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We give a general derivation, for any static spherically symmetric metric, of the relation Th ¼ K
2�

connecting the black hole temperature (Th) with the surface gravity (K), following the tunneling

interpretation of Hawking radiation. This derivation is valid even beyond the semi-classical regime, i.e.

when quantum effects are not negligible. The formalism is then applied to a spherically symmetric,

stationary noncommutative Schwarzschild space-time. The effects of backreaction are also included. For

such a black hole the Hawking temperature is computed in a closed form. A graphical analysis reveals

interesting features regarding the variation of the Hawking temperature (including corrections due to

noncommutativity and backreaction) with the small radius of the black hole. The entropy and tunneling

rate valid for the leading order in the noncommutative parameter are calculated. We also show that the

noncommutative Bekenstein-Hawking area law has the same functional form as the usual one.
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I. INTRODUCTION

Classical general relativity gives the concept of black
hole from which nothing can escape. This picture was
changed dramatically when Hawking [1] incorporated the
quantum nature into this classical problem. In fact, he
showed that black hole radiates a spectrum of particles,
which is quite analogous with a thermal black body radia-
tion. Thus, Hawking radiation emerges as a nontrivial
consequence of combining gravity and quantum
mechanics.

After his original derivation, which was based on the
calculation of Bogoliubov coefficients in the asymptotic
states, Hawking together with Hartle [2] gave a simpler,
path integral derivation. Physically, black hole radiation
can be interpreted as the quantum tunneling of vacuum
fluctuations through the horizon. This picture was mathe-
matically formulated in [3]. An important step of this
method is the calculation of tunneling amplitude from
which the Hawking temperature is obtained. This is done
either by using the trajectory of a null geodesic [3] or by
solving the Hamilton-Jacobi equation to calculate the
imaginary part of the action variable [4].

The tunneling approach was subsequently used to com-
pute the Hawking temperature for black holes with differ-
ent types of metric [5]. The results have agreed with the

general formula for the temperature Th ¼ K
2� , where K is

the surface gravity, a fact that has also been observed in
[6,7].

In this paper, we derive the relation Th ¼ K
2� using the

tunneling approach, thereby making redundant indepen-
dent calculations of the Hawking temperature for different
metrics [5]. By including the self-gravitation effect, the

imaginary part of the action is computed. Next, exploiting
the relation between this and the change in black hole
entropy, the Hawking temperature is computed.
Interestingly, the derivation is independent of any particu-
lar model and true even when quantum effects are incorpo-
rated in the metric. The only condition is that the metric
should be static and spherically symmetric.
We have applied our general formulation to discuss

various thermodynamic properties of a black hole defined
in a noncommutative Schwarzschild space-time where
backreaction is also taken into account. In particular, we
are interested in the black hole temperature when the radius
is very small. Such a study is relevant because noncommu-
tativity is supposed to remove the so-called Hawking para-
dox, where for a standard black hole, temperature diverges
as the radius shrinks to zero. The Hawking temperature is
obtained in a closed form that includes corrections due to
noncommutativity and backreaction. These corrections are
such that, in some examples, the Hawking paradox is
avoided. Expressions for the entropy and tunneling rate
are also found for the leading order in the noncommutative
parameter. Furthermore, in the absence of backreaction, we
show that the entropy and area are algebraically related in
the same manner as occurs in the standard Bekenstein-
Hawking area law.
Before proceeding further, let us mention the organiza-

tion of the present paper. In the second section, we give a
general derivation of Hawking temperature in terms of
surface gravity. We introduce the noncommutative
Schwarzschild space-time in the next section. In Sec. IV,
we present a thorough analysis of the various thermody-
namic entities of a black hole with this metric. The com-
peting roles of noncommutativity and backreaction are
illustrated by a graphical analysis. The noncommutative
deformation of the Bekenstein-Hawking area law is ob-
tained. The final section is for conclusions after which a
short appendix is added.
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II. DERIVATION OF Th ¼ K
2�

Calculations of the Hawking temperature, based on the
tunneling formalism, for different black holes conform to

the general formula Th ¼ K
2� . This relation is usually

understood as a consequence of the mapping of the second

law of black hole thermodynamics dM ¼ K
8� dA with dE ¼

ThdSbh, coupled with the Bekenstein-Hawking area law
Sbh ¼ A

4 .

