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Most of the properties of black holes can be mimicked by horizonless compact objects such as

gravastars and boson stars. We show that these ultracompact objects develop a strong ergoregion

instability when rapidly spinning. Instability time scales can be of the order of 0.1 seconds to 1 week

for objects with mass M ¼ 1� 106M� and angular momentum J > 0:4M2. This provides a strong

indication that ultracompact objects with large rotation are black holes. Explosive events due to

ergoregion instability have a well-defined gravitational-wave signature. These events could be detected

by next-generation gravitational-wave detectors such as Advanced LIGO or LISA.
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I. INTRODUCTION

Black holes (BHs) in Einstein-Maxwell theory are char-
acterized by three parameters [1]: Mass M, electric charge
Q, and angular momentum J � aM � M2. BHs are
thought to be abundant objects in the Universe [2]. Their
mass is estimated to vary between 3M� and 109:5M� or
higher. They are likely to be electrically neutral because of
the effect of surrounding plasma [3] and their angular
momentum is expected to be close to the extremal limit
because of accretion and merger events [4,5]. An example
of an astrophysical BH is the compact primary of the
binary x-ray source GRS 1915þ 105, which recent obser-
vations identify as a rapidly rotating object of spin a *
0:98M [6]. Many of the supermassive BHs which are
thought to power quasars seem to be rotating near the
Kerr bound [7].

Despite the wealth of circumstantial evidence, there is
no definite observational proof of the existence of astro-
physical BHs. (A review and a critique of current evidence
can be found in Refs. [2,8], respectively. See also Ref. [9]
for a stimulating minireview.) Astrophysical objects with-

out event horizon, yet observationally indistinguishable
from BHs, cannot be excluded a priori.
Dark energy stars or ‘‘gravastars’’ are compact objects

with de Sitter interior and Schwarzschild exterior [10,11].
These two regions are glued together around the would-be
horizon by an ultrastiff thin shell. In this model, a gravita-
tionally collapsing star undergoes a phase transition that
prevents further collapse. The thickness of the shell sets an
upper limit to the mass of the gravastar [11–13]. (A thor-
ough analysis of the maximum compactness of gravastars
can be found in Ref. [14].) Generalizations of the original
model use a Born-Infeld phantom field [15], dark energy
equation of state [16], or nonlinear electrodynamics [17].
Models without shells or discontinuities have been inves-
tigated in Ref. [18].
Boson stars are macroscopic quantum states which are

prevented from undergoing complete gravitational collapse
by the Heisenberg uncertainty principle [19,20]. Their
models differ in the scalar self-interaction potential [21]
and can be divided into three classes [22].
Miniboson stars.—If the scalar field is noninteracting,

the maximum boson star mass is Mmax � 0:633m2
Planck=m

[19]. This value is much smaller than the Chandrasekhar
mass for fermion stars, MCh �m3

Planck=m
2. Stability of

supermassive objects requires an ultralight boson of mass
m ¼ 8:45� 10�26 GeV (106M�=Mmax).
Massive boson stars.—The requirement of ultralight

bosons can be lifted if the scalar field possesses a quartic
self-interaction potential of the form �j�j4=4 [23]. As
long as the coupling constant � is much larger than
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ðm=mPlanckÞ2, the maximum boson star mass can be of the

order of the Chandrasekhar mass or larger, Mmax �
0:062�1=2m3

Planck=m
2. Thus supermassive objects may ex-

ist. Boson mass and coupling constant are related by m ¼
3:2� 10�4 GeV�1=4 ð106M�=MmaxÞ1=2.

Nontopological soliton stars.—If the self-interaction
takes the form U ¼ m2j�j2ð1� j�j2=�2

0Þ2, compact non-

dispersive solutions with a finite mass may exist even in the
absence of gravity [24]. The critical mass of these objects
isMmax � 0:0198m4

Planck=ðm�2
0Þ. If �0 �m, a star of mass

M� 106M� corresponds to a heavy boson of mass m�
500 GeV.

Boson stars are indistinguishable from BHs in the
Newtonian regime. Since they are very compact, devia-
tions in the properties of orbiting objects occur close to the
Schwarzschild radius and are not easily detectable electro-
magnetically [25,26]. If the scalar field interacts only
gravitationally with matter, compact objects may safely
inspiral ‘‘inside’’ the boson star, the only difference with a
BH being the absence of an event horizon [27]. Lack of
strong constraints on boson masses makes these models
difficult to rule out.

Gravastars and boson stars provide viable alternatives to
astrophysical BHs. To ascertain the true nature of ultra-
compact objects, it is thus important to devise observatio-
nal tests to distinguish these ultracompact objects from
ordinary BHs. The traditional way to distinguish a BH
from a neutron star is to measure its mass. If the latter is
larger than the Chandrasekhar limit, the object is believed
to be a BH. However, this method cannot be used for the
ultracompact objects discussed above, because of their
broad mass spectrum. A possibility is to look for observ-
ables related to the accretion mechanism. For example, the
luminosity of quiescent BHs is lower than the maximum
luminosity which is allowed by the gas present in their
environment [28]. If the BH accretion rate is much smaller
than the Eddington rate, the radiative efficiency is also very
small [29]. Another possibility is to exploit the absence of a
boundary layer at the surface. Compact stars with accretion
disks have typically a narrow viscous boundary layer near
their surface, which allows the release of a considerable
amount of heat energy. On the other hand, if the central
object is a BH, no boundary layer is formed. Arguments of
this kind have already excluded many gravastar candidates
[30]. Absence of type I x-ray bursts is another powerful
indicator of the presence of a BH. Several studies on type I
bursts show that they are produced when gas accretes on
the surface of a neutron star [31], which then undergoes a
semiregular series of thermonuclear explosions. Since BHs
do not have surfaces, the surrounding gas cannot accumu-
late and thermonuclear instabilities do not develop.

Another very promising observational method to probe
the structure of ultracompact objects is gravitational-wave
astronomy [32]. Gravitational-wave detectors such as
LIGO [33], VIRGO [34], TAMA [35], or LISA [36] could

provide an efficient way to study these objects without
intervening effects due to the interstellar medium. For
example, the inspiral process of two compact objects al-
lows a precise determination of their mass [37] and multi-
pole moments [27,38–40]. The gravitational waveform in
the presence of a surface is also expected to be different
than the waveform in the presence of an event horizon [41].
A first study on the distinctive features of the inspiral signal
of boson stars can be found in Ref. [42]. Detection of
gravitational resonant modes due to the gravitational po-
tential well could also provide a test for the presence of a
horizon [22,43]. Preliminary studies for gravastars indicate
that this method may be very efficient if the source is not
too far away and gravitational-wave production is signifi-
cant [13,22,44].
In this paper, we propose a new method for discriminat-

ing BHs from ultracompact horizonless objects and apply
it to gravastars and bosons stars. Our method uses the fact
that compact rotating objects without event horizon are
unstable when an ergoregion is present. The origin of this
ergoregion instability can be traced back to superradiant
scattering. In a scattering process, superradiance occurs
when scattered waves have amplitudes larger than incident
waves. This leads to extraction of energy from the scatter-
ing body [45–47]. Instability may arise whenever this
process is allowed to repeat itself ad infinitum. This hap-
pens, for example, when a BH is surrounded by a ‘‘mirror’’
that scatters the superradiant wave back to the horizon,
amplifying it at each scattering. The total extracted energy
grows exponentially with time until the radiation pressure
destroys the mirror in a process called BH bomb (see
Refs. [48,49]). If the mirror is inside the ergoregion, super-
radiance may lead to an inverted BH bomb. Some super-
radiant waves escape to infinity carrying positive energy,
causing the energy inside the ergoregion to decrease and
eventually generating an instability. This may occur for
any rotating star with an ergoregion: The mirror can be
either its surface or, for a star made of matter noninteract-
ing with the wave, its center. BHs are stable, which could
be due to the absorption by the event horizon being larger
than superradiant amplification.
The ergoregion instability appears in any system with

