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We discuss the implications for gravitational wave detectors of a class of modified gravity theories

which dispense with the need for dark matter. These models, which are known as dark matter emulators,

have the property that weak gravitational waves couple to the metric that would follow from general

relativity without dark matter whereas ordinary particles couple to a combination of the metric and other

fields which reproduces the result of general relativity with dark matter. We show that there is an

appreciable difference in the Shapiro delays of gravitational waves and photons or neutrinos from the

same source, with the gravitational waves always arriving first. We compute the expected time lags for

GRB 070201, for SN 1987a and for Sco-X1. We estimate the probable error by taking account of the

uncertainty in position, and by using three different dark matter profiles.
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I. INTRODUCTION

The direct detection of gravitational waves from astro-
physical sources would enable us to open a new window
into the Universe and get insights which are complemen-
tary to electromagnetic astronomy [1]. Many ground-based
interferometric detectors such as LIGO, VIRGO, GEO600
and TAMA have been online for several years. In October
2007, LIGO completed a long science run to collect 1 yr of
coincident data at design sensitivity [2], and the VIRGO
detector also joined this science run in the last five months.
During the latest LIGO science run, the sensitivity of the
4 km Hanford and Livingston LIGO detectors to detect
binary neutron-star coalescence with mass 1:4M� with
signal to noise ratio greater than 8 (after averaging over
all orientations and sky positions) was about 15 Mpc [2].
Analysis of the latest LIGO and VIRGO data for gravita-
tional wave (GW) searches from a wide variety of sources
is in progress [3].

An important science goal pursued is the search for
impulsive transient GW signals from sources with electro-
magnetic and/or neutrino counterparts. Some examples of
such sources include core-collapse supernovae, gamma-
ray bursts (GRBs), soft gamma-ray repeaters (SGRs), pul-
sar glitches, low mass x-ray binaries, blazar flares, optical
transients, etc. [4]. These ‘‘triggered’’ searches allow us to
get better sensitivity for a given false alarm rate as com-
pared to an all-sky search at all times and to design custom-
made analysis algorithms taking into account our knowl-
edge of the source astrophysics. Conversely, there has been
a proposal to look for optical and infrared counterparts at
the time of coincident GW burst candidates [5]. An over-
view and benefits of such triggered searches carried out by

the current interferometric gravitational wave detectors are
reviewed in Ref. [4]. There have been proposals to deter-
mine neutrino mass using simultaneous neutrino and GW
observations from core-collapse supernovae [6]. Similar
triggered GW searches will also be important for the future
LISA experiment [7].
In all present and past triggered searches for gravita-

tional waves, the analysis is done by looking at the data
from GW detectors within a narrow time window (of about
hundreds of seconds) around the time of the electromag-
netic trigger. With this assumption, one can detect gravi-
tational waves only if the propagation time of photons/
neutrinos is the same as that of gravitational waves. In
general relativity, photons, neutrinos and gravitational
waves propagate on the same null geodesics. Hence the
total time of propagation is the light travel time delay plus
the Shapiro time delay due to intervening matter [8]. For
electromagnetic waves, Shapiro delay has been detected in
a wide variety of systems such as radar ranging to Venus,
Doppler tracking of Cassini spacecraft and in binary pul-
sars [9]. From the relative arrival times of photons and
neutrinos from SN 1987a, we also know that the Shapiro
time delay for neutrinos is the same as that for photons to
within 0.5% [10,11].
The conventional view is that general relativity de-

scribes gravity on cosmic scales. If this is so, the gravita-
tion of stars and gas is not sufficient to account for the
velocity dispersions in clusters [12], or for the rotation
curves of spiral galaxies [13–15], or for the weak lensing
in galactic clusters [16–21]. Big bang nucleosynthesis
severely limits the extent to which the deficit can be
made up of unseen but ordinary matter [22]; the remainder
must consist of an exotic, nonrelativistic substance which
has never been detected except gravitationally. This dark
matter must vastly predominate over ordinary matter. For
example, only about one-fifth of our galaxy’s mass is made
up of normal matter, with the rest being composed of dark
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matter [23]. Thus the dominant contribution to the Shapiro
delay for photons from GRBs and other sources is due to
the gravitational potential of the intervening dark matter.

