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A small mass � in orbit about a much more massive black hole m moves along a world line that

deviates from a geodesic of the black hole geometry byOð�=mÞ. This deviation is said to be caused by the
gravitational self-force of the metric perturbation hab from�. For circular orbits about a nonrotating black

hole we numerically calculate theOð�=mÞ effects upon the orbital frequency and upon the rate of passage
of proper time on the world line. These two effects are independent of the choice of gauge for hab and are

observable in principle. For distant orbits, our numerical results agree with a post-Newtonian analysis

including terms of order ðv=cÞ6.
DOI: 10.1103/PhysRevD.77.124026 PACS numbers: 04.25.Nx, 04.30.�w, 04.80.Nn, 97.60.Jd

I. INTRODUCTION AND SUMMARY

A. Gravitational waveforms, perturbation analysis and
the self-force

The push towards the detection of gravitational waves
depends upon accurate theoretical models of the sources.
Numerical relativity has made great progress in the past
few years and now tracks black hole binary systems for
many orbits and down to the final coalescence and ring
down. These recent computational successes are joining
the post-Newtonian analyses in providing building blocks
for the construction of gravitational wave templates.

A gap in the theoretical progress remains for binary
systems with an extreme mass ratio. A small black hole
in a close orbit about a much larger one might be too
relativistic for post-Newtonian analyses. And the great
difference in length scales for the two black holes causes
difficulty for a full numerical relativity solution. This gap
is the natural domain of perturbation theory.

The state of the art in perturbative gravitational wave-
forms [1] has a small mass � moving along a geodesic of
the metric gab of the much larger black hole. The perturbed
Einstein equations then determine the metric perturbation
hab which contains the waveform. But, these waveforms
would be much improved if the influence of hab back on
the motion of � were part of the analysis. Then the
dissipative effects of radiation reaction, joining with con-
servative effects, would be reflected in the waveform and
would allow tracking � for more orbits without losing
phase information as the inspiral proceeds.

The metric perturbation hab causes the world line of� to
be a geodesic of gab þ hab. Sometimes the same motion is
described as nongeodesic in gab with the acceleration aaSF
being caused by the self-force from hab acting on�. In this
paper, we prefer the ‘‘geodesic in gab þ hab’’ description
of the motion, and use the phrase ‘‘self-force’’ only in a

generic way to describe any and all of the Oð�Þ effects of
hab on the world line of �, even those which are unrelated
to the acceleration aaSF.
When the mass � is modeled as a point particle, an

attempt to calculate any consequence of the self-force
immediately bumps against a technical difficulty. The met-
ric perturbation hab is singular at the location of �, pre-
cisely where it must be evaluated. Some method of
regularization must be invoked to remove the singular
feature. The formal aspects of this regularization are now
very well understood [2–13], and we give some details for
our particular application in Sec. IV.

B. Our limitations

In this paper we limit our analysis to the self-force
effects upon the circular orbits of the Schwarzschild ge-
ometry. The numerical analysis is straightforward, and the
theoretical interpretation of the results is clear and unam-
biguous. These simple orbits provide a convenient test bed
for ideas regarding the self-force.
Despite the emphasis of our opening paragraphs, this

paper contains no new information regarding the dissipa-
tive effects of radiation reaction on the gravitational wave-
form for slow, circular inspiral into a nonrotating black
hole. In Appendix D we sketch a proof, based upon the
form of the perturbed Einstein equation, that the self-force
removes energy directly from the orbit of �, via Eq. (19),
at a rate that matches the energy being radiated away in the
wave zone and down through the event horizon. This result
is satisfying but not unexpected. At this order of approxi-
mation, the dissipative effects of the self-force imply that
the orbital frequency � should change at a rate

d�

dt
¼ �

dE

dt
� d�=dr

�dE=dr
þOð�2Þ (1)

