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Recent calculations of the recoil velocity in black-hole binary mergers have found kick velocities of
=~ 2500 km/s for equal-mass binaries with antialigned initial spins in the orbital plane. In general the
dynamics of spinning black holes can be extremely complicated and are difficult to analyze and
understand. In contrast, the “superkick” configuration is an example with a high degree of symmetry
that also exhibits exciting physics. We exploit the simplicity of this test case to study more closely the role
of spin in black-hole recoil and find that the recoil is with good accuracy proportional to the difference
between the (I = 2, m = *2) modes of W, the major contribution to the recoil occurs within 30M before
and after the merger, and that this is after the time at which a standard post-Newtonian treatment breaks
down. We also discuss consequences of the (/ = 2, m = *=2) asymmetry in the gravitational wave signal
for the angular dependence of the signal-to-noise ratio and the mismatch of the gravitational wave signals

corresponding to the north and south poles.
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I. INTRODUCTION

More than 40 years after Hahn and Lindquist started the
numerical investigation of colliding black holes [1], a
series of breakthroughs starting in 2005 [2—4] has turned
the quest for stable black hole inspiral simulations into a
gold rush.

A particular focus of the last few months has been the so-
called recoil or rocket effect due to ““beamed” emission of
gravitational radiation [5-7]. By momentum conservation,
radiation of energy in a preferred direction corresponds to a
loss of linear momentum and the black hole that results
from the merger thus recoils from the center-of-mass frame
with speeds of up to a few thousand km/s. The velocity of
this “kick” depends on the configuration of the system
(e.g., the mass ratio and spins) and details of the merger
dynamics, but not on the total mass (velocity is dimension-
less in geometric units). From an astrophysical point of
view, the recoil effect is particularly interesting for massive
black holes with masses >10°M,,, which exist at the center
of most galaxies and may have a substantial impact on the
structure and formation of their host galaxies.
Observational consequences of large recoil have recently
been considered in [8,9].

The largest recoil effects have so far been found [10,11]
for a particularly simple configuration suggested in [12]
based on [13]: equal-mass binaries with (initially) antia-
ligned spins in the orbital plane. Based on numerical
simulations for different configurations and a post-
Newtonian approximation [13], an estimate of 1300 km/s
had been obtained for this configuration with maximal spin
[14]. The kicks found in full numerical simulations are
however even larger, e.g. 2500 km/s [10] or 1800 km/s
[11,12] for nonmaximally spinning black holes. This is of
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the order of 1% of the speed of light, and can be larger than
the escape velocity of about 2000 km/s from giant elliptical
galaxies. Extrapolating current numerical results for non-
maximal spins to maximally spinning black holes predicts
recoil velocities of up to = 4000 km/s [11]. Smaller but
still significant kick velocities have been found for several
different types of black hole configurations [15-22].
Estimations of the probabilities to obtain different kick
velocities for different mass ratios and high spins were
studied in [23].

The parameter space of the inspiral of spinning black
holes is very large, and although its full exploration will
require numerical methods, analytical understanding and
approximations will be crucial to render the task economi-
cal. The purpose of the present paper is to obtain a better
understanding of the physics that leads to the large kick
results recently observed, and, in particular, to compare
with post-Newtonian approximations, and see where such
approximations are accurate, and where they (currently)
break down.

We will refer to a configuration similar to that described
in [10,11], i.e., two equal-mass black holes with spins
antialigned and in the orbital plane, as a superkick con-
figuration. The superkick configuration exhibits “7 sym-
metry,” i.e. it is invariant under a rotation by an angle
about an axis perpendicular to the initial orbital plane. It
follows from this symmetry that linear momentum will not
be radiated in the x or y directions, but only in the z
direction. As a consequence, the center of mass will remain
at (x = 0, y = 0) but can move in the z direction.

The paper is organized as follows. In Sec. II we briefly
summarize our numerical methods and list the simulations
we have performed. Section III analyzes several aspects of
the dynamics of the “superkick” configurations, in par-
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ticular, the comparison with post-Newtonian dynamics and
various aspects of the (I =2,m= *2) asymmetry.
Consequences of this asymmetry for the angular depen-
dence of the signal-to-noise ratio (SNR) and the mismatch
of the gravitational wave signals, exemplified by the ex-
treme case of the north and south poles, are discussed in
Sec. IV. The paper concludes with a discussion section and
four appendices that contain post-Newtonian equations we
use in this paper, as well as a number of small results
concerning the dynamics of moving-puncture simulations.
Specifically, we describe our procedure for estimating
quasicircular inspiral parameters for spinning binaries,
summarize some aspects of the post-Newtonian (PN) treat-
ment of spinning binaries, show that the coordinate speeds
of the punctures can be easily related to their momenta by a
standard PN expression (and that, in particular, one does
not need to understand the complicated properties of the
spacetime near the punctures to explain the puncture’s
coordinate speeds), and, finally, we compare results in
the Arnowitt-Deser-Misner transverse traceless and har-
monic gauges.

II. NUMERICAL METHODS AND SUMMARY OF
SIMULATIONS

In this section we will summarize our numerical meth-
ods for evolving black hole binary spacetimes (largely by
directing the reader to the relevant references) and specify
the numerical simulations we performed. The various
simulations will be motivated more fully later in the paper;
for now we give an overview for later reference.

We performed numerical simulations with the BAM
[24,25] and LEAN [26] codes, with modifications discussed
in [10]. Both codes start with black hole binary puncture
initial data [27,28] generated using a pseudospectral code
[29], and they are evolved with the ) variant of the
moving-puncture [3,4] version of the Baumgarte-
Shapiro-Shibata-Nakamura [30,31] formulation of the 3 +
1 Einstein evolution equations [32]. The gravitational
waves emitted by the binary are calculated from the
Newman-Penrose scalar W,, and the details of this proce-
dure for BAM and LEAN are given in [24,26], respectively.

The parameters of our simulations are summarized in
Table I. Each black hole has mass M; (with mass parameter
m; in the puncture data construction [28]), and the total
mass is M = M| + M,. The black holes have a coordinate
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separation of D. In all runs the punctures are placed on the
y axis at y = *D/2 and given momenta p, and spins § =
0.723M? = 0.2. The spins are aligned with the y direction,
except for the runs in the *“ a-series,” which are charac-
terized by S, = =S cosa and §, = +Ssina.

The «a series and P series simulations used modifications
of the MI configuration described in [10]. This configura-
tion was chosen because the results showed clean fourth-
order convergence and high accuracy. We have found that
the resolution requirements increase significantly for simu-
lations of spinning black holes, and the MI configuration,
with a small initial separation and therefore short evolution
time, provided a convenient starting point for our study;
these simulations also capture most of the important dy-
namics that we wish to study.

The « and P series simulations were performed with the
grid setup y,—»[6 X 44:4 X 88:6][88:5.82] in the notation
of [24], i.e., the six inner boxes had 443 points, the four
outer boxes had 883 points, the resolution on the finest level
is M /88, and the resolution at the outer boundary is 5.82M.
Convergence tests were performed for the a = 0 case
(which is the same as the MI configuration in [10]) with
inner-box sizes of 40, 44, 48, and corresponding resolu-
tions. Clean fourth-order convergence of the linear mo-
mentum radiation flux dP,/dt is shown in Fig. 1. Also
shown is convergence in the puncture separation, which is
not expected to last beyond the merger time of about ¢ =
88M since the separation between the two punctures inside
the common apparent horizon quickly approaches zero
[24].