None of the proposed dark matter candidates have been
detected, either directly in a laboratory experiment or
indirectly through their annihilation products [24–27].
This prompts the suspicion that perhaps it is gravity which
must be modified, rather than the universe’s inventory of
nonrelativistic matter. Of course that would invalidate the
assumption which is the basis for all current and proposed
GW searches from sources seen in photons and neutrinos
[4,6]. A previous study [28,29] has considered the conse-
quences for gravitational wave detection of a certain class
of modified gravity theories known as dark matter emula-
tors. In this paper we correct a mistake in the original work
[28] that led to the wrong sign for the effect, and we work
out explicit results for three interesting sources.

Section II defines and motivates dark matter emulators.
In Sec. III we review three popular dark matter profiles
which these models are designed to obviate. Section IV
computes the expected time lag between the arrival of the
pulse of gravitational waves from some cosmic event and
its optical or neutrino counterpart. In Sec. V we give
explicit results for three sources of interest. Section VI
gives a very brief discussion of other alternate gravity
models, and our conclusions comprise Sec. VII.

II. DARK MATTER EMULATORS

Certain regularities in cosmic structures suggest modi-
fied gravity. One of these is the Tully-Fisher relation,
which states that the luminosity of a spiral galaxy is
proportional to the fourth power of the peak velocity in
its rotation curve [30]. If luminous matter is insignificant
compared to dark matter, why should such a relation exist?
Another regularity is Milgrom’s Law, which states that the
need for dark matter occurs at gravitational accelerations
of a0 ’ 10�10 m=s2 [31]. A third regularity is that a0 also
seems to give the internal accelerations of pressure-
supported objects ranging over 6 orders of magnitude in
size—from massive molecular clouds within our own gal-
axy to x-ray clusters of galaxies [32].

A modification of Newtonian gravity which explains
these regularities was proposed by Milgrom in 1983 [33].
His model, modified newtonian dynamics (MOND), was
soon given a Lagrangian formulation in which conserva-
tion of energy, 3-momentum and angular momentum are
manifest [34]. However, there was for years no successful
relativistic generalization which could be employed to
study cosmological evolution. Even in the context of static,
spherically symmetric geometries,

ds2 � �BðrÞc2dt2 þ AðrÞdr2 þ r2d�2; (1)

the early formulation of MOND fixed only BðrÞ, not AðrÞ.
It was therefore incapable of making definitive predictions
about gravitational lensing.

A relativistic extension of MOND has recently been
proposed by Bekenstein [35]. This model is known as
TeVeS for ‘‘tensor-vector-scalar.’’ In addition to reproduc-
ing the MOND force law at low accelerations, TeVeS has
acceptable post-Newtonian parameters, and it gives a plau-
sible amount of gravitational lensing [35]. When TeVeS is
used in place of general relativityþ dark matter to study
cosmological evolution, the results are in better agreement
with data than many thought possible [36–40]. The model
does have problems with stability [41,42]. The Bullet
Cluster is sometimes cited as a fatal blow for the model
[43] but opinion on this differs [44–46], and this system in
any case poses problems for dark matter [45,47].
What concerns us here is the curious property of TeVeS

that small amplitude gravitational waves are governed, as
in general relativity, by the metric g��, whereas matter

couples to a ‘‘disformally transformed’’ metric which in-
volves the vector and scalar fields,

~g�� ¼ e�2�ðg�� þ A�A�Þ � e2�A�A�: (2)

