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The recently suggested interpretation P. Castorina, D. Kharzeev, and H. Satz, [Eur. Phys. J. C 52, 187

(2007).] of the universal hadronic freeze-out temperature Tf ( ’ 170 MeV)—found for all high-energy

scattering processes that produce hadrons eþe�, pp, p �p, �p, etc., and NN0 (heavy-ion collisions)—as an

Unruh temperature triggers here the search for the gravitational black hole (BH) that in its near-horizon

approximation better simulates this hadronic phenomenon. To identify such a BH we begin our gravity-

gauge theory phenomenologies matching by asking the question: which BH behind that Rindler horizon

could reproduce the experimental behavior of Tfð
ffiffiffi
s

p Þ in NN0, where
ffiffiffi
s

p
is the collision energy? Provided

certain natural assumptions hold, we show that the exact string BH turns out to be the best candidate (as it

fits the available data on Tfð
ffiffiffi
s

p Þ) and that its limiting case, the Witten BH, is the unique candidate to

explain the constant Tf for all elementary scattering processes at large energy. We also are able to propose

an effective description of the screening of the hadronic string tension �ð�bÞ due to the baryon density

effects on Tf.

DOI: 10.1103/PhysRevD.77.124034 PACS numbers: 12.90.+b, 04.70.Dy, 25.75.�q

I. INTRODUCTION

Relativistic Heavy Ion Collider experimental data
strongly suggest that, above the critical temperature Tc—
and up to 2:5Tc—QCD is a strongly interacting system of
quarks and gluons (for a brief review see, e.g., [1])—a
picture confirmed by lattice simulations [2,3]. Hence, stan-
dard perturbative techniques fail to describe such a sys-
tem—similar to a liquid with small shear viscosity � [4–
6]—and various attempts have been proposed. As part of
that, the anti–de Sitter/conformal field theory (AdS/CFT)
correspondence [7] recently came to the forefront as it
predicts a universal bound on the ratio �=S, with S the
entropy density, given by [8–10]�=S � 1=4�, close to the
value obtained by fitting the relativistic heavy-ion colli-
sions data by hydrodynamical models and in QCD lattice
simulations [11]. Moreover, it has also been applied to
evaluate the jet quenching parameter [12–15].

The previous ‘‘top-down’’ results are based on the AdS/
CFT gravity-gauge theory duality between strings and
supersymmetric SU(N) Yang-Mills theory in the limit of
large t’ Hooft coupling. The relation of these models with
QCD at finite temperature is suggestive, but by no means
obvious.

In this paper, we shall follow a ‘‘bottom-up’’ approach,
instead. We ask the double-sided question: is QCD a good
analog system of a black hole (BH)? Or, conversely, is

there a specific BH whose thermodynamics simulates well
QCD thermodynamics?
Our program starts by identifying the BH analog system

and takes as initial inputs the proposals of Ref. [16]: i) that
at high energy the universal hadronic freeze-out tempera-
ture Tf ’ 170 MeV—obtained by statistical analysis of

hadronic abundances in all collisions eþe�, pp, p �p, �p,
etc, including nucleus-nucleus scattering [17–21]—is an
Unruh temperature TU

Tfjlarge ffiffi
s

p ¼ TU ¼ a

2�
¼

ffiffiffiffiffiffiffi
�

2�

r
’ 170 MeV; (1)

where
ffiffiffi
s

p � 20 GeV is the energy of the collision, a is the
deceleration of quarks and antiquarks typical of the had-
ronic production mechanism, and � ’ 0:18 GeV2 is the
QCD string tension; ii) that the associated Rindler horizon
can be identified with the ‘‘color-blind’’ horizon dynami-
cally produced by the color-charge confinement during the
q �q pair productions.
In this picture the hadrons produced are formed by

quarks and antiquarks, Rindler-Unruh quanta excited out
of the QCD vacuum, that are ‘‘born in equilibrium’’ (in
Hagedorn’s words). This means that the hadron abundan-
ces in the final state follow a thermal distribution not
because partons rescatter, but because of the random dis-
tribution of quarks and antiquarks entangled in such a
vacuum. This mechanism of thermalization is encountered
each time quantum fields are near a (event) horizon; hence,
the vacuum is a condensate of entangled quanta living on
the two (causally disconnected) sides (for a case simpler
than QCD see, e.g., [22] and also [23,24]).
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According to that approach, the universal temperature
Tf found in all scattering processes at large

ffiffiffi
s

p
is under-

stood as a constant Unruh temperature. From now on we
identify Tf with TU. For heavy-ion collisions Tf could

depend on other dynamical parameters of the produced
system. For instance, experimental data show that Tf de-

pends on the collision energy for
ffiffiffi
s

p � 17 GeV [17–21]
and on the baryon chemical potential �b. These depen-
dences are strongly correlated, since the limit of large
energy corresponds to zero baryon chemical potential [25].