Further simulations were performed using either larger
initial separation and/or quasicircular orbit parameters
(calculated according the prescription given in
Appendix A). These are indicated D6 (for D = 6M) and
D8 (for D = 8.2M) in the table. The D8 simulation was
performed using the LEAN code, while all others were
performed with BAM. The grid setup for the D6 simulations
was the same as for the a and P series, and the convergence
test referred to later used inner-box sizes of 44, 48, and 52
points. The D8 simulation used a grid setup y,—[2 X
133:1 X 155:2 X 133:3 X 67:9][44:32], where the inner-
most three levels with 67 points are centered around either
hole and follow the motion of the puncture.

Experimentally we have observed that the resolutions
used in the & and P series simulations are not sufficient to

TABLE I. Physical parameters of the simulations performed for this paper.
Simulation D m; Dy M a Est. ferger  Orbits Viiek (km/s)
a series 6514 0363 0.133 1.052 0=a<27m 80-85M 1.0 —2700 = Vi = 2700
Sa=1/6
P series 6514 0363  0.13034 = p, =0.13566 1.052 0 75-90M  0.75-1.25 2286 =< Vi = 2690
8p = 0.003 325
D6 6.0 0.296 0.1382 1.0 0 123M 1.75 2100
D8 8.198  0.2875 0.11 1.0 0 260M 2.5 725
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FIG. 1. Convergence plots for the puncture separation r and the linear momentum radiation flux in the z direction, dP,/dt obtained
for model « = 0 of the « series. The plots are scaled consistent with fourth-order convergence. After merger at about ¢ = 88M
convergence in the puncture separation is lost (as expected).

obtain clean convergence for evolutions of spinning black  well for up to 15M before merger, as shown in Figs. 2 and
holes orbiting for longer periods of time. It thus appears 3. Note that since the waves are extracted at R, = 50M,
that the good convergence results for these particular series ~ we need to take into account a time lag of roughly 50M
are largely due to the close initial separation of the black ~ when comparing times related to puncture motion and
holes, which results in a rather low merger time of about ~ wave extraction. These simulations will be used only for
88M. When the black holes are placed further apart (or  discussions of the qualitative behavior, and for analysis at
even making the seemingly innocuous change of choosing ~ early times, when we are confident that the results are

quasicircular orbit initial parameters for the same separa-  reliable. Similarly the long D8 LEAN simulation will be
tion as the « series simulations), convergence is lost before ~ used only for qualitative comparison with post-Newtonian
the black holes merge. We expect that fourth-order con-  results.

vergence would be obtained if sufficiently high resolutions
were used, but the extra computational expense was not
necessary for the analysis in this paper.

In the D6 simulations we find that the puncture separa- We begin by describing the dynamics of two black holes
tion and linear momentum radiation flux dP,/dt converge  in a superkick configuration with varying degrees of sim-

ITI. ANALYSIS OF SUPERKICK DYNAMICS
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FIG. 2. Convergence of the puncture separation and dP,/dt as functions of time for evolutions of model D6. Results are scaled for
fourth-order convergence. We see that fourth-order convergence is lost in the puncture separation at about ¢ = 115M, which
corresponds to roughly ¢ = 165M in quantities from waves extracted at R., = 50M, which is about when we see a loss of
convergence in dP,/dt. Note that we cut the plot at 7= 175M when convergence is lost.
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FIG. 3. Puncture separation and dP,/dt as functions of time for the evolutions of model D6. Results from low, medium, and high
resolution simulations are shown. Only the highest resolution is shown for dP,/ds.
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plicity, in order to build up a clearer picture of the physics
and to motivate the simulations and analysis we have
performed. In the simplest picture (Sec. III B) the spin
decouples from the orbital dynamics; a more complex
picture includes spin precession effects (Sec. III C), and
considering the dynamics in full general relativity (GR) in
Sec. IIID allows us to study the merger regime, from
which most of the kick effect originates. The full GR
results can then be directly compared with PN predictions,
which we do in Sec. III E. We discuss the spin of the final
black hole in Sec. III F.

A. Kick velocity and [ = 2, m = *2 symmetry
breaking

As noted before, the superkick configuration exhibits
“a symmetry” (¢ — ¢ + ), thus linear momentum
will not be radiated in the x or y directions, but radiation
of linear momentum in the z direction is allowed, and the
center of mass will move only in the z direction.

As in nonspinning equal-mass binary simulations, al-
most all of the energy is radiated in the [ =2, m = %2
modes: the maximal relative deviation of the energy in
those modes from the total energies is roughly 2%, neglect-
ing the contribution from the junk radiation. This fact, and
the symmetry discussed in the preceding paragraph, leads
us to expect that we should be able to directly relate the
kick in the z direction to the imbalance between the m = 2
and m = —2 modes, i.e., the difference in energy that is
radiated toward the ‘“‘north” and “south” hemispheres.
Using the special relativistic relation |p| = E between
the momentum and energy of a wave packet (traveling at
the speed of light), we expect a relation

P, = f X (Exp—E;») (D

for the radiated momentum in the z direction, where E,,
and E,_, are the energies radiated in the [ =2, m = £2
modes, and f is a geometric factor. Here 0 = f <1 ex-
presses the fact that the radiation is smeared out in solid
angle rather than sharply peaked in the direction of the
poles. Neglecting all modes but [ =2, m = =2, we as-
sume a wave signal in the form W, = kF(1)Y,>(0, ¢) +
AF(1)Y;%(6, ¢), where k, A are real numbers (k = A in
the nonspinning equal-mass case), F(f) is a complex time-
dependent function, and the Yz_iz2 are the spin-weighted
spherical harmonics

5 ,

Y,2% = "m(l — cosf)?e 2i?,
R 2,2i¢
Y22 = m(l + COSe) e,

Inserting this ansatz into the expressions for radiated
energy and linear momentum (see e.g. Egs. (48) and (49) in
[24]) we obtain

2
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FIG. 4 (color online). Comparison of the kick velocity in km/s
according to Eq. (1), for a range of angles «. Data points for the
measured kick and the estimate Eq. (1) are shown, the points
corresponding to the energy differences are connected. An
analytical fit, v, = 2725 c0s(0.987 + a) km/s, to the measured
kick is shown as a dashed line. Note that Eq. (1) slightly under-
estimates the kick, which is consistent since it neglects contri-
butions from higher-order multipoles [ > 2.
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Consequently the value of the geometric factor f can be
determined as f = 2/3. We find this relationship satisfied
to very good accuracy in our numerical evolutions, as
shown in Fig. 4.

