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We consider the model of a false-vacuum bubble with a thin wall where the surface energy density is

composed of two different components, ‘‘domain-wall’’ type and ‘‘dust’’ type, with opposite signs. We

find stably oscillating solutions, which we call ‘‘breathing bubbles.’’ By decay to a lower mass state, such

a breathing bubble could become either (i) a child universe or ii) a bubble that ‘‘eats up’’ the original

universe, depending on the sign of the surface energy of the domain-wall component. We also discuss the

effect of the finite-thickness corrections to the thin-wall approximation and possible origins of the energy

contents of our model.
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I. INTRODUCTION

The inflationary universe scenario [1] proposes that the
observed universe originates from a region of false vacuum
that expands exponentially. Even if inflation occurred in a
small region in a highly inhomogeneous spacetime, the
region could evolve into the entire observable universe.
Such a picture can resolve many cosmological puzzles,
such as the horizon, flatness, and monopole problems.

The detailed implementation of local inflation in an
inhomogeneous spacetime has been studied in the
literature. The original model is a spherical false-vacuum
(de Sitter) bubble embedded in an asymptotically flat
(Schwarzschild) spacetime, which was devised by Sato
et al. [2] in the context of old inflation [1]. This model
was investigated systematically by Blau, Guendelman, and
Guth [3] with Israel‘s junction conditions [4]. Their clas-
sical solutions show that a false-vacuum bubble can indeed
expand to infinity, which is surrounded by black-hole
horizons and causally disconnected from the original uni-
verse. This new universe is called a ‘‘child universe.’’

Farhi and Guth [5] discussed whether such a false-
vacuum bubble can be created in the laboratory,
applying the Penrose theorem [6]. The theorem says that,
if (a) there exists a noncompact Cauchy surface,
(b) R��k

�k� � 0 for all null vectors k�, and (c) there

exists an antitrapped surface, then there exists at least one
past incomplete null geodesic. As a consequence of the
Einstein equations G�� ¼ 8�GT��, condition (b) is re-

written as T��k
�k� � 0. Because any standard theory of

matter, including a canonical scalar field, obeys this energy
condition, we may conclude that it is impossible to create
an inflationary universe in the laboratory. Condition (c)
represents the realization of an inflationary universe since

the existence of an antitrapped surface means the existence
of the cosmological horizon. To put it simply, a false-
vacuum bubble large enough to be an inflationary universe
cannot avoid an initial singularity, while a bubble without
an initial singularity is too small to expand.
Several ways to avoid this obstacle have been developed.

First, to escape from the Penrose theorem which applies to
any classical process, Farhi, Guth, and Guven [7] and
Fischler, Morgan, and Polchinski [8] considered a quantum
decay from a small bubble without an initial singularity to
a large bubble which becomes an inflationary universe.
Later, Guendelman and Portnoy [9] proposed a new model
where additional matter fields are introduced to stabilize a
bubble. A new aspect of this model is that an inflationary
universe can be created from a stable bubble. In the 2þ 1
dimensional spacetime version of that model [10] (where
the bubble surface is a 1þ 1 dimensional cord) universe
creation can be achieved by an arbitrarily small tunneling,
which they called ‘‘almost classical creation of a uni-
verse.’’ Most recently, Sakai et al. [11] studied the classical
and quantum creation of a universe out of a gravitating
magnetic monopole. It was shown that the classical crea-
tion of a child universe from nonsingular initial conditions
could take place. The special feature of the Reissner-
Nordström spacetime that a timelike singularity exists
makes it possible to create a child universe without past
singularity.
It has also been argued that properties of the surface

energy (tension) of a bubble can drastically affect the
bubble dynamics. For example, Ansoldi and Guendelman
[12] argued that, if the surface energy has a component that
originates from stringy matter, the creation of a universe
could take place at zero or arbitrarily low energy cost.
Recently Lee et al. [13] considered a false-vacuum bubble
with a nonminimally coupled scalar field. It was shown
that, if the effective gravitational constant is negative,
which is equivalent to the case where the surface density
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is negative, the bubble expands and ‘‘eats up’’ the ambient
universe instead of becoming a child universe.