The scalar-vector-tensor gravity theory proposed by
Moffat also has different metrics for matter and small
amplitude gravitational waves [48,49]. The appearance of
this feature in two very different models is the result of
trying to reconcile solar system tests with modified gravity
at ultralow accelerations. Solar system tests strongly pre-
dispose the Lagrangian to possess an Einstein-Hilbert term
[50,51]. On the other hand, failed attempts to generalize
MOND [52] have led to a theorem that one cannot get
sufficient weak lensing from a stable, covariant and purely
metric theory which reproduces the Tully-Fisher relation
without dark matter [53]. Hence the MOND force must be
carried by some other field, and it is a combination of this
other field and the metric which determines the geodesics
for ordinary matter. However, the dynamics of small am-
plitude gravitational waves are still set by the linearized
Einstein equation. This simple observation makes for a
sensitive and generic test.
We define a dark matter emulator as any modified

gravity theory for which:
(1) Ordinary matter couples to the metric ~g�� that

would be produced by general relativityþ dark
matter; and

(2) Small amplitude gravitational waves couple to the
metric g�� produced by general relativity without

dark matter.

Now consider a cosmic event such as a supernova which
emits simultaneous pulses of gravitational waves and ei-
ther neutrinos or photons. If physics is described by a dark
matter emulator then the pulse of gravitational waves will
reach us on a lightlike geodesic of g��, whereas neutrinos

and photons travel along a lightlike geodesic of ~g��. If

significant propagation occurs over regions that would be
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dark matter dominated in general relativity then there will
be a measurable lag between arrival times.

Currently the only observational constraint on the speed
vg of gravity relative to that of ordinary matter vm derives

from the consequences of gravitational Cherenkov radia-
tion from particles moving faster than gravity [54,55].
From observations of the highest energy cosmic rays
Moore and Nelson infer the bound vm � vg < 2�
10�15c [55]. Although the original study of dark matter
emulators [28] in fact violated this bound, that was the
result of incorrectly choosing the dimensional constant in a
certain logarithm. In the next section we show that the
speed of gravity is always greater than that of light for dark
matter emulators. A discussion of the Shapiro delay cal-
culation in some other alternate gravity theories can be
found in Refs. [56,57].

III. THREE DARK MATTER PROFILES

We shall specialize to static, spherically symmetric dis-
tributions of dark matter, consistent with the invariant
element (1). It is well to bear in mind that hierarchical
structure formation will not necessarily result in spheri-
cally symmetric distributions [58]. There is even evidence
that the dark matter halo conjectured to surround our own
galaxy is not spherical [59].

For a pressureless, static, spherically symmetric system
the Einstein equations take the form

B

A

�
A0

rA
þ

�
A� 1

r2

��
¼ 8�G

c2
�; (3)

B0

rB
�

�
A� 1

r2

�
¼ 0: (4)

If the potential BðrÞ goes to a constant at infinity we can
choose the time units so that Eq. (4) has the exact solution

BðrÞ ¼ exp

�
�
Z 1

r
dr0

�
Aðr0Þ � 1

r0

��
: (5)

However, our study requires only small corrections to AðrÞ
and BðrÞ,

AðrÞ � 1þ �AðrÞ; BðrÞ � 1þ �BðrÞ: (6)

This not only simplifies (3) and (4), it also means we can
dispense with the contribution of ordinary matter to the
mass density �ðrÞ. The reason is that we are computing the
difference in propagation times along null geodesics be-
tween the same points in two different geometries. The
geometry felt by gravitational waves is sourced only by
ordinary matter, while the geometry felt by photons and
neutrinos is sourced by the sum of ordinary matter and dark
matter. At first order in the mass density, the effect of
ordinary matter cancels out when computing the difference
in propagation times between the two geometries. We will
henceforth consider �ðrÞ to be the density of dark matter.

The potentials �AðrÞ and �BðrÞ can be given simple
expressions in terms of the mass function,

MðrÞ � 4�
Z r

0
dr0�ðr0Þ: (7)

The linearized solution of (3) is

�AðrÞ ¼ 8�G

c2r

Z r

0
dr0r02�ðr0Þ ¼ 2G

c2
MðrÞ
r

: (8)

Note that �AðrÞ is positive semidefinite. From (8) we find
�BðrÞ,

�BðrÞ ¼ �
Z 1

r
dr0

�Aðr0Þ
r0

¼ ��AðrÞ � 2G

c2

Z 1

r
dr0

Mðr0Þ
r0

: (9)

