the TDD gluon
distribution function to the TDD quark transport parameter
in Eq. (73), one can indeed relate the two,

q̂ Fð�N; y2?Þ � �ANð�NÞ
�g2

2Nc
½xfNg ðx; y2?Þ�x¼0; (75)

if we approximate the octet gluon field strength with its
adjoint value

~F O
?ab ¼ 1

2
~F c
?ðdabc � ifabcÞ � �i ~F c

?fabc ¼ ~F A
?ab:

(76)

We will refer to the above approximation and the extended
two-gluon correlation approximation together as extended
adjoint two-gluon correlation approximation. Under such
approximation, we can resume contributions associated
with the higher-twist nucleon gluon matrix elements to a
TDD quark transport parameter which is related to TDD
gluon distribution function. We would like to point out that
under the extended adjoint two-gluon correlation approxi-
mation, one actually only includes a subset of higher-twist
nucleon gluon matrix elements (see Appendix B). This is
similar to the approximation we made in order to fact out
the nucleon TMD quark distribution from the nuclear TMD
quark distribution in Sec. II B.

Note that even though the higher-twist contributions we
have considered so far lead to a non-Gaussian nuclear
transverse-momentum broadening, they do not contribute
to the averaged transverse-momentum broadening squared
which is still given by the twist-two transport parameter
�2F. These higher-twist nucleon gluon matrix elements
only contribute to higher moments of the transverse-
momentum broadening.

One should also keep in mind that we have only consid-
ered the leading order in �s of the hard scattering. Higher-
order contributions should also lead to leading-twist
non-Gaussian components of the transverse-momentum
distribution [5].

Finally, in a finite nucleus, one has to take into account
the finite number of nucleons A in the nucleus when fac-
torizing the nuclear parton matrix elements into prod-
ucts of nucleon parton matrix elements. Such consideration
will lead to a quark distribution function in the coordinate
space [31],

fðy2?Þ ¼ 1� ðA� 1Þ y
2
?
4

Z d�N
A

q̂ð�N; y2?Þ

þ ðA� 1ÞðA� 2Þ
2!

�
�
y2?
4

Z d�N
A

q̂ð�N; y2?Þ
�
2 þ � � �

¼
�
1� y2?

4

Z d�N
A

q̂ð�N; y2?Þ
�
A�1

; (77)

which can be approximated as that in Eq. (72) for a large
nucleus A
 1.

III. QUARK PROPAGATION IN A
THERMAL MEDIUM

We can generalize our study of nuclear transverse-
momentum broadening to quark propagation in a hot
medium such as the quark-gluon plasma produced in
high-energy heavy-ion collisions. In this case, the initial
quark production cross section is assumed to be factorized
from the quark propagation in medium.
The thermal medium can be considered as an interacting

gas of colored constituents with a local density �ANð�NÞ,
with N now referring to the color constituents. The corre-
lation lengths among these constituents are determined by
the screening scale 1=� which could be longer than the
interconstituent distance as given by the temperature 1=T
in the weak coupling limit. Under such scenario, one can
still apply the maximal two-gluon correlation approxima-
tion to the medium averaged multiple gluon matrix ele-
ments as we have used in the cold nuclear medium.
With an initial condition of longitudinal momentum pþ

and zero transverse momentum, the final quark transverse-
momentum distribution can be easily read from Eq. (42),

fAq ðx; ~k?Þ ¼ fð ~k?Þ�ðx� 1Þfð ~k?Þ

¼ exp

�Z
d��N q̂Fð�NÞ

r2
k?
4

�
�ð2Þð ~k?Þ

¼ 1

��2F

exp

�
� k2?
�2F

�
; (78)

or in terms of the transverse coordinate distribution

fð ~y?Þ ¼ exp

�
�
Z
d��N q̂Fð�NÞ

y2?
4

�
(79)
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for the final quark. From the general form of the TMD
quark distribution function in Eq. (46), one can replace the

nuclear state with a quark with momentum ½pþ; ~0?� and
the medium A. Averaging over the initial state of both
quark and the medium, one obtains the transverse coordi-
nate distribution for a propagating quark as given by the
medium expectation value of a pure gauge link,

fð ~y?Þ ¼ 1

Nc
hhTr½Ly

k ð�1;1; ~0?Þ

�L?ð�1; ~0?; ~y?ÞLkð�1;1; ~y?Þ�ii; (80)

where we have assumed the quark is produced at 1 and
propagates toward �1 along the light cone according to
the convention used in this paper.