The relative asymmetry in the energies emitted in the
[ =2, m= *2 modes, 2E,,/(E,, + E,_,), (this quantity
is unity when there is no symmetry breaking) is plotted in
Fig. 5, showing a maximal excess of roughly 40%. An
analytic fit for extraction radius R.,, = 50M is

14 |

2 En/(Exn+Ey-)

0.8 +

0.6 +

0 50 100 150 200 250 300 350
o [degrees]

FIG. 5. Excess energy in the =2, m =2 mode,
2E,,/(Ey + E,_,) plotted for extraction radii R = 30M,
and 50M. The curves are the analytical fits for both extraction
radii, see Eq. (5). Clearly, there is no significant dependence of
this ratio on extraction radius.
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—= =1+ 0.416c0s(0.125 + a). ®))
(Ey + Ey_»)

In the extreme case this fit corresponds to E,y/E,_, = 2.4.
For this fit the 95% confidence level statistical error is
roughly 20% for the phase, and roughly 2% for the ampli-
tude of the oscillation. Fits corresponding to the extraction
radii R, = 30M and 75M give consistent results with
Eq. (5) within the statistical error bars.

B. Simplest assumption: Spin decouples from black
hole dynamics

As a first approximation of the dynamics, we may
imagine that the black holes behave like (force-free) gyro-
scopes in flat spacetime, and as they orbit each other their
individual spin vectors do not change direction. For ex-
ample, if the spins were originally S; = (0, S,0) and S, =
(0, =S, 0), these vectors would be constant throughout the
evolution. If we also assume that the spins do not notice-
ably influence the motion in the x-y plane, then simulations
that start with the same initial separation and momenta will
display the same dynamics no matter how the spins are
directed in the orbital plane. This is the situation at the first-
PN approximation, since spin-orbit and spin-spin cou-
plings enter at higher order.

This picture is surprisingly close to the observed dy-
namics in numerical simulations. Figure 6 shows the orbi-
tal motion in the first six simulations of the « series, each
differing only in the initial directions of the spins [i.e.,
S1» = S(*sine, = cosa,0) and &« = 0...7 in steps of
7r/6]. The motion shows differences as « is varied (shown
in the lower panels of the figure), but these differences are
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FIG. 6. The x and y motion of one of the punctures in six
simulations from the « series. The dynamics in the x-y plane
are almost identical for all of the simulations (only one curve is
actually visible in the upper panels). The small variations in the
motion (measured with respect to the « = 0 simulation) are
shown in the lower panels.

PHYSICAL REVIEW D 77, 124047 (2008)

very small. In contrast, the resulting kick from these simu-
lations, shown in Fig. 4, displays a clear sinusoidal depen-
dence on the angle—the kick varies from = —2500 km/s
to +2500 km/s. (Note that, since these values were calcu-
lated at a small radiation extraction radius R., = 50M, the
values in the plot are systematically higher than the correct
values by about 10%). Similar figures were also shown in
[11].

We might conclude from these results that the final kick
depends only on the initial spin magnitude and direction of
each black hole. One may write an expression similar to
Eq. (1) in [11], which for the superkick case reduces to

Vg = kcos(a — ag) (6)

and determine the constants k and «,, which are approxi-
mately given by k£ = 2500 km/s and « = 0 for our data.
If this simple picture was correct, and the spins really did
behave as gyroscopes in flat spacetime, then (6) would
allow us to determine o = 0 as the spin direction that
produces the maximum kick.

C. The effect of spin precession during inspiral

Needless to say, the real situation is more complicated.
The picture of the black holes’ spins as gyroscopes in flat
spacetime is valid only at 1PN order; at higher post-
Newtonian orders and in full GR the spin directions evolve
during the inspiral. We expect that the magnitude of the
kick depends on the magnitude and direction of the spins
when the black holes are close to merger. The spin con-
figuration at merger time is a function of the initial con-
figuration plus precession effects during the evolution.

The precession effects can be seen in Fig. 7, which
shows (S, Sy, S.) as a function of time for the @ =0
simulation described earlier. Here the spins were calcu-
lated from the black holes’ apparent horizons, using the
coordinate-based method outlined in [33] and also used in
[21]. We see that the x and y components of the spin show
noticeable precession during the last orbit, and after 80M
of evolution the spin vector has rotated by /2. The
z-component shows small oscillations around zero, but
these are not well resolved with the current accuracy of
the code. Note, however, by comparison with Fig. 6 that the
period of the oscillation is roughly half an orbital period,
which is consistent with the post-Newtonian equations in
Appendix B. We will further comment on the comparison
of the spin precession with PN results in Sec. II E. After
the formation of a common apparent horizon, at about ¢ =
88M, the S, and S, quickly drop to zero, and S, jumps to its
final value, corresponding to the spin of the final black
hole, S,/ MJ% ~ 0.7, where M is the mass of the final black
hole. We also compute the spin of the final black hole from
quasinormal ringdown in Sec. Il F as S, /M7 ~ 0.69. Note
that this value of the final spin is also the value for non-
spinning equal-mass inspirals, see e.g. [24].
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FIG. 7. Evolution of the spins S,, §,,and S, of one of the black holes over the course of the « = 0 simulation. The x and y com-
ponents of the spin show noticeable precession during the last orbit; the spin has rotated by /2 after 80M of evolution. By contrast,
the z component (right-hand panel) displays small oscillations around zero; these oscillations are not well resolved at the current
accuracy of the code. Merger occurs at ¢ =~ 88M, at which time S, and S, drop to zero. The spin S,/ M}% jumps to a final value of
0.723 corresponding to the merged black hole, reflecting the conversion of orbital angular momentum into the spin of the final object.

As an example of the dependence of the final kick on
parameters besides «, Fig. 8 shows the final kick for &« = 0
simulations with differing values of the initial momenta of
the black holes (the P-series in Table I). Changing the
initial momenta causes the merger time to change, and
this means that the spins have more or less time to evolve,
and are therefore in different directions when the black
holes merge. The initial spin directions are, however, the
same for all of these simulations. Varying the initial mo-
menta in this way also alters the ellipticity of the system.
However, the variations we make to the momenta are small
(less than 5% between the smallest and largest values) and
at this initial separation do not have a large effect on the
eccentricity. It is unlikely that these small changes in the
eccentricity are the cause of the large variation in the final
kick (around 400 km/s), and they would certainly not
account for the turning point in Fig. 8; the true cause is
different spin alignment near or at merger.
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FIG. 8. The final kick as a function of the initial momenta of
the black holes for simulations with the initial spin angle a = 0.
The differences between the smallest and largest merger time is
only about 15M; these differences allow a little more or less spin
precession, and therefore have a strong effect on the final recoil,
which varies between 2300 and 2700 km/s.

This leads us back to Eq. (1) in [11], which was origi-
nally written in terms of the spin angles at merger. Above
we formulated Eq. (6) in terms of the initial angle, but it
would hold equally well if, instead of choosing a = a(t =
0) we were to choose some fixed 7, and use @ = a(t = 1)
in Eq. (6). Only the phase constant «, would change. The
results shown in Fig. 8 suggest that we will also see
oscillatory behavior if we make a plot of the final kick
versus merger time for a series of runs with the same initial
spin directions.

In conclusion, given some superkick initial configura-
tion we need to know both the spin angle « and the time
until merger in order to predict the magnitude of the final
kick from initial data.