Note that �BðrÞ is negative semidefinite and in fact less
than or equal to��AðrÞ. This guarantees that gravitational
waves travel faster than photons or neutrinos, so there is no
problem with the bound of Moore and Nelson [55].
Our study requires the dark matter density functions for

our own galaxy and (for the most distant source) for the
Andromeda galaxy. We took these in the form of fits to
three popular density profiles whose analytic forms are
presented at the end of this section. Given the current rough
quality of the observational data, a dark matter emulator
that reproduced the potentials �AðrÞ and �BðrÞ for any of
these profiles would be judged successful. One can there-
fore regard the slightly different time delays that result as
one measure of the theoretical uncertainty. The fits for our
own galaxy appear in Table I and were taken from the study
by Ascasibar, Jean, Boehm and Knödlseder of the positron
annihilation line from the galactic center [60]. The fits for
Andromeda appear in Table II and were done by Tempel,
Tamm and Tenjes [61].

TABLE I. Dark matter profile parameters for the Milky Way
Galaxy from Ascasibar et al. [60].

Profile 8�G�0r
3
0=c

3 r0 rc

Isothermal 3.98 days 4.00 kpc 219 kpc

NFW 60.8 days 16.7 kpc � � �
Moore 51.8 days 29.5 kpc � � �

TABLE II. Dark matter profile parameters for the Andromeda
Galaxy from Tempel et al. [61].

Profile 8�G�0r
3
0=c

3 r0 rc

Isothermal 1.88 days 1.47 kpc 117 kpc

NFW 48.6 days 12.5 kpc � � �
Moore 45.8 days 25.0 kpc � � �
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A. Isothermal halo profile

We shall use a variant of the isothermal halo profile in
which the density vanishes after a cutoff radius rc [62,63],

�ðrÞ ¼
�

�0

1þ ð rr0Þ2
� �0

1þ ðrcr0Þ2
�
�ðrc � rÞ: (10)

Such a cutoff is inevitable, even in MOND, owing to the
presence of other galaxies. Of course it is also necessary to
make the potential �BðrÞ vanish at infinity.

For r < rc the mass function and potentials are

MðrÞ ¼ 4��0r
3
0

�
r

r0
� tan�1

�
r

r0

�
� r3

3r0ðr20 þ r2cÞ
�
; (11)

�AðrÞ ¼ 8�G�0r
2
0

c2

�
1� r0

r
tan�1

�
r

r0

�
� r2

3ðr20 þ r2cÞ
�
;

(12)

�BðrÞ ¼ 8�G�0r
2
0

c2

�
�1þ r0

r
tan�1

�
r

r0

�
þ 3r2c � r2

6ðr20 þ r2cÞ

� 1

2
ln

�
r2c þ r20
r2 þ r20

��
: (13)

For r > rc the mass is constant and the (equal and oppo-
site) potentials fall off like 1=r,

MðrÞ ¼ 4��0r
3
0

�
rc
r0

� tan�1

�
rc
r0

�
� r3c

3r0ðr20 þ r2cÞ
�
; (14)

�AðrÞ ¼ 8�G�0r
2
0

c2

�
rcð2r2c þ 3r20Þ
3rðr2c þ r20Þ

� r0
r
tan�1

�
rc
r0

��
; (15)

�BðrÞ ¼ 8�G�0r
2
0

c2

�
� rcð2r2c þ 3r20Þ

3rðr2c þ r20Þ
þ r0

r
tan�1

�
rc
r0

��
:

(16)

It should be noted that Ascasibar, Jean, Boehm and
Knödlseder used a simpler version of the isothermal profile
without a cutoff radius rc. This would cause the potential
�BðrÞ to eventually become positive, which violates the
bound of Moore and Nelson [55]. It also does not make any
sense when one considers the effect of other galaxies.
Because the isothermal profile is the most closely related
to MOND we considered it important to include results for
this profile, so we used the values of �0 and r0 given by
Ascasibar, Jean, Boehm and Knödlseder [60], along with
rc ¼ 219 kpc. This choice for rc causes the ratio of the
total masses of the MilkyWay and Andromeda galaxies for
the isothermal profile to agree with that of the Navarro-
Frenk-White (NFW) profile considered in the next
subsection.

