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In this paper, we propose two new regulators for quantum field theories in spacetimes with compactified

extra dimensions. We refer to these regulators as the ‘‘extended hard cutoff’’ and ‘‘extended dimensional

regularization.’’ Although based on traditional four-dimensional regulators, the key new feature of these

higher-dimensional regulators is that they are specifically designed to handle mixed spacetimes in which

some dimensions are infinitely large and others are compactified. Moreover, unlike most other regulators

which have been used in the extra-dimension literature, these regulators are designed to respect the

original higher-dimensional Lorentz and gauge symmetries that exist prior to compactification, and not

merely the four-dimensional symmetries which remain afterward. This distinction is particularly relevant

for calculations of the physics of the excited Kaluza-Klein modes themselves, and not merely their

radiative effects on zero modes. By respecting the full higher-dimensional symmetries, our regulators

avoid the introduction of spurious terms which would not have been easy to disentangle from the physical

effects of compactification. As part of our work, we also derive a number of ancillary results. For example,

we demonstrate that in a gauge-invariant theory, analogues of the Ward-Takahashi identity hold not only

for the usual zero-mode (four-dimensional) photons, but for all excited Kaluza-Klein photons as well.
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I. INTRODUCTION

Extra dimensions are among the leading candidates for
physics beyond the standard model. However, despite the
vast amount of work done in this area, phenomenological
studies of higher-dimensional models still face limitations.
A fundamental issue is that virtually all realistic theories in
higher dimensions are nonrenormalizable. Because pa-
rameters in a nonrenormalizable theory are extremely sen-
sitive to a ultraviolet (UV) cutoff, and because an infinite
number of counterterms are needed to absorb divergences,
our ability to make meaningful predictions at different
energy scales appears to be compromised. Additionally,
regulators of UV divergences can introduce unphysical
artifacts. For example, a hard cutoff in QED artificially
generates a large photon mass term. The problem of arti-
facts should be especially severe in higher-dimensional
theories since the nonrenormalizability will magnify any
such radiative effect.

Unfortunately, such artifacts will be introduced by many
of the regulators which are typically used to perform
calculations in spacetimes with compactified extra dimen-
sions. This happens because these regulators artificially
treat momentum components along compactified extra
dimensions as if they were separate from the other compo-
nents. To be more explicit, let us consider a typical one-
loop diagram in a theory with a single universal compacti-
fied extra dimension. The amplitude corresponding to such
a diagram can be expressed as a mode-number sum over a
four-momentum integral, i.e.,

M ¼ X
r

Z d4k

ð2�Þ4 Iðk; rÞ; (1.1)

whereM represents the one-loop amplitude, k is the four-
momentum of a Kaluza-Klein (KK) state running in the
loop, and r is its KK mode number. The function I depends
on k and r, as well as the couplings in the theory and
momenta and mode numbers of any external particles. Of
course, both the four-momentum integral and the KK sum
contribute to possible divergences, and both potential
sources of infinities must be regularized.
The typical approach is to apply a standard four-

dimensional regulator (such as a hard cutoff or dimensional
regularization) to the integral, and to truncate the sum at
large but finite limits. Thus, the sum and the integral are
regulated independently. Unfortunately, independent regu-
larizations artificially violate the higher-dimensional
Lorentz invariance that originally existed in the theory,
thereby leading to unphysical artifacts in M. This is
because the variables k and r=R from Eq. (1.1) are actually
part of a single five-momentum running in the loop. Our
regulator should therefore reflect this higher-dimensional
Lorentz symmetry, just as a hard cutoff in four dimensions
(4D) is always imposed on the total Euclidean four-
momentum running in a loop, and not a particular subset
of momentum components. This is why separate regulari-
zations of four-momentum integrals and KK sums violate
higher-dimensional Lorentz invariance. Without respect-
ing the full five-dimensional Lorentz symmetry, any such
regulator has the potential to introduce unphysical artifact
terms into the results of any calculation.
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Of course, it might seem that we can always subtract
unphysical artifacts at the end of a calculation. However,
this is not generally possible because the compactification
itself, which breaks the higher-dimensional Lorentz invari-
ance globally, can also induce local violations of the
higher-dimensional Lorentz invariance in an effective field
theory (EFT) at finite energy. Wewould therefore not know
which terms to subtract, since it would be extremely diffi-
cult to distinguish these unphysical artifacts from the ex-
pected bona-fide violations of five-dimensional Lorentz
invariance which arise due to the compactification.

Given this situation, our goal in this paper is to develop a
set of regulators which are based firmly on two fundamen-
tal higher-dimensional symmetries:

(i) higher-dimensional Lorentz invariance; and
(ii) higher-dimensional gauge invariance, when

appropriate.
Regulators which are based on these symmetries should

therefore be broadly applicable and free of unphysical arti-

facts. Moreover, we shall also require that our regulators be

theory independent. In other words, we shall require that our

regulators be insensitive to the specific particle content and

interactions characterizing the field theory in question.

In this paper, we shall develop two distinct regulator
schemes which meet these criteria. Indeed, in each case,
these regularization methods can be viewed as higher-
dimensional generalizations of well-known four-dimen-
sional regulators. However, as discussed above, their dis-
tinguishing property is that they control four-momentum
integrals and KK sums collectively, as appropriate for
higher-dimensional calculations. Under this scheme, the
constraints on the integral and the sum in Eq. (1.1) become
coupled.

Our first regulator will be a generalization of a four-
dimensional hard-cutoff scheme to the case of theories
with KK modes. We shall refer to this regulator as an
‘‘extended hard-cutoff’’ (EHC) regulator. To do this, we
shall consider the case of a single extra dimension com-
pactified on a circle. Instead of separately regulating four-
momentum integrals and KK sums, we shall implement a
cutoff on the total five-momenta of virtual KK states run-
ning through internal loops. This procedure is Lorentz
invariant, and therefore does not introduce unphysical
artifacts.

By contrast, our second regulator will be a generaliza-
tion of dimensional regularization, to be referred to as
‘‘extended dimensional regularization’’ (EDR). Specif-
ically, we shall use standard dimensional-regularization
techniques to control four-momentum integrals. How-
ever, we shall also demand that KK sums be truncated at
limits which depend on the dimensional-regularization
parameter �. The critical point, then, is to determine an
appropriate balancing relation between this KK cutoff and
the dimensional-regularization parameter � which pre-
serves not only higher-dimensional Lorentz invariance,
but also higher-dimensional gauge invariance. To do this,

we shall consider the case of five-dimensional QED com-
pactified on a circle and show explicitly that preserving
both higher-dimensional Lorentz invariance and gauge
invariance in this theory leads to a unique relation between
� and the KK cutoff. Our criterion of theory independence
will then guarantee that this relation between the KK cutoff
and � should hold for all higher-dimensional field theories,
regardless of whether or not they contain gauge
symmetries.
At this stage, one might be tempted to offer two possible

objections to the approach we shall be following in this
paper. First, since the compactification itself distinguishes
extra dimensions from the ones we currently observe, one
could argue that there is no need to respect higher-
dimensional Lorentz invariance. Indeed, one might even
argue that the very process of compactification forces us to
employ regulators that do not respect higher-dimensional
Lorentz invariance: since the momentum components
along compactified dimensions are discrete variables and
components along large dimensions are continuous, it
might seem that no regularization scheme can truly put
these variables on equal footing. However, it is important
to realize that compactification is an effect at finite distance
and therefore finite energies. In the UV limit, by contrast,
this discreteness fades away and higher-dimensional
Lorentz invariance is restored. Since regulators are de-
signed to control UV divergences, it is therefore essential
that they respect whatever symmetries exist at short
distances.
Second, one might object that higher-dimensional theo-

ries are nonrenormalizable. Therefore, it would seem that
we should obtain meaningless results regardless of which
regulator we use, in which case there is no point in trying to
extract exact predictions from such theories. However,
despite the nonrenormalizability, it is possible to derive
precise, finite relationships between the renormalized pa-
rameters in our effective field theories that characterize KK
states. Indeed, as we shall explicitly demonstrate in
Ref. [1], the use of proper regulators will allow us to relate
the parameters describing excited KK modes to the corre-
sponding parameters describing zero modes, after each has
received radiative corrections. If the zero-mode parameters
are taken to be experimental inputs, then the entire KK
spectrum is determined. We emphasize that this only works
when regulators are designed to respect higher-
dimensional symmetries.
Although our extended hard-cutoff and extended

dimensional-regularization procedures ultimately achieve
the same goal, there are two significant conceptual differ-
ences between them. First, our extended hard cutoff is
designed to treat all components of loop momenta in the
same way, and hence this cutoff never breaks higher-
dimensional Lorentz invariance. By contrast, our extended
dimensional-regularization procedure controls divergences
from four-momentum integrals and KK sums through very
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different means. Higher-dimensional symmetries thus do
not appear to be preserved from the outset, but survive in
the end only because of a special relation between their
regularization parameters.

There also is a second important difference. Because a
hard cutoff explicitly violates gauge invariance, our ex-
tended hard-cutoff regulator will not be suitable for higher-
dimensional theories in which gauge symmetries are
present. By contrast, our extended dimensional-
regularization procedure is designed to respect higher-
dimensional gauge invariance as well as higher-
dimensional Lorentz invariance. As such, this is the regu-
lator of choice when dealing with gauge-invariant theories.
In this connection, we remark that while the process of
compactification explicitly violates Lorentz invariance
globally (and this can translate into local Lorentz viola-
tions below the UV limit), the process of compactification
in and of itself does not violate any higher-dimensional
gauge symmetry which exists in the UV limit. Specifically,
as we shall demonstrate for the case of five-dimensional
QED compactified on a circle, a full five-dimensional
gauge invariance survives after compactification, even at
low energy scales. Our extended dimensional-
regularization procedure will reflect this explicitly through
the preservation of Ward identities and Ward-Takahashi
identities; indeed, such identities will continue to hold not
only for the (zero-mode) photon, but for all of the excited
(KK) photons as well.

This paper is organized as follows. In Sec. II, we in-
troduce our EHC regulator, and explain how it regularizes
divergences in a Lorentz-invariant fashion. In Sec. III, we
then introduce our EDR in the context of higher-
dimensional gauge theory. In Sec. IV, we turn to a discus-
sion of other regulators which have been utilized in the
literature, and compare our regulators with those. We also
demonstrate, through explicit examples, the kinds of diffi-
culties that can arise when one uses a regulator which does
not respect higher-dimensional Lorentz invariance. We
also discuss the relations between our EHC and EDR
regulators and several other Lorentz-invariant methods
which have already been developed in the literature.
Finally, Sec. V contains our conclusions and ideas for
possible extensions.

This paper is the first in a two-part series. In this paper,
we shall focus on the development of two new regulators,
as sketched above. By contrast, in the following article [1],
we shall discuss how these new regulators may be em-
ployed in order to derive effective field theories at different
energy scales. We shall also discuss how these regulator
techniques can be used to extract finite results for physical
observables that relate the physics of excited KK modes to
the physics of KK zero modes. In this context, it should be
noted that one of our primary motivations for developing
these new EHC and EDR regulators has been to enable us
to study the way in which the Kaluza-Klein mass and

coupling parameters in any higher-dimensional effective
field theory evolve as a function of energy scale. For
example, we might wish to study how the well-known
tree-level relations amongst the tower of KK masses and
amongst their couplings are ‘‘deformed’’ when radiative
effects are included. This will be the subject of a third
paper [2]. However, each of these subsequent papers will
rely on the regulators and calculational techniques that we
shall be developing here.

II. THE EHC REGULATOR

In this section, we introduce our higher-dimensional
EHC regulator. For simplicity, we consider the case of a
single extra dimension compactified on a circle; general-
izations to other compactifications will be straightforward.
As discussed in the Introduction, our cutoff will be purely
five dimensional in nature, and will respect five-
dimensional Lorentz invariance from the outset. Of course,
if our higher-dimensional theory is also gauge invariant,
then a hard cutoff will not be applicable; in such cases, the
EDR regulator in Sec. III should be used.
To illustrate our procedure, let us consider a generic one-

loop diagram of the form shown in Fig. 1 in which an
external particle with four-momentum p� and mode num-
ber n interacts with a tower of KK particles of bare mass
M. Enforcing 5D momentum conservation at the vertices
(as appropriate for compactification on a circle) and as-
suming that the solid lines correspond to scalar fields leads
to a one-loop integral of the form

LnðpÞ ¼
X
r

Z d4k

ð2�Þ4
1

k2 � r2=R2 �M2

� 1

ðk� pÞ2 � ðr� nÞ2=R2 �M2
(2.1)

where k is the four-momentum of a particle in our loop and

µP=(p  ,n)

µK=(k  ,r)

µP=(p  ,n)

µ µK−P=(k  −p  ,r−n)

FIG. 1. A generic one-loop diagram: an external Kaluza-Klein
particle (dotted line) with four-momentum p� and Kaluza-Klein
index n interacts with a tower of Kaluza-Klein particles (solid
lines) of bare mass M.
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r is its mode number. Although we are considering a
particular form for a loop integral, we will keep our dis-
cussion as general as possible.

Following standard techniques, we may immediately
rewrite this loop integral as

LnðpÞ ¼ i
Z 1

0
dx

X
r

Z d4‘E
ð2�Þ4

�
1

‘2E þ ‘42 þM2ðxÞ
�
2
;

(2.2)

where x is a Feynman parameter, where ‘ represents the
shifted momentum

‘ � k� xp; ‘4 � ðr� xnÞ=R; (2.3)

where ‘E is the Euclidean (Wick-rotated) momentum

‘0E � �i‘0; ~‘E � ~‘; (2.4)

and where the effective mass in Eq. (2.2) is given by

M 2ðxÞ � M2 þ xðx� 1Þ
�
p2 � n2

R2

�
: (2.5)

Note that throughout this paper, vector and tensor compo-
nents corresponding to the fifth dimension will be denoted
with a superscript ‘‘4.’’ We have chosen this somewhat
unorthodox convention in order to emphasize the preser-
vation of five-dimensional Lorentz invariance, so that our
five-dimensional Lorentz indices are given asM ¼ 0, 1, 2,
3, 4.