In this paper we consider the model of a false-vacuum
bubble with a thin wall where the surface energy density is
composed of two different components, ‘‘domain-wall’’
type and ‘‘dust’’ type, with opposite signs. In this model,
as we shall show below, a stable bubble in a ‘‘breathing
mode’’ appears; after decreasing the bubble mass, which
could take place by radiation emission, the bubble starts
inflation and either (i) becomes a child universe or
(ii) ‘‘eats up’’ the ambient universe, depending on the
details of the surface energy. Child-universe solutions in
case (i) could avoid the Farhi-Guth obstacle described
above, by introducing matter which violates the energy
condition. In the simple model without finite-thickness
corrections, the bubble wall temporally becomes lightlike
when the surface energy vanishes; if we consider the finite-
thickness corrections, however, the effect prevents it from
becoming lightlike. We shall also discuss possible origins
of the exotic matter contents in Sec. IV and possible mass
loss mechanisms in Sec. V.

II. MODEL AND BASIC EQUATIONS

We consider the model of a false-vacuum bubble as
follows. The inside is a part of de Sitter spacetime,

ds2 ¼ �A�dt2� þ dr2

A�
þ r2d�2; A�ðrÞ � 1�H2r2;

(1)

the outside is a part of Schwarzschild spacetime,

ds2 ¼ �Aþdt2þ þ dr2

Aþ
þ r2d�2;

AþðrÞ � 1� 2GM

r
;

(2)

and the boundary (�) is an infinitesimally thin matter,

S�� �
Z þ0

�0
T��dn ¼ ð$þ �Þu�u� þ$ðg�� � n�n�Þ

(3)

where �,$, u�, and n� are the surface energy density, the

surface pressure, the four-velocity �, and the normal vec-
tor of �, respectively.

For matter fields on �, we assume that the wall is
composed of two components, domain-wall type and dust
type, with opposite signs:

� ¼ �þ m

4�R2
; $ ¼ ��; m�< 0; (4)

where R is the areal radius of the wall. The two distinct
cases (i) �> 0, m< 0 and (ii) �< 0, m> 0 correspond
to two different physical situations. In case (i), while �>
0 represents a conventional domain wall, the dust contri-
butionm< 0 has the opposite sign to that of ordinary dust.

A simple model which can give rise to this sign could be
‘‘ghost matter,’’ such as an oscillating scalar field where
both kinetic and mass terms have opposite signs to the
standard ones in the action. In case (ii) m> 0 just repre-
sents conventional dust, and�< 0 is not so exotic because
it represents a negative ‘‘cosmological constant’’ in the
wall. In fact, negative brane tensions have been considered
in brane world scenarios.
The junction condition at � is given by [3,4]

�� � �þ ¼ 4�G�R; (5)

where

�� � @nR
� ¼ "�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
dR

d�

�
2 þ A�

s
;

" ¼ þ1 or � 1:

(6)

Note that the signs of �� determine the global spacetime
structure [3]. Introducing dimensionless quantities,

~R � HR; ~� � H�; ~M � HGM;

~� � 4�G�

H
; ~� � 4�G�

H
; ~m � HGm;

(7)

we rewrite (5) with (6) as

�
d ~R

d~�

�
2 þUð ~RÞ ¼ 0; (8)

Uð ~RÞ � 1� ~R2

2
� ~M

~R
� ~�2 ~R2

4
� 1

4 ~�2

�
1� 2 ~M

~R3

�
2
; (9)

�� ¼ 1

2 ~� ~R

�
2 ~M
~R

� ~R2 � ~�2 ~R2

�
; ~� ¼ ~�þ ~m

~R2
:

(10)

Because we have assumed ~� ~m<0, the sign of ~�
changes at

~R ¼ ~R0 �
ffiffiffiffiffiffiffiffiffi
� ~�

~m

s
: (11)

Equation (10) indicates that �� diverges at ~R ¼ ~R0 unless

~M ¼ ~M0 �
~R3
0

2
¼ 1

2

�
� ~m

~�

�
3=2

: (12)

If ~M ¼ ~M0, the effective potential Uð ~RÞ is continuous and
finite for 0< ~R<1. On the other hand, if ~M � ~M0,
Uð ~RÞ ! �1 and jdR=d�j ! 1 as ~R ! ~R0. This means
the bubble wall becomes lightlike at ~R ¼ ~R0, where the
present formalism breaks down.
One way to avoid this problem is to take finite-thickness

corrections into account. According to Barrabes, Boisseau,
and Sakellariadou [14], the surface energy density with the
corrections is given by
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�� ¼ �0 þ 2��

R2

��
dR

d�

�
2 þ 1

�
; �0 � �þ m

4�R2
;

(13)

where � is a correction parameter, which is of the order of
(width)2=6. The basic equations (8)–(10) are unchanged
except for �.