D. Duration of the recoil

Simplified models aside, we know that the final kick is
due to an integration of dP,/dt over the entire evolution,
and dP,/dt will be a complicated function of the instan-
taneous spin directions. A post-Newtonian version of this
function is given in [13] and in Appendix B. Figure 9
shows dP./dt as a function of time for three simulations

0.0004 220
0.0002 ---- e=n/2
= ———— a=r
o -~
= 0 e - = =
[aW} N / //
o s
\\ //
—0.0002 \ //
\
\\ /
~0.0004 | ‘ ‘ \/
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Time (M)

FIG. 9. Plot of dP./dt as a function of time for the a =0,
/2, m simulations. Most of the linear momentum is radiated
over a 60M period of time, centered roughly around the merger
time.
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in the « series. We make several observations about these
plots. The main contribution to the final kick originates
from a time period of about 60M. Before that time the
contribution is negligible, which is even clearer in Fig. 3,
which shows dP,/dt for the quasicircular model D6 which
has a longer inspiral phase. We also see in Fig. 9 that the
function dP,/dt obtained for simulations with final kick of
2500, 0, and —2500 km/s does not only differ by a mere
rescaling. Instead, the curve obtained for @ = 77/2 exhibits
an additional oscillation.

We would like to relate dP./dt to the motion of the
punctures, but this is not trivial. The radiation is extracted
at some radius R., and plotting this as a function of
retarded time » — R, gives only a crude estimate of what
is happening in the vicinity of the black holes at any given
time. One could try to improve this estimate by using
instead the luminosity distance (see for example [34]),
but we choose to simply look at the puncture motion
directly. We can calculate the coordinate acceleration of
the punctures in the z direction, a.(f) = d*z(¢)/dt*.
Figure 10 shows the acceleration of one of the punctures
in the « = 0, 7/2, 7r simulations. A vertical line indicates
the time at which a common apparent horizon forms, and
thus gives us an indication of how much of the motion is
due to effects before merger, and how much after merger.

Although most of the final kick is generated before
merger, Fig. 10 suggests that dP,/dt is not negligible after
the merger. Referring back to the plot of dP,/dt in Fig. 9,
the waves from the merger can be estimated to reach the
radiation extraction sphere between 138M (the time when
the common apparent horizon forms, 88M, plus the ex-
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a, M)
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-0.003
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Time (M)

FIG. 10. The coordinate acceleration of one of the punctures in
the z direction for the @ = 0, /2, 7 simulations. The vertical
line represents the time of first formation of a common apparent
horizon. The curves notably differ from those in Fig. 3, in
particular, they show significant extra oscillations, while they
have roughly the same amplitude. The plot essentially confirms
that the gauge dependence of the puncture motion in this
direction is not well understood (in contrast with the orbital
motion discussed in Appendix C), which prevents us from
drawing quantitative conclusions about the kick velocity from
the coordinate acceleration.
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traction radius, 50M) and 155M (when the final black
hole’s ringdown can clearly be said to have begun, by
observing that the wave amplitude has a clean exponential
decay). Whatever time within this range we choose to
denote as ‘““merger,” it is clear that a significant contribu-
tion to the final kick arises after that time.

E. Comparison with post-Newtonian predictions

In Fig. 10 we see that there is a significant contribution
to the kick after the black holes merge. Before the merger,
the main contribution comes from the 30M before merger.
During this time the black holes are at a separation of D <
3.5M, and at this separation it is questionable whether a
post-Newtonian description of the radiated linear momen-
tum is meaningful. We will now make a comparison be-
tween our numerical results and the predictions from the
2.5PN-accurate expressions in [13].

Appendices B, C, and D summarize the techniques we
use to compare post-Newtonian and numerical results.
Briefly, Appendix B lists the expressions for the spin
evolution and radiated linear momenta as found in [13].
These expressions were derived in the harmonic gauge.
Our initial data are instead in the ADMTT gauge (up to
2PN accuracy [35]), and although it is not obvious how
well we remain in the ADMTT gauge during evolution (but
see [36] for a result that shows excellent agreement for
larger separations), we would like to see how much the
results differ between the two gauges. Appendix D thus
gives the expressions necessary to transform the numerical
quantities, which are assumed to be in the ADMTT gauge,
to the harmonic gauge. To do this we need to calculate the
momenta of the punctures as they evolve. Appendix C
gives 2PN expressions that relate the puncture’s speeds
(again assumed to be in the ADMTT gauge) to momenta
as given in Eq. (C2). We see in Appendix D that in fact the
ADMTT — harmonic transformation makes little differ-
ence to our results over the time when the PN approxima-
tion is valid. This result may not be surprising, but it
quantifies any confusion that may arise when we compare
results in the two gauges and eliminates any major concern
that our results may change drastically if we were to
perform our simulations in the harmonic gauge.

As an aside, these formulas explain the speed at which
the punctures move in a black hole binary moving-
puncture simulation; the puncture speeds and momenta
are not related by the Newtonian formula p = mv, but
instead to good accuracy by its 2PN counterpart.

Before considering the radiated linear momentum, we
compare the post-Newtonian predictions for the spin evo-
lution with our numerical results. For this purpose we use
simulation D8, which has a merger time of around 260M.
Figure 11 shows the evolution of S, Sy, and §, for simu-
lation D8, compared with the predictions from Egs. (B1).
We see that there is very good qualitative agreement in S,
and Sy, even close to merger, which occurs at around

124047-7



BERND BRUGMANN et al.

0.75

0.5

0.25

PHYSICAL REVIEW D 77, 124047 (2008)

0.75

S 0 =] 0 T
@ “ 0.25 !
-0.25 — 25 —0.25
25PN —— 25PN
-05 - —-—- NR -0.5 ——— AR
~0.75 -0.75
0 50 100 150 200 0 50 100 150 200 250
Time (M) Time (M)
0.015
0.01
0.005 /\
=} Op—<— S = 'v -
“ ~0.005
—— 25PN
-0.01 LW
-0.015
0 50 100 150 200 250
Time (M)

FIG. 11.

One black hole’s spin as a function of time for simulation D8. Also shown is the 2.5PN prediction for the spin evolution,

with the puncture dynamics {x;, v;} used in the spin evolution Egs. (B1). The agreement is very good for S, and Sy, but poor for ..
This may once again be due to the numerical motion in the z direction being far more gauge dependent than the motion in the x-y
plane. At late times S, and S, vanish, whereas S is found to correspond to the angular momentum of the final black hole, compare

Fig. 7 and Sec. III F.

t = 260M. The z component does not agree at all well with
the 2.5PN prediction, but we again note that the puncture
motion in the z direction may be much more gauge depen-
dent than the motion in the x-y plane (the PN equations are
given in the center-of-mass frame, while the puncture
motion certainly is not), and it is the positions and speeds
of the punctures that we use when evaluating the right-hand
sides of Egs. (B1). Furthermore, it is not clear how well the
numerical determination of the spin based on apparent
horizons works in this context. Note also that the absolute
error is very small. The frequency of the oscillations of the
numerical simulation is rather close to the PN result, which
is approximately twice the orbital frequency when preces-
sion effects are small (cf. Appendix B). After merger, a few
M after the end of the figure, S, jumps to its final value of
around 0.7, and S, and S, drop to zero.