It is at this point that we venture into the analogy with a
gravitational system (a BH) motivated by the well-known
correspondences between acceleration, Rindler horizon,
and BH horizon. Namely, we consider this hadronic
Rindler spacetime as the near-horizon approximation of
some BH spacetime and pose the question: which BH?

Of course, without further input there is no unique
answer to this question, since many different BHs have
the same near-horizon approximation. Thus, what we are
doing here is to look for a BH that shares with the hadro-
nization mechanism certain thermodynamical properties,
possibly to the extent of enabling us to make predictions of
certain behaviors, such as the dependence of Tf on the

nucleus-nucleus collision energy
ffiffiffi
s

p
to begin with. In [16]

the analogy with a Schwarzschild BH has been attempted,
but the latter has unusual thermodynamical properties such
as negative specific heat and does not exhibit a Hagedorn
temperature. In the next section, we shall identify a BH
with the same near-horizon approximation, but with more
appropriate thermodynamical properties.

II. SEARCHING FOR THE RIGHT BLACK HOLE

Let us first clarify that, for the hadronization processes
we are dealing with, the 2-dimensional (2D) study of the
BH analog is more appropriate than the 4-dimensional
(4D) case for the following two reasons:

(a) The dynamics of particle production is effectively
2D because it can be described in terms of the
evolution in time of the hadronic strings (string
breaking), that are one-dimensional objects.

(b) The near-horizon field dynamics is effectively 2D
[26–28].

Let us now introduce the basic ingredients of 2D dilaton
gravity. It is well known that the Einstein-Hilbert action in
2D does not generate equations of motion. Dilaton gravity
is the most natural generalization, which leads to nontrivial
dynamics.1 Its action (dropping surface terms) is

I ¼ � 1

16�G2

Z
d2x

ffiffiffiffiffiffiffi�g
p ½XR�UðXÞðrXÞ2 � �dVðXÞ�:

(2)

Here, G2 is the 2D Newton constant, which we shall set to
1=ð8�Þ henceforth, g is the metric, R the associated Ricci
scalar, X is a scalar field (the ‘‘dilaton’’), and �d is a
coupling constant of dimension 1=length2. The two func-
tions UðXÞ and VðXÞ are unconstrained a priori and define
what kind of BH solutions (if any) we obtain. The (quasi-
local) thermodynamics for generic models (2) has been
extensively discussed in Ref. [30]. We recall here some of
the main results, which we are going to need below.
First of all, we note that there is a dimensionfull cou-

pling constant in the action �d, which controls the strength
of the dilaton self-interactions. This feature is in contrast to
Einstein gravity, which contains no such coupling constant
besides the Newton constant. The classical solutions of the
equations of motion descending from (2)

X ¼ XðrÞ; ds2 ¼ �ðrÞd�2 � 1

�ðrÞdr
2; (3)

with

@rX ¼ e�QðXÞ; �ðXÞ ¼ wðXÞeQðXÞ
�
1� 2M

wðXÞ
�

(4)

are expressed in terms of two model-dependent functions,

QðXÞ :¼ Q0 þ
Z X

d ~XUð ~XÞ;

wðXÞ :¼ w0 � �d

Z X
d ~XVð ~XÞeQð ~XÞ:

(5)

Here, the integrals are evaluated at X and Q0, and w0 are
two constants. However, for physical solutions a single
constant of integration M � 0 is enough (cf., e.g., [29]),
and the Ricci scalar is given by

R ¼ � @2�

@r2
¼ �e�Q½w00 þUw0 þU0ðw� 2MÞ�: (6)