A. Dipole model approximation

In a covariant gauge (where the transverse gauge link
becomes unity), the above becomes the Wilson line for-
mulation of multiple scattering [23,45]. Under a dipole
model, the medium averaged Wilson line can be approxi-
mated [46] as

1

Nc
hTr½Ly

k ð�1;1; ~0?ÞLkð�1;1; ~y?Þ�i

� exp

�
� 1

2

Z
d��N�ANð�NÞ�ð ~y?Þ

�
(81)

in terms of the dipole cross section �ð ~y?Þ and the me-
dium density �ANð�NÞ. Using the short distance form or the
leading logarithmic approximation of the dipole cross
section [20],

�ANð�NÞ�ð ~y?Þ � 1
2q̂Fð�NÞy2?;

one can obtain the expression in Eq. (79) for the transverse
coordinate distribution fð ~y?Þ. One can easily identify the
first coefficient in the power expansion of the dipole ex-
pansion q̂Fð�NÞ with the quark transport parameter as we
have defined in our twist expansion approach [Eq. (51)].
Therefore, the maximal two-gluon correlation approxima-
tion for the dominant multiple gluon correlation in nuclear
medium in our study here is equivalent to the dipole model
approximation of the Wilson line approach [23,45] when
the short distance form of the dipole cross section is used.

To relate our twist expansion result to the dipole model
approximation beyond the maximal two-gluon correlation,
we can use the identity in Eq. (A27) to recast the transverse
coordinate distribution,

fð ~y?Þ ¼ 1

Nc
hhTr½e~y?�@�?Ly

k ð�1;1; ~0?Þ

�L?ð�1; ~0?; ~�?ÞLkð�1;1; ~�?Þ�ii�?¼0

¼ 1

Nc
hhTre�i ~W?ð1Þ� ~y?ii; (82)

in terms of the transport operator ~W?ð1Þ [Eq. (48)]. A
Taylor expansion of the above distribution in ~y? in the
extended adjoint two-gluon correlation approximation will
lead to a transverse distribution as in Eq. (72),

fð ~y?Þ � exp

�
� y2?

4
�Fðy2?Þ

�

¼ exp

�
� y2?

4

X1
n¼1

�
y2?
4

�
n�1 ð�1Þn�1

ðn� 1Þ! �2nF

�
: (83)

Comparing the above distribution to the dipole model
approximation in Eq. (81), one can relate the dipole cross
section to the nucleon TDD gluon distribution function,

�ð ~y?Þ � y2?
�2�s
Nc

½xfNg ðx; y2?Þ�x¼0: (84)

This is exactly the cross section between a nucleon and a
quark-antiquark pair in a dipole configuration with trans-
verse separation ~y? [38,47].
Our calculation can also be extended to a gluon propa-

gation. The results are the same and one only has to change
the color factor to get the definition of the gluon transport
parameter,

q̂ Að�N; y2?Þ ¼
4�2�sCA
N2
c � 1

�ANð�NÞ½xfNg ðx; y2?Þ�x¼0: (85)

Comparison to the approximation of the averaged Wil-
son line,

1

N2
c � 1

hTr½Ly
k ð�1; 0; ~0?ÞLkð�1; y�; ~y?Þ�i

� exp

�
� 1

4
Q2

satðx; y2?Þy2?
�
; (86)

in the study of gluon saturation in large nuclei [48] will
relate the saturation scaleQ2

satðy2?Þwith the path-integrated
gluon transport parameter q̂Að�N; y2?Þ,

Q2
satðy2?Þ ¼

Z
d��N q̂Að�N; y2?Þ

¼ 4�2�sCA
N2
c � 1

Z
d��N�ANð�NÞxfNg ðx; y2?Þ: (87)

The transverse scale dependence of the transport pa-
rameter, the dipole cross section or the saturation scale in
our calculation come from contributions of higher-twist
nucleon gluon matrix elements and therefore are nonper-
turbative in nature. At very short transverse distance scale,
radiative corrections will become important at the leading
twist and they will give rise to a transverse scale depen-
dence of the transport parameter that is governed by the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evo-
lution equations [49–51].
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B. Multiple gluon correlations in N ¼ 4 SYM

In the Taylor expansion of the TDD quark transport
parameter �Fðy2?Þ in Eq. (83), the coefficients are higher-

twist nucleon gluon matrix elements which generally in-
volve multigluon correlations of the medium. Therefore
studying these power corrections to the transport parameter
will shed light on multigluon correlations in a medium,
especially a strongly coupled system when they become
important.