where dE=dt is evaluated from Eq. (19), and �E is the
Oð�Þ contribution to the mass-energy of the system as*det@ufl.edu
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measured at a great distance, which is equivalent to
�Taua þOð�2Þ,1 with Ta being the timelike Killing vec-
tor and ua being the four velocity of �. Thus, for circular
orbits of the Schwarzschild geometry the self-force formal-
ism based upon first-order perturbation theory adds formal-
ity but yields nothing new about the evolution of the
gravitational waveforms from the dissipative part of the
self-force. In fact, conservative self-force effects on the
values of E and � for circular orbits are described in
Sec. II B but these are not sufficient for improving the
calculation of d�=dt from dissipation without at least
also determining the Oð�2Þ part of dE=dt. This result is
common knowledge within the self-force community [16]
but appears not to have spread much beyond that.

Noncircular orbits in the Schwarzschild metric and all
orbits in the Kerr metric contain substantial complications
that we also do not address.

C. Our results

In perturbative matters, we prefer to focus upon those
observable quantities which can be defined in a manner
independent of the gauge choice for hab. The angular
velocity � and the time component of the four velocity
ut are two such quantities for � in a circular orbit. Our
main computational result is determining the change in the
relationship between � and ut caused by the self-force.
The coordinate radius of the orbit is not included in this
analysis because it depends upon the gauge choice and has
no inherent physical meaning.

First, we define R� via �2 ¼ m=R3
� as a natural radial

measure of the orbit which inherits the property of gauge
independence from�. In Sec. III we show that ut naturally
separates into two parts ut ¼ 0u

t þ1 u
t, where each part is

individually gauge independent. Further the functional
relationships between �, 0u

t and R� are identical to their

relationships in the geodesic limit, � ! 0, and show no
effect from the self-force.

The remainder 1u
t is, however, a true consequence of the

self-force, and we plot 1ut as a function of R� in Figs. 1
and 2. These two figures along with Table I are the primary
numerical results of this paper.

In Appendix E we derive a post-Newtonian (PN) expan-
sion for 1ut based upon the work of others [17,18]. Our
expansion is in powers of m=R�, which is v2=c2 in the
Newtonian limit, and from Eq. (E26)

1u
t ¼ �

m

�
�
�
m

R�

�
� 2

�
m

R�

�
2 � 5

�
m

R�

�
3 þ � � �

�
; (2)

which includes terms of order v6=c6.
Our Figs. 1 and 2 display the different levels of the post-

Newtonian expansion. These agree with our numerical
results as well as they should.

With a good bit of hubris, we have gone one step further.
After the three known post-Newtonian terms were re-
moved from our determined values of 1u

t, we numerically

fit the residual to an expansion of higher order terms, and
found the coefficient of ðm=R�Þ4 to be �27:61� :03.2

We now describe an astronomical thought-observation.
Imagine that an observed system has a small mass in a
circular orbit, with orbital frequency �, about a large
nonrotating black hole. Assume that the mass m of the
black hole could be determined by some independent
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FIG. 1 (color online). The quantity 1u
t, which is the gauge-

independent Oð�Þ part of ut affected by the self-force, is given
as a function of R� for circular orbits in the Schwarzschild
geometry. Also shown are 1u

t as calculated with 1PN and 2PN

analyses of Appendix E based upon Refs. [17,18].
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FIG. 2 (color online). The same as Fig. 1, but including the
3PN analysis.

1This equivalency follows from Zerilli’s [14,15] analysis of
monopole perturbations of the Schwarzschild metric.

2We had already used a similar technique while only knowing
the analytic expansion up to the ðm=R�Þ2 term. Finding the
coefficient of ðm=R�Þ3 to be �5:001, with the last digit uncer-
tain, provided the impetus to push the analytical work to one
more order.
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means, and that a redshift observation, perhaps as de-
scribed in Sec. II C 2, could determine ut. Then

0u
t ¼ ½1� 3ð�mÞ2=3��1=2 (3)

from Eq. (42),

R� ¼
�
m

�2

�
1=3

(4)

from the definition of R�, and

1u
t ¼ ut � 0u

t: (5)

With values ofm, R�, and 1u
t in hand, an astronomer could

then determine the mass of the small object from the
graphical data.

