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We propose a 4þ 1-dimensional action that is a candidate for realizing a standard-model-like effective

theory for fields dynamically localized to a domain-wall brane. Our construction is in part based on the

conjecture that the Dvali-Shifman mechanism for dynamically localizing gauge bosons to a domain wall

works correctly in 4þ 1-d. Assuming this to be so, we require the gauge symmetry to be SU(5) in the

bulk, spontaneously breaking to SUð3Þ � SUð2Þ � Uð1Þ inside the domain wall, thus dynamically local-

izing the standard-model gauge bosons provided that the SU(5) theory in the bulk exhibits confine-

ment. The wall is created jointly by a real singlet-Higgs field � configured as a kink, and an SU(5) adjoint-

Higgs field � that takes nonzero values inside the wall. Chiral 3þ 1-dimensional quarks and leptons

are confined and split along the bulk direction via their Yukawa couplings to � and �. The Higgs doublet

and its color triplet SU(5) partner are similarly localized and split. The splittings can suppress colored-

Higgs-induced proton decay and, because of the different localization profiles, the usual SU(5) mass

relation me ¼ md does not arise. Localized gravity is generated via the Randall-Sundrum alternative to

compactification.
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I. INTRODUCTION

There is no known fundamental principle requiring
spacetime to be 3þ 1 dimensional, so extra dimensions
of space might exist. If so, then the effective 3þ 1 dimen-
sionality we observe in everyday life and in high-energy
experiments has to be explained. It could be that the extra
dimensions are topologically compact and small, as per the
Kaluza-Klein idea. Alternatively, the extra dimensions
could be large but as yet unobserved because standard-
model (SM) fields are confined to a 3þ 1-d brane. Large
extra dimensions might be compact, as proposed by
Arkani-Hamed, Dimopoulos, and Dvali [1], or infinite, as
shown in the second of the Randall-Sundrum papers of
1999 [2] (hereinafter RS2). See also Refs. [3–7].

The purpose of this paper is to propose a
4þ 1-dimensional action that is a candidate for realizing
a SM-like effective theory for fields dynamically localized
to a domain-wall (DW) brane. Like RS2, there is one extra
dimension, and it is infinite. Unlike RS2, the brane is not a
fundamental object but rather a solitonic solution of the
theory, as per the Rubakov and Shaposhnikov [8] proposal
that we might live on a DW. Our construction assembles a
number of dynamical localization mechanisms into what
we hope is a complete theory of a DW-localized SM. These
mechanisms are

(i) the localization of 3þ 1-d chiral fermion zero
modes through the Yukawa coupling of 4þ 1-d
fermions to the background scalar fields;

(ii) the localization of a SM Higgs doublet to the
DW through its Higgs potential couplings to the
DW-forming scalar fields;

(iii) the localization of SM gauge bosons via the Dvali-
Shifman (DS) mechanism, instituted through a bulk
that respects SU(5) gauge invariance [9];

(iv) the DW generalization of the RS2 mechanism for
localizing gravitons.

Three of these four mechanisms involve well-established
phenomena. The DS gauge boson localization idea remains
an interesting conjecture in the 4þ 1-d context, not as yet
proven to work. What we shall show in this paper is that
if one takes the DS mechanism to work in 4þ 1-d, then
the construction of a DW-localized SM follows readily,
and even elegantly. We hope that our model spurs rigorous
studies of the DS mechanism in 4þ 1-d, to either confirm
it or disprove it. Were it to be confirmed, then our model-
building setup would provide a clear pathway to the con-
struction of phenomenologically realistic effective theories
of DW-localized fields. We shall review the DS mecha-
nism below.
The main aesthetic motivation for our model is to treat