ergoregions and no horizons [50]. (See also Ref. [51] for an
exhaustive discussion.) Explicit computations for ordinary
rotating stars can be found in Refs. [52,53], where typical
instability time scales are shown to be larger than the
Hubble time. In this case, the ergoregion instability is too
weak to produce any effect on the evolution of the star.
This conclusion changes drastically for ultracompact stars.
For compactness M * 0:5R and angular momentum J *
0:4M2, we find that instability time scales range approxi-
mately from 0.1 seconds to 1 week for objects with mass in
the range M� 1M� to 106M�, further decreasing for
larger rotation rates.
Because of the difficulty of handling gravitational per-

turbations for rotating objects, the calculations below are
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mostly restricted to scalar perturbations. However, we are
able to show that the equation for axial gravitational per-
turbations of gravastars is identical to the equation for
scalar perturbations in the large l ¼ m limit. There are
also generic arguments suggesting that the time scale of
gravitational perturbations is smaller than the time scale of
scalar perturbations for low m. Thus our investigation
seems to rule out some of these ultracompact, rapidly
spinning objects as BH candidates.

This paper is organized as follows. In Sec. II we review
the main characteristics of the ultracompact objects dis-
cussed above. Our discussion is nonexhaustive and strictly
limited to concepts and tools which will be needed in the
rest of the paper. Section II A introduces the two gravastar
models which will be discussed in the subsequent
analysis. Since there are no known solutions describing
rotating gravastars, the formalism of Refs. [54,55] will be
used to discuss rotating gravastars. Section II B introduces
boson stars [23]. Numerical results for rotating boson stars
are taken from Ref. [56]. Section III presents a detailed
investigation of the instability of boson stars and gravastars
using the WKB approximation. The WKB analysis is then
compared with full numerical results obtained by direct
integration of the Klein-Gordon equation. Detectability of
the ergoregion instability by gravitational-wave detectors
is addressed in Sec. IV. Section V contains a brief discus-
sion of the results and concludes the paper.

Geometrized units (G ¼ c ¼ 1) are used throughout the
paper, except when numerical results for rotating boson
stars from Ref. [56] are discussed (Sec. II B). In this case,
the Newton constant is defined as G ¼ 0:05=ð4�Þ.

II. STRUCTURE OF ULTRACOMPACT
ASTROPHYSICAL OBJECTS

This section discusses the main properties of gravastars
and boson stars. The derivation of nonrotating solutions is
partly based on Refs. [11,13,23,56].

A. Gravastars

Although exact solutions for spinning gravastars are not
known, they can be studied in the limit of slow rotation by
perturbing the nonrotating solutions [54]. This procedure
was used in Ref. [55] to study the existence of ergoregions
for ordinary rotating stars with uniform density. Their
analysis is repeated below for gravastars. In the following,
we discuss the original thin-shell model by Mazur and
Mottola [11] and the anisotropic fluid model by Chirenti
and Rezzolla [13,18].

1. Nonrotating thin-shell model

In this model, the spacetime

ds2 ¼ �fðrÞdt2 þ BðrÞdr2 þ r2d�2
2 (2.1)

consists of three regions:

I: Interior: 0 � r � r1; � ¼ �p;

II: Shell: r1 � r � r2; � ¼ p;

III: Exterior: r2 � r; � ¼ p ¼ 0;

(2.2)

where � is the energy density and p is the isotropic
pressure of the gravastar. In region I, � ¼ 3H2

0=8� is

constant and the metric is de Sitter:

f ¼ C

B
¼ Cð1�H2

0r
2Þ; 0 � r � r1; (2.3)

where C is an integration constant to be determined from
matching conditions. In region III the spacetime is de-
scribed by the Schwarzschild metric,

f ¼ 1

B
¼ 1� 2M

r
; r2 � r: (2.4)

In region II, the metric is determined by the system of
equations,

d lnr ¼ dh

1� w� h
; h � 1

B
(2.5)

d lnh ¼ �
�
1� w� h

1þ w� 3h

�
d lnw; (2.6)

where w ¼ 8�r2p and wf=r2 ¼ constant. A simple ana-
lytical solution can be obtained for a thin shell [11]. In the
limit r1 ! r2, one obtains

1

B
’ �

ð1þ wÞ2
w

� 1; (2.7)

where � is an integration constant. The continuity of the
metric coefficients f and B at r1 and r2 implies that �, C,
M, and H0 are related to r1, r2, w1 � wðr1Þ, and w2 �
wðr2Þ by [13]

� ¼ � ln
r2
r1

�
ln
w2

w1

� 1

w2

þ 1

w1

��1
; (2.8)

C ¼
�
1þ w2

1þ w1

�
2
; (2.9)

M ¼ r2
2

�
1� �ð1þ w2Þ2

w2

�
; (2.10)

H2
0 ¼

1

r21

�
1� �ð1þ w1Þ2

w1

�
: (2.11)

The above relations and Eq. (2.5) completely determine the
structure of the gravastar. A typical solution is shown in the
upper panel of Fig. 1 for r2 ¼ 1:05, r1 ¼ 1, w1 ¼ 350, and
w2 ¼ 1.
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2. Nonrotating gravastars with anisotropic pressure

This model assumes a thick shell with continuous profile
of anisotropic pressure to avoid the introduction of an
infinitesimally thin shell. The stress-energy tensor is
T�

� ¼ diag½��; pr; pt; pt�, where pr and pt are the radial
and tangential pressures, respectively. The density function
is

�ðrÞ ¼
8<
:
�0; 0� r� r1 region I
ar3 þbr2 þ crþd; r1 <r<r2 region II
0; r2 � r region III

with boundary conditions �ð0Þ ¼ �ðr1Þ ¼ �0, �ðr2Þ ¼
�0ðr1Þ ¼ �0ðr2Þ ¼ 0, and

a ¼ 2�0

ðr2 � r1Þ3
; b ¼ � 3�0ðr2 þ r1Þ

ðr2 � r1Þ3
; (2.12)

c ¼ 6�0r1r2
ðr2 � r1Þ3

; d ¼ �0ðr32 � 3r1r
2
2Þ

ðr2 � r1Þ3
: (2.13)

The density is related to the total mass M by

�0

M
¼ 15

2�ðr1 þ r2Þð2r21 þ r1r2 þ 2r22Þ
: (2.14)

The radial pressure pr is chosen as [13]

prð�Þ ¼
�
�2

�0

��
�� ð1þ �Þ

�
�

�0

�
2
�
; (2.15)

where the parameter � is determined by demanding that
the maximum sound speed coincides with the speed of
light. (This requirement rules out superluminal behavior
and implies �� 2:21.) The metric coefficients are

f ¼
�
1� 2M

r2

�
e�ðrÞ��ðr2Þ;

1

B
¼ 1� 2mðrÞ

r
; (2.16)

where

mðrÞ ¼
Z r

0
4�r2�dr;

and

�ðrÞ ¼
Z r

0

2mðrÞ þ 8�r3pr

rðr� 2mðrÞÞ dr: (2.17)

The above equations completely determine the structure of
the gravastar. Both the metric and its derivatives are con-
tinuous across r2 and throughout the spacetime. The be-
haviors of the metric coefficients for a typical gravastar are
shown in the bottom panel of Fig. 1.