Using the tunneling approach, we now present a deriva-

tion of Th ¼ K
2� where neither the second law of black hole

thermodynamics nor the area law are required. In this sense
our analysis is general, going beyond the semi-classical
approximation.

Consider a metric of the form

ds2 ¼ �fðrÞdt2 þ dr2

gðrÞ þ r2d�2; (1)

which describes a general class of static, spherically sym-
metric space-time. There is a coordinate singularity in this
metric at the horizon r ¼ rh, where fðrhÞ ¼ gðrhÞ ¼ 0.
This singularity is avoided by the use of Painleve coordi-
nate transformation [8]

dt ! dt�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� gðrÞ
fðrÞgðrÞ

s
dr: (2)

Under this transformation, the metric (1) takes the follow-
ing form:

ds2 ¼ �fðrÞdt2 þ 2fðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� gðrÞ
fðrÞgðrÞ

s
dtdrþ dr2 þ r2d�2:

(3)

Note that the metric (1) looks both stationary and static,
whereas the transformed metric (3) is stationary but not
static, which reflects the correct nature of the space-time.
The radial null geodesics are obtained by setting ds2 ¼
d�2 ¼ 0 in (3)

_r � dr

dt
¼

ffiffiffiffiffiffiffiffiffi
fðrÞ
gðrÞ

s
ð�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� gðrÞ

q
Þ; (4)

where the positive (negative) sign gives outgoing (incom-
ing) radial geodesics. At the neighborhood of the black
hole horizon, the trajectory (4) of an outgoing shell is
written as

_r ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðrhÞg0ðrhÞ

q
ðr� rhÞ þOððr� rhÞ2Þ; (5)

where we have expanded the functions fðrÞ and gðrÞ in a
Taylor series about rh

fðrÞ ¼ f0ðrhÞðr� rhÞ þOððr� rhÞ2Þ; (6)

gðrÞ ¼ g0ðrhÞðr� rhÞ þOððr� rhÞ2Þ (7)

and kept the expression of _r (4) up to first order only. Now
we want to write (5) in terms of the surface gravity of the
black hole. The reason is that in some cases, for example,
in the presence of backreaction, one may not know the
exact form of the metric, but what one usually knows is the
surface gravity of the problem. Also, the Hawking tem-
perature is eventually expressed in terms of the surface
gravity. The form of surface gravity for the transformed
metric (3) at the horizon is given by

K ðMÞ ¼ �0
00jr¼rh ¼

1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� gðrÞ
fðrÞgðrÞ

s
gðrÞdfðrÞ

dr

���������r¼rh

:

(8)

Using the Taylor series (6) and (7), the above equation is
written as

K ðMÞ ’ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðrhÞg0ðrhÞ

q
: (9)

This expression of surface gravity is used to write (5) in the
form

_r ¼ KðMÞðr� rhÞ þOððr� rhÞ2Þ: (10)

We consider a positive energy shell that crosses the
horizon in the outward direction from rin to rout. The
imaginary part of the action for that shell is given by

ImS ¼ Im
Z rout

rin

prdr ¼ Im
Z rout

rin

Z pr

0
dp0

rdr: (11)

Using the Hamilton’s equation of motion _r ¼ dH
dpr

jr, the last
equality of the above equation is written as

ImS ¼ Im
Z rout

rin

Z H

0

dH0

_r
dr; (12)

where, instead of momentum, energy is used as the variable
of integration.
Now we consider the self-gravitation effect [9] of the

particle itself, for which (10) and (12) will be modified.
Following [3], under the s- wave approximation, we make
the replacement M ! M�! in (10) to get the following
expression:

_r ¼ ðr� rhÞKðM�!Þ; (13)

where! is the energy of a shell moving along the geodesic
of space-time.
Now we use the fact [3], for a black hole of massM, the

Hamiltonian H ¼ M�!. Inserting in (12) the modified
expression due to the self- gravitation effect is obtained as

ImS ¼ Im
Z rout

rin

Z M�!

M

dðM�!Þ
_r

dr

¼ �Im
Z rout

rin

Z !