all spatial dimensions on an equal footing in the action. In
particular, all these dimensions are infinite, as in the
RS2 setup. But ‘‘dimensional democracy’’ is taken further
than in RS2, because that theory has translational invari-
ance along the extra dimension explicitly broken through
the introduction of an infinitely thin fundamental brane
into the action. To achieve dimensional democracy we
must have no explicit brane terms in the action, but replace
the RS2 fundamental brane with a finite-thickness stable
DW configuration of scalar fields.
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We shall argue that our theory is likely to be the mini-
mal way to get a purely field-theoretic realization of a
DW-confined SM. It is interesting that in order to achieve
this the DS mechanism immediately motivates an exten-
sion to SU(5). We are also encouraged by the fact that some
of the usual problems of SU(5) grand unification have
solutions automatically provided by the minimal theory,
without ‘‘epicyclic’’ ad hoc fixes. As we shall explain
below, the usual md ¼ me style SU(5) mass relations are
simply absent, because the fermion localization realizes a
modified version of the split-fermion idea of Arkani-
Hamed and Schmaltz [10] (see also [11]). The down-type
quarks necessarily have different bulk profile functions
from the charged leptons, and because the 3þ 1-d masses
are computed from overlap integrals of profile functions,
the quark-lepton mass degeneracy just does not arise. The
fermion splitting can also suppress colored-Higgs-induced
proton decay. An important loose end is that we are not yet
able to analyze gauge coupling constant unification in our
unusual version of SU(5). We shall explain below why a
full unification study is premature.

Our focus in this paper is on model building rather than
detailed phenomenology. We wish to explain the logic of
our construction, and provide evidence that it has good
phenomenology without supplying absolute proof.

We review the DS mechanism in the next section, de-
scribe our model in the following section, and conclude in
the last section.

II. DVALI-SHIFMAN MECHANISM

The most plausible mechanism for localizing gauge
bosons to a DW in such a way as to preserve gauge
invariance is that proposed by Dvali and Shifman [12].
This requires a confining non-Abelian gauge theory in the
bulk, with the symmetry G broken to a subgroup H inside
the DW. Massless gauge bosons corresponding to H are
then localized to the wall. As we wish to localize the SM
fields, the minimal choice is to take G ¼ SUð5Þ and H ¼
SUð3Þ � SUð2Þ � Uð1Þ.

The truth of the DS mechanism rests on quite a firm
foundation for DWs residing in a background 3þ 1-d
spacetime [13–15]. Following DS, let us consider the
simple toy example of G ¼ SUð2Þ and H ¼ Uð1Þ. Place
a U(1) source charge inside the wall. Because the SU(2)-
respecting bulk is in confinement phase, the electric field
lines of the source charge cannot penetrate into the bulk.
Instead, the field lines are repelled from the DW-bulk
interface, thus reducing the effective dimensionality of the
Coulomb field by one. Adopting the ’t Hooft-Mandelstam
proposal that confinement arises from the magnetic dual of
superconductivity, the repulsion of field lines from the
interface is readily understood from the dual Meissner
effect [14,15].

Now, place the source charge in the bulk. By confine-
ment, which is tantamount to the expulsion of electric

fields, the electric flux from the source must form a flux
tube that ends on the DW [14,15]. Once inside the wall, the
field lines are able to spread out in the plane of the wall. It
is as if the charge was actually inside the wall: the electric
field configuration is the same at large distances inside the
wall irrespective of the position of the source. In the
quantal situation where the position of a source charge is
indefinite, it follows that the long-range Coulomb field is
independent of how the wave function depends on the
coordinate perpendicular to the wall (the ‘‘extra’’ dimen-
sion). We shall be using this result below when we assume
that gauge universality for H holds independently of the
bulk profiles of the trapped fields.
If H is non-Abelian, then these arguments generalize

to the case of chromoelectric field line expulsion from
the bulk.
Another perspective on the localization physics is

provided by the mass gap [12]. In the bulk, because of
confinement, the gauge bosons of H cannot themselves
propagate but instead form constituents of propagating
G glueballs. But the glueballs of G are massive. In the
G ¼ SUð2Þ andH ¼ Uð1Þ example, the U(1) gauge boson,
which is both massless and free inside the wall, must
somehow incorporate itself into a massive SU(2) glueball
if it propagates into the bulk. But the mass gap implies an
energy cost in doing so, thus any U(1) gauge boson inside
the wall is dynamically constrained to remain there. If H
has non-Abelian factors that are themselves in confinement
phase inside the wall, then the mass gap suppression cor-
responds to the H glueballs inside the wall being less
massive than the G glueballs in the bulk.
These arguments are rather convincing, because they