3. Slowly rotating rigid gravastars and ergoregions

There are no known solutions describing rotating grav-
astars. Thus an analysis of the ergoregion instability for
these objects is nontrivial. Fortunately, slowly rotating
solutions can be obtained using the formalism developed
in Ref. [54], which we now extend to the case of aniso-
tropic stresses.
A rotation of order � gives corrections of order �2 in

the diagonal coefficients of the metric (2.1) and introduces
a nondiagonal term of order �,

gt� � �	g��; (2.18)

where � is the azimuthal coordinate. The metric coeffi-
cient gt� defines the angular velocity of frame dragging

	 ¼ 	ðrÞ. The full metric is

FIG. 1. Top panel: Metric coefficients for the thin-shell model
gravastar with r2 ¼ 1:05, r1 ¼ 1, w1 ¼ 350, and w2 ¼ 1,
corresponding to M� 0:485r2. Bottom panel: Anisotropic
pressure model for r2 ¼ 2:2, r1 ¼ 1:8, and M ¼ 1, corre-
sponding to M� 0:45r2.
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ds2 ¼ �fðrÞdt2 þ BðrÞdr2 þ r2d
2

þ r2sin2
ðd�� 	ðrÞdtÞ2: (2.19)

We consider the anisotropic fluid stress-energy tensor

T�� ¼ ð�þ ptÞU�U� þ ptg
�� þ ðpr � ptÞs�s�;

(2.20)

where

U�U� ¼ �1; s�s� ¼ 1; U�s� ¼ 0;

Ur ¼ U
 ¼ 0; U� ¼ �Ut;

Ut ¼ ½�ðgtt þ 2�gt� þ�2g��Þ��1=2:

Equation (2.20) describes an anisotropic fluid with radial
pressure pr and tangential pressure pt, rotating with angu-
lar velocity � as measured by an observer at rest in the
ðt; r; 
;�Þ coordinates. If the gravastar rotates rigidly, i.e.
� ¼ constant, the Einstein equations at order 	 give

� 8�� ¼ B� B2 � rB0

r2B2
; (2.21)

8�pr ¼ f� Bfþ rf0

r2Bf
; (2.22)

8�pt ¼ � 2f2B0 þ rBf02

4rB2f2
� fðrB0f0 � 2Bðf0 þ rf00ÞÞ

4rB2f2
:

(2.23)

An equation for 	ðrÞ is obtained by considering

Rt� ¼ 8�

�
Tt� � 1

2
gt�T

�
: (2.24)

Using Eqs. (2.21) and (2.22), Eq. (2.24) is written as

	 00 þ 	 0
�
4

r
þ j0

j

�
¼ 16�BðrÞð	 ��Þð�þ ptÞ; (2.25)

where j � ðfBÞ�1=2 is evaluated at zeroth order and �, pt

are given in terms of the nonrotating geometry by
Eqs. (2.21) and (2.23), respectively. The above equation
reduces to the corresponding equation in Ref. [54] for
isotropic fluids. Solutions of Eq. (2.25) describe rotating
gravastars to first order in �.

Spinning gravastars may possess ergoregions. A simple
but general procedure to determine their presence for
slowly rotating stars is described in Ref. [55]. This method
requires only a knowledge of the metric of nonrotating
objects and compares favorably with more sophisticated
numerical analyses [57].

The ergoregion can be found by computing the surface
on which gtt vanishes [55]:

0 ¼ �fðrÞ þ 	2r2sin2
: (2.26)

Equation (2.26) is expected to be a good approximation to

the location of the ergoregion specially for very compact
stars [55]. The solution of Eq. (2.26) is topologically a
torus. In the equatorial plane we have

r	ðrÞ ¼
ffiffiffiffiffiffiffiffiffi
fðrÞ

q
: (2.27)

The existence and the boundaries of the ergoregions can be
computed from the above equations. Equation (2.25) is
integrated from the origin with initial conditions ð��
	Þ0 ¼ 0 and (�� 	) finite. Changing the value of (��
	), the whole space of slowly rotating gravastars can be
obtained. The exterior solution satisfies �� 	 ¼ �ð1�
2I=r3Þ, where I is the moment of inertia of the star.
Demanding the continuity of both ð�� 	Þ0 and (�� 	),
	 and I are uniquely determined. The rotation parameter�
depends on the initial condition at the origin.
Figure 2 shows the results for three different gravastars

described in the previous sections. The minima of the
curves are the minimum values of J=M2 which are required
for the existence of the ergoregion. Comparison with the
results for stars of uniform density [55] shows that ergo-
regions form more easily around gravastars due to their
higher compactness. Figure 2 also shows that the ergore-
gions spread inside the gravastar. (The ergoregion can be
located by drawing a horizontal line at the desired value of
J=M2, as explained in the caption.)
Gravastars spinning above a given threshold are not

stable against mass shedding [58]. Instability arises when
the centrifugal force is strong enough to disrupt the star. In
Newtonian gravity, the equatorial mass shedding frequency

is approximately the Keplerian frequency M�K ¼
ðM=RÞ3=2. Although corrections to the Keplerian frequency
are expected in a general relativistic framework, �K pro-
vides a good estimator for the validity of the slow-rotation
approximation. (See Ref. [59] for a comparison of the
slow-rotation regime vs full numerical results.) In the
following, the slow-rotation approximation will be consid-
ered valid for �=�K < 1. Numerical results extend up to
���K.

B. Boson stars

A well-known example of nonrotating boson star is the
model by Colpi, Shapiro, and Wasserman (CSW) [23]. A
variation of the CSW model which allows for rotating
solutions is the Kleihaus, Kunz, List, and Schaffer
(KKLS) model [56]. The KKLS solution is based on the
self-interacting complex scalar field � with Lagrangian
density

L KKLS ¼ �1
2g

��ð�	
;��;� þ�	

;��;�Þ �Uðj�jÞ; (2.28)

where Uðj�jÞ ¼ �j�j2ðj�j4 � aj�j2 þ bÞ. The mass of

the boson is given by mB ¼ ffiffiffiffiffiffi
�b

p
. The equations for the

boson star structure can be solved by setting
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ds2 ¼ �fdt2 þ k

f
½gðdr2 þ r2d
2Þ

þ r2sin2
ðd’� 	ðrÞdtÞ2� (2.29)

and� ¼ �ei!stþin’, where the metric components and the
real function � depend only on r and 
. The requirement
that � is single valued implies n ¼ 0;
1;
2; . . . . The
solution has spherical symmetry for n ¼ 0 and axial sym-
metry otherwise. The mass M and the angular momentum
J can be read off from the asymptotic expansion of f and 	 ,

M ¼ 1

2G
lim
r!1r

2@rf; J ¼ 1

2G
lim
r!1r

3	; (2.30)

respectively. Since the Lagrangian density is invariant
under a global Uð1Þ transformation, the current j� ¼
�i�	@��þ c:c: is conserved. The associated charge is

Q ¼ 4�!s

Z 1

0

Z �

0
jgj1=2 1

f

�
1þ n

!s

!

r

�
�2drd
: (2.31)