6x107°
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4x107°
% —-- NR

2x107°
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0
—2x10°°

—4x10°°
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Time (M)

200

In the case of the radiated linear momentum flux dP,/dt
and the final kick, we know that the assumptions under-
lying the post-Newtonian expressions break down when
the black holes are very close. Equations (B3) diverge as
1/7r° as the particles’ separation r — 0, so it is clear that a
sensible estimate of the kick cannot be made by simply
integrating this equation. What has been done in the past
(see for example [37]) is to assume a cutoff separation and
integrate the post-Newtonian expression up to that point.
We will now show that this approach is unlikely to give
correct results in the superkick case.

Figure 12 shows the function dP,/dt compared to
the numerical values for the D8 simulation at a retarded
time ¢t — 54.5M, chosen to line up the early oscillations in
dP./dt, and close to a naive guess of the retarded time for
the extraction radius R, = 50M. The post-Newtonian val-

0

—0.000025
—0.00005

dP,/dt

—0.000075
-0.0001

—0.000125

50 100 150

Time (M)

200

FIG. 12. Comparison of the numerical dP,/dt with that predicted by Egs. (B3). The left-hand plot shows early times, up to 7 =
225M, while the right-hand plot includes the merger. A time shift of 54.5M was applied to the value calculated from the numerical
wave extraction, to approximately take into account the wave travel time between the punctures and the wave extraction sphere by
lining up the peak at ¢ = 200M. The numerical relativity and 2.5PN results agree qualitatively at early times, but diverge quickly near

merger, presumably due to the 1/7° term in Eq. (B3).
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ues of dP,/dt were calculated as follows. Equations (B3)
require as input the positions, speeds, and spins of the two
black holes. Rather than integrate the full post-Newtonian
equations of motion, we simply enter the appropriate
quantities from a numerical evolution. This allows us to
compare, moment by moment, the post-Newtonian and
numerical predictions of dP,/dt for two particles (or black
holes) with the {x;, p;, S;} configuration.

In Fig. 12 we once again see good qualitative agreement
at early times (left-hand plot). At late times (right-hand
plot) the post-Newtonian prediction diverges, due to the
1/7° term in Eqgs. (B3). What is most striking about this
plot is that the disagreement between numerical and post-
Newtonian results becomes serious around 50M before
merger, which is just before the time when the major
contribution to the recoil begins in Figs. 3, 9, and 10.
This suggests that, at least in the special case of superkick
configurations, if we integrate the post-Newtonian dP_/dt
up to the point where its accuracy breaks down, we will
grossly underestimate the value of the final kick.

In order to accurately estimate the value of the kick
analytically, one would need to make a much more sophis-
ticated choice of cutoff separation, and then perhaps match
to a close-limit analysis. Such a procedure was applied in
[38,39] to nonspinning binaries, and may well be appli-
cable in the spinning case. One may also be able to get
good results from a more careful post-Newtonian analysis,
as was performed (also in the nonspinning case) in [40,41].
We would expect that the superkick case would be an
extreme and particularly interesting test of such methods.

F. Spin of the final black hole from ringdown

In Sec. I C we found that the spin of the final black hole
as read off from the black hole horizon is J,/M? =~ 0.7.
Here we will also determine the dimensionless Kerr spin
parameter a = J,/M? from the quasinormal ringdown
gravitational wave signal of the slowest decaying spin-
weighted spheroidal harmonic mode [42,43], which we
measure by projecting it onto the [ = 2, m = *=2 spin-
weighted spherical harmonics. These projected [ = 2,
m = *£2 waveforms are split into amplitude and phase
according to ¢, = A(1) exp(ie(1)); we then perform ana-
lytical fits to the waveform for 170 < t/M = 230, where
we see both a clean exponential decrease of the wave
amplitude and a linear increase of the gravitational wave
phase (corresponding to a constant frequency). Performing
independent fits with a linear function for the wave phase
and an exponential for the amplitude we obtain values for
the complex ringdown frequency wgnu. In order to factor
out the overall mass scale we then perform a lookup of the
dimensionless quantity Im(wqnm)/Re(wgnm) (i.e. essen-
tially the inverse quality factor) in a table of quasinormal
mode frequencies [44].

We will consider, in particular, data from the « series,
see Table I. For the extraction radii R, = 30M, 50M, 75M
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FIG. 13. The plot shows numerical results for J/M? = %
(points), obtained for extraction radius R, = 50M for the final
black hole and an analytical fit (solid curve)—in the text we
conclude that the final Kerr spin parameter does not show
significant variations (which might be further reduced by in-
creased accuracy of the wave extraction).

both the [ = 2, m = %2 results can very well be fit with an
analytic expression of the form a, + a; cos(a + ¢;) +
a, cos(2a + ¢,), see Fig. 13. At each extraction radius
we get consistent results for the amplitudes ay, a, and
the phase shifts ¢, ¢, for the m = —2, 2 modes, but we
get the opposite sign for a; for the m = —2 and m = 2
modes. For a, we get (0.6963, 0.6891, 0.6891) = 5 X 10~4
(statistical error) for extraction radii R., = (30M, 50M,
75M). For the oscillation amplitudes we get consistent
results of a; = 0.004 = 0.001, a, = —0.004 = 0.001,
with statistical errors corresponding to the 95% confidence
interval and rounded to one significant digit. We conclude
that the asymptotic value of the dimensionless Kerr pa-
rameter is a/M = 0.69, which is consistent with the value
0.7 we obtained from the black hole horizon. Since the
oscillation a; cos(a + ¢;), which has the periodicity of the
kick velocity, is not consistent between the m = —2, 2
modes, and the oscillation a, cos(2a + ¢,) is of the same
size, we conclude that both may be nonphysical, e.g. they
could be due to gauge effects in the radiation extraction
algorithm at finite radius (we suggest an alternative expla-
nation in the next paragraph). It is plausible that such
problems are more serious in the present case of large
kicks than when the black hole system does not move
with respect to the center of gravity. It would be interesting
to analyze the present case more carefully e.g. along the
lines discussed in [45].

Since the final spin of the black hole is close to the value
for nonspinning black hole mergers, it appears that the
individual, antialigned spins of the black holes do not
contribute to the final angular momentum, but rather cancel
approximately during merger. This is worth noting since
based on the PN analysis and the numerical evolutions
there is a small oscillating z component of the spin of the
individual black holes. At merger time, the z component of
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the black hole spins is added to the spin of the merged
black holes due to orbital motion. In principle it could
happen that the initially small S, is enlarged greatly (as
the PN calculation becomes inaccurate), e.g. it could hap-
pen that the separate spins precess significantly towards the
z axis and add significantly to the final angular momentum
of the black hole. But this does not seem to happen, at best
there is a small positive or negative contribution to the final
spin depending on the momentary phase of the S, oscil-
lation during merger, e.g. as we see in Fig. 13.