Our self-force result may only be of academic interest.
But it is a result. Our numerical calculations are consistent
with a post-Newtonian expansion. We estimate the un-
known coefficient of v8=c8 in the expansion. And we
have proposed one unlikely observational method to infer
the mass of a small object which is orbiting a much larger
black hole.

D. Outline

In Sec. II we introduce our notation, and we provide the
components of the geodesic equation for the perturbed
Schwarzschild metric gab þ hab in Sec. II A.
In Sec. II B we focus on quasicircular orbits—those that

would be circular except for the dissipative effects of the
self-force. And we find that two components of the four-
velocity, ut and u�, are affected by the self-force in a
manner that is Oð�Þ and independent of the particular
gauge that is chosen for hab. Their ratio is the orbital
frequency � ¼ u�=ut, which is also gauge independent.
The component ut is the ratio of the rate of passage of

Schwarzschild time to proper time at the particle. Two
different physical interpretations of ut for quasicircular
orbits are given in Sec. II C; one of these is in terms of a
redshift measurement, the other is related to the helical
Killing vector field of the perturbed geometry.
The formal effect of the self-force on the relationship

between � and ut is described in Sec. III. Particular
emphasis is placed upon how the gauge independence of
this effect reveals itself.
Section IV contains details of our numerical determina-

tion of the relationship between ut and�. Table I contains

TABLE I. Summary of the gravitational self-force effects 1u
t=�, �ua �ubhRab and dE=dt for a variety of radii, R�. The label �3PN

denotes the remainder after the post-Newtonian expansion in Eq. (2) has been removed from 1u
t.