0

d!0

_r
dr; (14)

where in the final step we have changed the integration
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variable from H0 to !0. Substituting the expression of _r
from (13) into (14) we find,

ImS ¼ �Im
Z !

0

d!0

KðM�!0Þ
Z rout

rin

dr

r� rh
: (15)

The r integration is done by deforming the contour.
Ensuring that the positive energy solutions decay in time
(i.e. into the lower half of !0 plane and rin > rout) we have
after r integration1

ImS ¼ �
Z !

0

d!0

KðM�!0Þ : (16)

The tunneling amplitude following from the WKB ap-
proximation is given by

�� e�2 ImS ¼ e�Sbh ; (17)

where the result is expressed more naturally in terms of the
black hole entropy change [3]. To understand the last
identification (� ¼ e�Sbh) consider a process where a black
hole emits a shell of energy. We denote the initial state and
final state by the levels i and f. In thermal equilibrium

dPi

dt
¼ PiPi!f � PfPf!i ¼ 0; (18)

where Pa denotes the probability of getting the system in
the macrostate a (a ¼ i, f) and Pa!b denotes the transition
probability from the state a to b (a, b ¼ i, f). According to
statistical mechanics, the entropy of a given state (specified
by its macrostates) is a logarithmic function of the total
number of microstates (Sbh ¼ log�). So the number of
microstates � for a given black hole is eSbh . Since the
probability of getting a system in a particular macrostate
is proportional to the number of microstates available for
that configuration, we get from (18),

eSiPemission ¼ eSfPabsorption (19)

where Pemission is the emission probability Pi!f, and

Pabsorption is the absorption probability Pf!i. So the tunnel-

ing amplitude is given by

� ¼ Pemission

Pabsorption

¼ eSf�Si ¼ e�Sbh ; (20)

thereby leading to the correspondence

�Sbh ¼ �2 ImS; (21)

which follows from (17). We mention that the above
relation (21) has also been shown using semi-classical
arguments based on the second law of thermodynamics
[7] or on the assumption of entropy being proportional to
area [6,10]. But such arguments are not used in our deri-
vation. Rather, our analysis has some points of similarity

with the physical picture suggested in [3] leading to a
general validity of (20). This implies that when quantum
effects are taken into consideration, both sides of (21) are
modified keeping the functional relationship identical. In
our analysis, we will show that self-consistency is pre-
served by (21).
In order to write the black hole entropy in terms of its

mass alone, we have to substitute the value of! in terms of
M for which the black hole is stable, i.e.

dð�SbhÞ
d!

¼ 0: (22)

Using (16) and (21) in the above equation we get

1

KðM�!Þ ¼ 0: (23)

The roots of this equation are written in the form

! ¼ �ðMÞ; (24)

which means

1

KðM��ðMÞÞ ¼ 0: (25)

This value of ! from Eq. (24) is substituted back in the
expression of �Sbh to yield

�Sbh ¼ �2�
Z �ðMÞ

0

d!0

KðM�!0Þ : (26)

Having obtained the form of entropy change, we are now
able to give an expression of entropy for a particular state.
We recall the simple definition of entropy change

�Sbh ¼ Sfinal � Sinitial: (27)

Now setting the black hole entropy at the final state to be
zero, we get the expression of entropy as

Sbh ¼ Sinitial ¼ ��Sbh ¼ 2�
Z �ðMÞ

0

d!0

KðM�!0Þ : (28)

From the second law of thermodynamics, we write the
inverse black hole temperature as

1

Th

¼ dSbh
dM

¼ 2�
d

dM

Z �ðMÞ

0

d!0

KðM�!0Þ : (29)

Using the identity

dFðxÞ
dx

¼ fðx; bðxÞÞb0ðxÞ � fðx; aðxÞÞa0ðxÞ

þ
Z bðxÞ

aðxÞ
@

@x
fðx; tÞdt (30)

for

FðxÞ ¼
Z bðxÞ

aðxÞ
fðx; tÞdt; (31)

we find

1One can also take the contour in the upper half plane with the
replacement M ! Mþ! [9].
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1

Th

¼ 2�

�
1

KðM��ðMÞÞ�
0ðMÞ

�
Z �ðMÞ

0

1

½KðM�!0Þ�2
@KðM�!0Þ
@ðM�!0Þ d!0

�
:

(32)

Making the change of variable x ¼ M�!0 in the second
integral we obtain

1

Th

¼ 2�

�
�0ðMÞ � 1

KðM��ðMÞÞ þ
1

KðMÞ
�
: (33)

Finally, making use of (25), the cherished expression for
the Hawking temperature follows

Th ¼ K
2�

¼ 1

4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðrhÞg0ðrhÞ

q
: (34)

For a consistency check, consider the second law of
thermodynamics, which is now written as

dM ¼ d!0 ¼ ThdSbh ¼ KðMÞ
2�

dSbh: (35)

Inserting in (16) yields

ImS ¼ 1

2

Z SbhðM�!Þ

SbhðMÞ
dSbh ¼ � 1

2
�Sbh; (36)

thereby reproducing (21). This shows the internal consis-
tency of the tunneling approach.

III. SCHWARZSCHILD BLACK HOLE IN
NONCOMMUTATIVE SPACE

We shall use the general formulation developed in the
previous section for a noncommutative Schwarzschild
black hole. The appropriate metric will be constructed
from which the horizon of the black hole will be defined.
The thermodynamic quantities of this black hole will be
calculated in the next section.

In a commutative space, the mass density of a point
particle is expressed as a product of its mass with the
Dirac delta function. But in a noncommutative space,
such a description of point mass is not possible due to
the fuzziness of space, which arises as a consequence of
position-position uncertainty relation. We denote the non-
commutative parameter by �, which is considered to be a
small (� Planck length2) positive number. Now to intro-
duce the noncommutative correction in the expression of
mass density we replace the Dirac delta function by a

Gaussian distribution of minimal width
ffiffiffi
�

p
, i.e. [11,12]

�� ¼ M

ð4��Þ3=2 e
�ðr2=4�Þ: (37)

So the mass is no longer located at a point, instead, it is

smeared around a region
ffiffiffi
�

p
. Therefore, the mass of the

black hole can be determined by integrating (37) over a
volume of radius r. This is found to be

m�ðrÞ ¼
Z r

0
4�r02��ðr0Þdr0 ¼ 2Mffiffiffiffi

�
p �

�
3

2
;
r2

4�

�
; (38)

where �ð32 ; r
2

4�Þ is the lower incomplete gamma function,

which is discussed in the appendix. So, in the � ! 0 limit,
the incomplete � function becomes the usual gamma func-
tion (�total) and m�ðrÞ ! M, which is the commutative
limit of the noncommutative mass m�ðrÞ. Substituting
this in the mass term of the Schwarzschild space-time

ds2 ¼ �
�
1� 2M

r

�
dt2 þ

�
1� 2M

r

��1
dr2 þ r2d�2;

(39)

we get the noncommutative Schwarzschild metric

ds2 ¼ �
�
1� 4M

r
ffiffiffiffi
�

p �

�
3

2
;
r2

4�

��
dt2

þ
�
1� 4M

r
ffiffiffiffi
�

p �

�
3

2
;
r2

4�

���1
dr2 þ r2d�2: (40)

The same line element is also obtained by solving
Einstein’s equation with (37) as the matter source [11].
The event horizon can be found where grrðrhÞ ¼ 0, that is

rh ¼ 4Mffiffiffiffi
�

p �

�
3

2
;
r2h
4�

�
: (41)

This equation cannot be solved for rh in a closed form. In

the large radius regime (
r2
h

4� � 1), we use the expanded

form of the incomplete � function given in the appendix
[Eq. (A4))] to solve Eq. (41) by iteration. Keeping up to the

order 1ffiffi
�

p e�ðM2=�Þ, we find

rh ’ 2M

�
1� 2Mffiffiffiffiffiffiffi

��
p e�ðM2=�Þ

�
: (42)

It might be mentioned that there are other approaches [13–
16] of introducing noncommutativity in curved space-time
metric. Contrary to the present approach, however, there
the metric is not spherically symmetric. The relevance of
this criterion in the present analysis stems from the fact that
thermodynamic properties of the noncommutative black
holes, analyzed in the next section, use the results of Sec.
II, which are based on a static spherically symmetric
metric.