We now introduce our hard momentum cutoff �. We
shall apply this directly to the Euclidean five-momentum
running in the loop, as appropriate for an intrinsically five-
dimensional calculation, so that

‘2E þ ‘42 � �2: (2.6)

Of course, this constraint equation correlates the cutoff for
the integration over the four-momentum ‘E with the cutoff
for the summation over the KK index r. In particular, the
constraint in Eq. (2.6) can be implemented by restricting
the KK summation to integers in the range

��Rþ xn � r � �Rþ xn (2.7)

and then restricting our ‘E integration to the corresponding
range

‘2E � �2 � ‘42 � �2 � ðr� xnÞ2=R2: (2.8)

Clearly, Eqs. (2.7) and (2.8) are nested constraints on the
components of the momentum of the particle running in the
loop. However, this ‘‘nesting’’ is unavoidable if our regu-
lator is to preserve five-dimensional Lorentz invariance
and avoid distinguishing a special direction in spacetime.
Since ‘E is continuous and ‘4 is discrete, one might argue
at first glance that these variables are fundamentally differ-
ent, and that Eq. (2.6) does not truly respect a five-
dimensional Lorentz symmetry. However, as discussed in
the Introduction, the discreteness is an effect at finite

energy scales, originating from the compactification. This
discreteness is not apparent in the UV limit, where the gaps
between KK masses are effectively negligible. Therefore,
Eq. (2.6) will indeed allow us to regularize five-
dimensional UV divergences in a Lorentz-invariant
fashion.
Equations (2.6), (2.7), and (2.8) define our EHC regu-

larization procedure. Indeed, unlike the case with dimen-
sional regularization to be discussed in Sec. III, the
maintenance of five-dimensional Lorentz invariance in
this case has not been particularly difficult or profound.
However, this is not enough, since we also need to know
how to perform calculations which implement these con-
straints. Equation (2.7) is particularly unpleasant, since it
puts the Feynman parameter and the mode number of the
external particle in the summation limits. One might hope
that we can neglect these terms when � is large. However
this is ultimately not possible due to the hypersensitivity to
the exact value of a cutoff in a nonrenormalizable theory.
The rest of this section is therefore devoted to the calcula-
tional issue of converting such expressions for loop dia-
grams into useful forms.
For the special case of n ¼ 0, our loop diagram can be

written as

L0ðpÞ ¼ i
Z 1

0
dx

X�R
r¼��R

f0ðp; r; xÞ (2.9)

where f0 is the integral over ‘E from Eq. (2.2), subject to
the constraint in Eq. (2.8). In general, f0 is a function of p,
r, and x, but we will not need to evaluate f0 for this
discussion. Note that in writing Eq. (2.9), we have treated
�R as an integer. In the limit of a large cutoff, this
assumption will have no effect on our results.
For n � 0, however, the cutoff on the r summation

depends on the Feynman parameter x. Fortunately, we
can eliminate this dependence through a series of variable
substitutions. Let us first assume that n > 0. In this case,
our summation is over all integers r in the range ��Rþ
xn � r � �Rþ xn. In the following, we shall adopt a
notation whereby

P
b
r¼a denotes a summation over integer

values of r within the range a � r � b even if a and b are
not themselves integers. We can then write

LnðpÞ ¼ i
Z 1

0
dx

X�Rþxn

r¼��Rþxn
fnðp; r; xÞ; (2.10)

where fn is the analog of f0 for nonzero n. For n > 0, we
may express this summation as

SKY BAUMAN AND KEITH R. DIENES PHYSICAL REVIEW D 77, 125005 (2008)

125005-4



Z 1

0
dx

X�Rþxn

r¼��Rþxn
¼ 1

n

Z n

0
du

X�Rþu
r¼��Rþu

where u� xn

¼ 1

n

Xn�1

j¼0

Z jþ1

j
du

X�Rþu
r¼��Rþu

¼ 1

n

Xn�1

j¼0

Z 1

0
dû

X�Rþû
r̂¼��Rþû

where

�
û� u� j

r̂� r� j

¼ 1

n

Xn�1

j¼0

Z 1

0
dû

X�R
r̂¼��Rþ1

: (2.11)

In passing to the last line, we have continued to treat�R as
an integer. We have also used the fact that the exact û ¼
f0; 1g endpoints of the û-integration region are sets of
measure zero.

For general n � 0 of either sign, we can make an
analogous set of substitutions, resulting in the general
identity

Z 1

0
dx

X�Rþxn

r¼��Rþxn
¼ 1

jnj
Xjnj�1

j¼0

Z 1

0
dû

X�R
r̂¼��Rþ1

; (2.12)

where

û � xjnj � j (2.13)

and

r̂ � signðnÞr� j: (2.14)

Together, Eqs. (2.13) and (2.14) imply that R‘4 ¼
signðnÞ½r̂� û�.

Note that the mode number n has disappeared from the
magnitude of ‘4. This is precisely as we expect, since ‘4 is
merely a summation variable and should not depend on the
magnitude of n. Likewise, the dependence on signðnÞ
arises by convention and can be absorbed into coefficients
of ‘4. Ultimately, this removal of n from ‘4 was possible
only because of the limits we chose for r at the beginning
of our calculation.
However, it is important to realize that n has not van-

ished from our calculation. Because û is now viewed as an
independent Feynman-like variable in Eq. (2.12), x must
now be expressed in terms of û, and this reintroduces a
dependence on n into any expressions which previously
depended on x. For example, the quantity x appears within
M2, as defined in Eq. (2.5). However, the important point
is that this dependence on n is now wholly within the four-
dimensional integrand, and no longer appears within the
KK summation limits.
Given these variable substitutions, our loop-diagram

expression for nonzero n can now be rewritten as

LnðpÞ ¼ i
Z 1

0
dû

1

jnj
Xjnj�1

j¼0

X�R
r̂¼��Rþ1

fnðp; r̂; û; jÞ: (2.15)

We shall henceforth drop the hats from r̂ and û. Note that
the functions f0ðr; uÞ and fnðr; u; jÞ each depend on the
cutoff� because they are integrals whose limits contain�.
For example, if our original diagram is of the form (2.2),
then these functions f0 and fn are given by

f0ðr; uÞ ¼
Z d4‘E

ð2�Þ4
�

1

‘2E þ r2=R2 þM2 þ uðu� 1Þp2

�
2
;

fnðr; u; jÞ ¼
Z d4‘E

ð2�Þ4
�

1

‘2E þ ðr� uÞ2=R2 þM2 þ ðuþ jÞðuþ j� jnjÞðp2

n2
� 1

R2Þ
�
2

(2.16)

where these integrals are subject to the cutoffs

f0: ‘
2
E � �2 � r2=R2; fn: ‘

2
E � �2 � ðr� uÞ2=R2;

(2.17)

respectively. Note that fn is the same as f0, but with the
simultaneous algebraic substitutions r! � � r� u, u!
y � ðuþ jÞ=jnj, and p2 ! p2 � n2=R2.

Equations (2.9) and (2.15) are the main results of this
section. Once loop diagrams are in these forms, they can be
evaluated directly using standard four-dimensional tech-
niques. Similarly, although we restricted ourselves to the
case of a single external particle, generalizations to more
complicated situations are straightforward.

Finally, before concluding our discussion of our EHC
regulator, we remark that the identity we have outlined in
Eq. (2.12) relies rather fundamentally on the assumption

that the one-loop diagrams we are regulating can be eval-
uated through the introduction of only a single Feynman
parameter x (or u). However, this procedure readily gen-
eralizes to diagrams that would utilize arbitrary numbers of
Feynman parameters.
As a concrete example, let us consider a diagram such as

the one-loop vertex correction in Fig. 2 which would
require two Feynman parameters. In general, such a dia-
gram will take the algebraic form

Ln1;n2ðp1; p2Þ ¼ i
Z 1

0
dx1

Z 1

0
dx2

X
r

fn1;n2ðp1; p2; r; x1; x2Þ

(2.18)

where x1 and x2 are our two Feynman parameters and f is
our four-momentum integral. However, unlike the case of a
single Feynman parameter, our shifted momentum within
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f will now be given by

‘ � k� x1p1 � x2p2; ‘4 ¼ ðr� x1n1 � x2n2Þ=R:
(2.19)

Despite this change in the definition of ‘, our EHC regu-
larization condition continues to take the same form as in
Eq. (2.6). The cutoffs on our KK summation therefore now

take the form

��Rþ x1n1 þ x2n2 � r � �Rþ x1n1 þ x2n2;

(2.20)

while our corresponding four-momentum integral is sub-
ject to the cutoff

‘2E � �2 � ðr� x1n1 � x2n2Þ2=R2: (2.21)

As before, the primary difficulty here is the presence of
the Feynman parameters x1 and x2 in the upper and lower
limits of the KK summation in Eq. (2.19). However, these
can be eliminated in a manner completely analogous to the
method outlined in Eq. (2.12). First, we observe that when
n1 ¼ n2 ¼ 0, the Feynman parameters are eliminated trivi-
ally, and Eq. (2.20) reduces to��R � r � �R. Moreover,
when one ni ¼ 0 but the other is nonzero, only one
Feynman parameter appears in Eq. (2.20). The variable
transforms introduced in Eq. (2.12) may therefore be em-
ployed to disentangle the remaining Feynman parameter
from the summation limits. As a result, the only new non-
trivial case is the one in which both n1 and n2 are nonzero.
Let us first consider the case in which both n1 and n2 are

positive. Repeating the steps in Eq. (2.11), we can then
write

Z 1

0
dx1

Z 1

0
dx2

X�Rþx1n1þx2n2

r¼��Rþx1n1þx2n2
¼ 1

n1n2

Z n1

0
du1

Z n2

0
du2

X�Rþu1þu2

r¼��Rþu1þu2
where ui � xini

¼ 1

n1n2

Xn1�1

j1¼0

Xn2�1

j2¼0

Z j1þ1

j1

du1
Z j2þ1

j2

du2
X�Rþu1þu2

r¼��Rþu1þu2

¼ 1

n1n2

Xn1�1

j1¼0

Xn2�1

j2¼0

Z 1

0
dû1

Z 1

0
dû2

X�Rþû1þû2

r̂¼��Rþû1þû2
where

�
ûi � ui � ji

r̂ � r� j1 � j2:

¼ 1

n1n2

Xn1�1

j1¼0

Xn2�1

j2¼0

Z 1

0
dû1

�Z 1�û1
0

dû2
X�R

r̂¼��Rþ1

þ
Z 1

1�û1
dû2

X�Rþ1

r̂¼��Rþ2

�
: (2.22)

In passing to the final line, we have continued to treat�R as an integer and recognized that while the combination û1 þ û2
ranges from 0 to 2, the summation index r̂ ranges over the following values:

���Rþ 1 � r̂ � �R for 0< û1 þ û2 < 1;

��Rþ 2 � r̂ � �Rþ 1 for 1< û1 þ û2 < 2:
(2.23)

Dropping the hats, it follows that under the EHC regulator, the diagram Ln1;n2ðp1; p2Þ in Eq. (2.18) with n1; n2 > 0 can be
rewritten as

µ
K

=(
k 

 ,r
)

µ
P=(p  ,n  )1

1

1

µ

P=(p  ,n
  )2

2
2

FIG. 2. A generic one-loop diagram with three external parti-
cles and three internal propagators. Such a one-loop diagram will
require two Feynman parameters.
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Ln1;n2ðp1; p2Þ ¼ i
Z 1

0
dx1

Z 1

0
dx2

X
r

fn1;n2ðp1; p2; r; x1; x2Þ

¼ i

n1n2

Xn1�1

j1¼0

Xn2�1

j2¼0

Z 1

0
du1

�Z 1�u1
0

du2
X�R

r¼��Rþ1

þ
Z 1

1�u1
du2

X�Rþ1

r¼��Rþ2

�
fniðpi; r; ui; jiÞ

¼ i

n1n2

Xn1�1

j1¼0

Xn2�1

j2¼0

Z 1

0
du1

Z 1

0
du2

X�R
r¼��R

fniðpi; r; ui; jiÞ þ E (2.24)

where ‘4 ¼ ðr� u1 � u2Þ=R, where the one-loop integrals
fn1;n2 are regulated according to Eq. (2.21), and where E
denotes an ‘‘endpoint contribution’’ which depends on the
particular values of f at or near the cutoff endpoints of the
KK summation, as given below.

The above results are given for the case in which n1 and
n2 are both positive. However, we can handle the general
case in which both n1 and n2 are nonzero as follows. Let us
define si � signðniÞ, and likewise let us define ûi �
xijnij � ji and r̂ � r� s1j1 � s2j2. Note that in terms of
these variables, we have R‘4 ¼ r̂� s1û1 � s2û2.
Dropping the hats, we then find the general identity

Ln1;n2ðp1; p2Þ ¼ i

jn1n2j
Xjn1j�1

j1¼0

Xjn2j�1

j2¼0

Z 1

0
du1

�
Z 1

0
du2

X�R
r¼��R

fniðpi; r; ui; jiÞ þ Es1;s2

(2.25)

where the endpoint contributions E�;� are given as

Es1;s2 ¼ � i

jn1n2j
Xjn1j�1

j1¼0

Xjn2j�1

j2¼0

Z 1

0
du1Ês1;s2 (2.26)

with

Êþþ �
Z 1

0
du2fð��RÞ þ

Z 1

1�u1
du2½fð��Rþ 1Þ

� fð�Rþ 1Þ�;
Ê�� �

Z 1

0
du2fð�RÞ þ

Z 1

1�u1
du2½fð�R� 1Þ

� fð��R� 1Þ�;
Êþ� �

Z u1

0
du2fð��RÞ þ

Z 1

u1

du2fð�RÞ;

Ê�þ �
Z u1

0
du2fð�RÞ þ

Z 1

u1

du2fð��RÞ: (2.27)

In writing Eq. (2.27), we have suppressed all indices and
variables for the f-functions except their dependence on
the KK mode number r. These results have obvious gen-
eralizations to one-loop diagrams with additional Feynman
parameters.

We see, then, that our EHC regulator is quite general,
and that the methods outlined here enable us to eliminate
the resulting Feynman parameters from the upper and
lower limits on our KK summations.

III. THE EDR PROCEDURE

In this section, we turn to our 5D EDR procedure. Unlike
the case of the hard cutoff in Sec. II, our extended
dimensional-regularization procedure is designed to re-
spect not only five-dimensional Lorentz invariance, but
also five-dimensional gauge invariance. As discussed in
the Introduction, this will happen as the result of a careful
balancing between the dimensional-regularization parame-
ter �, which regulates the four-dimensional momentum
integral, and the KK cutoff�, which regulates the KK sum.
This section is organized as follows. We start with a

preliminary exposition of our procedure in Sec. III A.
Then, in Sec. III B, we discuss the method by which gauge
invariance is maintained by demonstrating that the Ward(-
Takahashi) identities must hold not only for the zero-mode
photon, but also for all KK excitations of the photon. In
Sec. III C, we then use this in order to generate a relation
between the cutoff parameters used for the momentum
integrals and the KK mode-number sums. Finally, in
Sec. III D, we deal with a number of loose ends. For
example, we show that this relation implies that five-
dimensional Lorentz invariance will be preserved as well.