For eQw ¼ 1, R / M, and therefore the ground state solu-
tion M ¼ 0 is Minkowski space. We call models with this
property ‘‘Minkowskian ground-state models’’.
All classical solutions (3) exhibit a Killing vector @�, so

we have a ‘‘generalized Birkhoff theorem.’’ Therefore,
each solution Xh of �ðXhÞ ¼ 0 leads to a Killing horizon.
The Hawking temperature is given by surface gravity or,
equivalently, the inverse periodicity in Euclidean time

THaw ¼ w0ðXhÞ
4�

: (7)

For instance, when the dilaton model is the one obtained by
dimensional reduction of the 4D Schwarzschild BH—that
is, we use spherical symmetry and consider the angular

coordinates as spectators—one obtains wðXÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2X=G4

p
,

Xh ¼ 2M2G4, whereG4 is the 4D Newton constant, hence,

1Other gravity actions, like nonlinear actions in the Ricci
scalar or actions that introduce torsion and/or nonmetricity,
can be reformulated as dilaton gravity actions, so our Ansatz
is rather general. For a review, cf., e.g., [29].

P. CASTORINA, D. GRUMILLER, AND A. IORIO PHYSICAL REVIEW D 77, 124034 (2008)

124034-2



THaw ¼ w0ðXhÞ=4� ¼ ð8�G4MÞ�1, the well-known result
of Hawking.

To study the thermodynamical properties (see Ref. [30])
one considers the 2D BH in a cavity with boundaries at
X ¼ Xcav in contact with a thermal reservoir at the Tolman

temperature Tcav ¼ THaw=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðXcavÞ

p
(i.e., the blue-/red-

shifted temperature). In the limit Xcav ! 1, for
Minkowskian ground-state models, the free energy is

F ¼ M� THawSBH; (8)

where

SBH ¼ 2�Xh (9)

is the Bekenstein-Hawking entropy [31–35], independent
from the location of the cavity wall and just sensitive to
local properties of the horizon, as it should be. To make
contact again with well-known results we might consider
once more the spherically symmetric 4D Schwarzschild
BH reduced to 2D and use the previous result Xh ¼
2M2G4, which gives SBH ¼ 2�Xh ¼ 4�G4M

2. Recalling
that the Schwarzschild radius is rh ¼ 2G4M and that the
area of the event horizon is ABH ¼ 4�r2h, we have SBH ¼
ABH=4G4, the well-known result of Bekenstein and
Hawking.

We have now the necessary tools on the gravity side to
focus on the search for our BH. Because we demand the
Minkowski ground state property, the function Q is deter-
mined uniquely once the function w is known. Therefore,
our BH is identified by constructing w with the phenome-
nological requirements from the Rindler hadronization
process. Namely, we require that

(a) The BH mass is proportional to the energy of the
collision

M ¼ �
ffiffiffi
s

p
; (10)

where � is some numerical coefficient.
This requirement relies on the fact that since the
Hawking temperature (7) depends on the BH mass
M, also the near-horizon approximation (the Rindler
description) and therefore the Unruh hadronization
temperature must depend on M. We know that the
hadronization temperature depends on energy

ffiffiffi
s

p
,

hence, it is natural to identify it with M.
(b) The coupling constant �d in (2) coincides with the

string tension � (� ¼ �d).
Indeed, the string tension � is a fixed dimensionfull
parameter, and there is only one such parameter
available in (2), namely, �d.

(c) The Hawking temperature corresponds to the Unruh
temperature, i.e., to the hadronization freeze-out
temperature

THawð
ffiffiffi
s

p
; �Þ ¼ Tfð

ffiffiffi
s

p
; �Þ (11)

for all values of the energy
ffiffiffi
s

p
and for a given value

of �.
This requirement relies on the detailed analysis of
Ref. [16] already mentioned.

(d) The BH partition function diverges at a given tem-
perature, say Tc that, at �b ¼ 0, we identify in the
following way:

Tc ¼ lim
�b!0

Tf ¼ limffiffi
s

p !1
Tf ¼

ffiffiffiffiffiffiffi
�

2�

r
; (12)

where all limits are supposed to be sufficiently
smooth.
This point is motivated by the fact that massless
QCD at finite temperature and �b ¼ 0 has a decon-
fining first -order phase transition. Moreover, at zero
baryon density, the critical temperature is associated
with the QCD string breaking, i.e., with the Unruh
hadronization mechanism. Another motivation for
this requirement will be given later discussing the
finite density effects.