rest on the well-established confinement property for as-
ymptotically free non-Abelian gauge theories in 3þ 1-d.
In the 4þ 1-d case, the DS mechanism is a conjecture,
because 4þ 1-d confinement (or lack thereof) is not prop-
erly understood. The main issue is that pure Yang-Mills
theory is not renormalizable in 4þ 1-d (or larger). At the
level of lattice gauge calculations, this corresponds to the
lack of a physical limit when taking the lattice spacing to
zero. To expand on this point, it is known that 4þ 1-d
SU(2) has a first-order phase transition for finite lattice
spacing [16]. We have verified this conclusion for 4þ 1-d
SU(5), and so presumably SU(5) has a confining phase for
sufficiently large values of the gauge coupling constant.
This analysis cannot be extended to the continuum limit,
and so we must be content with 4þ 1-d SU(5) exhibiting
confinement below a relevant cutoff of the theory. Thus, we
consider 4þ 1-d DS to be an effective mechanism, valid
below this cutoff, which does the job of confining gauge
fields to the DW. As we remark below, any field-theoretic
brane-world model is nonrenormalizable and hence must
be defined with an ultraviolet cutoff, so in our context we
do not need to take the continuum limit.
To the best of our knowledge, the DS mechanism has not

been directly checked in 4þ 1-d, which would require
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more than just an analysis of the phase structure of pure
Yang-Mills theory. But we are encouraged by lattice gauge
calculations in 2þ 1-d [17], which do verify the mecha-
nism. We shall assume that it works also in 4þ 1-d and
show that realistic model building is then quite possible.

III. THE MODEL

We now describe our model. As stated above, the
DS mechanism immediately motivates that the bulk should
respect at least an SU(5) gauge symmetry. By one defini-
tion of ‘‘minimal,’’ the bulk symmetry should be exactly
SU(5), and it should also be the symmetry of the action; the
model presented below has these features. (It is also inter-
esting to consider models not adhering to these strictures.
For example, Ref. [18] describes a theory where the sym-
metry of the action is larger than the symmetry of the bulk.)

The SU(5) 4þ 1-d field content is

scalars : �� 1; �� 24;�� 5�

fermions: �5 � 5�;�10 � 10;
(1)

plus gauge fields. The field � is real, � is conveniently
represented as a 5� 5 Hermitian traceless matrix, while�
is a fivefold column vector of complex fields. Chirality
does not exist in 4þ 1-d, so both the �’s are Dirac fields,
with �10 being a 5� 5 antisymmetric matrix. The SU(5)
transformations are �! U�Uy,� ! U��,�5 ! U��5,
and �10 ! U�10U

T . We shall, for simplicity, consider
only one quark-lepton family here, though the general-
ization to three families is straightforward. The neutrino
mass question is also deferred to later work.

Let us begin by ignoring gravity, to focus on the purely
particle-physics aspects of the model. Later, we discuss
what remains the same, and what changes, when RS2-style
warped gravity is added. The action is

S ¼
Z
d5xðT � YDW � Y5 � VÞ; (2)

where T contains the SU(5) gauge-covariant kinetic-
energy terms, YDW has the Yukawa couplings of the fer-
mions to � and �,

YDW ¼ h5� ��5�5�þ h5� ��5�
T�5 þ h10� Trð ��10�10Þ�

� 2h10� Trð ��10��10Þ; (3)

and Y5 is the SU(5) Yukawa Lagrangian used to generate
quark and lepton masses

Y5 ¼ h�ð�5Þc�10�þ hþð�ð�10Þc�10�
�Þ þ H:c: (4)

The last term can only be written in SU(5) index notation:

�ijklmð�10Þcij�10kl�
�
m.

The Higgs potential is V ¼ V�� þ Vrest, where

V�� ¼ ðc�2 ��2
�ÞTrð�2Þ þ a�Trð�3Þ þ �1½Trð�2Þ�2

þ �2 Trð�4Þ þ lð�2 � v2Þ2; (5)

Vrest ¼ �2
��

y�þ �3ð�y�Þ2 þ �4�
y��2

þ 2�5�
y�Trð�2Þ þ �6�

yð�TÞ2�
þ �7�

y�T��: (6)

The action is invariant under the reflection discrete
symmetry y! �y, �! ��, �! ��, and �5;10 !
i�5�5;10. The 4þ 1-d Dirac matrices are �M ¼
ð��;�i�5Þ, where M;N ¼ ð0; 1; 2; 3; 5Þ, �; � ¼
ð0; 1; 2; 3Þ, and x5 � y.
The theory is nonrenormalizable in 4þ 1-d. As usual in

these kinds of models, there is an implicitly assumed
ultraviolet cutoff �UV and an ultraviolet completion above
that scale. We shall adopt the agnostic stance for both the
existence and nature of this UV completion. Our action is
perhaps best considered as the set of lowest-dimensional
operators, consistent with the stated symmetries, of a non-
renormalizable effective theory that is putatively to be
derived from the UV completion.
The background DW is found by solving the ð�;�Þ