Substituting (13) into (8) with (9) and expanding it by
�=R2 up to the first order, we obtain the modified equation
of motion,

�
d ~R

d~�

�
2 þU�ð ~RÞ ¼ 0; (14)

U�ð ~RÞ �
�
1� ~R2

2
� ~M

~R
� ~�2

0
~R2

4
� 1

4~�2
0

�
1� 2 ~M

~R3

�
2
�

� ð1þ ~�FÞ � ~�F; (15)

where

~� 0 � 4�G�0

H
; ~� � �H2;

F � ~�0 � 1

~�3
0
~R2

�
1� 2 ~M

~R3

�
2
:

(16)

Although our expression (14) with (15) looks different
from (3.28) with (3.29) in Ref. [14], but for the dust
term, they are equivalent under the linear approximation
in �. An advantage of our form is that no higher-order term
of ðd ~R=d~�Þ2 appears; then we can discuss the bubble
dynamics simply by the effective potential again.

III. SPACETIME SOLUTIONS

A. Solutions without finite-thickness corrections

Here we discuss some classical solutions of the equation
of motion (8) with the effective potential Uð ~RÞ in (9),
which does not include the finite-thickness corrections.

We consider two cases, (i) ~�> 0, ~m< 0 and (ii) ~�<
0, ~m> 0; note that the sign transformation, ~� ! �~�,
changes not Uð ~RÞ [i.e., ~Rð~�Þ], but the signs of �� (i.e.,
global spacetime structures).
Case (i): �> 0, m< 0.
Figure 1 shows some solutions of case (i), where we

depict Uð ~RÞ and the signs of ��. As we mentioned in
Sec. II, d ~R=d~� and �� diverge at ~R ¼ ~R0. Furthermore,
because �� are discontinuous (lim~R! ~R0�0�

� ! þ1 and

lim~R! ~R0þ0�
� ! �1), we should conclude that ~R< ~R0

FIG. 1 (color online). Solutions without finite-thickness cor-
rections. We choose ~� ¼ þ2, ~m ¼ �2:3 and (a) ~M ¼
0:7 ~M0 � 0:23 and (b) ~M ¼ 0:4 ~M0 � 0:13. Circles at the top
denote the region of �� > 0, while squares at the bottom denote
the region of �þ > 0. (a) and (b) represent a breathing bubble
and an expanding bubble, respectively. The transition from (a) to
(b) is interpreted as the creation of a child universe.
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FIG. 2. Conformal diagrams of the solutions in Fig. 1. The
upper figures show how the trajectory of the shell is embedded
in Schwarzschild full spacetime and in de Sitter full space-
time, where gray domains indicate nonexistent regions. The
lower figures show complete spacetimes. Iþ and I� represent
future and past null infinity, iþ and i� represent future and
past timelike infinity, and i0 represents spacelike infinity.
Jaggy lines denote spacelike singularity. Dashed lines represent
Schwarzschild horizons or de Sitter horizons.
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and ~R> ~R0 correspond to different spacetime solutions,
and that ~R cannot cross over ~R0 in either spacetime.
Although we cannot treat the system properly after the
wall becomes lightlike at ~R ¼ ~R0, it is reasonable to as-
sume that the wall reflects at ~R ¼ ~R0 and return to the
timelike oscillating trajectory. In Fig. 1(a), we obtain two
bounded (breathing) solutions, ~R< ~R0 and ~R> ~R0.
Judging from the signs of �þ, the smaller bubble is located
outside the Schwarzschild horizon (i.e., no horizon ap-
pears), and the larger bubble is located inside (beyond)
the horizons. Conformal diagrams of the solutions in Fig. 1
are shown in Fig. 2.

If we reduce ~Mwith the other parameters unchanged, we
obtain an unbounded solution, where the bubble expands to
infinity, as is shown in Fig. 1(b). Because the sign of �þ is
negative, this expanding bubble is also located inside
(beyond) the Schwarzschild horizons. Then we expect
that a breathing bubble of ~R> ~R0 in (a) can evolve into
an expanding bubble in (b) by mass radiation, which we
shall discuss in Sec. V. Because �þ$ ¼ m=4�R2 < 0,
which violates the energy condition of the Penrose theo-
rem, we could achieve the creation of a universe from
nonsingular initial conditions.