IV. EFFECTS OF RECOIL ON SNR AND
TEMPLATE MATCH

The gravitational recoil is essentially due to the symme-
try breaking between the dominating modes [ =2, m =
*2. A natural question is how this symmetry breaking is
reflected in the overlap integrals of the gravitational wave-
forms. If the symmetry was not broken, the gravitational
wave signal emitted towards the ‘“‘north pole” would also
provide the best template for the south pole. Similarly, for a
sequence of waveforms that correspond to initial data that
differ only in spin orientation (which we have parameter-
ized by the angle &), we can ask how much signal-to-noise
ratio is lost when trying to detect the gravitational wave
signal corresponding to some value of a with a template
corresponding to a different value of a.

Answering this question requires accurate waveforms,
since any mismatch of waveforms can also be due to lack
of numerical resolution, errors from the finite extraction
radius (which can be significant, in particular, because the
recoil velocity creates an asymmetry of the geometry of the
extraction sphere), and the contribution of the initial junk
radiation.

For the data we consider in this paper, the initial junk
radiation cannot be separated from the main signal in a
sufficiently clean fashion, neither can we obtain accurate
error bars on the wave signals of the whole a series to
really settle the above questions. Nevertheless, we are able
to give some preliminary results.

We define the correlation function between two time
series x(¢) and y(¢) for a time shift 7 as

Ry = [ xtoy*e—nan ™
where a * denotes complex conjugation, and for simplicity
we do not weight the integrand with the power spectral

density corresponding to detector noise. Working with
Fourier transforms

x(1) = [ . X(f)e*idf, ®)
the correlation function can be written as

Ry = [ spyremray )
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in terms of Fourier transforms %(f), y(f) of the time series.
The function R,,(7) is thus simply the inverse Fourier
transform of %(f)7*(f). The value of 7 for which R,, is
maximal determines the time shift required to get the
maximum correlation between x(7) and y(¢). The self-
correlation R, is maximal for 7 = 0:

Ra(0) = [ 15(Par. (10)

More generally, the correlation function for 7 = 0 yields
the standard scalar product

Ry =)= [* wnmrpar an

The “match” that determines the efficiency of a template y
to identify a signal x is defined as
R,,

M = maxM (12)

T JEOh)

and correspondingly the mismatch can be defined as 1 —
M. Note that in gravitational wave data analysis the
orientation of a single detector actually reduces the signal
to a real time series. We can now evaluate M for signals
corresponding to different values of the initial spin angle «
in our «a series, or for signals corresponding to different
angles in the sky for a given value of «, say one with a large
value of the recoil. From symmetry we expect that the
match M when comparing the signals corresponding to
the maximal difference in the kick within the a series
(=5000 km/s) equals the match for the signals that cor-
respond to the north and south poles for the maximal recoil
case. Indeed we find a consistent match of M = 0.94 =
0.01 both between the signals corresponding to the north
and south poles for the & = 0 case (which is close to the
maximal recoil), and for the maximal mismatch we find
within the a series (which occurs roughly between the
extreme cases of the recoil). Deviations of +0.01 here
come from comparing either the full complex waveform,
or just i, or hy. The uncertainties due to initial junk
radiation, finite extraction radius, and numerical error
may, however, be larger than 1%. More accurate data
than presented here will be required for conclusive error
estimates. However, a detailed discussion of the depen-
dence of the radiation signal on the angle o and the
consequences for gravitational wave data analysis is be-
yond the scope of the present paper.

A related question is how much brighter the source
appears in the direction opposite to the recoil, in which
more radiation is emitted. We estimate the relative increase
in SNR by computing the ratio of the norm of the strain A
for a given inclination angle 6 to the strain measured at the
south pole (6 = m):

SNR(O)  _ \/
SNR(6 = )

(h(0)|h(0)
(h(0 = m)|h(6 =7

(13)
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FIG. 14 (color online). The excess of signal compared to the
south pole as defined in (13) is plotted as a function of the
inclination angle 6 for h,, hy and h, — ihy for the near
extremal member of the « series « = 0. For comparison we
also show the curve for the case without spin, when h, is
symmetric around 6 = 77/2. The excess of signal toward the
north pole compared with the south pole is roughly 25%.

In Fig. 14 we plot this ratio for the close-to-extreme case
member of the « series, « = 0, for hy, hy,and h, — ih.
The excess of signal toward the north pole compared with
the south pole is roughly 25%. Note that this number may
seem surprisingly small when compared to the excess of
energy E,,/E,_, = 2.4. However, there is no simple scal-
ing relation between these two numbers: while at early
times the signals in the north and south hemispheres show
no significant deviation, there is a large deviation at late
times. This implies a large deviation in the time derivatives
of h, _, and it is the time derivative that determines the
energy radiation; hence, the difference in energy radiated
at the north and south poles is greater than the SNR
difference.

V. DISCUSSION

We have discussed superkick configurations—two
equal-mass black holes with spins antialigned and in the
orbital plane—as a simple but extreme ‘‘test case” for
phenomena associated with the large recoil velocities pro-
duced by spinning black hole binary systems. The high
degree of symmetry results in the gravitational wave signal
being dominated by the / = 2, m = =2 spherical harmon-
ics, i.e., the recoil is with good accuracy proportional to the
difference of energies radiated into the [ =2, m = *2
modes, as shown in Fig. 4.

The asymmetry here is rather strong and in the most
extreme case Ey,/E, , = 2.4. For gravitational wave de-
tection the ratio of the amplitude of the strain % is more
relevant, and in the direction opposite to the recoil we find
an excess of roughly 25% larger amplitude for the case
with the maximum recoil.

For the large kicks one observes in the superkick con-
figuration, one should certainly worry about the accuracy
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of the wave extraction. For the present paper we have been
interested in a qualitative discussion rather than very high
accuracy, but we point out that a procedure to improve the
accuracy of wave extraction via the Newman-Penrose sca-
lar W, at finite radius has been discussed recently in [45].
An overall improvement in the accuracy of spinning black
hole binary simulations should also be possible by employ-
ing higher-order spatial finite differencing [46] and using
initial parameters based on PN inspiral calculations [47].

The main emphasis of this paper has been the compari-
son of the dynamics with post-Newtonian predictions. We
have found that the 2.5PN-accurate expressions given in
[13] qualitatively describe the spin evolution and linear
momentum radiation up to about 60M before merger. After
that time the PN estimate of dP_/dt diverges from the
numerical values. It is also after that time that we find
the main contribution to the final kick of the merged black
hole, and this explains why it is difficult to make accurate
predictions of the kick by integrating the PN equations up
to a cutoff separation. In order to accurately analytically
model the recoil for superkick configurations (and possibly
spinning black hole binary configurations in general) we
suggest that a more sophisticated post-Newtonian treat-
ment would be necessary, or a matching of PN methods
during the early inspiral with a close-limit analysis of the
merger and ringdown. It has recently been found [21] that a
phenomenological formula for the final kick, based on the
angular dependence of the terms in Eq. (B3), matches
numerical data reasonably well. Having found that the
precise form of (B3) fails to predict the linear momentum
radiation in the regime when the majority of the linear
momentum is radiated, it will be interesting to see how
well such a phenomenological formula works for more
general configurations, or if a more detailed analytic study
will suggest a more generally applicable formula.
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APPENDIX A: INITIAL DATA PARAMETERS

In the Bowen-York/puncture data that we use, we must
choose parameters for the masses, separations, spins, and
linear momenta of the two punctures. Most of the simula-
tions studied in this paper are based on the MI configura-
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tion in [10], for which the momenta were chosen without
any attempt to have the punctures move in quasicircular
orbit (although the eccentricity in the resulting evolutions
appears to be small). Often, however, one wishes to pro-
duce quasicircular orbits, and the momenta for our non-
MI-based simulations are chosen to meet that requirement.
In this appendix we describe our procedure for calculating
those parameters. Note that in [47] we have described a
procedure to further improve the “circularity” of the initial
data by using parameters obtained from post-Newtonian
inspirals.