It can be shown that the angular momentum J and the
scalar charge Q of stationary solutions, i.e., solutions with
a timelike and rotational Killing vector, are related by the
quantization condition J ¼ nQ [60]. This may erroneously
lead to the conclusion that boson stars are gravitationally
stable because a continuous extraction of angular momen-
tum is needed to trigger instability. However, the above
quantization condition applies for objects for which such
Killing vectors can be defined and we will assume that this
condition is broken in the presence of perturbations. In this
case, an arbitrary amount of angular momentum can be
extracted and it will be shown below that gravitational-
wave emission leads to an instability on very short time
scales.
The numerical procedure to extract the metric and the

scalar field is described in Ref. [56]. Throughout the paper
we will consider solutions with n ¼ 2, b ¼ 1:1, � ¼ 1:0,
a ¼ 2:0 and different values of ðJ;MÞ ¼ ð3781; 1296Þ,
(3400, 1081), (2800, 906), corresponding to J=ðGM2Þ �
0:566, 0.731, and 0.858, respectively. The n ¼ 1 solutions
in Ref. [56] exhibit similar features. The two top panels of
Fig. 3 show the metric functions for boson stars with
J=ðGM2Þ � 0:566 and 0.858 along the equatorial plane.
The change in the metric potentials from 
 ¼ �=2 to 
 ¼
�=4 for these solutions is plotted in the bottom panels of
Fig. 3. The metric functions do not depend significantly on
the longitudinal angle. Figure 4 gives gtt as a function of
distance for the case with J=ðGM2Þ � 0:566 at the equator.
The behavior of gtt demonstrates that boson stars develop
ergoregions deeply inside the star. For this particular
choice of parameters, the ergoregion extends from
r=ðGMÞ � 0:0471 to 0.770. A more complete discussion
on the ergoregions of rotating boson stars can be found in
Ref. [56].

FIG. 2 (color online). Top panel: Size of the ergoregion for
three different gravastars in the thin-shell limit. The vertical axis
gives the angular momentum of the gravastar in units of its total
mass. The horizontal axis gives the locations of the ergoregion
boundaries in units of the gravastar radius r2. Each curve refers
to a different gravastar. The minima of the curves determine the
existence and extent of ergoregions. The size of an ergoregion
can be found by drawing a horizontal line at a given value of
J=M2; its intersections with the curves give the radii of the
ergoregion boundaries. From top to bottom the three curves refer
to r2 ¼ 1:3, r1 ¼ 1, w1 ¼ 50n and w2 ¼ 1, corresponding to
M� 0:39r2; r2 ¼ 1:2, r1 ¼ 1, w1 ¼ 150, and w2 ¼ 1,
corresponding to M� 0:44r2; r2 ¼ 1:05, r1 ¼ 1, w1 ¼
350, and w2 ¼ 1, corresponding to M� 0:49r2. Bottom panel:
J=M2 and angular frequency � for the anisotropic pressure
model with r2 ¼ 2:2, r1 ¼ 1:8, and M ¼ 1. The angular
frequency is always very small, thus the slow-rotation formalism
applies. These results extend up to the Keplerian frequency �K .
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III. ERGOREGION INSTABILITY FOR ROTATING
STARS

The stability of ultracompact objects can be studied
perturbatively by considering small deviations around
equilibrium. As explained in the Introduction, we consider
only scalar perturbations. This is justified as follows. Axial
gravitational perturbations are described in the large l ¼ m
limit by the same equation of scalar perturbations. In this
regime, our results describe both kinds of perturbations. In

the small l ¼ m limit, gravitational perturbations are ex-
pected to have shorter growth times than scalar perturba-
tions: black holes are characterized by a superradiant
amplification of spin-2 fields which is much stronger
than the superradiant amplification of other fields. This is
due to the potential barrier outside the horizon having
different behavior for different spin-field s. Since the ultra-
compact objects we are dealing with are also characterized
by a relativistic potential barrier, gravitational perturba-
tions are expected to couple more strongly to the ergore-
gion and have smaller instability time scales. This
conclusion is also verified under certain simplifying as-
sumptions in Ref. [61]. Thus, scalar perturbations should
provide a lower bound on the strength of the instability.

A. Axial gravitational perturbations
for perfect fluid stars

In the large l ¼ m regime, axial gravitational perturba-
tions [61,62] are described by a simple equation. In gen-
eral, axial and polar perturbations are coupled when
rotation is included [63]. For simplicity, we will assume
that the zeroth-order polar perturbations vanish and there is
no coupling. The full metric is a perturbation of Eq. (2.19)
[63]:

ds2 ¼ ds20 þ 2
X
lm

ðhlm0 ðt; rÞ þ hlm1 ðt; rÞÞ

� ð�sin�1
@�Ylmd
þ sin
@
Ylmd�Þ; (3.1)

where ds20 is the unperturbed metric (2.19) and Ylm are

scalar spherical harmonics. The quantities

hlm0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ=BðrÞ

q
K6; hlm1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðrÞ=fðrÞ

q
V4; (3.2)

FIG. 3 (color online). Left panel: Metric coefficients for a rotating boson star along the equatorial plane, with parameters n ¼ 2,
b ¼ 1:1, � ¼ 1:0, a ¼ 2:0, J=ðGM2Þ � 0:566. Right panel: Fractional difference of the metric potentials between 
 ¼ �=2 and

 ¼ �=4 for the same star. The plot gives the maximum possible fractional difference between these quantities.

FIG. 4 (color online). The gtt metric coefficient for a boson
star with J=ðGM2Þ � 0:566 at its equator. The ergoregion is
identified by the region inside the dotted vertical lines and
extends from r=ðGMÞ � 0:047 to 0.770.
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satisfy the system of equations [see Eqs. (13)–(16) in
Ref. [62] ]

K0
3 ¼ 16�ðpþ �Þu3 � 2K3

r
þ l2 þ l� 2

r2
K6 � 2m	 0V4

ðl2 þ lÞf ;
(3.3)

K0
6 ¼ �B

f
ð�!þm	ÞV4 �

�
f0

2f
� B0

2B
� 2

r

�
K6 þ BK3;

(3.4)

where K3 and K6 are two extrinsic curvature variables and

V4 ¼ r2

l2 þ l� 2

�
ð�!þm	ÞK3 � 2m	 0

lðlþ 1Þ
K6

B

�
; (3.5)

u3 ¼ 2mð�� 	Þ
2mð�� 	Þ � lðlþ 1Þð�!þm�ÞK6: (3.6)

Here and throughout this paper, it is understood that ! �
!lm. In the large l ¼ m limit, Eqs. (3.3) and (3.4) reduce to

K0
3 ¼ � 2

r
K3 þm2

r2
K6; (3.7)

K0
6 ¼ BK3 � B

f
ð�þ 	Þ2r2K3 �

�
f0

2f
� B0

2B
� 2

r

�
K6;

(3.8)

where � � �!=m. Combining Eqs. (3.7) and (3.8) and
neglecting terms of order 1=m2, it follows

K00
3 þm2 B

f

�
ð�þ 	Þ2 � f

r2

�
K3 ¼ 0: (3.9)

This equation also describes the scalar perturbations of
gravastars, as it will be shown below.