B. NFW profile

The NFW profile was the result of studying the equilib-
rium density profiles of dark matter halos in numerical
simulations of structure formation [64],

�ðrÞ ¼ �0
r
r0
½1þ r

r0
�2 : (17)

The associated mass function and potentials are

MðrÞ ¼ 4��0r
3
0 �

�
ln

�
1þ r

r0

�
� r

r0 þ r

�
; (18)

�AðrÞ ¼ 8�G�0r
2
0

c2
�

�
r0
r
ln

�
1þ r

r0

�
� r0

r0 þ r

�
; (19)

�BðrÞ ¼ 8�G�0r
2
0

c2
�� r0

r
ln

�
1þ r

r0

�
: (20)

C. Moore profile

A later effort along the same lines showed a better fit to a
density function which is more sharply peaked at the center
[65],

�ðrÞ ¼ �0

ð rr0Þ3=2½1þ r
r0
�3=2 : (21)

The associated mass function and potentials are

MðrÞ ¼ 4��0r
3
0 �

2

3
ln

�
1þ

�
r

r0

�
3=2

�
; (22)

�AðrÞ ¼ 8�G�0r
2
0

c2
� 2

3

r0
r
ln

�
1þ

�
r

r0

�
3=2

�
; (23)

�BðrÞ ¼ 8�G�0r
2
0

c2
�

�
� 2

3

r0
r
ln

�
1þ

�
r

r0

�
3=2

�

þ ln

�
1þ

�
r0
r

�
1=2

�
� 1

3
ln

�
1þ

�
r0
r

�
3=2

�

� 2ffiffiffi
3

p tan�1

� ffiffiffiffiffiffiffi
3r0

p
2

ffiffiffi
r

p � ffiffiffiffiffi
r0

p
��
: (24)

IV. THE SHAPIRO DELAY FOR GIVEN MðrÞ
It is more convenient to convert the spatial coordinates

from spherical ðr; �; �Þ to Cartesian xi,

~x � rðsin� cos�; sin� sin�; cos�Þ � rr̂: (25)

The invariant element (1) has a simple expression in terms
of these coordinates,

ds2 ¼ �c2dt2 þ d~x � d~x��Bc2dt2 þ�Aðr̂ � d~xÞ2:
(26)

Before moving on we digress to note that specializing to
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ds2 ¼ 0 and identifying the velocity of photons and neu-
trinos as ~vm ¼ d~x=dt results in an equation for the speed of
effectively massless, ordinary matter,

0 ¼ �ð1þ �BÞc2 þ ~vm � ~vm þ �Aðr̂ � ~vmÞ2: (27)

Now recall that we are ignoring the role of ordinary matter
in both the metrics of gravity (where it is the only part of
the mass density) and of ordinary matter. It follows that the
speed of gravity is vg is c. Treating to first order in the

potentials and assuming�AðrÞ � 0 and�BðrÞ � 0, we see
that vm � vg � 0.

We can express the invariant element (26) as the flat
space contribution plus a perturbation,

ds2 � ð��� þ h��Þdx�dx�: (28)

Comparing (26) and (28) allows us to read off the 3þ 1
decomposition of the graviton field h��,

h00 ¼ ��B; h0i ¼ 0 and hij ¼ �Ar̂ir̂j: (29)

One advantage of Cartesian coordinates is that the affine
connection vanishes for the flat background. It is easy to
give the first correction,

��
�� ¼ ���

�� þOðh2Þ; (30)

���
�� ¼ 1

2
���ðh��;� þ h��;� � h��;�Þ: (31)

We need the null geodesic 	�ð
Þ that connects the
spacetime points x

�
1 ¼ ð0; ~x1Þ and x

�
2 ¼ ðct; ~x2Þ. It obeys

the geodesic equation,

€	� þ ��
��ð	ð
ÞÞ _	� _	� ¼ 0; (32)

subject to the conditions,

	�ð0Þ ¼ x
�
1 ; (33)

	ið1Þ ¼ xi2; (34)

g��ðx1Þ _	�ð0Þ _	�ð0Þ ¼ 0: (35)