IV. NONCOMMUTATIVE HAWKING
TEMPERATURE, TUNNELING RATE, AND

ENTROPY IN THE PRESENCE OF
BACKREACTION

We take the units G ¼ c ¼ kB ¼ 1, in which2 Planck

length lp ¼ Planck mass Mp ¼
ffiffiffi
@

p
. Since a loop expan-

sion is equivalent to an expansion in powers of the Planck

2Planck length lP ¼ ð@G=c3Þ1=2, Planck mass MP ¼
ð@c=GÞ1=2.
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constant, the one loop backreaction effect in the surface
gravity is written as

K ¼ K0ðrhÞ þ �K0ðrhÞ; (43)

where K0 is the noncommutative classical surface gravity
at the horizon of the black hole, and � is a dimensionless
constant having magnitude of the order @. From dimen-
sional arguments, therefore, it has the structure

� ¼ �
M2

p

m2
�

; (44)

where � is a pure numerical factor. In the commutative
picture, � is known to be related to the trace anomaly
coefficient [17,18]. Putting this form of � in (43) we get

K ¼ K0ðrhÞ
�
1þ �

M2
p

m2
�

�
: (45)

A similar expression was obtained earlier in [17,19] for the
commutative case. Equation (45) is recast as

K ¼ K0ðrhÞ
�
1þ �

m2
�ðrhÞ

�
; (46)

where � ¼ �M2
p. Since, as mentioned already, the non-

commutative parameter � is of the order of l2p, � and � are

of the same order. This fact will be used later when doing
the graphical analysis.

In order to calculate the right-hand side of (46), we need
to obtain an expression for noncommutative classical sur-
face gravity at the horizon of the black hole ðK0ðrhÞÞ. This
is done by using (9). For the classical noncommutative
Schwarzschild space-time

fðrÞ ¼ gðrÞ ¼ 1� 4M

r
ffiffiffiffi
�

p �

�
3

2
;
r2

4�

�
: (47)

The value of K0ðrhÞ is thus found to be

K 0ðrhÞ ¼ f0ðrhÞ
2

¼ 1

2

�
1

rh
� r2h

4�3=2
e�ðr2

h
=4�Þ

�ð32 ;
r2
h

4�Þ

�
: (48)

Inserting (48) in (46) we get

K ¼ 1

2

�
1

rh
� r2h

4�3=2
e�ðr2

h
=4�Þ

�ð32 ;
r2
h

4�Þ

��
1þ �

m2
�ðrhÞ

�
: (49)

In order to write the above equation completely in terms of
rh, we have to express the mass m� in terms of rh. For that
we compare Eqs. (38) and (41) to get

m�ðrhÞ ¼ rh
2
: (50)

This relation is the noncommutative deformation of the
standard radius-mass relation for the usual (commutative
space) Schwarzschild black hole. Expectedly, in the limit
� ! 0 Eq. (50) reduces to its commutative version rh ¼
2M.

Substituting (50) in (49), we get the value of modified
noncommutative surface gravity

K ¼ 1

2

�
1

rh
� r2h

4�3=2
e�ðr2

h
=4�Þ

�ð32 ;
r2
h

4�Þ

��
1þ 4�

r2h

�
: (51)

So from (34), the modified noncommutative Hawking
temperature including the effect of backreaction is given
by

Th ¼ K
2�

¼ 1

4�

�
1

rh
� r2h

4�3=2
e�ðr2

h
=4�Þ

�ð32 ;
r2
h

4�Þ

��
1þ 4�

r2h

�
: (52)

If the backreaction is ignored (i.e. � ¼ 0), the expression
for the Hawking temperature agrees with that given in [11].
Also, for the � ! 0 limit, one can recover the standard
result [18,20] for Hawking temperature (with backreac-
tion)

Th ¼ TH

�
1þ �

M2

�
; (53)

where TH ¼ 1
8�M is the semi-classical Hawking tempera-

ture for the Schwarzschild black hole.
In the standard (commutative) case, Th diverges asM !

0, and this puts a limit on the validity of the conventional
description of Hawking radiation. Against this scenario,
temperature (52) includes noncommutative and backreac-
tion effects, which are relevant at distances comparable toffiffiffi
�

p
. The behavior of the temperature Th as a function of

horizon radius rh is plotted in Fig. 1 (with positive �) and
in Fig. 2 (with negative �).