B. Scalar field instability for slowly rotating gravastars:
WKB approach

Consider now a minimally coupled scalar field in the
background of a gravastar. The metric of gravastars is
given by Eq. (2.19). In the large l ¼ m limit, which is
appropriate for a WKB analysis [52,64], the scalar field
can be expanded as

� ¼ X
lm

��lmðrÞ exp
�
� 1

2

Z �
2

r
þ f0

2f
þ B0

2B

�
dr

�

� e�i!tYlmð
;�Þ: (3.10)

The functions ��lm are determined by the Klein-Gordon
equation, which yields

�� 00
lm þm2Tðr;�Þ ��lm ¼ 0; (3.11)

where � is defined as below Eq. (3.8) and

T ¼ BðrÞ
fðrÞ ð�� VþÞð�� V�Þ; (3.12)

V
 ¼ �	 

ffiffiffiffiffiffiffiffiffi
fðrÞp
r

: (3.13)

Equation (3.11) follows from Eq. (3.10) when terms of
order Oð1=m2Þ are dropped. Equation (3.11) can be shown
to be identical to Eq. (3.9) for the axial gravitational
perturbations of perfect fluid stars. Therefore, the follow-
ing results apply to both kinds of perturbations.
The eigenfrequencies of Eq. (3.11) can be computed in

the WKB approach following Ref. [52]. This method is in
excellent agreement with full numerical results [53,64].
The quasibound unstable modes are determined by

m
Z rb

ra

ffiffiffiffiffiffiffiffiffi
TðrÞp

dr ¼ �

2
þ n�; n ¼ 0; 1; 2; . . . (3.14)

and have time scale

� ¼ 4 exp

�
2m

Z rc

rb

ffiffiffiffiffiffiffi
jTj

p
dr

�Z rb

ra

d

d�

ffiffiffiffi
T

p
dr; (3.15)

where ra, rb are solutions of Vþ ¼ � and rc is determined
by the condition V� ¼ �.
The potentials V
 are displayed in Fig. 5 for the grav-

astar models of Sec. II A. The top panel shows the potential
for the thin-shell model with r2 ¼ 1:3, r1 ¼ 1, w1 ¼ 50,
and w2 ¼ 1. The gravastar rotates with angular frequency
�� 0:105 and the ergoregion lies in the region r�
ð0:247; 0:832Þr2. The bottom panel refers to the anisotropic
pressure model with r2 ¼ 2:2, r1 ¼ 1:8, and M ¼ 1. The
ergoregion extends from r� 0:270r2 to r� 1:055r2 and
rotates with angular frequency �� 0:250.
The results of the WKB computation are shown in Fig. 6

and Tables I, II, and III. Figure 6 displays the results for the
least compact thin-shell gravastar of Sec. II Awith m ¼ 1,
4. Although theWKB approximation breaks down at lowm
values, these results still provide reliable estimates [52].
This claim will be verified in Sec. with a full numerical
integration of the Klein-Gordon equation. Table I com-
pares three different gravastars for J=M2 ¼ 1 and m ¼
1; 2; . . . 5. The results show that the instability time scale
decreases as the star becomes more compact. Table II
refers to the most compact thin-shell gravastar for various
angular frequencies. The instability time scale depends
strongly on the rotation. A fit for the instability time scale
in powers of J=M2 yields

log�=M� aþ b
ffiffiffiffiffiffiffiffiffiffiffiffi
J=M2

q
þ cJ=M2; (3.16)

where a ¼ 68:0, b ¼ �76:7, c ¼ 26:2 for m ¼ 5 and a ¼
55:8, b ¼ �61:4, c ¼ 21:0 for m ¼ 4, respectively. The
results for lower m values show similar behaviors. For
instance, for m ¼ 1 the coefficients are a ¼ 19:7, b ¼
�16:2, and c ¼ 5:6. Table III shows the WKB results for
the anisotropic pressure model for different values of
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J=M2. Larger values of J=M2 make the star more unstable.
The instability time scales are fitted by

log�=M� aþ bðJ=M2Þc; (3.17)

where a ¼ �21:9, b ¼ 39:2, c ¼ �0:39 for m ¼ 5 and
a ¼ �13:7, b ¼ 28:5, c ¼ �0:43 form ¼ 4. The trend for
lower-m is similar. The coefficients form ¼ 1 are a ¼ 7:4,
b ¼ 0:57, c ¼ �3:0.

Both models have similar low-m behaviors. It will be
shown in Sec. that the WKB results for the instability time
scale differ from the numerical results by about 1 order of
magnitude at lowm. On the contrary, the resonant frequen-
cies match well the WKB results even for low-m modes.
Calculations show that the resonant frequency is Reð!Þ �
��, where �� 1:1–1:2.
The maximum growth time of the instability is of the

order of a few thousand M, at least for large J. This
instability is crucial for the star evolution. Comparison of
Table V with Tables 1 and 2 of Ref. [52] shows that the
ergoregion instability of gravastars is stronger than the
ergoregion instability of uniform density stars by many
orders of magnitude. This seems to be a general feature of
all ultracompact objects discussed here. Gravitational per-
turbations are expected to be even more unstable.

FIG. 6 (color online). Details of the ergoregion instability
(m ¼ 1 and m ¼ 4) for the thin-shell gravastar of Sec. II A 1
with r2 ¼ 1:3, r1 ¼ 1, w1 ¼ 50, and w2 ¼ 1. The plot shows
the logarithm of the dimensionless instability time scale �=M,
the dimensionless angular velocity M�, and the oscillation
frequency � vs the angular momentum per unit mass, J=M2.
The m ¼ 2, 3 modes follow a similar pattern and are in between
the m ¼ 1, 4 results.

FIG. 5 (color online). Top panel: Potentials V
 for the thin-
shell gravastar with r2 ¼ 1:3, r1 ¼ 1, w1 ¼ 50, and w2 ¼ 1.
The ergoregion extends from r� 0:247r2 to 0:832r2 and
corresponds to a gravastar with J� 0:333M2 and M��
0:105. Bottom panel: Potentials for the anisotropic pressure
gravastar with r2 ¼ 2:2, r1 ¼ 1:8, and M ¼ 1. The ergoregion
extends from r� 0:270r2 to r� 1:055r2 and rotates with
angular momentum J=M2 ¼ 1:00, corresponding to ��
0:250.

TABLE I. WKB results for the instability of rotating thin-shell
gravastars with J=M2 ¼ 1. The instability grows with compact-
ness.

ð�102M�; �=MÞ
m r2 ¼ 1:3 r2 ¼ 1:2 r2 ¼ 1:05
1 9.2, 6:85� 103 17, 5:26� 103 23, 9:16� 103

2 11, 1:23� 105 18, 5:63� 104 23, 7:37� 104

3 12, 2:31� 106 18, 6:06� 105 23, 5:98� 105

4 12, 4:34� 107 18, 6:58� 106 23, 4:86� 106

5 12, 8:26� 108 18, 7:13� 107 23, 3:99� 107
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Comparison with numerical results

Accurate computations of the instability require numeri-
cal solutions of the Klein-Gordon equation. However, the
WKB approximation provides reliable estimates of the
numerical results. The exact potential T of Eq. (3.13) is

�T ¼ � lðlþ 1ÞB
r2

þ Bð!�m	Þ2
f

þ B0

2rB
þ B00

4B
� 5B02

16B2

� f0

2rf
þ B0f0

8Bf
þ 3f02

16f2
� f00

4f
: (3.18)

The results of the numerical integration for the anisotropic
pressure gravastar with r2 ¼ 2:2, r1 ¼ 1:8, M ¼ 1, and
J=M2 ¼ 1 are shown in Table IV.

The WKB approximation for the real part of the fre-
quency shows a remarkably good agreement with the
numerical results even at low values of m. For any m> 1
this agreement is better than 5%. The instability time scale
seems to be more sensitive to the details of the WKB
integration, with a level of agreement similar to that re-
ported in Ref. [53]. The above results show that the WKB
approximation correctly estimates the instability time scale
for all values of m within an order of magnitude.