Of course we solve this perturbatively in the potentials.
The zeroth order solution is of course the flat space result,

	�
0 ð
Þ ¼ x�1 þ�x�
: (36)

Here the temporal and spatial components of the interval
�x� are

�x0 � k ~x2 � ~x1k and �xi � xi2 � xi1: (37)

The first order corrections to the spatial components of
the geodesic are

	i
1ð
Þ ¼ 


Z 1

0
d
0ð1� 
0Þ��i

��ðxþ �x
Þ�x��x�

�
Z 


0
d
0ð
� 
0Þ��i

��ðx1 þ�x
Þ�x��x�: (38)

Of course it is from the first order temporal correction that
we infer the time lag. This correction is more complicated,

	0
1ð
Þ ¼




2�x
h��ðx1Þ�x��x�

þ 


�x

Z 1

0
d
0ð1� 
0Þ�xi��i

��ðxþ �x
Þ�x��x�

�
Z 


0
d
0ð
� 
0Þ��0

��ðx1 þ �x
Þ�x��x�: (39)

Ignoring ordinary matter makes the graviton geodesics
identical to 	�

0 ð
Þ. Hence the time lag between the arrival

of gravitational waves and the arrival of photons or neu-
trinos is (to first order in the potentials)

c�t � 	0
1ð1Þ ¼

1

2�x

Z 1

0
d
h��ðx1 þ�x
Þ�x��x�:

(40)

Expression (40) can be simplified a great deal further.
First expand out the potentials,

h���x
��x� ¼ ��B�x2 þ �Aðr̂ � � ~xÞ2: (41)

(Note that the time lag is positive semidefinite because
�B � 0 and �A � 0.) Now use relation (9) for �BðrÞ in
terms of �AðrÞ and partially integrate to reach the form

c�t ¼ ��x

2
�Bðr2Þ

þ �x

2

Z 1

0
d
�AðrÞ

�



r

@r

@

þ

�
r̂ � � ~x

�x

�
2
�

(42)

¼ � ~x � ~x1
2�x

�Bðr1Þ � � ~x � ~x2
2�x

�Bðr2Þ

þ�x
Z 1

0
d
�AðrÞ

�
1þ ð ~x1 �� ~xÞ2 � r21�x

2

�x2r2

�
: (43)

It is useful to define the constant C,

C � 1

�x2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21�x

2 � ð ~x1 �� ~xÞ2
q

: (44)

Finally, we change variables from 
 to r,

rð
Þ ¼ �x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

þ

�
~x1 � � ~x

�x2

�
2 þ C2

s
: (45)

Assuming r2 < r1 the result is

c�t ¼ � ~x � ~x1
2�x

�Bðr1Þ �� ~x � ~x2
2�x

�Bðr2Þ

þ
Z r1

r2

dr
2GMðrÞ
c2r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
C�x

r

�
2

s
: (46)

For r1 < r2 we take the other root of the solution for 
ðrÞ,
which reverses the upper and lower limits in (46).
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V. RESULTS

We have worked out explicit results for three typical
sources at vastly different distances: GRB 070201, SN
1987a and Sco-X1. Their celestial coordinates are given
in Table III. Table III also gives the centers of the
Milky Way and Andromeda dark matter halos.

GRB 070201 was a short hard gamma-ray burst whose
angular error box corresponded to a 0.124	 quadrilateral
which overlapped with the Andromeda galaxy [66]. Short
hard gamma-ray bursts are believed to be caused by the
mergers of two neutron stars or a neutron star and a black
hole [67]. If GRB 070201 derived from such a merger, with
masses close to 1:4M� and a reasonable orientation, the
GW signal should have been seen if its distance was
780 kpc [68]. It is however possible that the GRB did not
originate in the Andromeda galaxy, and in that case the
signal from a compact object merger may be inaccessible
to LIGO.