Nonperturbative calculation of the medium averaged
Wilson line in Eq. (82) is difficult for a strongly coupled
system. The developed technique of lattice QCD is not
applicable because it is formulated in the Euclidean space
and is only suited for the study of static thermodynamic
observables. However, many transport coefficients, such as
the shear viscosity to entropy density ratio �=s [52] and
transverse-momentum broadening of a heavy quark
[53,54], have been studied for N ¼ 4 SYM theory in
the large ’t Hooft coupling (� � g2SYMNc) limit, employing

the AdS/CFT correspondence [55]. Though SYM is not
exactly QCD, its study might provide indicative informa-
tion on the properties of a strongly coupled system.

Recently, the thermal averaged Wilson loop along the
light cone with longitudinal distance L� and transverse
separation y? was calculated [29] in the strong coupling
limit of N ¼ 4 SYM theory. The corresponding trans-
verse distribution from the calculated Wilson loop in the
fundamental representation is

fð ~y?Þ ¼ exp

�
�a ffiffiffiffi

�
p
L�T

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�Ty?
2a

�
2 þ 1

s
� 1

��
; (88)

where T is the temperature and a ¼ ffiffiffiffi
�

p
�ð5=4Þ=�ð3=4Þ �

1:311. Note a factor of 1=
ffiffiffi
2

p
is missing here because of our

definition of light-cone variables. Expanding the exponent
in a Taylor series of the transverse distance y2?, one has

fð ~y?Þ ¼ exp

�
� y2?

4
L�

ffiffiffiffi
�

p
�2T3

2a

X1
n¼1

�
y2?
4

�
n�1

�
�2T2

2a2

�
n�1

� ð�1Þn�1jð2n� 3Þ!!j
n!

�
: (89)

Comparing to Eq. (83), one can extract the leading-twist
quark transport parameter in N ¼ 4 SYM theory,

q̂ SYM
F ¼

ffiffiffiffi
�

p
�2T3

2a
; (90)

which is half (versus 4=9 in QCD) of the gluon transport
parameter as obtained in Ref. [29].

Comparing the power corrections, one can also extract
higher-twist quark transport parameters in SYM (N ¼ 4),

�SYM
2nF

�SYM
2F

¼
�
�2T2

2a2

�
n�1 jð2n� 3Þj!!

n
ðn 	 1Þ: (91)

It is interesting to note that all higher-twist gluon matrix

elements that include multigluon correlations are propor-
tional to the leading-twist gluon matrix elements or two-
gluon correlation. The coefficients are set only by the
temperature of the medium and are independent of the
coupling

ffiffiffiffiffiffiffiffiffiffiffiffi
�SYM

p
and number of colors Nc. This implies

that multiple gluon correlations in the strong coupling limit
of SYM are as important as the two-gluon correlation.
Phenomenologically, one can use the relationship be-

tween the transport parameter and the gluon distribution
function in Eq. (75) to obtain the TDD gluon distribution
density in a N ¼ 4 SYM plasma,

�N½xfgðx; y2?Þ�SYMx¼0 ¼ 8aN2
c

�
ffiffiffiffi
�

p T

y2?

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�Ty?
2a

�
2 þ 1

s
� 1

�
;

(92)

which is proportional to N2
c for fixed t’ Hooft coupling

constant �.

IV. SUMMARYAND DISCUSSION

In this paper, we have derived a gauge-invariant form of
nuclear transverse-momentum broadening distribution,
utilizing the gauge-invariant TMD quark distribution func-
tion from Ref. [10]. We first express such TMD quark
distribution function in terms of a sum of all higher-twist
and gauge-invariant collinear parton matrix elements.
These higher-twist parton matrix elements are expectation

values of the moments of a transport operator ~W?ðyÞwhich
generates the transverse momentum in a nucleon or nu-
cleus when it acts on the parton field  ðyÞ. The defined

transport operator ~W?ðyÞ transforms like a covariant de-
rivative and the final expression is explicitly gauge invari-
ant. With this general form of the TMD parton distribution
function, one can then calculate any moment of the par-
ton’s transverse momentum in terms of the higher-twist
parton matrix elements.
To calculate the nuclear broadening of transverse-