Figure 1 shows that in the region rh ’
ffiffiffi
�

p
, the effect of

noncommutativity significantly changes the nature of com-
mutative space curves. Interestingly, two noncommutative
curves, whether including backreaction or not are qualita-

tively same. Both of them attain a maximum value at rh ¼
r0 ’ 4:7

ffiffiffi
�

p
and then sharply drop to zero forming an

FIG. 1 (color online). Th Vs. rh plot (Here � ¼ �, �, and �
are positive.) rh is plotted in units of

ffiffiffi
�

p
, and Th is plotted in

units of 1ffiffi
�

p . Red curve: � � 0, � ¼ 0. Blue curve: � ¼ 0,

� ¼ 0. Black curve: � � 0, � � 0. Yellow curve: � ¼ 0, � �
0.
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extremal black hole. In the region rh < r0, there is no black
hole, because physically Th cannot be negative. The only
difference between them is that the backreaction effect
increases the maximum temperature by 20%. In fact, in
the commutative space also, backreaction effect increases
the value of Hawking temperature. But quite contrary to
the noncommutative curves, both of them diverge as rh !
0. As easily observed, the Hawking paradox is circum-
vented by noncommutativity, with or without backreaction.
This was also noted in [11] where, however, the quantita-
tive effects of backreaction were not considered.

On the other hand, Fig. 2 shows that if any of the two
effects (i.e. either noncommutativity or backreaction) is
present, Th drops to zero. For� ¼ 0, � � 0 (yellow curve),

Th becomes zero at rh ¼ r0 ’ 3:0
ffiffiffi
�

p
and for � � 0, � ¼ 0

(red curve), it becomes zero at rh ¼ r0 ’ 2:0
ffiffiffi
�

p
. These

cases therefore bypass the Hawking paradox. But for non-
commutative black hole with backreaction (� � 0, � � 0),

Th is zero for two values of rh: rh ’ 3:0
ffiffiffi
�

p
and rh ¼ 2:0

ffiffiffi
�

p
and then it diverges toward positive infinity. This is not
physically possible since after entering the forbidden zone
it resurfaces on the allowed sector. So, for both noncom-
mutativity and backreaction effect, � can never be
negative.

Having obtained the Hawking temperature of the black
hole, we calculate the Bekenstein-Hawking entropy. The
expression of entropy can be obtained from the second law
of thermodynamics. But instead of using it, we employ the
formula (21) to calculate the entropy. Using (42), the
modified surface gravity (51) can be approximately ex-
pressed in terms of M. To the leading order, we obtain

K ðMÞ ¼ M2 þ �

4M3

�
1� 4M5

ðM2 þ �Þ� ffiffiffiffiffiffiffi
��

p e�ðM2=�Þ
�

þO
�
1ffiffiffi
�

p e�ðM2=�Þ
�
: (54)

Substituting this in (16) and then integrating over !0 we
have

ImS ¼ 4�!

�
M�!

2

�
þ 2�� ln

�ðM�!Þ2 þ �

M2 þ �

�

� 8

ffiffiffiffi
�

�

r
M3e�ðM2=�Þ þ 8

ffiffiffiffi
�

�

r
ðM�!Þ3e�ðM�!Þ2=�

þ constðindependent of MÞ þOð ffiffiffi
�

p
e�ðM2=�ÞÞ:

(55)

So, by the relation (17) the modified tunneling probability
due to noncommutativity and backreaction effects is

��
�
1� 2!ðM� !

2Þ
M2 þ �

��4��
exp

�
16

ffiffiffiffi
�

�

r
M3e�ðM2=�Þ

� 16

ffiffiffiffi
�

�

r
ðM�!Þ3e�ðM�!Þ2=�

þ constðindependent of MÞ
�
exp

�
�8�!

�
M�!

2

��
:

(56)

The last exponential factor of the tunneling probability was
previously obtained by Parikh and Wilczek [3], where
neither noncommutativity nor backreaction effects were
considered. The factors before this exponential are actually
due to the effect of backreaction and noncommutativity. It
will eventually give the correction to the Bekenstein-
Hawking entropy, and the Hawking temperature as will
be shown below. Taking � ! 0 limit, we can immediately
reproduce the commutative tunneling rate for
Schwarzschild black hole with backreaction effect [20].
We are now in a position to obtain the noncommutative

deformation of the Bekenstein-Hawking area law. The first
step is to compute the entropy change�Sbh. Using (17) and
(56), we obtain, to the leading order,

�Sbh ’ �8�!