Euler-Lagrange equations for an x�-independent configu-
ration obeying the boundary conditions

�ðy ¼ �1Þ ¼ �v; �ðy ¼ �1Þ ¼ 0; (7)

corresponding to degenerate global minima of V��. The

spontaneously broken reflection symmetry ensures topo-
logical stability for the DW. Numerical solutions exist for a
significant region of parameter space. Purely for the sake of
giving a concrete example, we can impose the parameter
conditions

2�2
�ðc� ~�Þ þ ð2c~�� 4l~�� c2Þv2 ¼ 0; a ¼ 0; (8)

with ~� � �1 þ 7�2=30, permitting the analytic solution

�ðyÞ ¼ v tanhðkyÞ; �1ðyÞ ¼ AsechðkyÞ; (9)

where k2 ¼ cv2 ��2
�, A2 ¼ ð2�2

� � cv2Þ=~�, and �1

is the adjoint component associated with the weak-

hypercharge generator diag ð2=3; 2=3; 2=3;�1;�1Þ�ffiffiffi
3

p
=2

ffiffiffi
5

p
. All other � components vanish. The configura-

tion � is the usual kink, while �1 induces SUð5Þ !
SUð3Þ � SUð2Þ � Uð1Þ within the DW, which has width
1=k. This background solution creates the brane and si-
multaneously confines SM gauge fields to it provided the
DS mechanism works with this kind of an SU(5) bulk in
4þ 1-d.
We have checked numerically that configurations such

as Eq. (9) are perturbatively stable against the formation of
additional nonzero � components. The other fields,�,�5,
and �10 propagate in this background. Within the wall,
the SU(5) confinement dynamics are suppressed, so we can
analyze classical localization solutions for fermions and
scalars in the usual way. Outside the wall, the nonpertur-
bative SU(5) physics makes calculating impossible absent
a dedicated lattice program. Since the localization takes
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place with a characteristic distance scale of 1=k, ignoring
the nonperturbative corrections is approximately valid.

It may be worthwhile to expand on this point. The
computation of localized lowest-energy modes, such as
fermion zero modes, is but the start of a systematic mode
analysis, whereby 4þ 1-d fields are reinterpreted as infi-
nite towers of 3þ 1-d fields (generalization of a Kaluza-
Klein decomposition); see, for example, Refs. [19,20] for
an introduction to this procedure. Schematically, one
employs a mode decomposition of the form �ðx; yÞ ¼P
nfnðyÞ nðxÞ (x � x�), where the sum is over suitable

modes and includes an integration if the modes contain a
continuum. The  n are the 3þ 1-d fields, and the fn are
mode functions. The mode functions are usually chosen to
obey certain suitable differential equations so that the  n
fields are those of definite mass in the effective 3þ 1-d
theory (in the familiar Kaluza-Klein case of a circular extra
dimension, the mode functions are chosen to be sinusoidal
for precisely this reason). However, from a mathematical
point of view, the set of mode functions is just some com-
plete set of functions that permits the decomposition of
�ðx; yÞ without loss of generality, and so one has the usual
freedom to change basis by changing the mode-function
set. This is a pertinent observation for theories that employ
the nonperturbative quantum-field-theoretic DS mecha-
nism. In the bulk, the  n component fields are subject to
these dynamics unless �ðx; yÞ is a gauge singlet, and thus
the physical meaning ascribed to the mode functions has to
take this into account. There is no problem in using the
same mode decomposition one would use in the absence of
the nonperturbative bulk, because that is simply a mathe-
matically valid recasting of �ðx; yÞ as an infinite set of  n
components. If the bulk is indeed in confinement phase,
then the gauge nonsinglet  n fields will not propagate as
free particles, so their physical interpretation will be as
constituent particles. This is conceptually no different from
expressing the QCD Lagrangian in terms of quarks and
gluons, even though the propagating states are hadrons.
Fortunately, we are mainly interested in the lowest modes,
whose mode functions are sharply peaked inside the DW,
and so to a first approximation we need not be concerned
with interpretive complications because of the nonpertur-
bative bulk.