momentum distribution, we approximate the nuclear ma-
trix elements of n pair of parton field operators as a product
of n nucleon parton distributions, neglecting nuclear
bounding effect and multiple nucleon correlations which
have nonleading nuclear size dependence in a large nu-
clear. In other words, multiple gluon correlations are as-
sumed to be given as products of two-gluon correlations,
which we called maximal two-gluon correlation approxi-
mation. With such approximated nuclear matrix elements

that have the dominant nuclear size dependence of An=3 for
fixed dimension of the multiparton operators, we can ex-
press the final nuclear TMD quark distribution function in
terms of the nucleon TMD quark distribution. This form
also obeys a 2D diffusion equation whose solution is a
convolution of a Gaussian distribution function and the
nucleon TMD quark distribution. The width of the
Gaussian, or the mean total transverse-momentum broad-
ening squared, is just the path integral of the quark trans-
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port parameter q̂F, which is also defined in an explicitly
gauge-invariant form and is related to the local gluon
distribution density.

Under an extended adjoint two-gluon correlation ap-
proximation, one can resum some of the higher-twist nu-
cleon gluon matrix elements to obtain a transverse-
distance-dependent quark transverse parameter which is
given by the TDD gluon distribution function. Such a
TDD quark transport parameter will give rise to power
corrections to the Gaussian form of nuclear transverse-
momentum distribution function.

We compared our final results with that of the Wilson
line approach to multiple parton scattering [23,45] in the
dipole model approximation. The two results are identical
for short distance approximation of the dipole cross sec-
tion, which is equivalent to the maximal two-gluon corre-
lation approximation employed in our calculation. If we
relax the maximal two-gluon correlation to include non-
leading length-dependent contributions involving higher-
twist gluon distribution functions, one can then relate the
dipole cross section to the TDD gluon distribution function
in the medium.

We also compared our results with the AdS/CFT calcu-
lation [29] of the transverse distribution of a Wilson line
for a propagating quark in the N ¼ 4 SYM theory, in
particular, the power corrections to the leading Gaussian
distribution. We found that the SYM result indicates the
importance of multiple gluon correlations in a strongly
coupled system.

Though our final result for the nuclear modified
transverse-momentum distribution contains all higher-
twist collinear nuclear parton matrix elements, it is still
only the leading-twist contribution in terms of power sup-
pression Oð1=QnÞ. One can follow the procedure as out-
lined in Ref. [6] to compute higher-twist contributions to
the momentum broadening which has the same nuclear
length dependence but are power suppressed in the mo-
mentum scale of the hard processes as compared to the
leading-twist result obtained in this paper.

The transverse-momentum broadening we calculated in
this paper is only valid in a small transverse-momentum
region. At large transverse momentum radiative correc-
tions become important and will lead to large logarithmic
corrections to the transverse scale dependence of the trans-
port parameter [32]. The form of nuclear broadening will
also have large power corrections to the Gaussian form.

The Gaussian form of the transverse-momentum broad-
ening in nuclear medium we discussed in this paper will
also have phenomenological implications in the hard pro-
cesses in hadron-nucleus and nucleus-nucleus collisions.
Our study here justifies the phenomenological approach to
the initial transverse-momentum broadening [56,57] in
pþ A and Aþ A collisions in which a Gaussian form of
the broadening is often used. Convoluted together with the
power-law-like transverse-momentum spectra due to hard

scattering, the Gaussian broadening will naturally lead to
Cronin enhancement of the final hadron spectra at small
and intermediate transverse momentum.
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APPENDIX A: TRANSVERSE DERIVATIVE OF A
GAUGE LINK

Consider a caplike gauge link,

L u � Ly
d?ð�1ÞLkð�1; y�; ~y? þ d~y?ÞLd?ðy�Þ (A1)

with

L d?ðy�Þ � L?ðy�; ~y? þ d~y?; y?; Þ
¼ 1� igd~y? � ~A?ðy�; ~y?Þ (A2)

and an infinitesimal transverse displacement d~y?. One can
break the longitudinal gauge link into a product of many
small ones each with an infinitesimal length d��,

Lkð�1; y�; ~y? þ d~y?Þ ¼ � � �Ldkðiþ 1; iÞ � � �
�Ldkð3; 2ÞLdkð2; 1Þ; (A3)

L kð�1; y�; ~y?Þ ¼ � � �Lkðiþ 1; iÞ � � �Lkð3; 2ÞLkð2; 1Þ;
(A4)

where Ldkðiþ 1; iÞ and Lkðiþ 1; iÞ are defined as

L dkðiþ 1; iÞ � Lkð��iþ1; �
�
i ; ~y? þ d~y?Þ; (A5)