No gravitational waves were found from a search done
within 
180 s time window with the LIGO Hanford de-
tectors around the time of this GRB [69,70]. One interpre-
tation of this null result is that GRB 070201 was a SGR
flare [69,71]. However, it is also possible that physics is
described by a dark matter emulator, in which case the
pulse of gravitational waves would have arrived long be-
fore the electromagnetic signal. Table IV gives our results
for the time lag one would expect at the central position
using each of the three dark matter density profiles.
Although the time lags differ by as much as 69 days,
none of the lags is less than 2 yr.

Table V considers another measure of the likely error by
specializing to the isothermal profile and varying the an-
gular position (at the fixed distance of 780 kpc) over the
four vertices of the angular error box. In this case distinct
results are reported for the contributions from the

Milky Way and Andromeda halos, which are of course
independent at linearized order. As expected, varying the
position has no effect on the contribution from the
Milky Way halo, but it can change the contribution from
the Andromeda halo by as much as 15 days. We should
however stress that this delay calculation was done by
assuming that this GRB is at a distance of 780 kpc. If
this GRB did not originate in Andromeda, then the calcu-
lated delay would be much larger.
SN 1987a was a core-collapse supernova in the Large

Magellanic Cloud at a distance of 51.4 kpc [72]. Neutrinos
were observed by the Kamiokande-II [73,74] and Irvine-
Michigan-Brookhaven [75,76] detectors. The optical sig-
nal arrived several hours later because photons must tra-
verse the optically dense stellar environment [72]. The
total Shapiro delay for SN 1987A from the visible and
dark matter distribution has also been independently esti-
mated [10,77] to be between 0.29 to 0.36 yr. If the oblate-
ness of SN 1987a was in relation to that of the Sun, the
current gravitational wave detectors would probably not
have seen anything had they been operating at the time
[78]. However, advanced LIGO would detect such a super-
nova out to 0.8 Mpc [78]. This includes the Andromeda
galaxy, which doubles the expected rate and also ensures
that the signal passes through dark matter dominated re-
gions. Of course the effective coverage from neutrino
detectors will remain limited to our galaxy and its satellites
[79,80].
Table IV gives our results for the expected time lag from

a dark matter emulator which reproduces each of the three
dark matter profiles. These results include only the effect of
the Milky Way halo. In contrast to the much more distant
GRB 070201, the scatter between the various models for
SN 1987a is much smaller—a mere 2.7 days.
Sco-X1 (located at a distance of 2.8 kpc) is one of the

brightest low mass x-ray binaries (LMXBs). LMXBs are
potential sources of gravitational waves from r-modes
getting excited due to accretion, or from a deformed crust
[81–83]. One proposed search is to look for coincidences
between the data from LIGO and Rossi X-Ray Timing
satellite [4]. This search also assumes that gravitational
waves and x-ray photons arrive at the same time.

TABLE III. Angular coordinates and distances for the
Milky Way and Andromeda galaxies and for the three sources
of this study.

Object Right Ascen. Declination Distance

Milky Way 17 h 45 m 40 s �29	 000 2800 7.94 kpc

Andromeda 00 h 42 m 44 s þ41	 160 0900 778 kpc

GRB 070201 00 h 44 m 32 s þ42	 140 2100 780 kpc

SN 1987a 05 h 35 m 28 s �69	 160 1200 51.4 kpc

Sco-X1 16 h 19 m 55 s �15	 380 2400 2.80 kpc

TABLE V. Shapiro delays for GRB 070201 from the isother-
mal profiles of the Milky Way (�tMW) and Andromeda (�tM31)
at the central value of the angular position and at the four
vertices of the error box. In all cases the distance to the burst
was taken to be 780 kpc.

Right Ascension Declination �tMW �tM31

00 h 44 m 32 s 42	 140 2100 407 dy 335 dy

00 h 46 m 18 s 41	 560 4200 407 dy 337 dy

00 h 41 m 51 s 42	 520 0800 407 dy 322 dy

00 h 42 m 47 s 42	 310 4100 407 dy 330 dy

00 h 47 m 14 s 41	 350 3500 407 dy 338 dy

TABLE IV. Time delays from three dark matter profiles for
each of the three sources of this study.