In [24] we showed that a 3PN-accurate formula is suffi-
cient to calculate initial momenta for nonspinning binaries
with small initial separation. In the spinning case we make
use of the results of Kidder [13]. They are in harmonic
coordinates, but as we will see in Appendix D, the differ-
ence between harmonic coordinates, and the ADMTT
gauge that we expect our evolutions to be in, are small.
Kidder’s Eq. (4.7) gives the orbital angular momentum of a
binary in circular orbit as

L= ,LL(MI”)I/ZI:N{I + 2(%) _% Z I:Xi(I:N -S)

i=1,2
() Lo
el -8 =3y Sy - 81 (%))

- %n(Mr)l/z > [X,S,(zx%i + n)](%)m, (A1)

i=12

and the total angular momentum is J = L. + S. The vari-
ables in Eq. (Al) are as follows. The black holes are
separated by a distance r and have masses M;, the total
mass is M = M, + M,, and the mass ratio quantities are
u = M;M,/M and 5 = w/M. The black holes have spins
S., and x; = |S;|/M?. The quantity L, denotes the unit
vector in the direction of the angular momentum of a
Newtonian system of nonspinning particles. It need not
point in the same direction as the full orbital angular
momentum L of the system, and we may exploit this
freedom to uniquely find a momentum P that satisfies
L = u(r XP). (A2)
The specific setup of our data is as follows. The punc-
tures are placed on the y axis and given momenta in the x
direction. The orbital angular momentum therefore has
only one component and that points in the z direction. In
cases where the last term in Eq. (A1) has a component in
the x or y directions, we tilt L y such that the last term is
canceled out and L = Lz. Such a case will not arise in the
situations considered in this paper; the last term in Eq. (A1)

will always sum to zero and we can simply write p, =
*L/r.
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APPENDIX B: POST-NEWTONIAN TREATMENT
OF SPINNING BINARIES

Consider two particles with masses M, and M,, spins S,
and S,, located at positions x; and x,. We define x =
X, — X, and v = dx/dt. Expressions for the evolution of
the spins are given up to 2.5 post-Newtonian order in
harmonic coordinates by Kidder [13],

3 M,

. 1
Sl = 7{(LN X Sl)(2 + zﬁl) - Sz X S]

+ 3(ﬁ . Sz)l’l X Sl}!

. 1 3 M,
Sz = F{(LN X S2)(2 + EE) - Sl X Sz

+ 3@ - S))n X Sz}, (B1)
where the Newtonian orbital angular momentum is given
by Ly = u(x X v). Note that a particular spin supplemen-
tary condition has been chosen.

The radiated linear momentum is in turn given by
Newtonian and spin-orbit contributions,

. 4
Py = —% %’ﬂﬂ(%) {f‘ﬁl:SS‘Uz —45i% + 12%]
+ v[38f2 — 5002 — 8%]} (B2)
2
Pio = — 5 LM sty x &) - 20260 x 4)
— (X V30 -A) +2(v- A, (B3)

where A = M(SQ/Mz - SI/MI) and 6m = M] - Mz.
Clearly the Newtonian contribution, which was used by
Fitchett [48] to provide an early estimate of the recoil from
the merger of nonspinning binaries, is zero in the equal-
mass case.

To evaluate Eqgs. (B1) and (B3) one needs the particles’
positions and velocities as a function of time, i.e., one
needs to solve the post-Newtonian equations of motion.
Alternatively, we can use the motions of the punctures
calculated in our numerical simulations. This allows us
to compare the precession of the spins and the radiated
linear momentum with that predicted by post-Newtonian
theory for the same motion. The results of this comparison
are discussed in Sec. III E.

It is instructive to reduce Eqgs. (B1)—(B3) to the special
case of equal mass and 7 symmetry. Equal masses M| =
M, imply 8m = 0 and hence Py = 0. Furthermore, u =
M/4, n = 1/4, and A = 2(S2 - Sl)

For 7 symmetry (which implies equal masses), the

positions of the punctures x; = (x;, y;, z;) satisfy
(X2, 2, 22) = (=x1, =y, +21) (B4)

for all times. This implies for the relative position and
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velocity variables

X = (2)(1, 2y1, O), V= (ZUIX’ 2U1y, 0) (BS)

In other words, for 77 symmetry the punctures can move in
unison in the z direction, and in general z,(7) will describe
an accelerated motion. However, the PN Egs. (B1)-(B3)
are expressed in terms of x and v, which describe the
motion in coordinates in which the center of mass is at
rest. Both x and v are orthogonal to the z axis and lie in the
z = 0 plane. In particular, v does not have a component in
the z direction, so for general z;(¢) the center-of-mass
frame is an accelerated frame. A related statement is that
in 77 symmetry the orbital plane remains orthogonal to the
z axis, there is no orbital plane precession, and Ly =
u(x X v) is parallel to the z axis at all times.
For 77 symmetry the spins can be written as

Si={+o S;=¢—o, (B6)
where { and o are the components of the spin parallel and
orthogonal to the z axis, respectively. Hence the sum of the
spins S =S, + S, points in the z direction and the
weighted spin difference A = 2(S, — S;) is orthogonal

to the z axis,

S =2, A=—4o. (B7)

For the initial data we choose { = 0, but in general £ is not
constant in time. The time derivative of the spins can be
written as

S[=ﬂjXS[,

177 N N

(B8)

where one part is precession about the z axis due to the
orbit-spin term, L X S;, but the axis of precession is in
general not parallel to the z axis due to the spin-spin terms.
For 77 symmetry we obtain

. 6 3
S=—-=@-0)fXo)=—=|ol*sina)z,  (BY)
r r

where Z is the unit vector in the z direction and « is the
angle between hi and o. The z component of the spins, { =
S/2, oscillates with sin(2a(r)). Since for negligible pre-
cession a(t) is equal to the orbital phase plus a phase shift,
we expect two oscillations per orbit, which roughly agrees
with observation, see Secs. III C and IIT E. For the weighted
difference of the spins

A=—45

™ 4 .
= —W(n X v)o — F(Zo- + 3|o| cos(a)fi) X £,

(B10)

which contains precession due to Ly at order 1/72 and the
spin-spin term at order 1/r°. The term ¢ X o describes a
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modulation of the precession about the z axis since ¢
oscillates around zero.

For the radiated linear momentum we note that for 7
symmetry the three vectors fi, v, and A in (B3) are or-
thogonal to the z axis, and hence Pgq is parallel to the z
axis as it should be. The angle between fi and v varies
slowly over the entire inspiral from about 7r/2 for circular
orbits to a value less than 7 for the plunge. The angle
between the orbital vectors and A oscillates with the
orbital and precession time scales. Making the approxima-
tion that i - v = 0 and n X v = vZ, we obtain

. 2 M3
Pso = _775(7}’1)(1}'\1 . 0') +4U2<X' 0'))2
v

Bll
15 r ( )

Even for quasicircular orbits where in addition we set 7 =
0 there will be radiation of linear momentum in the z
direction, which however averages to zero over time.