A. Preliminary steps

We begin by considering a generic one-loop amplitude
in five dimensions, with one dimension compactified on a
circle. As with the diagram in Fig. 1, we will assume that
we have a certain fixed number of external particles with
four-momenta p

�
i and KK mode numbers ni which enter

the diagram as initial states or exit as final states. We shall
also assume that only one Feynman parameter is needed;
the generalization to multiple Feynman parameters is
straightforward. Such an amplitude then generally takes
the form

LMN...n ðp1; p2; . . .Þ ¼ i
Z 1

0
dx

X
r

Z d4‘E
ð2�Þ4 �

MN...
n ð‘E; r; xÞ

(3.1)

where �MN...
n ð‘E; r; xÞ is an appropriate unspecified inte-
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grand and where the overall n subscript denotes the col-
lection of external KK indices. Here M;N; . . . are five-
dimensional Lorentz indices appropriate for the diagram in
question; thus, unlike the situation in Sec. II, we are now
explicitly indicating that these amplitudes need not be
Lorentz scalars. We shall also assume that our theory
contains a five-dimensional gauge invariance prior to
compactification.

We now seek to develop a regularization procedure for
such amplitudes, which is based on the traditional ’t Hooft-
Veltman dimensional-regularization procedure [3] for the
four-momentum integral. However, we need to regulate not
only the four-dimensional momentum integral, but also the
KK sum, and our goal is to implement these two regulators
in such a balanced way that both five-dimensional Lorentz
invariance and five-dimensional gauge invariance are
maintained. It is this ‘‘balancing’’ feature which extends
the ’t Hooft-Veltman dimensional-regularization proce-
dure to spacetimes with compactified extra dimensions,
and which results in our name ‘‘extended dimensional
regularization.’’

As we shall see, the EDR procedure will consist of three
separate components:

(i) First, we shift the 4D momentum integral into d �
4� � spacetime dimensions.

(ii) At the same time, we deform the integrand
�MN...
n ð‘E; ‘4; xÞ to reflect the fact that our integral

is now in d � 4� � dimensions. For example, one
standard integrand substitution which is familiar
from traditional dimensional regularization in four
dimensions is to replace ‘�‘� ! ‘2g��=ð4� �Þ
where ‘2 � g��‘

�‘�. However, we now expect there

to be a similar deformation for the terms in the
integrand which depend on the (discrete) fifth com-
ponent ‘4 of the momentum. Deriving the precise
form of this deformation is the first of our tasks. Note
that since the introduction of a fifth dimension does
not introduce any additional Dirac � matrices, the
usual deformation of the �-matrix algebra that one
must perform for 4D dimensional regularization is
unchanged for 5D.

(iii) Finally, we apply lower and upper cutoffs
fr1ð�Þ; r2ð�Þg to our KK sum, so that this sum is
over the range r1ð�Þ � r � r2ð�Þ. These cutoffs
will be functions of �, and deriving the precise
relation between � and these limits is our second
task.

Indeed, the precise deformation of terms involving ‘4 in the

integrand, as well as the precise forms of the cutoffs

fr1ð�Þ; r2ð�Þg as functions of �, will be determined by the

fact that five-dimensional Lorentz invariance and gauge in-

variance must be maintained.

Even before imposing five-dimensional gauge invari-
ance, there are certain simplifications we can make. First,
we know that we must have r1ð�Þ ! �1 and r2ð�Þ ! þ1

as �! 0. Second, however, just as in Eq. (2.7), we claim
that r1;2ð�Þ must actually take the form

r1ð�Þ ¼ ��ð�ÞRþ xn; r2ð�Þ ¼ �ð�ÞRþ xn (3.2)

in terms of a single as-yet-undetermined function �ð�Þ. In
other words, although our summation cutoffs are not sym-
metric in the r variable, we claim that they must be
symmetric in the ‘4 variable, where R‘4 � r� xn. The
reason for this is simple. At first glance, it might appear
that since the four-momentum integrals in dimensional
regularization are over infinite domains, there is no differ-
ence between integrating over the internal loop four-
momentum k� or the shifted loop four-momentum ‘� �
k� � xp�, and we might expect the same to hold for the
KK sums. However, integrals which are odd with respect to
‘ vanish by convention in dimensional regularization. This
means that it is the domain of integration for ‘ which is
symmetric, even if it tends to an infinite size. Therefore,
higher-dimensional Lorentz invariance requires that the
limits on ‘4 also be the ones which are symmetric.
Indeed, we have verified that any other choice will ulti-
mately lead to inconsistencies—specifically, the sorts of
checks that we will perform at the end of Sec. IV would not
be successful with any other choice.
We can also further refine the form of the deformations

within the integrand �MN...
n ð‘E; r; xÞ itself. As mentioned

above, we know that terms of the form ‘�‘� should be
replaced by ‘2g��=ð4� �Þ. In flat space (which is the only
case we consider in this paper), this amounts to a deforma-
tion for terms ð‘iÞ2 for i ¼ 0, 1, 2, 3. Five-dimensional
Lorentz invariance therefore requires a corresponding de-
formation for the discrete fifth component ‘4‘4 that arises
within expressions of the form ‘M‘N . In general, we can
parametrize this deformation in the form

‘4‘4 ! ½1þ ��þOð�2Þ�ð‘4Þ2 (3.3)

where � is an unknown parameter we seek to determine. As
we shall see, determining the deformation to this order in �
will be sufficient for our purposes. We stress, however, that
the deformation in Eq. (3.3) is only appropriate for terms
that arise within a Lorentz-covariant expression of the form
‘M‘N . By contrast, terms ð‘4Þ2 which might arise from
other Lorentz-covariant forms such as ½‘2 � ð‘4Þ2�gMN
remain undeformed, in accordance with our expectations
from ordinary dimensional regularization in four
dimensions.
Given these observations, we can then proceed by im-

plementing the variable substitutions described in Sec. II.
We thus have

LMN...0 ¼ i
Z 1

0
dx

X�R
r¼��R

Z dd‘E
ð2�Þd�

MN...
0 ð‘E; r; xÞ (3.4)

where the zero KK subscript indicates that all external
particles are zero modes, and
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LMN...n ¼ i
Z 1

0
dû

1

jnj

� Xjnj�1

j¼0

X�R
r̂¼��Rþ1

Z dd‘E
ð2�Þd�

MN...
n ð‘E; r̂; û; jÞ

(3.5)

where the transformed variables û and r̂ are defined in
Eqs. (2.13) and (2.14). As discussed above, the KK cutoffs
� are to be viewed as functions of �.

Again, we stress that it is remarkable that there will exist
solutions for �ð�Þ and � which can simultaneously pre-
serve both higher-dimensional Lorentz invariance and
higher-dimensional gauge invariance. After all, our four-
momentum integrals are unrestricted, while our KK sum-
mations are truncated. Likewise, our four-momenta are
continuous, while our KK momenta are discrete.
Nevertheless, we shall find that the proper solutions for
�ð�Þ and � will conspire to simultaneously maintain both
of these higher-dimensional symmetries at the end of any
calculation.

Thus, the complete development of our EDR regulator
now rests on determining two remaining unknowns. First,
we seek to determine �ð�Þ as a function of �. Second, we
seek to determine the value of the parameter � in Eq. (3.3).

B. Ward-Takahashi identities for KK photons

We now demand that our EDR regulator preserve what-
ever five-dimensional gauge invariance exists prior to
compactification. However, before proceeding further, it
is important to determine the extent to which the process of
compactification, in and of itself, might break the full five-
dimensional gauge invariance. In other words, we need to
understand the extent to which five-dimensional gauge
invariance can be expected to survive the process of space-
time compactification.

In this section, we shall address this issue within the
framework of the specific case of five-dimensional QED
compactified on a circle. Although the usual Ward identi-
ties (and indeed the more general Ward-Takahashi identi-
ties) are expected to hold for the usual four-dimensional
zero-mode photon (as a result of the residual four-
dimensional gauge invariance), we shall demonstrate that
analogues of these identities actually hold for all of the KK
excitations of the photon as well. In other words, five-
dimensional gauge invariance is manifested in our com-
pactified theory through the existence of a whole tower of
Ward(-Takahashi) identities, one for each KK-photon ex-
citation; compactification does not break gauge invariance
at the level of these identities. As such, these identities can
be taken as the signature of the original full five-
dimensional gauge invariance, and demanding that these
identities continue to hold in our compactified theory will
ultimately enable us to determine the value for the parame-
ter � as well as the relation between � and �.

Let us begin by quickly reviewing the usual four-
dimensional Ward and Ward-Takahashi identities. Let
Mðp;q1; . . . ; qN; q01; . . . ; q0NÞ represent the full Fourier-
transformed correlation function for some QED process
with N incoming fermions of four-momenta fq1; . . . ; qNg,
N outgoing fermions with four-momenta fq01; . . . ; q0Ng, and
an incoming photon � with four-momentum p. In general,
these fermion momenta need not be on shell, and we can
write M in the form M ¼ ��M� where �� represents

the photon polarization four-vector. Likewise, let M0

represent the full Fourier-transformed correlation function
for the same process except without the photon �. Then the
usual four-dimensional Ward-Takahashi identity states that

p�M�ðp; q1; . . . ; qN; q01; . . . ; q0NÞ
¼ e

X
i

½M0ðq1; . . . ; qn; q01; . . . ; ðq0i � pÞ; . . .Þ

�M0ðq1; . . . ; ðqi þ pÞ; . . . ; q01; . . . ; q0NÞ�; (3.6)

where e is the unit of electric charge carried by each
fermion. Moreover, if we then use the LSZ reduction
procedure to obtain the corresponding amplitude for the
corresponding amputated diagrams, we find that the right
side of Eq. (3.6) does not contribute. We thus obtain the
simpler Ward identity

p�M�ðp;q1; . . . ; qN; q01; . . . ; q0NÞ ¼ 0 (3.7)

which holds when each of the external momenta (including
that of the external photon) is on shell. Of course, the
quantity M in Eq. (3.7) now represents the amplitude of
the corresponding amputated diagram, and the external
momenta are now restricted to be on shell.
Before we consider whether and how these identities can

be extended to the case of a compactified higher-
dimensional spacetime, we first review their derivation.
The usual diagrammatic proof of the Ward-Takahashi
identity (see, e.g., any standard reference such as
Ref. [4]) proceeds by realizing that by summing over
each of the diagrams that contribute to M0, and then by
summing over all possible ways of inserting an extra
external photon into each of these diagrams, we produce
all of the diagrams contributing to M. Thus, we can focus
on any individual diagram contributing to M0, and con-
sider all possible ways in which an additional external
photon line can be inserted into such a diagram. In QED,
a photon line can only be inserted onto an already-existing
fermion line, and there are only two possible types of
fermion lines such a diagram may contain: a closed inter-
nal loop (as illustrated in Fig. 3), or a line which ultimately
connects an incoming fermion to an outgoing fermion.
If the additional photon connects to a fermion line in the

former class, the sum over insertion locations cancels
identically upon integrating over the internal fermion
loop momentum. Specifically, the sum over all insertion
points for a photon of momentum p� into the diagram in
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Fig. 3 is proportional to

eNþ1
Z d4k1

ð2�Þ4 tr

��
i

k6 N �m

�
��N

�
i

k6 N�1 �m

�
��N�1 . . .

�
�

i

k6 1 �m

�
��1 �

�
i

k6 N þ p6 �m

�
��N

�
�

i

k6 N�1 þ p6 �m

�
��N�1 . . .

�
i

k6 1 þ p6 �m

�
��1

�
: (3.8)

The ��j factors are from the vertices of the photons already
shown in Fig. 3, and m is the mass of the internal fermion
running in the loop. [Note that these momenta ki, qi and the
integer N have no relations to the similarly named quanti-
ties in Eqs. (3.6) and (3.7).] However, it is easy to see that
Eq. (3.8) vanishes. Rewriting Eq. (3.8) as the difference of
two integrals, we can shift the variable of integration in the
second term from k1 to k1 þ p. These two integrals thus
cancel against each other identically. We see, then, that the
sum over all insertion points of a photon into a closed loop
is zero; such diagrams do not contribute to the right side of
the Ward-Takahashi identity.

By contrast, the right side of Eq. (3.6) arises from the
subclass of diagrams in which the additional photon line
attaches to a fermion line that connects an incoming fer-
mion to an outgoing fermion. The treatment of such dia-
grams is standard, and the derivation can be found in
Ref. [4]. The upshot is that the summation over diagrams
contributing to M0 then yields Eq. (3.6). Although this is
only a diagrammatic proof of the Ward-Takahashi identity,
it is sufficient for our purposes and can be replaced by a
more general path-integral derivation if needed.

We now wish to extend this derivation of the Ward-
Takahashi identity to the case of five-dimensional QED
compactified on a circle. Our first step will be to repeat this
derivation in five uncompactified dimensions. However, it
is immediately clear that there is no change to the basic

result. Indeed, the entire diagrammatic proof sketched
above survives intact, and we obtain a five-dimensional
Ward-Takahashi identity which is identical to Eq. (3.6)
except with the replacement of Lorentz indices �! M �
ð�; 4Þ and the understanding that all momenta are now five-
momenta. Thus, each five-momentum now contains the
usual four-momentum as well as an additional fifth com-
ponent. The same is true, of course, for the external photon
momentum p.
Given this, our second and final step is to determine the

extent to which this five-dimensional Ward-Takahashi
identity survives the process of compactification. Of
course, compactification has the net effect of changing
each of these fifth components from continuous to discrete.
For cases in which the external photon attaches to a fer-
mion line stretching between incoming and outgoing fer-
mions, this discretization of the fifth component has no net
effect on the analysis and our algebraic results survive as
before.
However, we must also verify that there are no new

features for the cases in which the external photon attaches
to a fermion line which forms a closed internal loop. This
case is special because our integral over the internal loop
five-momentum now becomes an integration over the four-
dimensional loop-momentum components as well as a
discrete summation over the fifth component (i.e., a sum-
mation over the Kaluza-Klein index of the internal fer-
mion). To be more specific, we now wish to consider the
compactified five-dimensional analogue of Fig. 3 in which
each of the momenta shown represents a discretized five-
momentum, with ki � ðk�i ; k4i Þ and qi � ðq�i ; q4i Þ where
k4i � ri=R and q4i � si=R for some integers ri; si 2 Z. If
our external photon has five-momentum p � ðp�; n=RÞ,
the sum over insertion locations for this external photon
now leads to the compactified five-dimensional amplitude

eNþ1
X
r2Z

Z d4k1
ð2�Þ4 tr

��
i

k6 N �m

�
��N

�
i

k6 N�1 �m

�
��N�1 . . .