Profile GRB 070201 SN 1987a Sco-X1

Isothermal 742 days 78.2 days 4.98 days

NFW 804 days 74.8 days 4.88 days

Moore 811 days 74.5 days 4.97 days
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Table IV reports the expected time lag for each of the
three dark matter profiles, again from the Milky Way halo.
Although the time lag is still easily observable at
�4:9 days, the agreement between the three models for
this source is excellent. The largest discrepancy is just
0.1 day.

VI. OTHER MODIFIED GRAVITY THEORIES

Since the 1970s, there have been various proposed tests
of general relativity through gravitational wave observa-
tions (See Ref. [84] for a recent review). Most of these tests
are in the strong field regime. In this section, we list some
other non-GR gravity theories which also predict a nonzero
time delay between photons and GWs and are not yet ruled
out through other observations.

These are massive graviton theories and brane-world
models. In massive graviton theories [85], the gravitational
waves would arrive after the photons, with the delay being
dependent on the graviton mass. However, the Moore-
Nelson lower bound on the speed of gravitational waves
imposes stringent constraints on the validity of massive
graviton models. It should be noted that there is no con-
sistent interacting theory for massive spin two particles
which is limited to a finite number of fields [86].

In various brane-world models, gravitational waves
propagate faster than photons or neutrinos, depending on
the curvature of the bulk [87–89]. Therefore, it is not
possible to calculate model-independent time delays for
the three sources we considered in this paper.

VII. CONCLUSIONS

The power and generality of our analysis derives from
ignoring the details of how a dark matter emulator dis-
penses with the need for galactic dark matter. We merely
assume that it does, which implies that ordinary matter
must couple to the metric that general relativity would
predict with dark matter. The special characteristic of
dark matter emulators is that weak gravitational waves
couple to the metric that general relativity would predict
without dark matter. Both of these metrics can be inferred
from observation, and all geometrical quantities worked
out, without regard to the details of specific models.
Although a dark matter emulator is not the only conceiv-
able way of evading the no-go theorem [53] while preserv-
ing solar system tests [50], it is the only way that has so far
been given a concrete realization.

If dark matter does not exist and the observed cosmic
motions and lensing instead derive from a dark matter
emulator then the assumption upon which all triggered
gravitational wave searches are based breaks down. In
this case the optical or neutrino identification of a plaus-

ible gravitational wave source would not imply a simulta-
neous pulse of gravitational waves but rather that such a
pulse occurred earlier. Even for nearby sources such as
Sco-X1 (at about 2.8 kpc) the gravitational waves would
arrive almost five days earlier. For a source in the
Andromeda galaxy the time difference would be over
two years.
It is obviously premature to proclaim that the failure of

triggered searches to reveal any coincident gravitational
wave pulse implies that physics is described by a dark
matter emulator. But if plausible sources continue to pro-
duce null results this possibility has to be considered. In
that case the key question becomes the accuracy with
which one can estimate the expected time lag. Some mea-
sure of this is given by the spread in Table IV for different
reasonable dark matter profiles. Table V considers varia-
tions in the angular position, and there will be comparable
results for varying the much less well-determined dis-
tances. Based on these analyses it seems unlikely that the
uncertainty can be reduced below the level of a few per-
cent. This has important implications for the way data
needs to be kept and for the types of searches that should
be contemplated.
Of course a gravitational wave signal might be loud

enough to show up in all-sky untriggered searches [90].
In that case the gravitational wave signal would trigger
electromagnetic and neutrino searches. A single gold-
plated event in which the counterpart signal arrived after
a plausible delay would be powerful evidence in support of
dark matter emulators. Conversely, a single detection of
coincident signals would rule out the entire class of dark
matter emulators. This is a novel way of using gravitational
wave detectors to test alternate gravity theories in the
ultraweak field regime. Indeed, this is an ideal test because
dark matter emulators do not change aspects of the tensor
component of a gravitational wave signal such as the
number of polarizations or, to any reasonable accuracy,
the travel time between Earth-bound detectors. So there
need be no change in the data analysis algorithms that
would be used in any case.
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