Note that in general there are two contributions, one
proportional to v and the other to v2, and they are offset in
phase depending on the angles between the spin and the
orbital vectors. As the system approaches the plunge phase,
the 7v term should become as important as the v? effects.
Note that we have not discussed the Pgg spin-spin contri-
bution at next PN order, which could also be examined for
potentially large contributions near the plunge, but in
numerical simulations of head-on collisions the resulting
kicks have been found to be small [49].

The PN expressions (B3) and the above discussion apply
in the regime where the post-Newtonian approximations
are valid. We see in Sec. IIIE that these expressions
describe the radiation of linear momentum with reasonable
accuracy up to about S0M before merger.

APPENDIX C: PN CALCULATION OF PUNCTURE
MOTION

In moving-puncture simulations we can readily track the
motion of the punctures and record their positions x(#) and
velocities v(7) = — B(7). We may then be tempted to make
a Newtonian analogy and guess that the puncture’s mo-
mentum is P = M;v for a black hole with mass M;.
However, when we compare this to the momentum speci-
fied in the initial data, the two values differ significantly.
For example, evolve two equal-mass punctures with initial
separation D = 8M, P = 0.14, M; = M, = 0.5. From the
numerical puncture motion we find M;v = 0.075; this
value disagrees with P by almost a factor of 2.

During a simulation the ‘““punctures’ are at an infinite
proper distance from their black holes’ horizons [50,51],
and we may worry that correctly physically interpreting the
punctures’ motions requires a thorough investigation of the
gauge and geometry of the punctures as they evolve. In
fact, the punctures’ motions can be understood from a
simple post-Newtonian analysis.
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Up to 2PN order, the Hamiltonian for two point particles
in the ADMTT gauge and center-of-mass frame has been
derived in [52,53].

From the Hamiltonian equations of motion,

oH
(= Cl
= p (€1

where x; is the separation vector between the two particles.
At Newtonian order we recover x; = P;/(2u). Up to 2PN
order we have for circular orbits

% :212{1 _12<P2(1 —3n)+M(3+ 77))

c 2u? R
N l<3p4(1 — 59+ 57%?)
c* Sut
MP3*(—5+20m +379%) M?*(5+8
B ( 277 77)Jr ( ! 77))}‘ )
2u°R R

The more general expressions (removing the assumption of

Coordinate separation
[O8)

2 —— ‘ADMTT’ NN
hoTT ‘Harmonic’
0 20 40 60 80 100 120
Time (M)
FIG. 15. Coordinate separation as a function of time for the D6

simulation, comparing the numerical data (presumed to be in
ADMTT coordinates), and the same data transformed to har-
monic coordinates. The difference is less than 10% up until
about 15M before merger. It is also clear that after this time
(when the “harmonic” curve turns upward) the PN approxima-
tions in the coordinate transformation break down.

5%107°
0 e\ ==

-5%107°
— - PN

dP, /dt

—0.00001
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—-0.000015
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circular orbits), and the 3PN terms, will be omitted here for
brevity. They can be readily calculated from the
Hamiltonian in [53].

As an example, consider the D = 8M quasicircular orbit
parameters from the sequence presented in [54], for which
P = 0.111M and the orbital frequency is M = 0.0376.
From the orbital frequency we can calculate that the punc-
tures will move at a speed x = 0.150, which is approxi-
mately equal to the observed value in a simulation. From
the momentum, the Newtonian prediction of the speed is
Xy = 0.223, which is far too high. The 1PN prediction is
X1pny = 0.126 (now the value is too small), and the 2PN and
3PN predictions are X,py = 0.151 and x3py = 0.149. The
2PN and 3PN predictions are both very close to the ob-
served value.

In addition to providing a pleasing consistency between
the dynamics observed in moving-puncture simulations
and that predicted by post-Newtonian theory, this analysis
is necessary when converting between ADMTT and har-
monic gauges in Appendix D, where we will need to invert
equations like (D1) to estimate the black holes’ momenta
as a function of time from the puncture motion.

APPENDIX D: ADMTT TO HARMONIC
TRANSFORMATION

Our initial data are, up to 2PN order, in the ADMTT
gauge [35]. The post-Newtonian expressions for spin evo-
lution and linear momentum radiation listed in Appendix B
are in the harmonic gauge. Although it is not clear how
closely our evolved data adhere to the ADMTT gauge, it is
nonetheless useful to assume that they remain in the
ADMTT gauge and transform the results to the harmonic
gauge and see how different they are.

A transformation between ADMTT and harmonic coor-
dinates is provided up to 2PN order by Damour and
Schifer [52]. If x; are the ADMTT coordinates of the ith
particle and X; are the corresponding harmonic coordi-
nates, then the transformation for a binary system is

0.0005 T

0.0004

.
o 0:0003 N
3 |
=l

0.0002 F - --PN+Harmonic

Numerical

0.0001

0

25 50 75 100 125 150 175
Time (M)

FIG. 16. Comparison of the numerical dP./dt with that predicted by Eq. (B3), using both the numerical puncture positions and
momenta in ADMTT coordinates, and those transformed to harmonic coordinates. At early times there is good qualitative agreement
between all three approaches. At late times (right-hand panel) the PN and numerical values diverge, as discussed in Sec. IITE.
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8V 8 4R | 4R

+ (%V,- - %V])(n . Vj)}.

The velocities vy, in Eq. (D1) are not the coordinate
speeds but are instead v; = p;/m;, and the momenta p;
must be determined by the procedure described in
Appendix C.

When the particles are far apart and moving slowly, the
coordinates x; and X; will not differ much. In Fig. 15,
which shows results from the D6 simulation, we show the
separation between the punctures in the numerical coordi-
nates as a function of time, and in the coordinates after the
transformation (D1). The coordinates differ by less than
10% up until about 15M before merger. After that time we
do not expect the coordinate transformation (which is
accurate up to only 2PN order) to be reliable. However,
for most of the evolution we see that the differences

1
X,»ZX,~+M,~{H(5 2_—(n'Vj)2+

(D1)
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between the two coordinate choices are not dramatic. A
comparison of numerical and PN calculations of dP,/dt
(as described in Sec. IITE) in Fig. 16 also shows that the
results are similar at early times, before the PN result
diverges. Note that when the puncture motion in
ADMTT coordinates is used in the (harmonic) PN formula
(B3), the curve is closer to the numerical result than when
we use the puncture motion in harmonic coordinates.
However, since this agreement occurs just before the
time when the PN and numerical values seriously diverge,
we do not take this agreement too seriously.

The main conclusion of this analysis is that the differ-
ence in results between using ADMTT and harmonic dy-
namical quantities in PN expressions is less than the
uncertainty inherent in the PN expressions themselves.
We therefore continue to use the raw numerical data, in
ADMTT coordinates, for most of the analysis presented in
this paper.
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