These points are not sufficient to identify the BH. They
constrain, though, the class of allowed models severely.
Point d in the list implies that THaw must be bounded from
above as a function of

ffiffiffi
s

p
. Indeed, at that value of the

temperature (Tc) the system undergoes a phase transition
and the ‘‘hadronic Rindler horizon description’’ is no
longer applicable, hence, our BH analog description also
must break down there. This requirement excludes most of
the well-known BHs, such as Schwarzschild or Reissner-
Nordström in any dimension, which have no such a critical
temperature. Furthermore, from the phenomenological
analysis of the nucleus-nucleus scattering [25] the behavior
of Tf at large but finite

ffiffiffi
s

p
turns out to be

THaw ¼ Tf ’ Tc

�
1�

ffiffiffiffiffi
s0

p ffiffiffi
s

p þOð1=sÞ
�
: (13)

This is consistent with the fourth requirement, but slightly
stronger because it contains also information about the
next-to-leading order term in a large s expansion.
Let us now consider first the leading order term Tc.

Noticeably, this establishes a unique asymptotic BH
model: since THaw to leading order must be given by the
constant Tc, we can deduce from (7) that the function w
must be linear in X in the limit of largeM. The unique BH
model that does the job is known as ‘‘Witten BH’’ [36]

wðXÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
8��d

p
X; (14)

and arises as an approximate solution in 2D string theory to

lowest order in�0. Its Hawking temperature is then THaw ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�d=2�

p
, and by the second and third phenomenological

requirements we get
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THaw ¼ Tf ¼
ffiffiffiffiffiffiffi
�

2�

r
: (15)

Furthermore, the partition function of the Witten BH di-
verges,2 hence, in particular, it is divergent at Tf. This we

regard as an instance of the fulfillment of the fourth re-
quirement. All this leads us to recognize the Witten BH as
the unique BH reproducing the behavior of the freeze-out
temperature for all the scattering processes at high energy
considered in [16] except heavy-ion collisions (eþe�, pp,
p �p, �p, etc.). That is to say that the Witten BH is the BH
wewanted in all the high-energy scattering processes when
the freeze-out temperature is constant and equal to the
critical temperature.

For heavy-ion collisions we are therefore looking for a
deformation of the Witten BH that, at finite values of s, is
consistent with (13). Since the Witten BH emerged as the
unique approximation to lowest order in �0, the only
natural candidate is the exact solution in 2D string theory
to all orders in�0, which is known as the ‘‘exact string BH’’
[38]. Its target space action was constructed in [39]. Like
the Witten BH, it is a Minkowskian ground state model
given by

wðXÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
8��d

p ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 þ 1

q
þ 1Þ; eQðXÞwðXÞ ¼ 1;

(16)

where the canonical dilaton X is related to a new field 	 by

X ¼ 	þ arcsinh	: (17)

Obviously, for X ! 1 (16) with (17) asymptotes to (14).
Its Hawking temperature is given by [39]

THaw ¼
ffiffiffiffiffiffiffi
�d

2�

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

ffiffiffiffiffiffiffiffiffiffiffiffi
2��d

p
M

s
; (18)

where M is the Arnowitt-Deser-Misner mass of the BH.3

Thus, the exact string BH is a 2D BH fulfilling all the
phenomenological requirements: (1) The first condition is
satisfied by identifying �

ffiffiffi
s

p ¼ M; (2) The second require-
ment is simply � ¼ �d; (3) The third postulate will allow
us to make predictions about Tfð

ffiffiffi
s

p
; �Þ, which we shall

discuss in Sec. III; 4. The fourth postulate is met, because
(18) obviously is bounded from above by (12).
Having demonstrated that the exact string BH is phe-

nomenologically viable, we address now the issue of
uniqueness. We have shown above that asymptotically
(for large s) the Witten BH emerges as the unique BH
model consistent with all requirements. While there is a
whole family of models that asymptotes to the Witten BH,
we have also noted that from a CFT point of view there is a
unique BH model that deforms the Witten BH for finite
values of s, namely, the exact string BH. In that sense our
results are unique.