�
M�!

2

�
� 4�� ln

�ðM�!Þ2 þ �

M2 þ �

�

þ 16

ffiffiffiffi
�

�

r
M3e�ðM2=�Þ � 16

ffiffiffiffi
�

�

r
ðM�!Þ3e�ðM�!Þ2=�

þ constðindependent of MÞ: (57)

Next, using the stability criterion dð�SbhÞ
d! ¼ 0 for the black

hole, one obtains the only physically possible solution for
! as ! ¼ M. Substituting this value of ! in (57) and
setting Sfinal ¼ 0, we have the Bekenstein-Hawking en-
tropy

Sbh ¼ Sinitial ’ 4�M2 � 4�� ln

�
M2

�
þ 1

�

� 16

ffiffiffiffi
�

�

r
M3e�ðM2=�Þ þ constðindependent of MÞ:

(58)

FIG. 2 (color online). Th vs. rh plot (Here j�j ¼ �, � is
negative, but � is positive.) rh is plotted in units of

ffiffiffi
�

p
, and Th

is plotted in units of 1ffiffi
�

p . Red curve: � � 0, � ¼ 0. Blue curve:

� ¼ 0, � ¼ 0. Black curve: � � 0, � � 0. Yellow curve: � ¼
0, � � 0.
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Neglecting the backreaction effect (� ¼ 0), the above ex-
pression of black hole entropy is written as

Sbh ’ 4�M2 � 16

ffiffiffiffi
�

�

r
M3e�ðM2=�Þ: (59)

Now in order to write the above equation in terms of the
noncommutative horizon area (A), we use (42) to obtain

A ¼ 4�r2h

¼ 16�M2 � 64

ffiffiffiffi
�

�

r
M3e�ðM2=�Þ þOð ffiffiffi

�
p

e�ðM2=�ÞÞ:
(60)

Comparing Eqs. (59) and (60), we see that at the leading
order the noncommutative black hole entropy satisfies the
area law

Sbh ¼ A

4
: (61)

This is functionally identical to the Bekenstein-Hawking
area law in the commutative space.

Considering � ! 0 limit in (58), we have the corrected
form of Bekenstein-Hawking entropy for commutative
Schwarzschild black hole with backreaction effect
[18,20]. The well-known logarithmic correction [21] is
reproduced.

Now using the second law of thermodynamics (29), we
can find the corrected form of the Hawking temperature Th

due to backreaction. This is obtained from (58) as

1

Th

¼ dSbh
dM

¼ 8�M3

M2 þ �
þ 32

ffiffiffiffi
�

p
�3=2

M4e�ðM2=�Þ þO
�
1ffiffiffi
�

p e�ðM2=�Þ
�
:

(62)

Therefore, the corrected noncommutative Hawking tem-
perature is given by

Th ¼ M2 þ �

8�M3
� M2

2ð��Þ3=2 e
�ðM2=�Þ þO

�
1ffiffiffi
�

p e�ðM2=�Þ
�
:

(63)

We now provide a simple consistency check on the
relation (52). The Hawking temperature is recalculated
using this relation and showing that it reproduces (63).
For the large radius limit, (52) is approximately written as

Th ’ 1

4�

�
1

rh
� r2h

2
ffiffiffiffi
�

p
�3=2

e�ðr2
h
=4�Þ

��
1þ 4�

r2h

�
: (64)

Now, the approximated form of rh in terms of M (42) is
substituted in (64) to get the relation (63) up to the leading
order in the noncommutative parameter. This shows the
self-consistency of our calculation.

For � ¼ � ¼ 0, the expression (63) reduces to the usual
Hawking temperature TH ¼ 1

8�M for a Schwarzschild black

hole. Also, keeping the backreaction (�) but taking the
� ! 0 limit, we reproduce the commutative Hawking tem-
perature [18,20].