L kðiþ 1; iÞ � Lkð��iþ1; �
�
i ; ~y?Þ; (A6)

and ��i ¼ y� � ði� 1Þd��. Inserting unit matrices

1 ¼ Ld?ð�iÞLkðiþ 1; iÞLy
k ðiþ 1; iÞLy

d?ð�iÞ (A7)

between all neighboring linksLdkðiþ1;iÞ andLdkði;i�1Þ
in Lkð�1; y�; ~y? þ d~y?Þ [Eq. (A3)], as illustrated in

Fig. 2, except the last point where one instead inserts the
unit matrix

1 ¼ Lkð�1;�1þ d��ÞLy
k ð�1;�1þ d��Þ (A8)

after Ly
d?ð�1Þ. One can then recast the caplike gauge

link,
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Lu ¼ Lkð�1;�1þ d��Þ � � �Lkðiþ 1; iÞLhð��i Þ
�Lkði; i� 1ÞLhð��i�1Þ � � �
�Lhð��2 ÞLkð2; 1ÞLhð��1 Þ; (A9)

as a product of closed plaquette,

Lhð��i Þ � Ly
k ðiþ 1; iÞLy

d?ð�iþ1ÞLdkðiþ 1; iÞLd?ð�iÞ;
(A10)

that are linked by short Wilson lines Lkðiþ 1; iÞ.
Using the expansion of the closed plaquette [58] up to

the linear term in d��d~y?,

Lhð��i Þ ¼ 1� igd��d~y? � ~Fþ?ð��i ; ~y?Þ (A11)

one can expand Lu up to the term linear in d~y?,

Lu ¼Lkð�1;y�; ~y?Þ� igd~y? �X1
i¼1

d��Lkð�1;��i ; ~y?Þ

� ~Fþ?ð��i ; ~y?ÞLkð��i ;y�; ~y?Þ
¼Lkð�1;y�; ~y?Þ� igd~y? �

Z y�

�1
d��Lkð�1;��; ~y?Þ

~Fþ?ð��; ~y?ÞLkð��;y�; ~y?Þ: (A12)

Comparing to the direct expansion of Lu in Eq. (A1) in
d~y?,

Lu ¼ Lkð�1; y�; ~y?Þ þ d~y? � ½ ~@y?Lkð�1; y�; ~y?Þ
� igLkð�1; y�; ~y?Þ ~A?ðy�; ~y?Þ
þ ig ~A?ð�1; ~y?ÞLkð�1; y�; ~y?Þ�; (A13)

one obtains

~@y?Lkð�1; y�; ~y?Þ ¼ �ig ~A?ð�1; ~y?ÞLkð�1; y�; ~y?Þ
þLkð�1; y�; ~y?Þ

�
ig ~A?ðy�; ~y?Þ

� ig
Z y�

�1
d��Ly

k ð��; y�; ~y?Þ ~Fþ?

� ð��; ~y?ÞLkð��; y�; ~y?Þ
�
:

(A14)

One can also obtain the above transverse derivative via
the direct expansion of the path-ordered longitudinal gauge
link,

~@y?Lkð�1;y�; ~y?Þ¼
X1
n¼1

ð�igÞnXn
i¼1

Z �1

y�
½d��n1Aþð��1 ; ~y?Þ

���� ~@?Aþð��i ; ~y?Þ���Aþð��n ; ~y?Þ
¼P1

n¼1ð�igÞn
P
n
i¼1

R�1
y� ½d��n1Aþð��1 ; ~y?Þ

����½@þ ~A?ð��i ; ~y?Þ
� ~~Fþ?ð��i ; ~y?Þ����Aþð��n ; ~y?Þ;

(A15)

where

Z �1

y�
½d��n1 �

Z �1

y�
d�1

Z ��
1

y�
d��2 � � �

Z ��
n�1

y�
d��n ; (A16)

~~F þ?ð��i ; ~y?Þ � @þ ~A?ð��i ; ~y?Þ � ~@?Aþð��i ; ~y?Þ:
(A17)