R�=m 0u
t

1u
tm=� �3PN �ua �ubhRab=� ��2dE=dt

5 1.581 138 �0:466 652 4 �0:146 65 �0:590 273 8 0.002 792 737

6 1.414 213 �0:296 027 5 �0:050 657 �0:418 646 1 0.000 9403 393

7 1.322 875 �0:220 847 5 �0:022 596 �0:333 890 0 0.000 400 163 2

8 1.264 911 �0:177 719 7 �0:011 704 �0:280 999 5 0.000 196 104 5

9 1.224 744 �0:149 360 6 �0:006 699 4 �0:243 904 8 0.000 105 933 2

10 1.195 228 �0:129 122 2 �0:004 122 2 �0:216 062 8 6:151 631� 10�5

12 1.154 700 �0:101 935 5 �0:001 819 8 �0:176 557 5 2:429 170� 10�5

14 1.128 152 �0:084 381 95 �0:000 927 14 �0:149 593 2 1:115 762� 10�5

16 1.109 400 �0:072 055 05 �0:000 521 85 �0:129 899 1 5:708 047� 10�6

18 1.095 445 �0:062 901 89 �0:000 316 16 �0:114 842 6 3:166 609� 10�6

20 1.084 652 �0:055 827 71 �0:000 202 71 �0:102 941 2 1:871 470� 10�6

25 1.066 003 �0:043 599 84 �7:98� 10�5 �0:081 800 55 6:157 919� 10�7

30 1.054 092 �0:035 778 31 �3:75� 10�5 �0:067 884 57 2:486 475� 10�7

35 1.045 825 �0:030 340 64 �1:99� 10�5 �0:058 022 41 1:155 513� 10�7

40 1.039 750 �0:026 339 67 �1:15� 10�5 �0:050 665 38 5:950 154� 10�8

50 1.031 421 �0:020 844 65 �4:65� 10�6 �0:040 419 28 1:962 457� 10�8

60 1.025 978 �0:017 247 59 �2:22� 10�6 �0:033 621 74 7:926 444� 10�9

70 1.022 142 �0:014 709 64 �1:19� 10�6 �0:028 781 97 3:681 881� 10�9

80 1.019 294 �0:012 822 96 �6:94� 10�7 �0:025 160 46 1:894 535� 10�9

90 1.017 095 �0:011 365 31 �4:32� 10�7 �0:022 348 57 1:054 112� 10�9

100 1.015 346 �0:010 205 28 �2:82� 10�7 �0:020 102 07 6:238 203� 10�10

120 1.012 739 �0:008 475 251 �1:35� 10�7 �0:016 737 28 2:515 767� 10�10

140 1.010 889 �0:007 246 793 �7:30� 10�8 �0:014 337 45 1:167 029� 10�10

160 1.009 508 �0:006 329 388 �4:27� 10�8 �0:012 539 53 5:998 161� 10�11

180 1.008 438 �0:005 618 167 �2:66� 10�8 �0:011 142 30 3:334 080� 10�11

200 1.007 585 �0:005 050 642 �1:74� 10�8 �0:010 025 23 1:971 428� 10�11

250 1.006 054 �0:004 032 327 �7:13� 10�9 �0:008 016 120 6:476 438� 10�12

300 1.005 037 �0:003 355 744 �3:43� 10�9 �0:006 677 846 2:607 338� 10�12
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an extensive summary of our numerical results which
might be used by others for a numerical comparison.
This section also has a description of the regularization
required by our application which points out some diffi-
culties inherent in regularizing any quantity which is not
gauge independent, such as the acceleration of � as mea-
sured in the background metric.

Our conclusion in Sec. V describes both the current state
of self-force calculations as well as its possible future.

We have relegated a number of side discussions to
Appendices.

Some convenient identities are given in Appendix A.
Gauge transformations that lead to the understanding

that ut, u� and � are gauge independent are given in
Appendix B.

An elementary, completely Newtonian example of the
confusion that gauge freedom can cause is in Appendix C.

In Appendix D we show that the rate at which � loses
energy via the self-force precisely matches the rate that
gravitational waves carry energy out at infinity and down
the black hole.

The post-Newtonian expansion for 1u
t in Eq. (2) is

derived in Appendix E.

II. GEODESICS OF THE PERTURBED
SCHWARZSCHILD GEOMETRY

Self-force analysis implies that a point mass � moves
along a geodesic of the perturbed Schwarzschild metric
gab þ hab where, in this section, hab is the suitably regu-
larized metric perturbation and is at least C1. We assume
that the geodesic is in the equatorial plane. We assume that
hab ¼ Oð�Þ, and we work only through first order in � or
hab. Indices are lowered and raised with gab þ hab and
gab � hab. We use Schwarzschild coordinates, and hab is a
function of t, r, �, and �. To be clear: we specifically
choose to normalize the four velocity ua of the particle
with respect to the actual regularized physical metric
gab þ hab, and not with respect to the abstract background
Schwarzschild metric gab.

The quantities E, _R, and J are functions of the proper
time s and are defined in terms of the particle’s four-
velocity by

E � �ut; _R � ur; and J � u�; (6)

which leads to

ua ¼
�
�E;

_Rþ ubhb
r

1� 2m=r
; 0; J

�
(7)

and

ua ¼
�
Eþ ubhbt
1� 2m=r

; _R; 0;
J � ubhb�

r2

�
; (8)

where the overdot represents d=ds. Thus, ua depends upon
s implicitly through its dependence upon E, _R, J and also

upon r, evaluated at the particle. These expressions for ua
and ua are recursive, but the recursion is intended to be
carried only through first order in hab.
It is convenient to define the nonradial part of the four-

velocity of the particle, with no hab terms included, as

�u a �
�

E

1� 2m=r
; 0; 0;

J

r2

�
: (9)

Also, the instantaneous angular velocity of the particle is

� � u�=ut: (10)