C. Scalar field instability for rotating boson stars:
WKB approach

Consider a scalar field � minimally coupled to the
rotating boson star geometry (not to be confused with the
scalar field which makes up the star). Since the metric
coefficients depend on r and 
, the Klein-Gordon equation
cannot be reduced, in general, to a one-dimensional prob-
lem. Separation of variables can be achieved by requiring
g ¼ 1, f ¼ fðr; �=2Þ, k ¼ kðr; �=2Þ, and 	 ¼ 	ðr; �=2Þ.
These assumptions are justified as follows. First, the metric
function g is very close to unity throughout the entire
coordinate region, as can be seen in Fig. 3. Since the
Klein-Gordon equation does not depend on the derivatives
of g, it seems safe to set g ¼ 1 in the whole domain.
Second, the angular dependence of the metric coefficients
is negligible for slow rotations. The largest variation for
one revolution around the star is that of f, which is less
than 100% for most cases (see Fig. 3). Moreover, this
dependence is extremely weak for most of the values of
r. Third, perturbations are localized around the equator in

TABLE II. WKB results for the instability of rotating thin-shell gravastars with r2 ¼ 1:05 and r1 ¼ 1:0. The mass shedding limit

corresponds to �=�K ¼ 1, where �K ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
M=r32

q
.

ð�102M�; �=MÞ
J=M2 ¼ 0:40 J=M2 ¼ 0:50 J=M2 ¼ 0:60 J=M2 ¼ 0:70 J=M2 ¼ 0:80 J=M2 ¼ 0:90 J=M2 ¼ 1:0

m �=�K ¼ 0:28 �=�K ¼ 0:35 �=�K ¼ 0:42 �=�K ¼ 0:50 �=�K ¼ 0:57 �=�K ¼ 0:64 �=�K ¼ 0:71
1 8.4, 1:19� 105 10, 6:28� 104 13, 3:70� 104 16, 2:38� 104 18, 1:64� 104 20, 1:19� 104 23, 9:15� 103

2 8.7, 1:13� 107 11, 3:24� 106 14, 1:15� 106 16, 4:82� 105 18, 2:31� 105 21, 1:24� 105 23, 7:38� 104

3 8.8, 1:08� 109 11, 1:68� 108 14, 3:59� 107 16, 9:86� 106 18, 3:30� 106 21, 1:30� 106 23, 5:97� 105

4 8.9, 1:04� 1011 11, 8:75� 109 14, 1:13� 109 16, 2:03� 108 18, 4:69� 107 21, 1:37� 107 23, 4:86� 106

5 8.9, 1:01� 1013 11, 4:58� 1011 14, 3:59� 1010 16, 4:16� 109 18, 6:75� 108 21, 1:45� 108 23, 3:98� 107

TABLE III. WKB results for the instability of rotating anisotropic pressure gravastars with r2 ¼ 2:2, r1 ¼ 1:8, and M ¼ 1.

ð�102M�; �=MÞ
J=M2 ¼ 0:40 J=M2 ¼ 0:50 J=M2 ¼ 0:60 J=M2 ¼ 0:70 J=M2 ¼ 0:80 J=M2 ¼ 0:90 J=M2 ¼ 1:0

m �=�K ¼ 0:33 �=�K ¼ 0:41 �=�K ¼ 0:49 �=�K ¼ 0:57 �=�K ¼ 0:65 �=�K ¼ 0:74 �=�K ¼ 0:82
1 0.24, 1:33� 107 2.7, 1:13� 105 5.2, 2:78� 104 7.6, 1:15� 104 10, 5:99� 103 12, 3:58� 103 15, 2:34� 103

2 3.1, 8:25� 107 5.6, 6:20� 106 8.1, 1:14� 106 10, 3:13� 105 13, 1:11� 105 15, 4:81� 104 18, 2:33� 104

3 4.2, 1:31� 1010 6.6, 5:44� 108 9.1, 5:65� 107 12, 9:40� 106 14, 2:25� 106 17, 6:82� 105 19, 2:45� 105

4 4.7, 2:50� 1012 7.2, 5:13� 1010 9.7, 2:95� 109 12, 3:10� 108 15, 4:81� 107 17, 1:02� 107 20, 2:73� 106

5 5.1, 5:06� 1014 7.6, 4:99� 1012 10, 1:59� 1011 13, 9:82� 109 15, 1:02� 109 17, 1:52� 108 20, 3:07� 107

TABLE IV. Comparison between analytical and numerical re-
sults for anisotropic pressure gravastars with J=M2 ¼ 1, r2 ¼
2:2, r1 ¼ 1:8, and M ¼ 1. The numerical results for the real
part are in good agreement with the WKB results. The agreement
is better for larger values of m. The imaginary parts agree within
an order of magnitude.

ð�102�M; �=MÞ
m Analytical (A) Numerical (N) j �A��N

�A
j

1 15.0, 2:34� 103 21.9, 2:47� 103 31.5%

2 18.0, 2:34� 104 18.6, 1:81� 105 3.2%

3 19.0, 2:49� 105 18.7, 2:53� 106 1.6%

4 19.6, 2:74� 106 19.0, 3:33� 107 3.2%

5 19.8, 3:07� 107 19.3, 3:76� 108 2.6%
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the large l ¼ m behavior. Therefore, evaluating the metric
coefficients at the equator may provide a reasonable ap-
proximation to the problem. The results obtained in this
section are expected to give an order of magnitude estimate
for the instability.

The equation for the scalar field is obtained by expand-
ing the latter as

� ¼ X
lm

��lmðrÞ exp
�
� 1

2

Z �
2

r
þ k0

k

�
dr

�
e�i!tYlmð
;�Þ:

(3.19)

In the large l ¼ m limit, ��lm is determined by

�� 00
lm þm2Tðr;�Þ ��lm ¼ 0; (3.20)

where

T ¼ k

f2
ð�� VþÞð�� V�Þ; (3.21)

V
 ¼ 	 
 f

r
ffiffiffi
k

p ; � � !

m
; (3.22)

and terms of order Oð1=m2Þ have been neglected. The
potentials V
 are plotted in Fig. 7 for the rotating boson
star with J=ðGM2Þ ¼ 0:566. The results of the WKB com-
putation are summarized in Table V for m ¼ 1; 2; . . . 5. An
interesting feature is that the instability time scale in-
creases with the star angular momentum. Because of lack
of sufficient numerical results, we do not yet know whether
this behavior holds for all values of the angular momentum
or the trend changes at some point. The maximum growth
time for this boson star model is of the order of 106M for
J

GM2 ¼ 0:857 658. This is a relatively short instability time

scale, corresponding to about 1 s for a one solar-mass
boson star.

IV. DETECTABILITY BY EARTH- AND SPACE-
BASED GRAVITATIONAL-WAVE DETECTORS

The ergoregion instability may be of interest for
gravitational-wave astronomy. Contrary to the r-mode in-
stability of neutron stars [65,66], the ergoregion instability
is not limited to solar-mass objects. Thus chances of de-
tection are larger because the signal can fall in frequency
bands where the detectors are more sensitive.

A. Signal-to-noise ratio

Detectability depends only on the energy released and
the detector frequency bandwidth. The sky-averaged
signal-to-noise ratio (SNR) is [67]

�2 ¼ 2

5�2D2

Z
df

1

f2ShðfÞ
dE

df
; (4.1)

whereD is the distance to the source and ShðfÞ is the noise
power spectral density of the detector. Using dE ¼
2�fdJ=m, the SNR for the l ¼ m ¼ 2 mode, i.e. the
mode for which the instability is expected to be stronger, is

�2 ¼ 2

5�D2

Z
df

1

fShðfÞ
dJ

df
: (4.2)

Equation (4.2) agrees with results in the literature
[65,66,68] and is independent of the perturbation ampli-
tude at lowest order. Higher-order corrections, however,
would contain a dependence of the SNR ratio on the
amplitude evolution. Fitting the resonant frequencies to

Re ½!� ¼ 2�f � ��; (4.3)

one finds �� 1:1–1:2. From Eq. (4.3) it follows dJ=df �
2�I=�. Assuming the moment of inertia I � 2M3 to be
roughly independent of the angular velocity [65] (compu-
tations show that � 1 for gravastars to a very good
approximation), Eq. (4.2) can be rewritten as [65,66,68]

FIG. 7 (color online). Potentials V
 for the boson star model
with J=ðGM2Þ ¼ 0:566. The ergoregion extends from
r=ðGMÞ � 0:0478 to 0.779.