�
�

i

k6 1 �m

�
��1 �

�
i

k6 N þ p6 �m

�
��N

�
�

i

k6 N�1 þ p6 �m

�
��N�1 . . .

�
i

k6 1 þ p6 �m

�
��1

�
(3.9)

where quantities such as k6 are now understood to represent
five-dimensional contractions, i.e., k6 � kM�

M � k��
� �

ðr=RÞ~�4 where ~�4 � i�5 ¼ �0�1�2�3. Just as with
Eq. (3.8), we can once again separate these terms into
distinct integrations/summations and recognize that the
second term is the same as the first term except for the
algebraic replacements k

�
i ! k

�
i þ p� and ri ! ri þ n.

The first of these replacements has no net effect because
the four-momentum integration in Eq. (3.9) has infinite
range; indeed, this range remains infinite even when the
integrand is regulated through 4D dimensional regulation.
However, the situation with the second replacement is

k1

k3

q1

q2 qN−1

qN

kN−1

k2

k4

q3

kN

FIG. 3. A closed fermion loop with N photon lines, with
momentum labeling conventions as indicated. Summing over
all possible insertion locations of an additional photon with
momentum p� into this diagram produces the amplitude in
Eq. (3.8).
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slightly more subtle. Of course, the shift ri ! ri þ n does
not disturb the form of our KK summation because each
integer ri in the summation range is merely being shifted
by another integer n. However, in this case the summation
range is not infinite, since there is an implicit cutoff. It is
therefore only as this cutoff is removed at the end of the
calculation that the replacement ri ! ri þ n has no net
effect on the KK summation, and Eq. (3.9) holds. Of
course, for the special n ¼ 0 case (corresponding to a
zero-mode external photon), this last issue does not arise,
and the KK summation is unaltered regardless of the value
of the cutoff.

Putting the pieces together, then, we obtain a Ward-
Takahashi identity which is suitable for five-dimensional
spacetimes with a single compactified dimension:

pMMMðp; k1; . . . ; kN; q1; . . . ; qNÞ
¼ e

X
i

½M0ðk1; . . . ; kn;q1; . . . ; ðqi � pÞ; . . .Þ

�M0ðk1; . . . ; ðki þ pÞ; . . . ;q1; . . . ; qNÞ�: (3.10)

Here M is the five-dimensional Lorentz index, and all
momenta are understood to be five-momenta. As usual,
this identity holds in the presence of a suitable regulator.
In the special case of a zero-mode external photon, this
identity holds exactly; by contrast, for all other cases, this
identity holds up to terms which vanish as the regulator is
removed. The identity in Eq. (3.10) is quite powerful,
however: it implies not only that our ordinary (zero-
mode) photon satisfies the Ward-Takahashi identity (as
we might have always expected), but also that each of
our excited KK photons satisfies a Ward-Takahashi identity
as well. In this sense, our original five-dimensional gauge
invariance has survived the process of compactification—
even though our original five-dimensional Lorentz invari-
ance is broken.

Given this result, we can then generate a corresponding
five-dimensional Ward identity in the usual way. In gen-
eral, Ward identities follow from the Ward-Takahashi iden-
tities through LSZ reductions, but we do not really require
the full LSZ machinery. The critical observation is that the
two sides of Eq. (3.10), just like the two sides of its four-
dimensional version Eq. (3.6), have differing pole struc-
tures in momentum space: the left sides of these equations
have 2N þ 1 poles, while the right sides of these equations
have 2N poles. Nothing pertaining to the dimensionality of
the spacetime or the process of compactification reconciles
this mismatch in the pole structure. Consequently, passing
to the amplitudes of the corresponding amputated dia-
grams and placing our external particles on shell, we find
that the right sides of these equations cannot contribute,
and thus we obtain a five-dimensional Ward identity which
holds for each KK photon:

pMMMðp; k1; . . . ; kN; q1; . . . ; qNÞ ¼ 0: (3.11)

As with Eq. (3.10), it is understood that this is an exact
relation which holds for zero-mode external photons in the
presence of a regulator; for excited KK photons, by con-
trast, this relation holds up to terms which vanish as the
regulator is removed. However, this will be sufficient for
our purposes.
Finally, note that unlike theWard-Takahashi identities in

Eq. (3.10), the Ward identities in Eq. (3.11) hold only when
the external photon is on shell. However, in the special case
of amplitudes with no external fermions, the right side of
Eq. (3.10) vanishes identically. In such cases, we expect the
Ward identity in Eq. (3.11) to hold regardless of whether
the external photon momentum is on shell or off shell.
One important special case that we will shortly consider

is the case of diagrams with two external photons and no
external fermions—i.e., a five-dimensional vacuum-
polarization diagram. By momentum conservation, the
five-momentum pM ¼ ðp�; n=RÞ of the incoming photon
will be equal to the five-momentum of the outgoing pho-
ton. In this case, our amplitude MMN will have two five-
dimensional Lorentz indices, and our Ward identities take
the form

pMMMN ¼ pNMMN ¼ 0: (3.12)

Expanded out, these identities imply

p�M�� ¼ n

R
M4� and p�M�� ¼ n

R
M�4 (3.13)

as well as

p�M�4 ¼ n

R
M44 and p�M4� ¼ n

R
M44: (3.14)

Combining these two results, we thus obtain the relation

p�p�M�� ¼
�
n

R

�
2
M44: (3.15)

Of course, our derivation of these identities has been
purely diagrammatic and restricted to the special case of
five-dimensional QED compactified on a circle. Despite
these limitations, the arguments of this section should
easily generalize to the case of multiple extra dimensions
compactified on square tori. Moreover, we expect identities
like these to hold for even more general spacetimes and
compactifications. After all, Ward(-Takahashi) identities
are merely expressions of Noether’s theorem (and resulting
Schwinger-Dyson equations) applied to gauge symmetries.
As such, they can generally be proven using path-integral
techniques which should survive compactification as long
as no spacetime boundary is introduced (to produce new
surface terms). Thus, we expect a Ward identity of this type
to emerge whenever our higher-dimensional Lagrangian
exhibits a gauge symmetry and the spacetime is compacti-
fied on a smooth manifold.
Needless to say, the situation can be significantly differ-

ent for compactifications on orbifolds. The presence of
fixed points (or fixed lines/planes, etc.) can give rise to
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surface terms (such as brane-kinetic terms) which render
the would-be Ward identities invalid for all but the usual
four-dimensional Ward identity on the brane. Moreover,
even for compactifications on manifolds, we stress that the
corresponding Ward identities may not always take a rec-
ognizable form. Implicit in our derivation above was the
assumption that the Kaluza-Klein eigenfunctions coincide
with momentum eigenfunctions. While this is true for
compactifications on square tori, this will not be true in
general: for example, compactification on a sphere pro-
duces Legendre polynomials which have no interpretations
in terms of individual plane waves. Since our Ward iden-
tities are usually written in terms of momentum-space
wave functions, such compactifications can lead to Ward
identities involving many nontrivial interactions between
individual plane-wave modes.

Finally, we remind the reader that not every regulator
will respect these identities: certain UV divergences can
spoil the argument we made about insertions into a KK
fermion loop. For example, some regulators (e.g., the hard
cutoff) are known to violate these identities in four dimen-
sions. Thus, only certain regulators will respect these five-
dimensional Ward(-Takahashi) identities, and it is the goal
of this section to determine for which regulators this is the
case.

C. Imposing the Ward-Takahashi identities for KK
photons

We now impose our higher-dimensional Ward-
Takahashi identities in order to derive a relationship be-
tween the dimensional-regularization parameter � and the
summation cutoff � introduced in Sec. III A. We shall also
determine the precise value for � introduced in Eq. (3.3).

To do this, we consider the special case of Fig. 1 in
which the external particles are on-shell KK photons and
the particles running in the loop are a tower of KK fermi-
ons with bare mass M (so that the tree-level squared mass
of the rth excitation is given by r2=R2 þM2). Such a
diagram is indeed nothing but a five-dimensional
vacuum-polarization diagram with two Lorentz indices
ðM;NÞ corresponding to the external photons, and this is
precisely the sort of diagram for which we expect the
higher-dimensional Ward identities given in Eqs. (3.12),
(3.13), (3.14), and (3.15) to hold.

Prior to regularization, the different components of the
vacuum-polarization amplitude take the form

LMNn ¼ �4e2
Z 1

0
dx

X
r

Z d4‘

ð2�Þ4

�
�

1

‘2 � ‘42 �M2ðxÞ
�
2
�MN
n (3.16)

where

�
��
n ¼ 2‘�‘� þ 2xðx� 1Þp�p� þ g��½�‘2 þ ‘42

þ ð2x� 1Þðn=RÞ‘4 �M2ðxÞ þ 2M2�;
��4
n ¼ p�½ð2x� 1Þðn=RÞ‘4 þ 2xðx� 1Þn=R�;

�44
n ¼ ‘2 þ ‘42 þ ð2x� 1Þðn=RÞ‘4

þ 2xðx� 1Þn2=R2 þM2ðxÞ � 2M2: (3.17)

Here n is the mode number of the external photon, and in
writing these expressions, we have continued to use the
notation and conventions listed at the beginning of Sec. II.
The procedure outlined in Sec. III A then demands that we
regularize four-momentum integrals by taking their dimen-
sionality to be d ¼ 4� �, truncate KK sums according to
Eq. (3.2), and also deform the integrands according to
Eq. (3.3). After performing the momentum loop integra-
tions, we then find that these components take the form

LMNn ¼ � ie2

4�2
R�

Z 1

0
dx

X�ð�ÞRþxn

r¼��ð�ÞRþxn
fMNn (3.18)

where

f��n ¼ f½ð2x� 1Þðn=RÞ‘4 þ 2M2 � 2M2ðxÞ�g��
þ 2xðx� 1Þp�p�gW;

f
�4
n ¼ p�½ð2x� 1Þ‘4 þ 2xðx� 1Þðn=RÞ�W;
f44n ¼ ½3‘42 þ ð2x� 1Þðn=RÞ‘4 þ 2xðx� 1Þðn=RÞ2

þ 3M2ðxÞ � 2M2�W þ ð1� 2�Þ‘42 þM2ðxÞ
(3.19)

with

W � 2

�
� �þ logð4�Þ � log½ð‘4RÞ2 þ ðMðxÞRÞ2�

þOð�Þ: (3.20)

Here � is the Euler-Mascheroni constant. Note that the KK
summation in Eq. (3.18) does not necessarily force the
terms which are linear with respect to ‘4 to vanish. This
is an important distinction from the case in which ‘4 is a
continuous variable.
Given these expressions for the vacuum-polarization

diagrams, we now demand that they respect the Ward
identities (3.13) and (3.14) for the KK-photon modes.
First, we immediately observe from the above results that

p�f
��
n ¼

�
n

R

�
f4�n : (3.21)

Thus, we find that the full Ward identity in Eq. (3.13) for
the amplitudes LMNn is satisfied identically as a result of a
Ward identity for the integrands fMNn for all external KK-
photon mode numbers n. This implies that the Ward iden-
tity in Eq. (3.13) holds regardless of whether the external
KK photon is on shell or off shell, and regardless of how �
and � are related in the internal KK sum in Eq. (3.18).
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Moreover, because this amplitude contains no external
fermions, the fact that the Ward identities hold when the
external photon momenta are off shell implies that the full
Ward-Takahashi identities hold as well. Thus, while
Eq. (3.21) is an important self-consistency check on our
approach, it does not yield any new information that helps
us determine �ð�Þ or �.

The situation, however, is different for the Ward identity
in Eq. (3.14). Examining the integrands, we find that

p�f
�4 �

�
n

R

�
f44 ¼

�
�
�
n

R

�
ð3‘42 þM2ðxÞÞ

þ ð2x� 1Þ‘4
�
p2 � n2

R2

��
W

�
�
n

R

�
½ð1� 2�Þ‘42 þM2ðxÞ�: (3.22)

Note that this vanishes identically when our external pho-
ton is the zero-mode photon (i.e., n ¼ 0) and when it is on
shell. Thus, we find that theWard identity in Eq. (3.14) also
holds automatically for zero-mode photons, as we expect.
Moreover, even when the external zero-mode photon is not
on shell, the Ward(-Takahashi) identity continues to hold
because the nonzero factor ðp2 � n2=R2Þ in Eq. (3.22)
comes multiplied by a single power of ‘4, which vanishes
over the symmetric r summation in Eq. (3.18). Together,
this is nothing but the preservation of four-dimensional
gauge invariance, which once again occurs regardless of
the precise relations between �, �, or �.