A. Geodesic equation

One convenient exact form of the geodesic equation for
the metric gab þ hab is

dua
ds

¼ 1

2
ubuc

@

@xa
ðgbc þ hbcÞ: (11)

While analyzing this geodesic equation we drop all
terms of Oð�2Þ. The components of Eq. (11) provide

dE

ds
¼ � 1

2
uaub

@hab
@t

; (12)

dJ

ds
¼ 1

2
uaub

@hab
@�

; (13)

d

ds

�
r _R

r� 2m
þ uahar

�
¼ 1

2
uaub

@

@r
ðgab þ habÞ: (14)

These and other equations describing the particle’s world
line are to be evaluated at the location of the particle.
The normalization of ua is a first integral of the geodesic

equation,

1 ¼ �uaubðgab þ habÞ

¼ E2 � _R2

1� 2m=r
� J2

r2
þ �ua �ubhab � _R2hrr (15)

which is derived by beginning with Eq. (8).

1. The radial component

Further analysis of the radial component of the geodesic
equation is lengthy and requires care. We begin with
Eq. (14), and use Eqs. (7) and (8) extensively along with
the elementary identities in Appendix A which allow for
the easy commutation of �ua with @r. Simplification pro-
ceeds by identifying all terms which are Oð�2Þ if the
motion is quasicircular as is described in Sec. II B; these
terms are systematically moved to the left-hand side.
Toward the end of the analysis the normalization condition
(15) is used to replace E2 in favor of J2 on the right-hand
side. Final simplification arises from a convenient place-
ment of the indices of hab on the left-hand side. The result
is
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€Rð1þ hr
rÞ þ 1

2
_R2@rhr

r þ �ua _R@ahr
r þ �ua �ub@ahb

r

¼ �m

r2
ð1� �ua �ubhabÞ þ J2

r4
ðr� 3mÞ

þ 1

2
ð1� 2m=rÞ@rð �ua �ubhabÞ: (16)

B. Quasicircular orbits

For any orbit Eqs. (12) and (13) imply that _E� _J �
Oð�Þ. In this section our interest focuses on the orbits
which would be circular but for these effects of radiation
reaction. For these quasicircular orbits we require that _R ¼
Oð�Þ and also that €R ¼ Oð�2Þ. The second of these con-
ditions is necessary to insure that the orbit is not a precess-
ing elliptical orbit with a very small eccentricity
� ¼ Oð�Þ. To summarize, for a quasicircular orbit E, R,
and J change slowly, _E� _R� _J �Oð�Þ, and their rates of
change are slower still, €E� €R� €J �Oð�2Þ.

In this section we continue to drop Oð�2Þ terms includ-
ing those which are consequences of the quasicircular
condition from the geodesic equations. Thus the normal-
ization of ua becomes

1 ¼ E2

1� 2m=r
� J2

r2
þ �ua �ubhab: (17)

Neither Ta@=@xa ¼ @=@t nor �a@=@xa ¼ @=@� is a
Killing vector of gab þ hab, but a helical Killing vector
ka exists for a quasicircular orbit in that Lkðgab þ habÞ ¼
Oð�2Þ. The Killing vector exists for any gauge choice for
hab. But if the gauge choice is reasonable and hab respects
the helical symmetry, then ka is particularly simple [13]
with

ka@=@xa ¼ @=@tþ�@=@�;

Lkgab ¼ 0; and Lkhab ¼ Oð�2Þ: (18)

In what follows, the only assumption which we make about
the gauge is that it respects both the helical symmetry over
a dynamical time scale and also the natural reflection
symmetry through the equatorial plane. Our results are
independent of the assumption, but the analysis is much
simplified because of it. For example, �ua is tangent to a
trajectory of ka so that �ua@ahbc ¼ Oð�2Þ at the particle for
a quasicircular orbit.