This scenario is similar to that in Ref. [11], where the
transition from a stable magnetic monopole (described by a
de Sitter bubble embedded in Reissner-Nordström space-
time) to an unbounded solution was obtained. In Ref. [11],
however, to realize the transition, the mass of the bubble
should increase, which could be obtained by dropping
matter onto the magnetic monopole. The process consid-
ered here is spontaneous rather than induced (like in
Ref. [11]), since the emission of scalar radiation from an
oscillating bubble takes place without external interven-
tion. One would have to take care of producing a breathing
bubble only.

Case (ii): �< 0, m> 0.
Figure 3 shows some solutions of case (ii), where the

behavior of ~Rð~�Þ is the same as that of case (i) in Fig. 1.

Therefore, we expect again that a breathing bubble in (a)
can evolve into an expanding bubble in (b) by a radiation
process. In contrast to case (i), however, the sign of �þ is
positive for ~R> ~R0, hence a breathing bubble becomes not
a child universe but a bubble which eats up the surrounding
universe. Conformal diagrams of the solutions in Fig. 3 are
shown in Fig. 4.

B. Solutions with finite-thickness corrections

In the breathing solutions discussed in Sec. III A, the
bubble wall becomes lightlike at ~R ¼ ~R0 (~� ¼ 0), where
the present formalism breaks down. Although we have
discussed the properties of the solutions under the reason-
able assumption that the wall reflects at ~R ¼ ~R0, here we
adopt an alternative way to avoid lightlike points: we
consider the corrections to the thin-wall approximation

FIG. 3 (color online). Solutions without finite-thickness cor-
rections. We choose ~� ¼ �2, ~m ¼ þ2:3 and (a) ~M ¼
0:7 ~M0 � 0:23 and (b) ~M ¼ 0:4 ~M0 � 0:13. Although the be-
havior of ~Rð~�Þ is identical to that in Fig. 1, the sings of �� are
opposite, and so is the spacetime structure. (b) represents a
bubble which eats up the original universe.
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FIG. 4. Conformal diagrams of the solutions in Fig. 3.
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due to the finite thickness of the domain wall, following
Barrabes et al. [14].

Figure 5 shows the effective potential (15) with the same
parameters in Fig. 1 except for ~�. Although there exists ~R0

where the surface energy density (13) vanishes, the effect
of finite thickness generates a barrier at ~R> ~R0, which
excludes the problematic point ~R ¼ ~R0 in a breathing
solution. The picture described in Sec. III A concerning
the generation of a child universe out of a breathing bubble
remains intact; the only modification is that the lowest
radius of the oscillation is now bigger.

IV. POSSIBLE ORIGINS OF ENERGY CONTENTS
OF THIN WALLS

A crucial point from which all of our results follow is the
‘‘exotic’’ nature of the energy contents of the thin wall. A
special discussion of this particular point seems therefore
necessary.

Case (i): �> 0, m< 0.
We think that our use of ‘‘negative energy dust’’ can be

justified as at least a qualitative classical representation of
quantum gravity effects. In this respect we can mention, for
example, the work by Padmanabhan and Narlikar [15],
where it was found that the quantization of the conformal
degrees of freedom of a metric leads to an effective energy
momentum tensor with negative energy density. Such an
energy momentum tensor gives the possibility of a
‘‘breathing universe,’’ very similar to a ‘‘breathing bubble’’
considered here: we investigate local phenomena of a
breathing bubble, while they considered global phenomena
of a breathing homogeneous universe. Bounces have been
found also in the context of loop quantum gravity [16] or
just by exploiting the effects of operator ordering ambigu-
ities in the Wheeler-de Witt equation [17] to obtain a
repulsive effect that prevents the universe from collapsing.
All of these quantum effects allow an effective classical
description which, however, involves violation of the en-
ergy condition.

Yet another very interesting possibility that should be
considered for producing a bounce that prevents a singu-

larity could be the use of ‘‘Newton’s Constant sign rever-
sal’’ found by Yoshimura [18] in the high temperature
Kaluza-Klein theory. Since what appears in the junction
conditions is the product of Newton‘s constant G and the
surface energy density �, changing the sign of G is mathe-
matically equivalent to changing the sign of�. This kind of
stabilization due to matter density becoming negative at
some point is known to be effective in cosmology [19],
where it can produce a bounce. Yoshimura [18] also con-
sidered bouncing universes obtained from the possible
change on G.
The other possible origin is a gauge field which has a

gradient term with the nonstandard sign. In the system of
the SO(3) magnetic monopole [11], the gauge field con-
tribution to energy density is given by �ð@nwÞ=R2 at the
wall, which has exactly the same properties as dust.
Therefore, if a gauge field has a gradient term with the
nonstandard sign for some reasons as discussed below, it
behaves just like dust with negative energy density.
Case (ii): �< 0, m> 0.
A domain wall is usually defined as the localized gra-