By contrast, in order to preserve five-dimensional gauge
invariance, we require that the Ward(-Takahashi) identities
in Eq. (3.14) hold for allKK photons—i.e., for all values of
n. We must therefore concentrate on the cases when n � 0,
and determine a value for � and a relation between the KK
summation cutoff � and � such that Eq. (3.14) holds. At
first glance, our main complication is that our cutoffs �
appear only in the KK summation limits. However, since
n � 0, we can utilize the variable-transformation methods
we developed in Sec. II. Specifically, following the steps
outlined in Sec. II, we change variables from x to û defined

in Eq. (2.13) and from r to r̂ defined in Eq. (2.14), and then
drop the hats from û and r̂. This amounts to the algebraic
substitution x! ðuþ jÞ=jnj, and we shall define y � ðuþ
jÞ=jnj. Following Eq. (3.5), we can then write

p�L
�4 � n

R
L44 ¼ ie2

4�2

signðnÞR�
R

X�R
r¼��Rþ1

1

jnj

� Xjnj�1

j¼0

Z 1

0
dufn (3.23)

where the integrand fn is the variable-shifted version of
Eq. (3.22), i.e.,

fn ¼
�
jnj

�
3ðr� uÞ2

R2
þM2ðyÞ

�
þ ð1� 2yÞðr� uÞ

�
�
p2 � n2

R2

��
Wþ jnj

�
ð1� 2�Þ ðr� uÞ2

R2
þM2ðyÞ

�
:

(3.24)

Here W continues to represent the quantity in Eq. (3.20),
now written with the algebraic substitutions ðR‘4Þ2 ! ðr�
uÞ2 and M2ðxÞ ! M2ðyÞ.
It is not immediately clear which relationships between

�, �, and � would force the expression in Eq. (3.23) to
vanish as � ! 1 (or as �! 0), or whether such a relation
even exists. However, we may consider the special case in
which the external KK photons are on shell. In other words,
we can restrict our attention to the Ward identities rather
than the full Ward-Takahashi identities. Once we deter-
mine the appropriate relationships between �, �, and � for
the purposes of maintaining the Ward identities, we can
then verify that the full Ward-Takahashi identities hold as
well.
When the external KK photons are on shell, p2 �

n2=R2 ¼ 0 and M2ðyÞ ¼ M2. Our integrand is also inde-
pendent of j, which enables us to explicitly perform the j
summation in Eq. (3.23) and soak up the overall factor of
jnj. We then see that Eq. (3.23) is given by

p�L
�4 �

�
n

R

�
L44 ¼ ie2nR�

4�2R

X�R
r¼��Rþ1

Z 1

0
du

��
3ðr� uÞ2

R2
þM2

�
W þ ð1� 2�Þ ðr� uÞ2

R2
þM2

�

¼ ie2nR�

4�2R

X�R�1

r0¼��R

Z r0þ1

r0
dw

��
3w2

R2
þM2

�
W þ ð1� 2�Þw

2

R2
þM2

�

¼ ie2nR�

4�2R

Z �R

��R
dw

��
3w2

R2
þM2

�
W þ ð1� 2�Þw

2

R2
þM2

�

¼ ie2nR�

4�2R

�
2~�3

R2

�
1þ c� 2�

3
� logð~�2 þM2R2Þ

�
þ 2~�M2½1þ c� logð~�2 þM2R2Þ�

�
: (3.25)

Note that the second equality above follows from defining w � u� r and r0 ¼ �r, and the third follows from explicitly
performing the truncated KK sum. The fourth equality is obtained by substituting W ¼ 2=�� �þ logð4�Þ � log½w2 þ
ðMRÞ2� þOð�Þ and explicitly evaluating the w integral. Finally, in writing the final line, we have defined ~� � �R and
c � 2=�� �þ logð4�Þ.
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Given these results, we see that there are many different
ways in which this final expression can be made to vanish

as ~� ! 1, as required by ourWard identity for excited KK
photons. One possibility, for example, is to demand that �

and � be related to each other such that 1þ c ¼ logð~�2 þ
M2R2Þ up to terms which vanish more strongly than 1=~�3

as ~� ! 1. If we additionally take � ¼ 0, then both of the
terms in the final expression in Eq. (3.25) will vanish as
~� ! 1 (or as �! 0). However, such relations are not
suitable for a bona-fide regulator because they depend on
M. They thus depend on the particular fermions in the
theory, and are not theory independent.

It turns out that there is only one possible
M-independent regulator which does the job. For large

�, we can write logð~�2þM2R2Þ�2logð~�ÞþðMR=~�Þ2,
whereupon Eq. (3.25) takes the form

p�L
�4 �

�
n

R

�
L44 ¼ ie2nR�

4�2R

�
2~�3

R2

�
1þ c� 2�

3
� 2 log~�

�

þ 2~�M2ðc� 2 log~�Þ þOðMR=~�Þ
�
:

(3.26)

We therefore demand that c ¼ 2 log~� up to terms which

vanish faster than 1=~�3 as ~� ! 0, and we likewise choose
� ¼ 3=2. These choices guarantee that p�L

�4 �
ðn=RÞL44 ! 0 as �! 0, i.e., as � ! 1.

Thus, to summarize, we conclude that the proper rela-
tionship between � and � is given by

2

�
� �þ logð4�Þ þOð�Þ ¼ 2 logð�RÞ þ � (3.27)

where �! 0 as � ! 1. [For example, for the expression
in Eq. (3.26), we know that ��3 ! 0 as� ! 1.] We shall
discuss the role played by � below. We also conclude that

� ¼ 3=2: (3.28)

Equations (3.27) and (3.28) are the relations between �,
�, and � which preserve higher-dimensional gauge invari-
ance as well as higher-dimensional Lorentz invariance. As
such, these relations therefore define our EDR procedure.
Moreover, as we shall see, these relations are universal (as
demanded by our criterion of theory independence): as we
shall soon discuss, they apply for any loop diagram in any
theory with a circular extra dimension, even though we
derived them via a study of five-dimensional QED.

Finally, although we have shown above that these rela-
tions are sufficient to satisfy the Ward identities for all KK
photons, we have also verified through an explicit calcu-
lation that they actually satisfy the full Ward-Takahashi
identities for KK photons as well. In other words, the Ward
identities are satisfied regardless of whether the external
photon momenta are on shell or off shell.

We should also emphasize an important point. Clearly,
our EDR regulator should be applicable for all values of the

compactification radius R. As such, the EDR regulator
should be applicable even in the R! 1 limit in which
flat five-dimensional Minkowski space is restored and our
KK sum becomes an integral. However, even in this limit,
our EDR regulator does not reduce to ordinary ’t Hooft-
Veltman 5D dimensional regularization. This is because we
are continuing to treat the resulting five-dimensional mo-
mentum integral in an asymmetric way, even in the R! 1
limit, using 4D dimensional regularization for the large
spacetime dimensions and a hard cutoff for the extra space-
time dimension. Thus, while we continue to have a self-
consistent regulator even in the R! 1 limit, this is not the
flat five-dimensional version of the ordinary ’t Hooft-
Veltman regulator. Note that this situation was entirely
different for our extended hard-cutoff regulator in Sec. II.
In that case, the R! 1 limit does reproduce an ordinary
five-dimensional hard cutoff.
Another example of this difference between the R! 1

limit of the EDR procedure and the ordinary 5D ’t Hooft-
Veltman dimensional-regularization procedure is the fact
that EDR involves a deformation of the four-momentum
components of the form ‘�‘� ! ‘2g��=ð4� �Þ, but a
deformation of the extra fifth component of the form in
Eq. (3.3) with � ¼ 3=2. These deformations are intrinsi-
cally different, and remain so even in the R! 1 limit;
indeed, neither of these deformations is what would be
encountered in 5D ’t Hooft-Veltman dimensional regulari-
zation. These inequivalent deformations in some sense
compensate for the inequivalent regularizations applied
to the four-momenta and the KK momenta, and are pre-
cisely what are required in order to maintain the Ward-
Takahashi identities. Moreover, as we shall discuss below,
this is also necessary for the maintenance of five-
dimensional Lorentz invariance for all values of R.
Despite these differences, the overall form of the rela-

tion (3.27) is expected at a certain intuitive level. We know,
for example, that the 1=� pole in ordinary 4D dimensional
regulation corresponds to a logarithmic divergence, and a
logarithmic divergence manifests itself as the logarithm of
a cutoff�. Thus, a relation of the form in Eq. (3.27), which
relates 1=� to logð�Þ, is to be expected. What is nontrivial,
by contrast, is that this relation also preserves five-
dimensional gauge invariance, as expressed through the
preservation of the Ward identities. This, of course, was the
objective of our entire analysis.

D. Loose ends

Thus far, our development of the EDR regulator has led
us to the conditions in Eqs. (3.27) and (3.28). However,
there are a number of issues which we have not yet ad-
dressed:
(i) We have not yet demonstrated that these conditions

preserve higher-dimensional Lorentz invariance.
(ii) We have not yet demonstrated that these conditions

are universal—i.e., that they suitably regulate the
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divergences that might appear in any potential dia-
gram in a gauge-invariant five-dimensional theory
compactified on a circle, so that all possible ampli-
tudes satisfy appropriate Ward-Takahashi identities.

(iii) And finally, we have not yet discussed the signifi-
cance of the quantity � which appears in Eq. (3.27).

All of these issues must be addressed before we can
claim to have a bona-fide regulator for five-dimensional
theories compactified on a circle. The purpose of this
section is to address each of these issues, one at a time.

1. Higher-dimensional Lorentz invariance

We begin by considering the issue of higher-dimensional
Lorentz invariance.

It is, of course, unavoidable that reducing the dimen-
sionality of our uncompactified spacetime from four di-
mensions to D � 4� � dimensions breaks higher-
dimensional Lorentz invariance, since this dimensional-
alteration process cannot regularize discrete KK sums.
Therefore, the best one can do in a dimensional-
regularization setup is to restore the higher-dimensional
Lorentz symmetry at the end of a calculation, just as we
restore the Ward identities (and more generally, the Ward-
Takahashi identities) in the � ! 1 limit. However, we
already know that our extended hard-cutoff (EHC) regu-
larization procedure in Sec. III preserves five-dimensional
Lorentz invariance, by construction. Therefore, within the
context of a five-dimensional theory without gauge invari-
ance, if we can demonstrate that our EHC and EDR pro-
cedures lead to identical results after the cutoffs are
removed, we will have demonstrated that our extended
dimensional-regularization procedure preserves higher-
dimensional Lorentz invariance. Fortunately, we have
done this calculation within the context of the effective
field theories of KK modes discussed in Ref. [2], and the
results are positive.

Moreover, even within the calculation we have done in
Sec. III C, it is straightforward to verify that five-
dimensional Lorentz invariance is preserved. Recall that
we began with a vacuum-polarization amplitude in
Eq. (3.16) which a priori transforms as a five-dimensional
Lorentz tensor. However, after we imposed our regulator,
this expression took the form in Eq. (3.18) where the
integrands for the different Lorentz components are given
in Eq. (3.19). Clearly, the forms of these different Lorentz
components are quite different, and it seems that higher-
dimensional Lorentz invariance is broken. However, if we
take the R! 1 limit, the KK sum in Eq. (3.18) becomes
an integral. Imposing the relations in Eqs. (3.27) and (3.28)
and assuming that M2ðxÞ � 0, we then find that these
different components all collapse into the single form

LMN ¼ � ie25
8�3

Z 1

0
dx2xð1� xÞf½p2 � ðp4Þ2�gMN

� pMpNgW 0 (3.29)

where e5 �
ffiffiffiffiffiffiffiffiffiffi
2�R

p
e is the 5D gauge coupling and where

W 0 ¼ 4�� 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2ðxÞ

q
þOðm2=�Þ: (3.30)

Likewise, similar expressions can be derived for the case
with M2ðxÞ< 0. Clearly, the expression in Eq. (3.29)
transforms as a higher-dimensional Lorentz tensor. We
note that this happens only if we impose the relations in
Eqs. (3.27) and (3.28).
We shall present further explicit evidence of the preser-

vation of five-dimensional Lorentz invariance in Sec. IV.

2. Universality

In this section, we discuss the question of universality—
i.e., whether our EDR regulator can suitably regulate the
divergences that might appear in any potential one-loop
diagram in a gauge-invariant five-dimensional theory com-
pactified on a circle.
Thus far, we have only demonstrated that EDR preserves

the higher-dimensional Ward-Takahashi identities for
vacuum-polarization diagrams with two external KK pho-
tons. However, our regulator should respect higher-
dimensional gauge symmetry in general. This can only
happen if our extended dimensional-regularization proce-
dure preserves KK Ward identities and Ward-Takahashi
identities for arbitrary QED processes in higher
dimensions.
Even though there are an infinite number of possible

amplitudes in QED, it is sufficient for our regulator to
preserve KK Ward-Takahashi identities for loop diagrams
of the type shown in Fig. 3, with no external fermions. This
is because a divergence from this type of diagram is the
only effect which has the potential to spoil the proof of the
Ward-Takahashi identity that we outlined in Sec. III B.
Furthermore, power counting in 5D implies that diagrams
with six or more external KK photons should be finite.
Hence, we only need to check that the Ward-Takahashi
identities hold for amplitudes with at most five external
photons and no external fermions. Note that for such
amplitudes, the Ward-Takahashi identity reduces to the
same form as the Ward identity, except that the external
photons need not be on shell.
We can therefore consider the cases with 0 � N � 5

external photons individually. Just as elsewhere in this
paper, we restrict our attention to one-loop diagrams.
(i) N ¼ 0.—Diagrams of this form with no external

photons are mere vacuum bubbles which never con-
tribute to physical amplitudes.

(ii) N ¼ 1, 3, 5.—In these cases, our amplitudes have
odd numbers of external photons and vanish as a
consequence of Furry’s theorem. Note that Furry’s
theorem is itself a direct consequence of charge-
conjugation symmetry, and does not rely on gauge
invariance per se. Since our regulator respects
charge-conjugation invariance, the KK Ward-
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Takahashi identities are thus trivially satisfied in
each of these cases.

(iii) N ¼ 2.—This is the case we already examined, and
we have already shown that our dimensional-
regularization procedure respects KK Ward-
Takahashi identities for such vacuum-polarization
diagrams.

Given these conclusions, it only remains to check that
our regulator preserves the Ward-Takahashi identities in
the N ¼ 4 case, i.e., for ‘‘box’’ diagrams of the type shown
in Fig. 3 with four external KK photons.

Of course, if gauge invariance is truly maintained, then
power counting actually overestimates the degree of diver-
gence in each diagram. This is because gauge invariance
generally removes several powers of divergence from each
diagram. For example, we have already seen that gauge
invariance forces the vacuum-polarization diagrams to di-
verge linearly in the summation cutoff � rather than cubi-
cally. In general, inserting extra external photons will also
decrease the degree of divergence. Therefore, if we can
show that theN ¼ 4 box diagram is actually finite, then our
demonstration of universality is complete.

Evaluating the box diagram is a rather complicated
undertaking, even in four dimensions [5]. Therefore, rather
than providing a direct evaluation in five dimensions, we
shall instead provide an indirect argument that this diagram
is indeed finite. Our argument proceeds as follows. Let us
first consider the R! 1 limit in which our extra dimen-
sion is completely uncompactified. In this case, we know
that the ordinary ’t Hooft-Veltman 5D dimensional-
regularization procedure [3] provides a valid regulator
which preserves the Ward-Takahashi identities. Given
that the Ward-Takahashi identities are satisfied for this
regulator, it can be shown that our 5D box amplitude is
finite; this will be demonstrated explicitly below. Thus, we
conclude that the box amplitude is finite in the R! 1
limit. However, the process of compactifying the extra
spacetime dimension cannot change the leading-order di-
vergence structure of an amplitude; an amplitude which is
finite as R! 1 must be finite for all values of R. This
radius independence of the leading divergence structure
follows from the fact that the UV behavior of an amplitude
should be independent of the large-scale geometry of our
smooth spacetime manifold. (Indeed, one of the primary
alternative regularization methods to be discussed in
Sec. IV will depend on this fact.)