For quasicircular orbits Eqs. (12) and (13) simply imply
that

dE

dt
¼ � 1

2 �ut
�ua �ub@thab (19)

and

dJ

dt
¼ 1

2 �ut
�ua �ub@�hab; (20)

and Eq. (18) then yields

dE

dt
¼ �

dJ

dt
: (21)

We show in Appendix B that the right-hand sides of
Eqs. (19) and (20) are both independent of the gauge
choice for hab. Thus, dE=dt and dJ=dt are gauge indepen-
dent for quasicircular orbits.
For a quasicircular orbit every term on the left-hand side

of the radial equation (16) is Oð�2Þ. It easily follows that

J2

r2
¼ m

r� 3m
ð1� �ua �ubhabÞ �

�
r� 2m

r� 3m

�
r

2

@

@r
ð �ua �ubhabÞ:

(22)

Equations (17) and (22) together imply that

E2rðr� 3mÞ
ðr� 2mÞ2 ¼ 1� �ua �ubhab � r

2

@

@r
ð �ua �ubhabÞ: (23)

It is important to note that the Oð�Þ parts of E and J
depend upon the choice of gauge and have no precise
physical meaning in terms of the energy or angular mo-
mentum of the particle or the system. There is some irony
that dE=ds and dJ=ds are gauge independent, while E and
J are not.
Two interesting quantities for quasicircular orbits are

components of the four velocity ua,

ðutÞ2 ¼
�
dT

ds

�
2 ¼ ðEþ �ubhtbÞ2

ð1� 2m=rÞ2

¼ r

r� 3m

�
1þ �ua �ubhab � r

2
�ua �ub@rhab

�
(24)

and

ðu�Þ2 ¼
�
d�

ds

�
2 ¼ 1

r4
ðJ � �ubh�bÞ2

¼ ðr� 2mÞ
rðr� 3mÞ

�
mð1þ �ua �ubhabÞ

rðr� 2mÞ � 1

2
�ua �ub@rhab

�
:

(25)

These follow from Eqs. (23) and (22) along with the
equations in Appendix A.
A gauge transformation is an infinitesimal coordinate

transformation xanew ¼ xaold þ �a, which transforms hab !
hab þ�hab where �hab ¼ �2rða�bÞ. For hab respecting

the symmetry of the helical Killing vector, we show in
Appendix B that �ð �ua �ubhabÞ ¼ 0 at �. Thus the right-
hand side of Eq. (24) changes only in two places. The
change in r=ðr� 3mÞ resulting from r ! rþ �r is

�

�
r

r� 3m

�
¼ � 3m

ðr� 3mÞ2 �
r (26)

and the change

�ð �ua �ub@rhabÞ ¼ � 6m

r2ðr� 3mÞ�
r (27)

is from Eq. (B15). These two changes cancel each other at
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Oð�Þ on the right-hand side of Eq. (24), which is therefore
gauge independent. A similar argument shows that u� is
also gauge independent.

Further, the ratio of u� and ut gives the orbital frequency

�2 ¼
�
u�

ut

�
2 ¼ m

r3
� r� 3m

2r2
�ua �ub@rhab (28)

for a quasicircular orbit. Its gauge independence is inher-
ited from ut and u�, and may also be demonstrated directly
following the same steps as for ut.

While � is observable from infinity and is gauge inde-
pendent, the Schwarzschild radial coordinate of the orbit is
neither. A gauge transformation simply changes the radius
of the orbit by �r ¼ �r.

C. Physical interpretations of ut

The quantity ut is the ratio of the rates of change of
Schwarzschild coordinate time and of proper time along
the particle’s geodesic in the perturbed and regularized
Schwarzschild metric. We have two different physical
interpretations which give further meaning to ut.