The 4þ 1-d fermions couple to the background
y-dependent scalar fields as per YDW. A full mode-
decomposition analysis would involve writing each
4þ 1-d fermion field as

�ðx; yÞ ¼ X
m

½fmL ðyÞ mL ðxÞ þ fmR ðyÞ mR ðxÞ�; (10)

substituting this into 4þ 1-d Dirac equation

i�M@M�� bðyÞ� ¼ 0; (11)

where bðyÞ is given by the relevant background DW scalar-
field configuration (see below), and requiring that the  m

components satisfy the 3þ 1-d Dirac equations

i��@� 
m
L;R ¼ m mR;L: (12)

The mode functions fmL;R then obey the Schrödinger-like

equations

� fmL;R þW	fmL;R ¼ m2fmL;R; (13)

with effective potentials

W	ðyÞ ¼ bðyÞ2 	 b0ðyÞ: (14)

The nature of the mode functions is then readily deduced
from the analogy with the equivalent quantum-mechanical
problem. In particular, note that as jyj ! 1 the potentials
tend to the positive constant bð�1Þ2. We shall return to
this observation later on when we consider gravity.
To analyze the localization of the lowest mode (the

m ¼ 0 zero mode) for each fermion, the full-mode analy-
sis above is unnecessary. Instead, it suffices to solve the
Dirac equations with separated variable configurations
�ðx; yÞ ¼ fðyÞ LðxÞ, where the  LðxÞ are 3þ 1-d zero-
mode left-chiral fields.1 The existence of the � Yukawa
terms means that different background fields are felt by the
various SM components of �5 and �10. The Dirac equa-
tions are

�
i�M@M � hn��ðyÞ �

ffiffiffi
3

5

s
Y

2
hn��1ðyÞ

�
�nYðx; yÞ ¼ 0;

(15)

where n ¼ 5, 10 and Y is the weak hypercharge of the SM
components denoted �5Y and �10Y . The SU(5) structure
automatically gives different localization points and pro-
files to the different SM components—splitting [10,11]—
depending on hypercharge and whether they are in the 5�
or the 10. The zeroes of

bnYðyÞ � hn��ðyÞ þ
ffiffiffi
3

5

s
Y

2
hn��1ðyÞ (16)

are the localization centers, with the bulk profiles

fnYðyÞ / e�
R
y
bnY ðy0Þdy0 : (17)

To localize 3þ 1-d left-chiral fields, all the bnY must pass
through zero with positive slope. Examples of these split
profiles are given in Fig. 1.
The Higgs doublet �w and colored scalar �c contained

in � are similarly localized [19] and split by their interac-
tion with the background fields, as given by the �4–7 terms

1As pointed out by Dvali and Shifman [12], as well as local-
izing gauge bosons, the confining bulk can localize gauge non-
singlet fermions and scalar fields. However, for our application,
we have to retain the seemingly redundant localization-to-a-kink
mechanism. The DS mechanism on its own will not suffice,
because it will localize vectorlike fermions, not massless chiral
fermions. The kink configuration is necessary for the sponta-
neous generation of chirality in the 3þ 1-d effective theory.
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in Eq. (6). Writing �w;cðx; yÞ ¼ pw;cðyÞ�w;cðxÞ, where

�w;c are required to satisfy a massive 3þ 1-d Klein-

Gordon equation with mass-squared parameters m2
w;c, the

profiles pw;c obey the Schrödinger-like equation,

� d2

dy2
pw;cðyÞ þWYðyÞpw;cðyÞ ¼ m2

w;cpw;cðyÞ; (18)

with a weak-hypercharge-dependent effective potential

WYðyÞ ¼ �2
� þ �4�

2 þ �5�
2
1 þ

3Y2

20
�6�

2
1

þ
ffiffiffi
3

5

s
Y

2
�7��1: (19)

The full spectrum of localized and delocalized� modes is
obtained by solving these eigenvalue equations, but we are
interested here in only the lowest-mass eigenstates. There
is sufficient parameter freedom to allow m2

w < 0 while
m2
c > 0, thus setting the stage for an effective Mexican-

hat potential for �w and hence electroweak symmetry
breakdown inside the wall. An example of the effective
potentials WYðyÞ are given in Fig. 2. (The scalar spectrum
also contains the kink translational zero mode; Ref. [19]
explains how this mode can be frozen out.)