The only missing step, then, is to demonstrate that our
five-dimensional box amplitude is finite in the R! 1
limit if the Ward-Takahashi identities hold. However, this
result is well known in the four-dimensional case (see, e.g.,
Ref. [4]), and every step of the proof carries directly over to
the case of the one-loop box amplitude in five dimensions.
The only difference is that rather than having a degree of
divergence of �4 (as in four dimensions), this amplitude
now has a degree of divergence of �3.

One might worry that this proof has a potential loophole.
Since the individual diagrams contributing to the box
amplitude are separately superficially divergent, a bad
choice of regulator could disturb the cancellation between
diagrams triggered by gauge invariance, thereby yielding
an incorrect, divergent result. However, it is always pos-
sible to use a gauge-invariant regulator such as the Pauli-
Villars (PV) regulator in order to render each diagram
individually superficially convergent. There is then no
danger of destroying the cancellations between diagrams,
and the Pauli-Villars regulator can be lifted at the end of the
calculation. Indeed, this ‘‘pretreating’’ of each diagram
with a Pauli-Villars regulator can also be used to justify
the Furry-theorem cancellations inherent in theN ¼ 1, 3, 5
diagrams.
Within box diagrams, such cancellations are actually

rather robust. For example, in the four-dimensional case,
the required cancellations are known to occur in a special
case (so-called ‘‘Delbrück scattering’’ [5]) even when a
simple hard cutoff is used.
We thus conclude that the EDR procedure preserves the

Ward-Takahashi identities for all possible one-loop dia-
grams in five-dimensional QED compactified on a circle.

3. The fate of �

Thus far, we have shown that our momentum integra-
tions and KK sums must have cutoff parameters � and �
which are related through Eq. (3.27). This expression is
sufficient to describe the manner in which � and � are
correlated as �! 0 (or as � ! 1).
However, each side of this relation contains additional

terms [Oð�Þ and �, respectively] which vanish in these
limits. Even though these terms individually vanish, it
may seem that determining these terms can be critical for
performing radiative calculations. For example, in a given
calculation, � may eventually be multiplied by terms
which grow as � ! 1; this structure is already apparent
in expressions such as Eq. (3.26). Thus, it may appear that
� can give rise to nonzero terms which contribute to the
final results of radiative calculations, even after the cutoff
is removed.
Clearly, the precise form of the Oð�Þ terms will depend

on the specific diagram in question, much as we expect in
ordinary 4D dimensional regularization. Consequently, we
expect that � will also be a diagram-dependent quantity.
We stress, however, that the relation (3.27) is itself general.
Indeed, the only diagram dependence is in how certain
terms (which vanish as the cutoffs are removed) are real-
located between Oð�Þ and � in Eq. (3.27).
We shall now discuss the fate of � as a contributing

factor in any field-theory calculation. As we shall explain,
no physical observable can possibly depend on �.
Therefore, it is never necessary to calculate � for any given
diagram, and the universal relation in Eq. (3.27) is suffi-
cient for the calculation of any physical observable.
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This claim ultimately rests on the observation that any
physical observable must be finite and regulator indepen-
dent. For example, a diagram such as that in Fig. 1 repre-
sents a one-loop mass shift for the external particle. If Ln
represents the value of this diagram when the external
particle carries KK mode number n, we know that each
Ln might individually be divergent; it is only after renor-
malization that such a one-loop corrected mass becomes
finite. However, differences such as Ln � L0 represent one-
loop radiative contributions to the mass differences be-
tween different KK modes. Since such mass differences
are physical observables, quantities such as Ln � L0

should be both finite and regulator independent. In an
upcoming paper [2], we shall demonstrate that such differ-
ences are indeed regulator independent: even though the
raw expressions for the loop-diagram differences appear to
contain the regulator cutoffs, these cutoffs can all be elim-
inated through resummations and cancellations. However,
imposing the requirement of finiteness on these differences
will lead us to our observation about the irrelevance of �.

We begin by considering the result of any single dia-
gram. Our interest is in the behavior of such a diagram as
our cutoff is removed (i.e., as � ! 1), so we shall con-
centrate on only those contributions which potentially
survive as � ! 1. In general, following steps such as
those which led to Eq. (3.26), we may express the value

of any particular diagram LðiÞ in the form

LðiÞ 	 	ðiÞ
0 þ 	ðiÞð�Þ þ �ðiÞð�Þ
ðiÞð�Þ (3.31)

where the symbol ‘‘	’’ indicates that we are only retaining

terms which survive as � ! 1. In Eq. (3.31), 	ðiÞ
0 is a

diagram-dependent constant term, while 	ðiÞ and 
ðiÞ are
diagram-dependent diverging functions of �. Likewise,

�ðiÞ is our diagram-dependent � parameter. Even though

�ðiÞ is assumed to vanish as � ! 1, it multiplies a poten-

tially divergent function 
ðiÞð�Þ and thus can still give rise
to a contribution which survives as� ! 1. In general, this
contribution will take the form

�ðiÞð�Þ
ðiÞð�Þ 	 bðiÞ0 þ bðiÞð�Þ (3.32)

where once again bðiÞ0 is a potential constant

(�-independent) term and bðiÞð�Þ is a divergent function
of �.

Given these individual diagrams LðiÞ, the correction to a
physical observable at one-loop order will always take the

form of a linear combination
P
ciL

ðiÞ. Such a physical
observable will therefore have the divergence behavior

X
ciL

ðiÞ 	X
i

ci	
ðiÞ
0 þX

i

ci	
ðiÞð�Þ þX

i

cib
ðiÞ
0

þX
i

cib
ðiÞð�Þ: (3.33)

However, because this corresponds to a physical observ-

able, we know that this expression must be finite as � !
1. We therefore have thatX

i

ci	
ðiÞð�Þ ¼ �X

i

cib
ðiÞð�Þ: (3.34)

Moreover, as we shall explain below, we further claim thatX
i

cib
ðiÞ
0 ¼ 0: (3.35)

Thus, regardless of the precise value of the �ðiÞð�Þ func-
tions, we see that their entire purpose is simply to soak up
all other potential divergences from physically observable
quantities. In the end, the final result for any physical

observable in the � ! 1 limit is given by
P
ici	

ðiÞ
0 , and

this quantity is completely �ðiÞ independent.
Of course, a critical step here was the assumption in

Eq. (3.35) that
P
icib

ðiÞ
0 ¼ 0. However, this quantity must

cancel because it is regulator dependent (depending ulti-

mately on the individual �ðiÞ’s). Indeed, as we have dis-
cussed above, this quantity is related to the regulator-
dependentOð�Þ terms through Eq. (3.27), and as such these

bðiÞ0 terms are analogous to the factors of logð4�Þ or the
Euler-Mascheroni constant � which appear in
dimensional-regularization calculations but have no ob-
servable effects. The cancellation in Eq. (3.35) is merely
the expression of the fact that such terms will always
cancel in the calculation of any physical observable.
Thus, we conclude that the � terms in Eq. (3.27)—

although potentially important for the value of any indi-

vidual diagram LðiÞ—will ultimately be irrelevant for the
calculation of any physical observable. Therefore, as in-
dicated above, it is never necessary to calculate � for any
given diagram, and the universal relation in Eq. (3.27) is
sufficient for the calculation of any physical observable.

IV. COMPARISONS WITH OTHER REGULATORS

In this section, we shall compare our techniques with
other regulators that exist in the literature for dealing with
higher-dimensional quantum field theories with compacti-
fied extra dimensions. We shall pay particular attention to
existing methods which respect to higher-dimensional
symmetries, with the purpose of demonstrating that our
regulator successfully reproduces results that can be ob-
tained by these methods. However, we also shall explain
why our particular regulators are useful, despite the exis-
tence of alternatives. We shall also illustrate the unwanted
complications that can emerge when one employs a regu-
lator which does not respect higher-dimensional
symmetries.

A. Review of existing techniques

We begin by reviewing various regularization tech-
niques which have already appeared in the literature.
The most straightforward way to analyze radiative cor-

rections on extra dimensions is to decompose our higher-
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dimensional fields in terms of KKmodes, and to treat these
modes as heavy 4D particles. One defines the theory up to
some large but finite cutoff �, and the Euclidean four-
momenta of particles and their KK masses are assumed to
lie below this cutoff, i.e.,

p2
E � �2; (4.1)

and

m2
n � �2; (4.2)

where mn is the mass of the nth KK mode. For compacti-
fications on a circle, these masses are given by the usual
dispersion relation:

m2
n ¼ m2 þ n2

R2
: (4.3)

In the usual treatments, Eqs. (4.1) and (4.2) are taken to be
independent constraints, since such a regulator is insensi-
tive to the original higher-dimensional nature of the KK
theory. By contrast, the dispersion relation in Eq. (4.3) is
nothing but the expression of 5D Lorentz invariance which
exists at tree level.

This sort of regulator has been applied in a number of
calculations going all the way back to the original work in
Ref. [6], in which it was shown that gauge coupling uni-
fication can occur with a significantly reduced unification
scale in a higher-dimensional context, and that large fer-
mion mass hierarchies can also be generated. Since then,
regulators such as these have been applied in a variety of
contexts having to do with precision studies of extra di-
mensions and their diverse effects on ordinary four-
dimensional (zero-mode) physics.

These studies all have one feature in common: they are
concerned with the properties of the zero modes and the
radiative corrections to these properties which are induced
by the existence of the excited KK states. Because the
properties of the zero modes are sensitive to only four-
dimensional symmetries, regulators which break five-
dimensional symmetries but preserve four-dimensional
symmetries are sufficient for such calculations. For ex-
ample, it is straightforward to demonstrate that for calcu-
lations involving only zero modes, the sort of 4D regulator
defined in Eqs. (4.1) and (4.2) and the 5D regulator we
introduced in Sec. II will yield results whose divergences
differ by at most an overall multiplicative constant.
However, such a constant can be absorbed into the defini-
tion of the cutoff itself (which is particularly ambiguous in
a nonrenormalizable theory), and these effects necessarily
vanish as the regulator is removed. Thus, both types of
regulators will produce identical results for all zero-mode
calculations.

Unfortunately, such four-dimensional regulators are in-
sufficient for calculations of the properties of the excited
KK modes themselves. Such regulators are therefore also
insufficient for calculations that aim to compare the prop-
erties of the excited KK modes (such as their masses or
couplings) with those of the zero modes, as might be

extracted in a collider experiment. Indeed, as we shall
show explicitly in Sec. IVC, such four-dimensional regu-
lators lead to unphysical artifacts which are difficult to
disentangle from true, physical effects.
To date, there are very few calculational methods in the

literature which preserve the original higher-dimensional
symmetries that existed prior to compactification.
However, there are three notable exceptions which we shall
now discuss.
First, it can sometimes happen that no regulator is

needed, even in higher dimensions. For example, in
Ref. [7], a practical example of a regulator-independent
calculation in higher dimensions was given. Specifically,
the authors of Ref. [7] calculated g� 2 for the muon in a
higher-dimensional standard model compactified on uni-
versal extra dimensions. For the case of a single extra
dimension, they found that g� 2 received only finite
corrections from KK modes at one-loop order. Of course,
no regulator was needed in this case. However, they found
that such corrections diverged logarithmically in six
dimensions.
Second, it can sometimes happen that a four-

dimensional regulator might itself be sufficient in higher
dimensions. An example of this phenomenon appears in
Ref. [8]. Applying ordinary 4D dimensional regularization,
the author of Ref. [8] showed that it was possible to obtain
regulator-independent results for QED on a universal extra
dimension. A priori, one would have expected an infinite
number of counterterms for this theory, due to its non-
renormalizability. However, it was shown in Ref. [8] that
only a counterterm for the electric charge was needed for
describing corrections to the zero-mode coupling at one-
loop order. Specifically, the author of Ref. [8] calculated
the vacuum-polarization diagram L��ðpÞ ¼ �ðp2Þ�
ðp�p� � g��p2Þ for a photon zero mode with four-
momentum p, and found that the regulator � canceled in
the difference �ðp2Þ ��ð0Þ. Any divergence in a correc-
tion to a higher-order coupling operator (e.g., the electron
magnetic moment) is therefore solely a consequence of the
charge renormalization. Quantities such as g� 2 receive
finite (hence, regulator-independent) corrections.
However, the author of Ref. [8] showed that this sort of
cancellation occurs only at one-loop order in 5D, and
explicitly demonstrated that additional counterterms are
needed when there are two extra dimensions. Moreover,
there was no discussion of vertex corrections, which are
needed for calculating corrections to higher-order
operators.
To the best of our knowledge, there is only one other

regulator that has appeared in the literature which is in-
trinsically higher-dimensional and which preserves higher-
dimensional Lorentz and gauge symmetries. This is the
regularization method developed in Ref. [9]. This method
rests upon the observation that the effects of compactifica-
tion should evaporate in the UV limit, and consequently the
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UV divergence of a given diagram evaluated on a four-
dimensional space with a single compactified extra dimen-
sion should be the same as the UV divergence of the same
diagram evaluated on a five-dimensional flat (uncompacti-
fied) space. One can thus extract a finite result from any
given loop diagram in the compactified theory by subtract-
ing the value of the corresponding diagram in a theory
where all of the dimensions are infinite. In this way, one
therefore obtains [9] a recipe for extracting finite values
from loop diagrams, which respects the full higher-
dimensional Lorentz invariance as well as whatever
higher-dimensional gauge invariance might exist.

Operationally, the technique in Ref. [9] employs a
Poisson resummation in order to recast the sum over
Kaluza-Klein momentum mode numbers n within a loop
diagram on a compactified extra dimension as a convergent
sum over a ‘‘dual’’ set of winding numbers w. It turns out
that the w ¼ 0 contribution is nothing but the contribution
from the corresponding diagram evaluated on the uncom-
pactified space. This ‘‘regularization’’ procedure therefore
amounts to transforming to the dual winding-number basis
and then disregarding the contribution from the w ¼ 0
winding mode.