III. MATCHING THE PHENOMENOLOGICAL
RESULTS FOR Tf ð

ffiffiffi
s

p Þ
From the above discussion, Eq. (18) leads to the follow-

ing prediction for the energy dependence of the freeze-out
temperature in heavy-ion collisions

Tfð
ffiffiffi
s

p Þ ¼
ffiffiffiffiffiffiffi
�

2�

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffi
s0
s

rs
; (19)

where
ffiffiffiffiffi
s0

p ¼ 2
ffiffiffiffiffiffiffiffiffiffi
2��

p
=� is a free parameter. In Fig. 1, we

compare Eq. (19) with the phenomenological results of
Ref. [25] for the dependence of the freeze-out temperature
on the collision energy, for different nuclei, for

ffiffiffiffiffi
s0

p ¼
2:4 GeV. At large energy the universal value Tf ’
170 MeV is obtained.
As previously discussed, the

ffiffiffi
s

p
dependence of Tf is

strongly correlated with its dependence on the baryon
chemical potential �b [25]. We stress that the �b depen-
dence of Tf is different from the �b dependence of Tc,

10 100
Sqrt(s)_NN in Gev

100

120

140

160

180

T
 in

 M
ev

FIG. 1 (color online). Freeze-out temperature versus
ffiffiffi
s

p
NN

from Ref. [25] compared with Eq. (19) for
ffiffiffiffiffi
s0

p ¼ 2:4 GeV and

Tc ¼ 169 MeV.

2As discussed in [34]we consider the Witten BH in a cavity
whose wall is located at some fixed value of the dilaton X ¼
Xcav. The cavity is in contact with a thermal reservoir at T ¼
Tcav. Allowing for all paths where the metric is continuous (but
not necessarily differentiable) gives a Euclidean partition func-
tion Z, which is an infinite sum over instantons. Most of them
exhibit a conical defect [37]. For the Witten BH the resulting
integral can be exactly solved, giving Z / Xcav for very large
Xcav. Eventually, we move the cavity wall to infinity—because
that is where the asymptotic observer sits, measuring the
Hawking temperature—and this means that Z ! þ1.
Physically, the reason for this divergence is the singular specific
heat of the Witten BH, i.e., the divergence of fluctuations.
Another way to put it is to observe that the Witten BH is
marginally unstable against decay into conical defects [37].

3The massM is also related to the level k of the current algebra
underlying the CFT description of the exact string BH in terms
of an SLð2;RÞ=Uð1Þ gauged Wess-Zumino-Witten model (for a
review, cf., e.g., [40]). That k can be seen as a running parameter
allowed by the CFT is discussed in [41].
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where the corresponding BH partition function diverges
[42]. Indeed, at �b ¼ 0, the deconfinement temperature is
related, in the Hagedorn model [43] or in the dual reso-
nance model [44,45], to the resonance formation and decay
and therefore string-formation and -breaking is the relevant
dynamical mechanism. This means that at �b ¼ 0, it is
reasonable to consider the freeze-out temperature essen-
tially equal to the temperature at the point of deconfine-
ment. This is another motivation for our assumption 4 in
the previous list. At finite �b, the interaction does not lead
to the formation of resonances but the screening effects and
Fermi statistic (at large �b) play the most important role.
Hence there is no a priori reason for Tf ’ Tc. Accordingly,

in the language of the 2D BH thermodynamics the �b

dependence of Tc should be studied by introducing in the
dynamics a new conserved U(1) charge, corresponding to
the baryon number, and considering the critical line in the
T ��b plane.

We now come back to the �b dependence of Tf. At a

purely phenomenological level it can be described by the
empirical relation

�b ’ cffiffiffi
s

p ; (20)

where c is a constant. The approximate relation (20) comes
from the statistical analysis of the species abundances in
heavy-ions collisions [25]. Thus, by inserting (20) into (19)
we obtain

Tfð�bÞ ’
ffiffiffiffiffiffiffi
�

2�

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��b

�0
b

s
; (21)

where �0
b is a free parameter. In Fig. 2, we compare the

prediction of Eq. (21), for �0
b ¼ 1:2 GeV, with the phe-

nomenological analysis. Our curve merely gives a rough
estimate of the�b dependence of Tf and could be regarded

as a theoretical prediction that is only indirectly based on
the BH analogy, i.e., via Eq. (20). Keeping these limita-

tions in mind, we nonetheless notice that Eq. (21), if taken
at face value, predicts a linear screening of the string
tension due to finite density effects in heavy-ions collisions

�ð�bÞ ’ �ð1��b=�
0
bÞ: (22)

This behavior of �, being �0
b ¼ 1:2 GeV, gives as critical

quark chemical potential �0
q ’ 400 MeV.