We can now see how natural resolutions arise to some of
the usual problems with an SU(5) grand unified theory. The
mass relation me ¼ md is not obtained, because the 3þ
1-d Yukawa couplings depend on overlap integrals in the
extra dimension, which will be different because of the
different fermion localization profiles. The colored scalar
�c induces p! 	0eþ proton decay through the Yukawa
terms �uRðeRÞc��

c and �dRðuRÞc�c, but this effect can be
suppressed by making the relevant profile overlaps very
small. For example, splitting uR and dR so that they overlap
exponentially little would suffice [11].

For the one-family SM, it is obvious that we have
enough parameters to fit the quark and lepton masses. For
the three-family case, it is plausible that sufficient parame-
ter freedom exists, though this has not been rigorously
proven as yet. It is a complicated problem, because the
physical observables depend on profile functions, which
depend in complicated ways on the Lagrangian parame-
ters (and corrections to the classical calculations due to
the effect of the nonperturbative bulk will also exist at
some level).
Gauge coupling constant evolution cannot be examined

until a proper phenomenological parameter fitting is done,
because the higher mass modes both depend on these
parameters and affect the coupling constant evolution.
Since the higher mass modes are split SU(5) multiplets,
the running will be different from standard 3þ 1-d non-
supersymmetric SU(5), and successful unification may be
possible. Note that coupling constants run logarithmically,
not through a power law, in the effective 3þ 1-d theory of
localized fields.
We now turn on gravity, with Eq. (2) modified to

S ¼
Z
d5x

ffiffiffiffi
G

p ð�2M3R��þ T � YDW � Y5 � VÞ;
(20)

where G is the determinant of the metric,M the 5D gravi-
tational mass scale, R the scalar curvature, and � the
bulk cosmological constant. The other terms now include
minimal coupling to gravity. We first seek a background
�-�-metric configuration that will simultaneously localize
gauge bosons and gravitons. For a significant parameter-
space region, the Einstein-Klein-Gordon equations admit
numerical solutions where � is a kink, �1 is an even
function that asymptotes to zero at jyj ¼ 1, and the metric
assumes the Minkowski-brane warped form

f 5
 Y

dc
L

lL

-6 -4 -2  0  2  4  6

f 1
0  

Y

dimensionless coordinate ky

ec
L

uc
L

qL

FIG. 1. Typical extra-dimensional profiles fnYðyÞ for the fer-
mions contained in the 5� (top) and the 10 (bottom). The fields
� and � are as per Eq. (9), and parameter choices are v ¼
A ¼ 1, hn� ¼ 1, h5� ¼ 6, h10� ¼ 1. The profiles are normal-

ized such that
R
dyf2nYðyÞ ¼ 1.

-6 -4 -2  0  2  4  6

W
Y

dimensionless coordinate ky

W-1
W2/3

FIG. 2. Example potential profiles WYðyÞ, Eq. (19), which trap
the Higgs doublet and colored scalar. The straight horizontal line
is WY ¼ 0. Parameters are chosen such that the lowest eigen-
state of W�1ðW2=3Þ has a negative (positive) eigenvalue. This

gives the Higgs doublet a tachyonic mass on the brane while
keeping the colored scalar heavy.
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ds25 ¼ e�
ðyÞ=6M3
���dx

�dx� � dy2; (21)

with 
ðyÞ � jyj asymptotically. The usual Randall-
Sundrum fine-tuning condition involving the bulk cosmo-
logical constant must be imposed to ensure a Minkowski
brane. For the special parameter choices

0 ¼ 2c� 4l� ~�; a ¼ 0;

�2
� ¼ lv2

�
6M3

6M3 þ v2

�
þ

~�v2

2

�
9M3 þ 2v2

6M3 þ v2

� (22)

an analytic solution exists; this is useful because it serves
as a concrete example

�ðyÞ ¼ v tanhðkyÞ; (23)

�1ðyÞ ¼ vsechðkyÞ; (24)


ðyÞ ¼ v2 log½coshðkyÞ�; (25)

where k2 ¼ 3M3ðcv2 ��2
�Þ=ð3M3 þ v2Þ. As in RS2, the

linearized graviton fluctuation equation has a confined zero
mode that is identified as the usual graviton [21].