As an example, using this method, the authors of Ref. [9]
examined five-dimensional QED with massless fermions,
compactified on a circle. Although the zero-mode photon
does not gain a mass as a result of four-dimensional gauge
invariance, it was found that the masses of the excited KK-
photon modes are each shifted by a uniform amount,

�m2
n ¼ � e2

2�R2

X
w�0

2

j2�wj3 ¼ � e2�ð3Þ
4�4R2

; (4.4)

where e is the unit of electric charge and where the �
function represents the winding-number sum:

�ðnÞ � X1
w¼1

1

wn
: (4.5)

Indeed, most of the results obtained using this method
involve the � function as a sum over winding numbers.

We note that it was strictly for gauge fields that the
authors of Ref. [9] found such a splitting pattern. In an
upcoming paper [2], we shall show that such splittings also
occur for other types of particles, even when there is no
gauge symmetry. However, we find that these types of
splittings occur only when the four-dimensional masses
of our particles are nonzero (a case which was not consid-
ered in Ref. [9]).

It is important to note that the procedure introduced in
Ref. [9] is not, strictly speaking, a regulator. Indeed, a
regulator is a way of temporarily deforming a divergent
expression to render it finite; such deformed expressions
are then parametrized by a continuous deformation pa-
rameter (such as � or �) which is removed at the end of
the calculation. For example, let us assume that two ex-
pressions A and B are each separately divergent, but their

difference is a physical quantity and therefore finite. Rather
than separately evaluating A and B, we might instead
evaluate A0 and B0, where A0 and B0 are regulated, finite
expressions. We would then find that A0 � B0 is either
regulator independent, or tends to a finite value as the
regulator is removed.
By contrast, the procedure introduced in Ref. [9] is

simply a method of extracting a finite expression from a
single, infinite diagram. In general, we have no assurance
that this finite expression corresponds to any physical
quantity unless the particular calculation we are doing
happens to lead to this expectation for other reasons. For
example, let LnjR denote the value of a one-loop vacuum-
polarization diagram with an external KK photon with
mode number n, evaluated when our extra spacetime di-
mension has radius R, and let Lnj1 denote the value of the
corresponding vacuum-polarization diagram on an infinite
extra dimension. (The subscript n in the uncompactified
case indicates that the fifth component of our external
photon momentum is still given by n=R, just as in the
compactified case.) Let us also define ~LnjR as that portion
of LnjR which renormalizes the mass (i.e., ~L��n jR would
represent the piece within L��n jR which is proportional to
the metric g��). Within such a setup, we can then write
expressions such as ~LnjR � ~L0jR in the form

~L njR � ~L0jR ¼ ð ~LnjR � ~Lnj1Þ � ð ~L0jR � ~L0j1Þ (4.6)

where we have taken ~Lnj1 ¼ ~L0j1 (as occurs when appro-
priate renormalization conditions are applied, such as plac-
ing the external photons on shell in each case). Now, the
residual four-dimensional gauge symmetry requires that
~L0jR should vanish for all R (including R! 1), where-
upon we conclude that the physical difference ~LnjR � ~L0jR
is actually finite and given by ~LnjR � ~Lnj1. Indeed, it is for
this reason that this technique is capable of evaluating
radiative shifts to individual KK masses, even though it
was designed only to yield differences between corrections
to quantities in a compactified theory and an uncompacti-
fied one.1

1Note that in this specific example of KK-photon mass renor-
malization, the above results also imply that ~Lnj1 ¼ 0 for all n.
Of course, this can be easily understood as a result of five-
dimensional gauge invariance. Thus, in this particular case, our
original diagram ~LnjR was already finite by itself, and indeed the
subtracted term ~Lnj1 vanishes. We have nevertheless chosen to
present this somewhat ‘‘null’’ example because this is the
original example given in Sec. II of Ref. [9]. In this context,
we remark that although the result [9] quoted in our Eq. (4.4) is
correct, it would be incorrect to make the further assumption that
the w ¼ 0 contribution follows the same functional form as the
w � 0 contributions, diverging as 1=w with w! 0. Indeed, as
we have explained above, the w ¼ 0 contribution actually van-
ishes by five-dimensional gauge invariance, and a direct calcu-
lation of the w ¼ 0 contribution will yield an expression which
is either identically zero, or occasionally indeterminate in the
absence of a suitable regulator.
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Even though the method of Ref. [9] is not, strictly
speaking, a regulator, it is nevertheless possible to general-
ize this method slightly in order to make it a full-fledged
regulator. For example, we could always write any (diver-
gent) expression LnjR in the form

LnjR ¼ ðLnjR � Lnj1Þ þ Lnj1: (4.7)

The first term would then clearly be finite, and the second
term could be regularized using any of the standard higher-
dimensional regulators that apply in an uncompactified
space. Together, we would then have a bona-fide regulator
prescription which could be universally applied for any
expression LnjR. However, such a regulator would involve
two separate methods, one for each of the terms in
Eq. (4.7), and would thus be relatively awkward to employ
in practical settings.

B. Comparisons with previous results

If our EHC and EDR regulators are valid, they must
reproduce the results derived via the winding-number tech-
nique discussed above. In this section, we shall show that
this is indeed the case.

We first consider the squared-mass shift described by
Eq. (4.4). This shift is derived from the part of the vacuum-
polarization diagram in Eqs. (3.18) and (3.19) which is
proportional to g��. As above, we define ~L�� to be this part
of the diagram. Let us first evaluate this expression follow-
ing our EDR procedure. Utilizing our �ð�Þ relation in
Eq. (3.27) and explicitly performing the sum over KK
modes, we obtain

~L�� ¼ � ie2g��

4�2R2
lim

�R!1

�
4

9
ð�RÞ3 ��R

3
�

�
4

3
ð�RÞ3

þ 2ð�RÞ2 þ 2�R

3

�
logð�RÞ þ 2

X�R
r¼1

r2 logðr2Þ
�
:

(4.8)

Therefore, our regulator will not reproduce the result in
Eq. (4.4) unless

lim
�R!1

�
4

9
ð�RÞ3 ��R

3
�

�
4

3
ð�RÞ3 þ 2ð�RÞ2 þ 2�R

3

�

� logð�RÞ þ 2
X�R
r¼1

r2 logðr2Þ
�
¼? �ð3Þ
�2

: (4.9)

On the surface, such an identity would seem somewhat
improbable, since the left side involves individual terms
which are each manifestly divergent, while the right side is
finite. Indeed, some of the terms on the left side of Eq. (4.9)
are simple polynomials in �R, while the expression on the
second line is a discrete sum in which �R appears as an
upper limit.

Surprisingly, however, it is easy to verify numerically
that Eq. (4.9) holds to any precision desired. Indeed, the
expression on the left side of this identity experiences a
remarkably fast convergence to �ð3Þ=�2, already coming

within 10% of this value for �R ¼ 1, and coming within
1% for �R ¼ 9. In fact, Eq. (4.9) is an entirely novel
mathematical representation for the � function as the limit
of an infinite summation. Equivalently, inverting this rela-
tion provides an analytical form for the infinite sumP
rr

2 logðr2Þ, which can be useful in many contexts dealing
with KK summations.
This, then, provides a highly nontrivial check of our

EDR procedure. By demonstrating that EDR is consistent
with the technique in Ref. [9], we once again verify that
EDR indeed preserves both higher-dimensional Lorentz
invariance and higher-dimensional gauge invariance, as
promised. Although we have only shown a comparison
for one particular diagram, it is straightforward to verify
that similar cross-checks hold for other diagrams as well.
We can also verify that our EHC regulator is consistent

with the method of Ref. [9]. However, in order to make
such a comparison, we should examine a theory which
exhibits higher-dimensional Lorentz invariance but not
higher-dimensional gauge invariance.
For this purpose, let us examine a toy five-dimensional

model consisting of a single scalar � and a single fermion
 compactified on a circle and experiencing a Yukawa
interaction of the form G�ð �  Þ where G is the five-
dimensional Yukawa coupling. Indeed, this theory will be
analyzed more extensively in Ref. [2]. Within this theory,
let us examine the one-loop diagram which renormalizes
the squared mass of a KK excitation of the scalar field with
mode number n. This diagram is shown in Fig. 1, where we
now take the external lines to represent KK modes of the
scalar � and the internal lines to represent KK modes of
the fermion  . As before, we shall write LnjR to denote the
value of this diagram when our extra spacetime dimension
has radius R, and we shall write Lnj1 to denote the corre-
sponding diagram on an infinite extra dimension. Note that
in the latter case, despite the disappearance of discrete KK
modes, the subscript n continues to be specified as a
reminder that the fifth component of the external momen-
tum in such a diagram should continue to carry the value
n=R.
Because gauge invariance is not a symmetry of this

theory, it will be sufficient to employ our EHC regulator
in evaluating this diagram. Following the procedure out-
lined in Sec. II, we then obtain the expression

LnjR � Lnj1 ¼ ig2

4�2R2
lim

�R!1

�
4

9
ð�RÞ3 ��R

3

�
�
4

3
ð�RÞ3 þ 2ð�RÞ2 þ 2�R

3

�
logð�RÞ

þ 2
X�R
r¼1

r2 logðr2Þ
�
: (4.10)

The quantity� now represents our hard cutoff, which is the

same for both diagrams, and g � G=
ffiffiffiffiffiffiffiffiffiffi
2�R

p
represents the

Yukawa coupling of each individual KK mode. Note that
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the above result holds for any value of n, including n ¼ 0,
and holds independently of whether the 5D scalar is real or
complex (since the scalar does not run in the loop). By
contrast, the regularization technique of Ref. [9] leads to
the expression

LnjR � Lnj1 ¼ ig2

4�4R2
�ð3Þ ¼ iG2

8�5R3
�ð3Þ: (4.11)

However, once again, the identity in Eq. (4.9) ensures that
these results are equivalent. Indeed, we see that Eq. (4.9)
essentially serves as a mapping between the results derived
using the methods of this paper and those derived using the
methods of Ref. [9].

Although these UV regulators yield the same results for
mass corrections, they nevertheless treat infrared (IR)
divergences differently. Because there is no direct relation-
ship between the IR divergence that results in a given
diagram when an extra dimension is compactified and the
IR divergence that results when the extra dimension is
infinite, the regularization method of Ref. [9] does not
eliminate IR divergences. Indeed, the discrete KK sum
that results for a compactified extra dimension and the
KK integral that would result in the case of an infinite
dimension only become more dissimilar in the IR limit. Of
course, the regulators in this paper also leave IR divergen-
ces intact. However, because the method of Ref. [9] re-
quires that we pass from a KK momentum basis to a KK
winding basis in order to eliminate the UV divergence, any
IR divergence which remains is redistributed across all
winding modes, particularly those with large winding num-
bers, and can no longer easily be isolated. By contrast,
because our methods do not require any such reorganiza-
tion, the IR divergences that remain in our method continue
to be easily identified and treated.

As a concrete example of these ideas, let us consider the
vacuum-polarization diagram L��n in the case in which the
external KK photon of mode number n is on shell and the
bare (five-dimensional) mass M of the fermion running in
the loop is zero. Using our EDR procedure, we obtain the
results in Eqs. (3.18) and (3.19). Although the integrands in
Eq. (3.19) are finite for each nonzero r, the quantity W in
Eq. (3.20) diverges for n ¼ r ¼ 0, i.e., for a zero-mode
external photon with a zero-mode fermion running in the
loop. This is the IR divergence, encapsulated entirely
within the zero-mode contribution to the KK sum in
Eq. (3.18). By contrast, if we were to use the methods of
Ref. [9] to analyze the same vacuum-polarization diagram,
we would obtain the result

L
��
0 jR � L

��
0 j1 ¼ ie2

4�2

p�p�

3

X
w�0

1

jwj : (4.12)

In this case, the IR divergence is reflected in the divergence
of the winding-number sum, and cannot be isolated to a
particular term within Eq. (4.12).

Note that IR divergences can generally be regularized
through the introduction of small masses. For example, the

IR divergence discussed above is eliminated when the
fermion is given a small, nonzero, four-dimensional mass
or the external photon is slightly off shell. The introduction
of such a mass is relatively straightforward to implement
within the framework of the regulators in this paper.
However, the introduction of such a mass within the frame-
work of Ref. [9] might be significantly more complicated.
Such an IR regulator would inevitably be redistributed
across every contribution to the winding-number sum (ren-
dering it finite), but such a sum is not likely to have a
simple mathematical form. Alternatively, one could imag-
ine regulating a sum such as that in Eq. (4.12) directly (e.g.,
by inserting a small Boltzmann-like suppression factor),
but such an insertion is likely to break higher-dimensional
Lorentz invariance or gauge invariance. Moreover, it is not
clear that transforming such a factor back to the KK
momentum basis would provide it with any clear physical
interpretation.
We have seen, then, that the regulators we have proposed

in this paper are able to reproduce the corresponding
results of Ref. [9] when appropriate. However, to be truly
useful, our techniques also must apply in situations where
other methods do not. Since the technique in Ref. [9]
operates strictly in the winding-number basis, it loses
information about contributions to radiative corrections
from different physical momentum scales. This poses no
problem in calculations of radiative corrections to physical
parameters (e.g., masses and couplings) which would be
observed in experiments. However, it is not possible to
calculate Wilsonian renormalization-group evolutions of
such parameters in this scheme. If extra dimensions are
discovered at a future collider, it may be desirable to define
EFT’s for KK modes below the center-of-mass (CM) en-
ergy. Calculating the parameters in such a theory would
require the use of the Wilsonian renormalization group,
with the corresponding evolution of parameters running
from the UV to the CM energy. As we shall see in
Refs. [1,2], our regulators can handle such calculations
explicitly. Indeed, this was one of our original motivations
for developing the new regulators in this paper.