1. ut as a constant of motion

The perturbed metric gab þ hab has a helical Killing
vector ka. With the reasonable gauge choice that hab
respects the helical symmetry as in Eq. (18), it follows that

� kaua ¼ E��J (29)

is a constant of motion over a dynamical time scale. For a
general orbit

ðE��JÞut ¼ Eut � Ju�

¼ EðEþ ubhtbÞ
1� 2m=r

� J

r2
ðJ � ubh�bÞ

¼ 1þ _R �uahar þ _R2

�
r

r� 2m
þ hrr

�
(30)

with Eqs. (8) and (15) being used to derive the second and
third equalities, respectively. For a quasicircular orbit, the
right-hand side of the last line is 1þOð�2Þ, and thus

E��J ¼ 1=ut: (31)

The gauge independence of ut then implies that the con-
stant of the motion E��J is also gauge-independent
even while E and J are not.

2. ut as a redshift measurement

In principle ut might be measured by a redshift obser-
vation, which we now describe.

Let a light source be located at the particle where the
perturbed metric is suitably regularized. Let �a be the
tangent vector to an affinely parametrized null geodesic
of a photon from this light source. The energy Eem of the
photon, as emitted, is proportional to uaem�a with uaem the

four velocity of the emitter. Thus the ratio of the energies
as measured when observed and when emitted is

Eob

Eem

¼ uaob�a

uaem�a

(32)

with uaob the four velocity of the observer. With ka being the
helical Killing vector field of the perturbed metric, ka�a is
a constant of motion along the geodesic of the photon. The
four velocity of the emitter is the four velocity of the
particle, and uaem / ka so that uaem ¼ utkajem. Let the pho-
ton be observed along the z-axis at a large distance away
from the black hole so that uaob ¼ ut1�a

t ¼ �a
t . We then

have

Eob

Eem

¼ ut1�1
t

utðka�aÞem ¼ �1
t

utðka�aÞ1 : (33)

Finally, this may be written as

Eob

Eem

¼ �1
t

utð�1
t þ��1

�Þ
¼ 1

ut
� ��1

�

utð�1
t þ��1

� Þ
¼ 1

ut

(34)

because �1
� ¼ 0 at a large distance along the z-axis. Thus,

the gauge-independent 1=ut determines the redshift of a
photon, emitted from the particle, when the photon is
observed on the z-axis at a large distance.

III. GAUGE INDEPENDENCE OF OUR RESULTS

In our analyses, we have a gauge-independent expres-
sion for the orbital frequency in Eq. (28),

� ¼
ffiffiffiffiffi
m

r3

r �
1� rðr� 3mÞ

4m
�ua �ub@rhab

�
(35)

which allows us to define a related gauge-independent
measure of the separation between m and � via

R� � ðm=�2Þ1=3: (36)

In the geodesic limit,� ! 0, the separationR� is precisely
the Schwarzschild radial coordinate of the orbit.
Our other gauge-independent quantity of interest is ut, in

Eq. (24), which we now choose to write as

ut ¼ 0u
t þ 1u

t (37)

where

1u
t � ð1� 3m=rÞ�1=2

�
1� r

4
�ua �ub@rhab

�
(38)

and

1u
t � ð1� 3m=rÞ�1=21

2
�ua �ubhab: (39)

From the discussions above and in Appendix B, it is clear
that each of these parts of ut are individually gauge
independent.
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For the moment, assume that the analysis is being per-
formed in a special gauge where �ua �ub@rhab ¼ 0; the gauge
vector required to put a general hab into this special gauge
is given in Eq. (B15). In this case

� ¼
ffiffiffiffiffi
m

r3

r
; R� ¼ r (40)

and

0u
t ¼ ð1� 3m=rÞ�1=2: (41)

Equations (40) and (41) are equivalent to their geodesic
limits. It follows that, for this particular choice of gauge,

0u
t ¼ ð1� 3m=R�Þ�1=2 ¼ ½1� 3ð�mÞ2=3��1=2 (42)

Every bit of this equation is gauge independent. Therefore
Eq. (42) must hold for any choice of gauge. An alternative,
direct verification of this equation results from the use of
Eqs. (35)–(38) to write both sides of Eq. (42) in terms of r,
m, �ua and hab, followed by the expansion of each side
through linear order in hab.