The 3þ 1-d fermion spectrum still contains a localized
zero mode for each species. However, far from the brane
the effective potentials that replace those in Eq. (14) are
now driven asymptotically to zero by the exponentially de-
creasing warp factor [22], whereas in the gravity-free case
they tended to the strictly positive constants b2nYðy ¼ �1Þ.
The gravity-case effective potentials are thus volcano-
like and consequently support modes of arbitrarily small
energy: continua starting at zero mass. This feature is quite
analogous to the well-known graviton-mode situation in
the RS2 model: there is no mass gap, but rather a contin-
uum of modes starting immediately above the localized
massless graviton mode [2]. The � spectrum similarly
contains a localized SM Higgs doublet plus a continuum
starting at zero mass [20]. We need to make sure that the
absence of a mass gap does not spoil the existence of a low-
energy effective theory displaying dimensional reduction
down to 3þ 1-d.

Let us first for simplicity ignore the DS-like bulk phys-
ics, or focus, if you like, on the modes of the gauge-singlet
scalar field �. Except for discrete resonant modes, corre-
sponding to quasilocalized states [20,22], the lowest-mass
continuum modes are suppressed on the brane, because
they have to tunnel through the potential barrier of the
volcanolike effective potential. As such, their integrated ef-
fects at low energies will be dominated by the zero modes,
just as in the well-known graviton case [2]. Because of this
phenomenon, the localized modes do indeed form a low-
energy effective 3þ 1-d theory. A detailed discussion of
these matters can be found in Ref. [20].

The analysis of the gauge nonsinglet fermion and scalar
modes is affected by the DS phenomenon. Since the con-
tinuum modes penetrate into the bulk, they feel the full

effects of the confinement-phase physics we assume holds
there. We therefore expect the low-mass continuum modes
to manifest physically as the constituents of massive ‘‘had-
rons’’ in the bulk. But the lowest-mass hadrons still have to
tunnel through the volcanolike potential barriers to get
inside the DW, and since the nonperturbative effects switch
off near the wall, the situation analyzed in the previous
paragraph is regained and with some plausibility the same
conclusions follow.
Having described the construction of the model, it is

now worth surveying the various scales it contains and how
they should relate to each other. Of the many scales in the
model, four need careful consideration: the ultraviolet cut-
off �UV, the SU(5) breaking scale on the brane �SUð5Þ �
½�1ðy ¼ 0Þ�2=3, the bulk SU(5) confinement scale �conf ,
and the DW inverse width �DW � k. All of these scales
must be well above the electroweak scale. Within the four,
the required hierarchy is

�UV >�SUð5Þ >�conf >�DW: (26)

For obvious reasons, the UV cutoff must be the highest
scale in the theory. The SU(5) breaking scale on the brane
must be higher than the SU(5) bulk confinement scale,
because we need to suppress the SU(5) confinement dy-
namics on the brane. If the opposite were the case, then the
dynamics of the field �would be everywhere dominated by
the strong SU(5) interactions, and our classical background
scalar field configuration would have no physical rele-
vance. Finally, the SU(5) bulk glueball radius scale must
be smaller than the width of the DW in order for the DS
effect to work, as discussed in the lattice gauge analysis of
Ref. [17]. This translates into the confinement scale being
higher than the inverse wall width. The UV, DW-width, and
SU(5) breaking scales are governed by free parameters, so
the required hierarchy amongst those three can always be
achieved. The SU(5) confinement scale is in principle to be
calculated from the UV-cutoff bulk SU(5) gauge theory,
and will depend on �UV and the dimensionful gauge cou-
pling constant g. If the qualitative behavior of the pure
Yang-Mills theory discussed in Sec. II also holds for the
complete theory, then we expect there to be a critical cou-
pling gcð�UVÞ above which the theory is confining. The
hypothetical lattice gauge theory calculation would have to
allow values of g > gc to furnish a �conf that obeyed
Eq. (26). This calculation has not been performed.

IV. CONCLUSION

In summary, we have proposed a candidate 4þ 1-d
action for realizing a SM-like theory plus gravity dynami-
cally localized to a DW. The dynamical localization
mechanisms for fermions, scalars, and gravitons are well
understood, whereas gauge boson localization is postulated
by way of the DS mechanism. The DS mechanism is at this
stage a conjecture in the 4þ 1-d context because of an
incomplete understanding of confinement. What we have
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shown is that it is quite straightforward to construct a
DW-localized SM if confinement exists for an SU(5) gauge
theory bulk.