Finally, we address what happens if we relax the first
assumption (10) and allow for a more general relation
between BH mass and collision energy,

M ¼ �ð ffiffiffiffiffiffiffiffiffi
�=s

p Þ ffiffiffi
s

p
; (23)

where � is a free function with the only constraint that it
asymptotes to a constant � for large

ffiffiffi
s

p
. On dimensional

grounds, this is the most general Ansatz possible. The
asymptotic condition ensures that in the limit of vanishing
string tension the BH mass scales with the appropriate
power of

ffiffiffi
s

p
.

With the more general assumption (23) the conclusions
of Sec. 1 still hold without any essential change: the Witten
BH is the unique asymptotic BH model, and the exact
string BH its natural deformation at finite values of

ffiffiffi
s

p
.

In particular, Eq. (18) for the Hawking temperature still
applies.
However, Eq. (19) is replaced by

Tfð
ffiffiffi
s

p Þ ¼
ffiffiffiffiffiffiffi
�

2�

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

ffiffiffiffiffiffiffiffiffiffi
2��

p

�ð ffiffiffiffiffiffiffiffiffi
�=s

p Þ
1ffiffiffi
s

p
vuut ; (24)

which only for large
ffiffiffi
s

p
coincides with Eq. (19). The

phenomenological implications of Eq. (24) are more prob-
lematic to handle in the case of NN0 scattering.
This is so because, while we are focusing here on high-

energy scattering processes (
ffiffiffi
s

p
beyond 1 GeV) we deal

with two distinct energy regimes: (i) what we might call
the asymptote (beyond 20 GeV) and (ii) below that asymp-
tote. For all scattering processes but NN0, there is one
single Tf for both regimes (i.e., Tf is

ffiffiffi
s

p
independent)

and the Hawking temperature for the Witten BH has the
same behavior. Thus, the Witten BH is phenomenologi-
cally viable also with assumption (23). In the case of NN0,
the interesting energy regime is the second one (above
1 GeV—below 20 GeV), and there we are not at the
asymptote, but below. That is why, although � ! � in
the limiting case, we should expect some

ffiffiffi
s

p
dependent

contribution of � toM below the asymptote and, being the
fit we obtain in Fig. 1 impressively good even a small
change of the Mð ffiffiffi

s
p Þ behavior (as, for instance, a more

modest increase with energy, see, e.g., [46]) would have a
big impact on that.
Hence, the simplest Ansatz � ¼ � employed in

Eq. (10)—i.e., that the BH mass is sensitive to the collision
energy only and does not depend on the string tension—
appears to be the most phenomenologically viable.
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FIG. 2 (color online). Freeze-out temperature versus baryon
chemical potential compared with Eq. (21) for �0

b ¼ 1:2 GeV.
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IV. CONCLUSIONS

In this work we have further investigated the recent
proposal that for all high-energy hadron productions the
universal hadronic freeze-out temperature Tf ’ 170 MeV

can be understood as an Unruh temperature. Here, we
identified the exact string BH (for the heavy-ion collisions)
and its limiting case, the Witten BH (for all the other
processes), as the unique BHs whose thermodynamical
properties well simulate some thermodynamical properties
of hadronization. In particular, exploiting the behavior of
Hawking temperature for the exact string BH we provided
an analytical expression for the energy dependence of the
freeze-out temperature in nucleus-nucleus scattering,
which gives a very good fit of the experimental data
obtained via the statistical hadronization model. We also
proposed a linear screening of the hadronic string tension
as a function of the baryon chemical potential based on an
empirical relation.

In view of taking this work as a first step of a bottom-up
program of finding a BH whose thermodynamics could
simulate finite temperature QCD, it is perhaps suggestive
to recall here some of the thermodynamical properties of
the exact string BH: The partition function diverges at Tc;
The specific heat is positive; The third law of thermody-
namics holds, i.e., the specific heat vanishes linearly with
temperature as the latter approaches zero.

Finally, let us merely report here the following coinci-
dence. Besides the exact string BH that we advocate here

there is another BH that has been applied to QCD, namely,
the well-known BH in AdS5. We can look at the near
singularity behavior of the AdS5 BH and compare it with
the near singularity behavior of the T dual of the exact
string BH. It turns out [39], that they have the same
behavior.
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