dient energy of a scalar field, which is given by �ð@n�Þ2.
Therefore, if a scalar field has a gradient term with the
nonstandard sign, domain walls with negative energy den-
sity appear. Such nonstandard gradient (kinetic) terms may
appear in string theories and have been discussed in the
context of inflation or dark energy [20].
Another possible origin is a scalar field with a standard

gradient term which is localized in the 2þ 1 dimensional
wall. We assume that the potential minimum is negative
and the field oscillates around it. Then the kinetic energy of
the field gives rise to a dust contribution, while the negative
value of the scalar potential at the minimum gives rise to a
domain-wall contribution. The complete system makes
perfect sense even classically, so that the ‘‘universe eating
bubbles’’ surprisingly offer us a very simple and consistent
system. From a field-theoretical point of view, there is
nothing special about supposing the potential minimum
to be negative.

V. POSSIBLE MASS LOSS MECHANISMS

As we have discussed, the main mechanism which
causes the transition from a breathing bubble to an infi-
nitely expanding bubble is mass radiation.
As was shown in Ref. [21], except for general relativity,

all alternative theories of gravity known at the time of the
publication of Ref. [21] produce monopole radiation of the
form

P ¼ 	2

9�

�
d3A

dt3

�
2
; (17)

where 	2 is a constant which is zero for GR, and A is given
in the linear approximation by

FIG. 5 (color online). Solutions with finite-thickness correc-
tions. We choose ~� ¼ 0:005; the other parameters are the same
as those in Fig. 1. A barrier appears and excludes the point ~R ¼
~R0 in a breathing solution.
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A ¼
Z

r2T00d
3x: (18)

If we consider a gravitational theory with 	2 > 0 in our
model, we can expect radiation emission from a breathing
bubble, which decreases its mass. Although 	2 is very
small, as constrained by experimental tests of gravity, the
breathing bubble is eventually converted into an expanding
bubble after sufficiently long oscillations.

Only in case (i), because Schwarzschild horizons appear,
could we also expect ordinary Hawking radiation as a mass
loss mechanism.

VI. CONCLUSIONS AND DISCUSSIONS

We have discussed the creation of a child universe or,
alternatively, the creation of a ‘‘universe eating’’ bubble in
the model where the thin wall is composed of two different
components with opposite signs: domain-wall type, where
the surface energy density is constant, and dust type, where
the surface energy density is proportional to 1=R2.

Because there are oscillating (breathing) bubbles as well
as expanding bubbles with lower mass, by radiation emis-
sion, a breathing bubble could evolve into a bubble which
expands to infinity. Global spacetime structures depend on
the details of the surface energy: (i) if the domain-wall
component is positive, this process creates a child universe,
which is expanding inside (beyond) black-hole horizons;
(ii) in the other case, no black-hole horizons appear and
such a bubble just ‘‘eats up’’ the ambient universe. Because
�þ$ ¼ m=4�R2, the sign of the dust mass m is crucial
for applying the Penrose theorem. In case (i) of m< 0, we
could achieve the creation of a universe from nonsingular
initial conditions.

In the simple model without finite-thickness corrections,
the bubble wall becomes lightlike when the total surface

energy density � vanishes. Although we cannot treat the
lightlike boundary in the present formalism, it is reason-
able to assume that the wall reflects at the moment it
becomes lightlike and returns to the timelike oscillating
trajectory. We also consider an alternative way to avoid
lightlike points: taking the corrections to the thin-wall
approximation due to the finite thickness of the domain
wall into account. Then the oscillations are cut off at a
radius slightly larger than the radius where � vanishes.
This does not affect the above picture of the creation of a
child universe from a breathing bubble by the process of
losing mass.
We have also discussed possible origins of the energy

contents of thin walls. A negative dust component in
case (i) could be originated from quantization of a metric,
or a gauge field with a nonstandard gradient term, whereas
a negative domain-wall component in case (ii) could be
originated from a scalar field with a nonstandard gradient
term, or a scalar field with a standard gradient term local-
ized in the 2þ 1 dimensional wall.
Finally we have argued possible mass loss mechanisms.

In both cases (i) and (ii), the necessary mass decrease to
turn breathing bubbles into expanding ones can be
achieved by considering small deviations from GR that
allow for monopole radiation. Only in case (i), because
Schwarzschild horizons appear, could we also expect ordi-
nary Hawking radiation.
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