The proposed model—a 4þ 1-d SU(5) gauge theory
minimally coupled to gravity – enjoys some interesting
qualitative features. Notably, the usual tree-level SU(5)
relation md ¼ me is automatically absent and colored-
Higgs-induced proton decay can be suppressed.

There are a number of open problems, including the
following:

(i) the veracity of the DS mechanism in 4þ 1-d, as
discussed above;

(ii) to understand the phenomenological implications,
including for proton decay, of the gauge bosons that
are massive inside the DW;

(iii) to see whether there is enough parameter free-
dom to fit the three-family SM masses and mixing
angles while obeying experimental bounds on pro-
ton decay;

(iv) to study how the effective 3þ 1-d SUð3Þ �
SUð2Þ � Uð1Þ gauge coupling constants unify
into a 4þ 1-d SU(5) gauge coupling constant;

(v) to generate nonzero neutrino masses;

(vi) to understand the phenomenology of the kink trans-
lational zero mode in the gravity case [23].

The DS gauge boson localization mechanism appears to
be a keystone. If it can work in 4þ 1-d, then a whole world
of DW brane model building is opened up, of which the
theory presented above is but an example. If it does not
work, then it is not at all clear that realistic field-theoretic
DW-brane models exist when the extra dimension is non-
compact. We hope that our efforts lead to renewed interest
in the issue of confinement in higher-dimensional gauge
theories.

ACKNOWLEDGMENTS

We thank A. Kobakhidze and M. Trodden for useful
discussions. DPG would like to thank Simon Catterall for
discussions about confinement in 4þ 1 dimensions and for
making available some relevant lattice gauge theory soft-
ware. DPG would also like to thank Martin Schmaltz for
a useful discussion about the scales in the model. This
work was supported by the Australian Research Council,
the Puzey Bequest, and the Henry & Louisa Williams
Bequest to the University of Melbourne.

[1] N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, Phys.
Lett. B 429, 263 (1998).

[2] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690
(1999).

[3] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370
(1999).

[4] I. Antoniadis, Phys. Lett. B 246, 377 (1990).
[5] I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G.

Dvali, Phys. Lett. B 436, 257 (1998).
[6] K. Akama, Lecture Notes in Physics Vol. 176 (Springer-

Verlag, Berlin, 1983), p. 267.
[7] M. Visser, Phys. Lett. B159, 22 (1985).
[8] V. A. Rubakov and M. E. Shaposhnikov, Phys. Lett. B125,

136 (1983).
[9] H. Georgi and S. L. Glashow, Phys. Rev. Lett. 32, 438

(1974).
[10] N. Arkani-Hamed and M. Schmaltz, Phys. Rev. D 61,

033005 (2000).
[11] A. Coulthurst, K. L. McDonald, and B.H. J. McKellar,

Phys. Rev. D 74, 127701 (2006).
[12] G. R. Dvali and M.A. Shifman, Phys. Lett. B 396, 64

(1997).
[13] V. A. Rubakov, Phys. Usp. 44, 871 (2001).
[14] S. L. Dubovsky and V.A. Rubakov, Int. J. Mod. Phys. A

16, 4331 (2001).
[15] N. Arkani-Hamed and M. Schmaltz, Phys. Lett. B 450, 92

(1999).
[16] M. Creutz, Phys. Rev. Lett. 43, 553 (1979).
[17] M. Laine, H. B. Meyer, K. Rummukainen, and M.

Shaposhnikov, J. High Energy Phys. 04 (2004) 027.
[18] A. Davidson, D. P. George, A. Kobakhidze, R. R. Volkas,

and K. C. Wali, Phys. Rev. D, 77, 085031 (2008).
[19] D. P. George and R. R. Volkas, Phys. Rev. D 75, 105007

(2007).
[20] R. Davies and D. P. George, Phys. Rev. D 76, 104010

(2007).
[21] C. Csaki, J. Erlich, T. J. Hollowood, and Y. Shirman, Nucl.

Phys. B581, 309 (2000).
[22] S. L. Dubovsky, V. A. Rubakov, and P. G. Tinyakov, Phys.

Rev. D 62, 105011 (2000).
[23] M. Shaposhnikov, P. Tinyakov, and K. Zuleta, J. High

Energy Phys. 09 (2005) 062.

STANDARD MODEL ON A DOMAIN-WALL BRANE? PHYSICAL REVIEW D 77, 124038 (2008)

124038-7