V. CONCLUSIONS

We have given a completely general derivation of
Hawking temperature in terms of the surface gravity by
considering the action of an outgoing particle crossing the
black hole horizon due to quantum mechanical tunneling.
The expression of temperature was known long before [22–
25] from a comparison between two classical laws. One is
the law of black hole thermodynamics, which states that
the mass change is proportional to the change of horizon
area multiplied by surface gravity at the horizon. The other
is the area law according to which the black hole entropy is
proportional to the surface area of the horizon. The im-
portant point of our derivation is that it is not based on
either of these two classical laws.
The other significant point of this paper is the applica-

tion of our formulation to a noncommutative
Schwarzschild metric, keeping in mind the consequence
of backreaction. Several thermodynamic entities like the
temperature and entropy are computed. The tunneling rate
is also derived. The temperature, in particular, is obtained
in a closed form. This result is analyzed in detail using two
graphical representations. We give particular attention to
the small-scale behavior of black hole temperature, where
the effects of both noncommutativity and backreaction are
highly nontrivial. The graphs presented here are naturally
more general than [11,17], because in [11], the effect of
backreaction was not included, and in [17] space-time was
taken to be commutative in nature. Expectedly, in suitable
limits, the results of our paper reduce to that of [11,17], but
the combination of noncommutativity and backreaction, as
shown here, gives new results at small scale. In particular,
it is shown that in the presence of both noncommutativity
and backreaction, the backreaction parameter � cannot be
negative. Interestingly, even for the commutative case,
arguments based on quantum geometry [20,21,26] fix a
positive value for �.
In the noncommutative analysis, with positive� (Fig. 1),

the maximum Hawking temperature gets enhanced in the
presence of backreaction. However, the Hawking paradox
is avoided whether or not the backreaction is included.
Apart from the temperature, other variables like the

tunneling rate and entropy are given up to the leading order
in the noncommutative parameter. The entropy is ex-
pressed in terms of the area. The result is a noncommuta-
tive deformation of the Bekenstein-Hawking area law,

preserving the usual functional form. Since both Th ¼ K
2�

and the area law retain their standard forms, it suggests that
the laws of noncommutative black hole thermodynamics
are a noncommutative deformation of the usual laws.
As a final remark, we mention that although our results

are presented for the noncommutative Schwarzschild met-
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ric, the formulation is resilient enough to discuss other
types of noncommutative black holes.

APPENDIX

Incomplete gamma function.—The lower incomplete
gamma function is given by

�ða; xÞ ¼
Z x

0
ta�1e�tdt; (A1)

whereas the upper incomplete gamma function is

�ða; xÞ ¼
Z 1

x
ta�1e�tdt; (A2)

and they are related to the total gamma function through
the following relation:

�totalðaÞ ¼ �ða; xÞ þ �ða; xÞ ¼
Z 1

0
ta�1e�tdt: (A3)

Furthermore, for large x, i.e. x � 1, the asymptotic expan-
sion of the lower incomplete gamma function is given by

�

�
3

2
; x

�
¼ �total

�
3

2

�
� �

�
3

2
; x

�

’
ffiffiffiffi
�

p
2

�
1� e�x

X1
p¼0

xð1�2pÞ=2

�totalð32 � pÞ
�
: (A4)

Using the definition (A1) and then integrating by parts we
have

�ðaþ 1; xÞ ¼
Z x

0
tae�tdt

¼ �tae�tjx0 þ a
Z x

o
ta�1e�tdt

¼ �xae�x þ a�ða; xÞ: (A5)

Similarly, by the definition (A2) one can show

�ðaþ 1; xÞ ¼ xae�x þ a�ða; xÞ: (A6)

Some useful formulas:

I1 ¼
Z b

a
e��x2dx

¼ 1

2�1=2

� ffiffiffiffi
�

p � �

�
1

2
; �a2

�
� �

�
1

2
; �b2

��
; (A7)

I2 ¼
Z b

a
x2e��x2dx

¼ 1

2�3=2

� ffiffiffiffi
�

p
2

� �

�
3

2
; �a2

�
� �

�
3

2
; �b2

��
; (A8)

I3 ¼
Z b

a
x4e��x2dx

¼ 1

2�5=2

�
3

ffiffiffiffi
�

p
4

� �

�
5

2
; �a2

�
� �

�
5

2
; �b2

��
: (A9)
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