TABLE V. Instability for rotating boson stars with parameters
n ¼ 2, b ¼ 1:1, � ¼ 1:0, a ¼ 2:0, and different values of J:
J=ðGM2Þ ¼ 0:566, 0.731, and 0.858. The Newton constant is
defined as 4�G ¼ 0:05.

�102 GM�; �=ðGMÞ
m J

GM2 ¼ 0:566 139 J
GM2 ¼ 0:730 677 J

GM2 ¼ 0:857 658
1 31, 8:847� 102 6.6, 6:303� 103 -

2 36, 7:057� 103 13, 5:839� 104 0.68, 1:478� 106

3 37, 6:274� 104 16, 9:274:� 105 3.4, 2:815� 108

4 38, 5:824� 105 17, 1:603� 107 4.9, 2:815� 1010

5 38, 5:554� 106 18, 2:915� 108 5.7, 1:717� 1012
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�2 ¼ 8M3

5�D2

Z fmax

fmin

df
1

fShðfÞ : (4.4)

The minimum and maximum frequencies in the above
integral are chosen as fmin ¼ 0:9fmax (we here implicitly
assume that the amplitude of the perturbation is sufficiently
large so that fmin is reached within the typical operation
time of a detector such as LIGO or LISA, i.e. �1 year).
This is a conservative estimate based on a simple model for
the evolution of the system. SNRs for objects at 20 Mpc
distance for LIGO/Advanced LIGO and LISA are shown in
Table VI for�M ¼ 0:2. Solar-mass objects are difficult to
detect, although LIGO (Advanced LIGO) could be able to
detect objects with M * 30M� (M * 10M�). SNRs of
several thousands are easily achieved for supermassive
objects. These objects could be easily observed by LISA.

B. Waveforms

The expression for the SNR derived above is the optimal
SNR. Search and detection techniques, i.e. matched filter-
ing, usually require accurate theoretical templates. The
derivation of accurate waveforms for the ergoregion insta-
bility is beyond the purpose of this paper. The physics
involved is too complex and even the evolution of the
instability itself is at present not known. The sole purpose
of this section is to sketch the evolution of the most
important quantities of the process.

The instability proceeds in two steps: A phase charac-
terized by an exponential growth, where the linear approxi-
mation is valid, followed by a nonlinear phase. Contrary to
the r-mode instability, the ergoregion instability does not
couple strongly to the fluid composing the object.
Therefore, the nonlinear phase is expected to be somewhat
different from the r-mode saturation phase [65,66].

As an illustration of waveform estimation, consider the
instability triggered by a particle in circular orbit around
the compact object. Focusing on the l ¼ 2 mode, the
metric perturbations in the linear perturbation regime
have the form

hþ ¼ M

D
h0e

t=� sinð!t� 2�Þ�þ; (4.5)

h� ¼ M

D
h0e

t=� cosð!t� 2�Þ��; (4.6)

where D is the distance to the source, h0 � 1 and

�þ � cos2
þ 1

2
; �� � cos
: (4.7)

The above waveforms mimic the Newtonian waveform
produced by a small mass in circular orbit around the
ultracompact object. The linear perturbation regime corre-
sponds to hþ;� < 1. The exact functional form of the

waveform (4.7) is required to determine polarization and
phase content of the waveform, but not the evolution of its
amplitude.
From the discussion in the previous sections, the fre-

quency of the wave is !��ðtÞ. The time scale is ��
�0ðM�Þ�6, where a dominant w-mode instability is as-
sumed [61]. The mass can be determined as follows. The
energy carried by the gravitational wave is [69]

d2E

dtd�
¼ lim

D!1
D2

16�
ð _h2þ þ _h2�Þ: (4.8)

Assuming that all the energy carried by the gravitational
wave is extracted from the star, it follows dE=dt ¼
�dM=dt. The angular momentum radiated in the azimu-
thal mode m can be obtained from dE ¼ !dJ=m. If this
angular momentum is also completely extracted from the
star, then J ¼ I�, where the moment of inertia I ¼
2MðtÞ3 is approximately constant in time. Setting
dJ=dt ¼ m=!dE=dt ¼ 2=ð��ÞdM=dt, the mass varia-
tion rate is

TABLE VI. SNR for ergoregion instability of an object at
distance of 20 Mpc for LIGO/Advanced LIGO and LISA. (See
text for details.)

�

M=M� 10 20 30 40 50 100

LIGO 1 5 11 18 24 23

Advancecd LIGO 9 84 193 249 304 468

�

M=M� 104 105 106 107 108

LISA 0.07 21 2428 1469 1417

FIG. 8 (color online). Evolution of mass, angular velocity, and
waveform of a thin-shell gravastar with h0 ¼ 10�4, M�0 ¼
0:25, and �=M ¼ 0:041 during the linear perturbation phase.
The mass difference is rescaled by a factor 10 for better visual-
ization.
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_M

M3
¼ �� _�: (4.9)

Integration of Eq. (4.9) yields

�2 ¼ �2
0 þ

M�2
0 �M�2

�
: (4.10)

The mass and the angular velocity can be obtained by
solving the previous equations with the condition dE=dt ¼
�dM=dt. A typical solution is shown in Fig. 8.

V. DISCUSSION

The above results show that ultracompact objects with
high redshift at their surface are unstable when rapidly
spinning. This strengthens the role of BHs as candidates
for astrophysical observations of rapidly spinning compact
objects.

Boson stars and gravastars easily develop ergoregion
instabilities. Analytical and numerical results indicate
that these objects are unstable against scalar field pertur-
bations. Their instability time scale is many orders of
magnitude stronger than the instability time scale for ordi-
nary stars with uniform density [52]. In the large l ¼ m
approximation, suitable for a WKB treatment, gravita-
tional and scalar perturbations have similar instability
time scales. In the low-m regime gravitational perturba-
tions are expected to have shorter instability time scales
than scalar perturbations.

For J > 0:4M2 instability time scales can be as low as a
few tenths of a second for solar-mass objects and about a
week for supermassive BHs, monotonically decreasing for
larger rotations. Therefore, high rotation is an indirect
evidence for horizons. The spin of an astrophysical com-

pact object can be estimated by looking at the gas accreting
near its surface [2,70,71]. A handful of fast-spinning BH-
like objects have been reported [6,7]. The results of this
paper suggest that these objects must indeed be BHs.
The ergoregion instability evolution is characterized by

very distinct waveforms. If compact astrophysical objects
evolve through the ergoregion instability, gravitational-
wave detectors could easily identify them with a
matched-filtering search.
It would be interesting to repeat the above analysis for

other ultracompact objects, such as wormholes [72–75],
superspinars [76], and quark or fermion-boson stars [77].
The general arguments presented above suggest that these
objects should be unstable. It would also be interesting to
perform a more detailed analysis of the gravitational sector
of the ergoregion instability and derive more refined tem-
plates for matched-filtering searches. A first step in this
direction would be to compute axial perturbations for any
value of the azimuthal number m along the lines of pre-
vious works [61].
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thank Óscar Dias and Kostas Kokkotas for interesting
discussions and fruitful comments. This work was partially
funded by Fundação para a Ciência e Tecnologia (FCT)—
Portugal through Projects No. PTDC/FIS/64175/2006 and
No. POCI/FP/81915/2007. M.C. gratefully acknowledges
the support of the National Science Foundation through
LIGO Research Support Grant No. NSF PHY-0757937.