One can complete the integration of the terms with

@þ ~A?ð��i ; ~y?Þ by changing the order of integration,

Z ��i�1

y�
d��i

Z ��i

y�
d��iþ1@þ ~A?ð��i ; ~y?Þ

¼
Z ��

i�1

y�
d��iþ1

Z ��
i�1

�iþ1

d��i @þ ~A?ð��i ; ~y?Þ

¼
Z ��

i�1

y�
d��iþ1½ ~A?ð��i�1; ~y?Þ � ~A?ð��iþ1; ~y?Þ�; (A18)

for i ¼ 1; 2; . . . ; n� 1, with ��0 ¼ �1 and

Z ��
n�1

y�
d��n @þ ~A?ð��n ; ~y?Þ ¼ ~A?ð��n�1; ~y?Þ � ~A?ðy�; ~y?Þ:

(A19)

We can rearrange the sum of terms associated with

@þ ~A?ð��i ; ~y?Þ in the nth order (in the coupling g) of the
expansion as

FIG. 2. Splitting the caplike gauge link into chains of closed plaquette linked by short Wilson lines.
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Xn
i¼1

Z �1

y�
½d��n1Aþð��1 ; ~y?Þ � � � @þ ~A?ð��i ; ~y?Þ � � �Aþð��n ; ~y?Þ;

¼
Z �1

y�
½d��n�1

1

�Yn�2

j¼1

Aþð��j ; ~y?Þ
�
Aþð��n�1; ~y?Þ½ ~A?ð��n�1; ~y?Þ � ~A?ðy�; ~y?Þ� þ

Xn�1

i¼2

Z �1

y�
½d��i�1

1

�Yi�2

j¼1

Aþð��j ; ~y?Þ
�

�
Z ��

i�1

y�
d��iþ1Aþð��i�1; ~y?Þ½ ~A?ð��i�1; ~y?Þ � ~A?ð��iþ1; ~y?Þ�Aþð��iþ1; ~y?Þ

Z �iþ1

y�
½d��niþ2

Yn
j¼iþ2

Aþð��j ; ~y?Þ

þ
Z �1

y�
½d��n2½ ~A?ð�1; ~y?Þ � ~A?ð��2 ; ~y?Þ�Aþð��2 ; ~y?Þ

Yn
j¼3

Aþð��j ; ~y?Þ

¼ �
Z �1

y�
½d��n�1

1

�Yn�1

j¼1

Aþð��j ; ~y?Þ
�
~A?ðy�; ~y?Þ þ ~A?ð�1; ~y?Þ

Z �1

y�
½d��n2

Yn
j¼2

Aþð��j ; ~y?Þ

þ Xn�1

i¼1

Z �1

y�
½d��i�1

1

�Yi�1

j¼1

Aþð��j ; ~y?Þ
�Z ��

i�1

y�
d��i ½Aþð��i ; ~y?Þ; ~A?ð��i ; ~y?Þ�

Z �i

y�
½d��niþ1

Yn�1

j¼iþ1

Aþð��j ; ~y?Þ: (A20)

The terms containing the commutator, ½Aþð��i ; ~y?Þ;
~A?ð��i ; ~y?Þ�, can be combined with ~~Fþ?ð��i ; ~y?Þ in the
ðn� 1Þth order of the expansion to give the gluon field
strength tensor,

~F þ?ð��i ; ~y?Þ ¼ ~~Fþ?ð��i ; ~y?Þ
þ ig½Aþð��i ; ~y?Þ; ~A?ð��i ; ~y?Þ�: (A21)

Note that

X1
n¼1

ð�igÞn
Z �i

y�
½d��niþ1

Yn�1

j¼iþ1

Aþð��j ; ~y?Þ

¼ Lkð�i; y�; ~y?Þ; (A22)

and

X1
i¼1

ð�igÞi�1
Z �1

y�
½d��i�1

1

�Yi�1

j¼1

Aþð��j ; ~y?Þ
�Z ��

i�1

y�
d��i

¼ X1
i¼1

ðigÞi�1
Z �1

y�
d��i

Z ��i

�1
d��i�1 � � �

�
Z ��

2

�1
d��1 Aþð��1 ; ~y?Þ � � �Aþð��i�1; ~y?Þ

¼
Z �1

y�
d��i L

y
k ð�i;�1; ~y?Þ: (A23)

One obtains now the transverse derivative of the longitu-

dinal gauge link,

~@y?Lkð�1; y�; ~y?Þ ¼ �ig
Z y�

�1
d�Ly

k ð��;�1Þ
� ~Fþ?ð��; ~y?ÞLkð��; y�; ~y?Þ
þ igLkð�1; y�; ~y?Þ ~A?ðy�; ~y?Þ
� ig ~A?ð�1; ~y?ÞLkð�1; y�; ~y?Þ:

(A24)

Another general form of the above identity is

~D?ðy�1 ; ~y?ÞLkðy�1 ;y�; ~y?Þ¼�ig
Z y�

y�1
d�Ly

k ð��;y�1 Þ

� ~Fþ?ð��; ~y?ÞLkð��;y�; ~y?Þ
þLkðy�1 ;y�; ~y?Þ ~D?ðy�; ~y?Þ:

(A25)

Using the above identity, the derivative operation on the
gauge link in the TMD quark distribution function,

LTMDð0; yÞ � Ly
k ð�1; 0; ~0?ÞLy

?ð�1; ~y?; ~0?Þ
�Lkð�1; y�; ~y?Þ; (A26)

will yield

~@ y?LTMDð0; yÞ ¼ LTMDð0; yÞ ~@y? þLy
k ð�1; 0; ~0?ÞLy

?ð�1; ~y?; ~0?Þ ~@y?Lkð�1; y�; ~y?Þ
þ igLy

k ð�1; 0; ~0?ÞLy
?ð�1; ~y?; ~0?Þ ~A?ð�1; ~y?ÞLkð�1; y�; ~y?Þ

¼ LTMDð0; yÞ
�
~D?ðy�; ~y?Þ � ig

Z y�

�1
d��Ly

k ð��; y�; ~y?Þ ~Fþ?ð��; ~y?ÞLkð��; y�; ~y?Þ
�
: (A27)
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If we define

~F?ðy�; ~y?Þ � g
Z y�

�1
d��Ly

k ð��; y�; ~y?Þ ~Fþ?ð��; ~y?Þ
�Lkð��; y�; ~y?Þ; (A28)

it is easy to use Eq. (A25) to show

D?iðy; ~y?Þ ~F?ðy�; ~y?Þ ¼ ~F?ðy�; ~y?ÞD?iðy; ~y?Þ
þ g

Z y�

�1
d��Ly

k ð��; y�; ~y?ÞDA
?i

� ~Fþ?ð��; ~y?ÞLkð��; y�; ~y?Þ;
(A29)

where ~DA
?F ¼ ~@? þ ig½ ~A?; F� is the covariant derivative

in the adjoint representation.

APPENDIX B: EXTENDED TWO-GLUON
CORRELATION APPROXIMATION

In this Appendix we will examine higher-twist nucleon
gluon matrix elements that are neglected in the extended
two-gluon correlation approximation in Sec. II D.
In the connected part of the twist-four gluon matrix

elements one can extend the product of transport operator
without assuming extended two-gluon correlation approxi-
mation,

�4F ¼ 1

2Nc
hhTr½W?ðy�Þ�4iiAC

¼ 1

2Nc
hhTr½F?�4iiAC þ 2

2Nc
hhTr½ði ~DA

? � ~F?ÞF 2
? þ ~F? � ði ~DA

? � ~F?Þ ~F? þF 2
?ði ~DA

? � ~F?Þ�iiA � 1

2Nc
hhTr½3 ~F?

� ðDA2
? ~F?Þ þ ðDA2

? ~F?Þ � ~F? þ 3ðDA
? � ~F ÞðDA

? � ~F?Þ�iiA
¼ 1

4Nc
hh ~F a

?½ðF O
?Þ2ab þ ðiDA

?Þ2ab þ 6ði ~DA
? � ~F O

?Þab� ~F b
?iiA:

(B1)

Terms linear in F?ðy�Þ are dropped since they vanish after the medium average. The following identities along medium
averaged matrix elements are also used,

hhTr½ ~F? � ðDA
?Þ2 ~F?�iiA ¼ hhTr½ðDA

?Þ2 ~F? � ~F?�iiA ¼ �hhTr½ð ~DA
? � ~F?Þ � ð ~DA

? � ~F?Þ�iiA; (B2)

hhTr½F 2
?i ~D

A
? �F?�iiA ¼ hhTr½ ~F? � ði ~DA

? �F?Þ ~F?�iiA ¼ hhTr½i ~DA
? � ~F?F 2

?�iiA: (B3)

One can see that there are differences between the higher-twist gluon matrix elements in the above expansion and that
under extended two-gluon correlation approximation in Sec. II D which include some extra higher-twist gluon matrix
elements.
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