C. The necessity of preserving higher-dimensional
Lorentz invariance

In this section, we illustrate the pathologies which ap-
pear when using regulators that break higher-dimensional
Lorentz invariance. As a concrete example, we shall again
consider our toy five-dimensional model consisting of a
single scalar � and a single fermion  compactified on a
circle and experiencing a Yukawa interaction of the form
G�ð �  Þ where G is our five-dimensional Yukawa cou-
pling. Within this theory, we shall attempt to calculate the
radiative corrections to the KK masses of the scalar using a
regulator which preserves four-dimensional Lorentz in-
variance but breaks five-dimensional Lorentz invariance.
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Once again, we shall do this by calculating the differ-
ence between a loop diagram which renormalizes the
squared mass of a scalar mode in Yukawa theory and the
corresponding diagram for the zero mode. We define LnðpÞ
to be the squared-mass renormalization diagram for a
scalar with mode number n and four-momentum p (shown
in Fig. 1). For simplicity, we take the zero-mode masses
m and m� of these two fields to vanish. We then find

Ln ¼ 4ig2
Z 1

0
dx

X
r

Z d4‘E
ð2�Þ4

�
�
‘2E þ rðr� nÞ=R2 þ xð1� xÞn2=R2

ð‘2E þ ðr� xnÞ2=R2Þ2
�

(4.13)

where g � G=
ffiffiffiffiffiffiffiffiffiffi
2�R

p
. Note that we now write ðr� xnÞ=R

rather than ‘4 because we are no longer treating this
quantity as the fifth component of a five-vector.

The expression in Eq. (4.13) is badly divergent, and must
be regularized. Let us therefore place a 4D cutoff � on ‘E
and truncate the KK sum at this cutoff. In other words, we
shall take our integration limits to be given by ‘2E � �2 and
our summation limits to be given by ��R � r � �R.
Note that these constraints break higher-dimensional
Lorentz invariance, since they separately regularize four-
momentum integrals and KK sums. Nevertheless, impos-
ing these constraints, we find that

Ln�L0 ¼� ig2

4�2R2

X�R
r¼��R

Z 1

0
dx

�
ð�2x2 þ xÞn2

þðr� xnÞ4 þðr� xnÞ2½xðx� 1Þn2 � rðr�nÞ�
�2R2 þðr� xnÞ2

þ½2ðr� xnÞ2 þ xðx� 1Þn2 � rðr�nÞ�
� ½logð�2R2 þðr� xnÞ2Þ� 2 logðr� xnÞ�
� r2½logð�2R2 þ r2Þ� 2 logr�

�
: (4.14)

Clearly, this expression diverges linearly with �. This is a
problem, since this quantity corresponds to the difference
between squared masses, which should be finite.

The reason this divergence appears is that the loop
diagrams in this equation do not determine renormalized
masses by themselves. Rather, each KK mode should have
a counterterm for its squared mass, and a calculation of a
squared-mass difference must include these counterterms.
Such terms would indeed cancel artificial violations of
Lorentz invariance. However, they also would break the
KK dispersion relation for the underlying theory, since
they are part of the bare Lagrangian.

This situation has an analogue in four-dimensional
QED. If we use a hard cutoff to regularize divergences in
that theory, we then generate a photon mass which is
proportional to the cutoff. As well as being divergent,
such a mass term violates gauge symmetry. However, as
is well known (see, e.g., Ref. [4]), this problem can be

remedied by introducing counterterms which break gauge
invariance and cancel the unphysical effects from loop
diagrams. However, our bare Lagrangian is then no longer
gauge invariant.
In 5D Yukawa theory, the relevant symmetry is higher-

dimensional Lorentz invariance. In the spirit of QED, it
may therefore appear straightforward to introduce counter-
terms to cancel regulator-induced violations of 5D Lorentz
invariance. However, the compactification of an extra di-
mension also breaks higher-dimensional Lorentz invari-
ance at finite scales. This violation can manifest itself in
an EFTas a violation of the usual 5D dispersion relation, as
in the case of Eq. (4.4). Therefore, counterterms would not
only have to cancel unphysical violations induced by our
regularization scheme, but nevertheless preserve the bona-
fide effects induced by the compactification itself. Without
a priori knowledge of what the results should be, it would
be quite difficult to determine which effects would be
physical and which would not. Indeed, it would be difficult
to deduce the form of appropriate counterterms if we limit
ourselves to this sort of regulator. Such a regulator, there-
fore, does not lend itself to a straightforward calculation
involving the relative renormalizations of the parameters
describing a KK spectrum.
As required, the regulators developed in this paper yield

finite loop-diagram differences and thus avoid this prob-
lem. We therefore did not need to introduce counterterms,
since the squared masses of KK states—which are renor-
malized by our loop diagrams—all carry the same diver-
gence at tree level. Indeed, the dimensionless squared
masses are given by the relation m2

nR
2 ¼ m2

0R
2 þ n2 at

tree level, and only the m2
0R

2-term diverges in the UV.

Hence, only one counterterm is needed for the entire mass
spectrum of KK states, and the effects of such a counter-
term cancel when calculating differences between squared
masses. Similar results hold for other types of loop dia-
grams. It is for this reason that our techniques can produce
regulator-independent EFT’s. These issues will be dis-
cussed in more detail in Ref. [1].

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we proposed two new regulators (EHC and
EDR) for quantum field theories in spacetimes with com-
pactified extra dimensions. Although they are based on
traditional four-dimensional regulators, the key new fea-
ture of these higher-dimensional regulators is that they are
specifically designed to handle mixed spacetimes in which
some dimensions are infinitely large and others are com-
pactified. Moreover, unlike most other regulators which
have been used in the extra-dimension literature, these
regulators are designed to respect the original higher-
dimensional Lorentz and gauge symmetries that exist prior
to compactification, and not merely the four-dimensional
symmetries which remain afterward.
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As we have discussed, these regulators should be par-
ticularly useful for calculations of the physics of the ex-
cited Kaluza-Klein modes in any higher-dimensional
theory, and not merely the radiative effects that these
excited KK modes induce on zero modes. Indeed, by
respecting the full higher-dimensional symmetries, our
regulators avoid the introduction of spurious terms which
would not have been easy to disentangle from the physical
effects of compactification.

Moreover, as part of our work, we also derived a number
of ancillary results. For example, in gauge-invariant theo-
ries, we demonstrated that analogues of the Ward-
Takahashi identity hold not only for the usual zero-mode
(four-dimensional) photons, but for all excited Kaluza-
Klein photons as well.

Clearly, the analysis we have done in this paper only
begins to scratch the surface of what is possible. For
example, this analysis has been restricted to five dimen-
sions and, in many places, to one-loop amplitudes. While
this clearly covers the most pressing situation that might
emerge if extra dimensions are ultimately discovered, it
would be interesting to extend our discussion to multiloop
amplitudes (where appropriate) and to even higher dimen-
sions. In particular, both of these extensions would involve
additional KK sums which would require their own cutoffs,
and thus there will be additional balancing constraints that
must be imposed between these cutoffs and the regulator of
the four-dimensional momentum integral in order to pre-
serve higher-dimensional Lorentz and gauge symmetries.

Other sorts of extensions are also possible. For example,
in more than five dimensions, we can consider compacti-
fications not just on flat spaces (such as we have considered
here), but also spaces with their own intrinsic curvatures or
warpings. Moreover, even for flat compactification mani-
folds, there remains the possibility of having nontrivial
shape moduli [10]. All of these possibilities represent
different types of mixed spacetimes which would have
unusual KK spectra and which would, in principle, require
their own analysis.

There are also other important geometric extensions to
consider, even in five dimensions. For example, although
the analysis of this paper has been restricted to compacti-
fication on a smooth manifold, it is important to extend
these results to orbifolded spacetimes which contain
boundaries (i.e., branes, or orbifold fixed points). Indeed,
compactification on such orbifolded geometries is ulti-
mately required in order to obtain a chiral theory in four
dimensions. In such theories, some processes are purely
four dimensional (occurring on the branes) while others are
five dimensional and still others are mixed. Although the
existence of brane-kinetic terms [11] can have a profound
effect on the physics on the brane, we nevertheless expect
our higher-dimensional Ward identities to be preserved in
the bulk. Regulators such as those we have developed here
should therefore continue to have application for the bulk

physics in such situations. This will be discussed in more
detail in Ref. [2].
Even within the framework of compactification of a

single extra dimension on a circle, there remain important
extensions of our work which we have not considered. For
example, we have primarily focused on Abelian gauge
theories and their associated Ward identities, but we have
not considered their non-Abelian extensions. This will be
important for ultimately calculating radiative corrections
within, say, a higher-dimensional standard model.
Likewise, in this paper we often considered five-
dimensional QED. Although this theory is nonrenormaliz-
able, we restricted our attention to the usual electron/
photon coupling and did not allow additional nonrenorma-
lizable interactions. Even though such interactions should
continue to respect our higher-dimensional Lorentz and
gauge symmetries (therefore requiring the use of a regula-
tor such as we have developed here), the existence of such
interactions can be expected to lead to complications be-
yond those considered in this paper.
Finally, it should be stressed that this work focused on

only one rather narrow type of regulator, namely, one in
which our KK sums were regulated through a hard cutoff
�. However, other types of regulators are possible. For
example, an infinite KK sum might alternatively be regu-
lated through the introduction of Boltzmann-like suppres-
sion factors, e.g., X

r

1

r
���! X

r

1

r
e�yjrj (5.1)

where y > 0 is a regulator parameter. One would then take
y! 0 at the end of the calculation, while simultaneously
maintaining a certain relation between y and � (analogous
to our EDR relation between � and �) so that five-
dimensional Lorentz invariance and gauge invariance are
maintained. However, it is not clear what physical inter-
pretation might be ascribed to such a regulator parameter y.
Similarly, we again mention the possibility of preserving
gauge invariance even with a hard cutoff, but with suitable
counterterms as well. However, such counterterms will
necessarily break the original higher-dimensional symme-
tries of our bare Lagrangian.
Another approach, first advanced in Ref. [12], is to

rewrite the KK sum as a contour integral in which the
different terms of the sum emerge from the poles of the
integrand. One can then apply a regularization procedure
akin to ’t Hooft-Veltman dimensional regularization to the
integral [12,13]. However, this still results in two indepen-
dent regulators, one for the KK integral and another for the
four-momentum integral, and five-dimensional symme-
tries will generally not be protected unless these two
regulators are balanced in a manner similar to what we
have outlined in this paper.
There are, of course, other potential methods of deform-

ing our KK summations. For example, we might Poisson-
resum our KK summation, and attempt to apply one of the
above regulators to the Poisson-resummed version instead.
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Note that Poisson resummation of the KK sum was origi-
nally introduced into the large extra-dimension context in
Ref. [14]. There are also other techniques which might be
employed, such as proper-time regulators, zeta-function
regularization, etc. Indeed, these methods ultimately play
various roles in the different approaches sketched here.
Other approaches towards treating the KK summation
based on dimensional regularization have also been uti-
lized in various calculations [15].

Another possibility might be to employ a so-called
‘‘mixed propagator’’ formalism [16]. In such a formalism,
the four large dimensions are treated in momentum space,
as usual, while the compactified extra dimension is treated
in position space. This avoids the introduction of a KK sum
altogether. However, in such situations the higher-
dimensional divergences are not eliminated—they are the
same as would appear in the corresponding higher-
dimensional uncompactified theory, as this formalism
makes abundantly clear. This formalism thus lends itself
naturally to the treatment given in Ref. [9].

Of course, it is possible that the true UV limit of a given
higher-dimensional theory is not higher dimensional at all
[17]. Such ‘‘deconstructed’’ extra dimensions would
change the UV divergence structure of the theory in a
profound way that would eliminate the need for many of
these different regularization techniques. Indeed, decon-
struction can also be used as an alternative technique for
performing many of the sorts of radiative calculations for
excited KK modes that have been our focus in this paper
[18]. Similarly, radiative corrections may be finite in cases
in which there exist additional symmetries (either unbro-
ken or softly broken) to protect against divergences. A
well-known example of this would include radiative cor-
rections in theories with supersymmetry broken through
the Scherk-Schwarz mechanism [19] (leading to so-called
‘‘KK regularization,’’ in which the full KK summations
lead to finite results), or in theories in which the Higgs is
identified as a component of a higher-dimensional gauge
field and consequently has a mass for which radiative
corrections are protected by gauge symmetries [20].

Likewise, such higher-dimensional theories may ulti-
mately be embedded into string theory. String theory pro-
vides entirely new methods of eliminating divergences
which transcend what is possible in quantum field theories
based on point particles. Indeed, there even exist several
string-inspired methods of regularizing field theories di-
rectly [21–23].

Another possibility is to retain the full higher-
dimensional space but take a nonperturbative approach
towards extracting exact solutions for the excited KK
masses and couplings. Ideas in this direction have been
advanced, e.g., in Ref. [24].

In this connection, it might seem strange that we have
not discussed the PV regulator. Indeed, such a regulator
preserves both Lorentz invariance and gauge invariance,
even in higher dimensions, and may be more than sufficient

for certain calculations (see, e.g., Refs. [25,26]). However,
there are several reasons why such a regulator may not
ultimately be suitable for general calculations in mixed
spacetimes, especially those focusing on the radiative cor-
rections to the properties of the excited KK modes. First,
the PV regulator does not preserve non-Abelian gauge
symmetries, even in four dimensions. Second, even for
the Abelian theories which have been our main focus in
this paper, compactification introduces a major algebraic
problem: the PV regulator parameter � becomes inextri-
cably entangled in our KK mode-number sum except in
particular situations (see, e.g., Ref. [26]) in which the
radiative corrections are already known to be finite. Thus,
this regulator is particularly unsuited for the mixed space-
times which have been our main focus in this paper. Of
course, it might seem that such a PV regulator might
nevertheless be suitable for numerical studies which do
not require closed-form analytical expressions. However,
even this is not possible, because there is a third compli-
cation: unitarity is not preserved using a PV regulator
unless the regulator parameter � is sent to infinity. Thus,
it is likely to be difficult to treat such a system numerically
with any confidence when our PV regulator is in force.
By contrast, the regulators we have developed in this

paper are designed to be relatively straightforward, intui-
tive, and easy to use for practical calculations. Indeed, as
mentioned at the end of the Introduction, this paper is only
the first in a two-part series. In the following article [1], we
shall discuss how these new regulators may be employed in
order to derive regulator-independent effective field theo-
ries at different energy scales. We shall also discuss how
these regulator techniques can be used to extract finite
results for physical observables that relate the physics of
excited KK modes to the physics of KK zero modes.
Moreover, in a third paper [2], we shall study the manner
in which the KK masses and couplings in various higher-
dimensional effective field theories evolve as functions of
energy scale, and as extra spacetime dimensions are slowly
integrated out in passing from the UV to the IR. In par-
ticular, in Ref. [2], we shall study how the well-known tree-
level relations amongst the tower of KK masses and
amongst their couplings are ‘‘deformed’’ when radiative
effects are included. In each case, we shall see that it is the
regulators we have developed here which will enable these
calculations to be performed.
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