[1] S.W. Hawking, Commun. Math. Phys. 25, 152 (1972).
[2] R. Narayan, New J. Phys. 7, 199 (2005).
[3] R. D. Blandford and R. L. Znajek, Mon. Not. R. Astron.

Soc. 179, 433 (1977).
[4] C. F. Gammie, S. L. Shapiro, and J. C. McKinney,

Astrophys. J. 602, 312 (2004).
[5] D. Merritt and M. Milosavljevic, Living Rev. Relativity 8,

8 (2005).
[6] J. E. McClintock, R. Shafee, R. Narayan, R. A. Remillard,

S.W. Davis, and L.X. Li, Astrophys. J. 652, 518 (2006).
[7] J.M. Wang, Y.M. Chen, L. C. Ho, and R. J. McLure,

Astrophys. J. 642, L111 (2006).
[8] M.A. Abramowicz, W. Kluzniak, and J. P. Lasota, Astron.

Astrophys. 396, L31 (2002).
[9] J. P. Lasota, C.R. Physique 8, 45 (2007).

[10] G. Chapline, E. Hohlfeld, R. B. Laughlin, and D. I.
Santiago, Int. J. Mod. Phys. A 18, 3587 (2003).

[11] P. O. Mazur and E. Mottola, arXiv:gr-qc/0109035.
[12] M. Visser and D. L. Wiltshire, Classical Quantum Gravity

21, 1135 (2004).
[13] C. B.M. Chirenti and L. Rezzolla, Classical Quantum

Gravity 24, 4191 (2007).
[14] D. Horvat and S. Ilijic, Classical Quantum Gravity 24,

5637 (2007).
[15] N. Bilic, G. B. Tupper, and R.D. Viollier, J. Cosmol.

Astropart. Phys. 02 (2006) 013.
[16] F. S. N. Lobo, Classical Quantum Gravity 23, 1525

(2006).
[17] F. S. N. Lobo and A.V. B. Arellano, Classical Quantum

Gravity 24, 1069 (2007).

ERGOREGION INSTABILITY OF ULTRACOMPACT . . . PHYSICAL REVIEW D 77, 124044 (2008)

124044-13



[18] C. Cattoen, T. Faber, and M. Visser, Classical Quantum
Gravity 22, 4189 (2005). See also C. Cattoen, arXiv:gr-qc/
0606011.

[19] D. J. Kaup, Phys. Rev. 172, 1331 (1968); R. Ruffini and S.
Bonazzola, Phys. Rev. 187, 1767 (1969).

[20] V. Silveira and C.M.G. de Sousa, Phys. Rev. D 52, 5724
(1995); S. Yoshida and Y. Eriguchi, Phys. Rev. D 55, 1994
(1997); 56, 762 (1997); 56, 6370 (1997); F. E. Schunck
and E.W. Mielke, Phys. Lett. A 249, 389 (1998).

[21] F. E. Schunck and E.W. Mielke, Classical Quantum
Gravity 20, R301 (2003).

[22] E. Berti and V. Cardoso, Int. J. Mod. Phys. D 15, 2209
(2006).

[23] M. Colpi, S. L. Shapiro, and I. Wasserman, Phys. Rev.
Lett. 57, 2485 (1986).

[24] T.D. Lee and Y. Pang, Phys. Rep. 221, 251 (1992).
[25] D. F. Torres, S. Capozziello, and G. Lambiase, Phys. Rev.

D 62, 104012 (2000).
[26] F. S. Guzman, Phys. Rev. D 73, 021501 (2006).
[27] M. Kesden, J. Gair, and M. Kamionkowski, Phys. Rev. D

71, 044015 (2005).
[28] A. C. Fabian and C. R. Canizares, Nature (London) 333,

829 (1988).
[29] R. Narayan, I. Yi, and R. Mahadevan, Nature (London)

374, 623 (1995).
[30] A. E. Broderick and R. Narayan, Classical Quantum

Gravity 24, 659 (2007).
[31] W.H.G. Lewin, J. van Paradijs, and R. E. Taam, Space

Sci. Rev. 62, 223 (1993).
[32] B. F. Schutz, Classical Quantum Gravity 16, A131 (1999);

S. A. Hughes, Ann. Phys. (N.Y.) 303, 142 (2003); L. P.
Grishchuk, V.M. Lipunov, K.A. Postnov, M. E.
Prokhorov, and B. S. Sathyaprakash, Usp. Fiz. Nauk 171,
3 (2001); C. Cutler and K. S. Thorne, arXiv:gr-qc/
0204090.

[33] http://www.ligo.caltech.edu/.
[34] http://www.cascina.virgo.infn.it/.
[35] http://tamago.mtk.nao.ac.jp/.
[36] http://lisa.nasa.gov/.
[37] E. Berti, A. Buonanno, and C.M. Will, Phys. Rev. D 71,

084025 (2005); Classical Quantum Gravity 22, S943
(2005); R.N. Lang and S. A. Hughes, Phys. Rev. D 74,
122001 (2006); 75, 089902(E) (2007).

[38] F. D. Ryan, Phys. Rev. D 52, 5707 (1995); 56, 1845
(1997).

[39] L. Barack and C. Cutler, Phys. Rev. D 75, 042003
(2007).

[40] P. Amaro-Seoane, J. R. Gair, M. Freitag, M. Coleman
Miller, I. Mandel, C. J. Cutler, and S. Babak, Classical
Quantum Gravity 24, R113 (2007).

[41] M. Vallisneri, Phys. Rev. Lett. 84, 3519 (2000).
[42] C. Palenzuela, L. Lehner, and S. L. Liebling, Phys. Rev. D

77, 044036 (2008).
[43] E. Berti, V. Cardoso, and C.M. Will, Phys. Rev. D 73,

064030 (2006); E. Berti, V. Cardoso, J. A. Gonzalez, U.
Sperhake, M. Hannam, S. Husa, and B. Bruegmann, Phys.
Rev. D 76, 064034 (2007); E. Berti, J. Cardoso, V.
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CARDOSO, PANI, CADONI, AND CAVAGLIÀ PHYSICAL REVIEW D 77, 124044 (2008)

124044-14



(Cambridge University Press, Cambridge, England, 2004),
Chap. IV.

[71] A. C. Fabian and G. Miniutti, arXiv:astro-ph/0507409.
[72] M. S. Morris and K. S. Thorne, Am. J. Phys. 56, 395

(1988).
[73] M. Visser, Lorentzian Wormholes: From Einstein to

Hawking (American Institute of Physics, NY, 1995).
[74] J. P. S. Lemos, F. S. N. Lobo, and S. Quinet de Oliveira,

Phys. Rev. D 68, 064004 (2003).

[75] T. Damour and S. N. Solodukhin, Phys. Rev. D 76, 024016
(2007).

[76] E. G. Gimon and P. Horava, arXiv:0706.2873.
[77] A. B. Henriques, A. R. Liddle, and R.G. Moorhouse, Nucl.

Phys. B337, 737 (1990); Phys. Lett. B 251, 511 (1990);
C.M.G. de Sousa and V. Silveira, Int. J. Mod. Phys. D 10,
881 (2001); C.M.G. de Sousa and J. L. Tomazelli, Phys.
Rev. D 58, 123003 (1998); G. Narain, J. Schaffner-Bielich,
and I. N. Mishustin, Phys. Rev. D 74, 063003 (2006).

ERGOREGION INSTABILITY OF ULTRACOMPACT . . . PHYSICAL REVIEW D 77, 124044 (2008)

124044-15