From our perspective the relationships between �, R�

and 0u
t are as if the motion were geodesic in gab and

independent of the self-force and should be treated as such.
To see the effect of the self-force on ut, we numerically

determine �ua �ubhab and, then, 1u
t as a function of R� as

described in the next section. We have no need to evaluate
�ua �ub@rhab.
Note that if the motion of � were being described as

‘‘accelerated in the Schwarzschild geometry’’, then ua

would be normalized by gab. Also ut would not be gauge
independent when defined in that manner and the gauge
independence of ut with our normalization from gab þ hab
would likely be undiscovered.

IV. DETERMINATION AND REGULARIZATION
OF hab

The major results or our numerical analysis were dis-
played in Figs. 1 and 2 of Sec. I C. In this section we fill in
some details regarding how these results were obtained.

A. The retarded field

We numerically determine the retarded metric perturba-
tion hretab in the vicinity of a small mass� in a circular orbit

about a large black hole of mass m. We use a standard
frequency domain formalism that has been in continuous
use for nearly 40 years. This formalism is based upon a
decomposition of the components of hretab in terms of tensor

harmonics. And we rely heavily upon the results of Regge
and Wheeler [19] and of Zerilli [14,15]. We use the Regge-
Wheeler gauge for hretab, although all of our results are

independent of the gauge choice.

B. Regularization

Two different approaches to regularization have been
developed for self-force problems involving point particles
and gravitational fields and both lead to the same conclu-
sion. Mino, Sasaki and Tanaka [3] follow the DeWitt-
Brehme [2] analysis for electromagnetic fields in curved
spacetime and show that the gravitational self-force may be
described completely as geodesic motion in the perturbed
geometry gab þ htailab , where h

tail
ab is the part of the retarded

metric perturbation which comes from the support of the
Green function within the past null cone of the particle.
Quinn and Wald [4] invoke a physically appealing ‘‘com-
parison axiom’’ and arrive at essentially the same
conclusion.
A third approach [5] notes that the tail part of the metric

perturbation is only a portion of a solution of the perturbed
Einstein equations. However a Green function, different
from the retarded Green function, determines the singular
part of the metric perturbation hSab which exerts no force on
the particle. The remainder of the metric perturbation
hRab � hretab � hSab is regular at the particle and is a source-

free solution of the perturbed Einstein equations. The self-
force is subsequently described as geodesic motion in the
combined metric gab þ hRab. At first perturbative order

gab þ hRab is a vacuum solution of the Einstein equations,

which has the desirable implication that a local observer
would see the particle move along a geodesic of a vacuum
solution of the Einstein equations and, in fact, would only
observe the combined field gab þ hRab and have no local

method for distinguishing hRab from gab.
A practical method for applying the regularization for-

malism was described first by Barack and Ori [7–10], later
by Mino, Nakano and Sasaki [11,12] and subsequently
extended by others [20–25]. In this procedure the multipole
moments of hSab and its derivatives are calculated analyti-

cally and referred to as regularization parameters. The sum
of these moments diverges when evaluated at the particle,
but each individual moment is finite. By construction hSab
precisely matches the singularity structure of the retarded
field at the particle. Thus the difference of the retarded
moments and the singular moments gives a multipole
decomposition of hRab which converges when summed

over l and m. Schematically, this procedure gives

hRab ¼
X
lm

hRðlmÞ
ab ¼ X

lm

½hretðlmÞ
ab � hSðlmÞ

ab � (43)

for the regular field.
We show in Sec. III that our problem only requires the

regularization of �ua �ubhab. Following the original prescrip-
tion of Barack and Ori [7] and extending it as in Ref. [23],
we first evaluate

�u a �ubhretðlÞab � Xl
m¼�l

�ua �ubhretðlmÞ
ab : (44)
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Then we use the ansatz that

�ua �ubhSðlÞab ¼ Bþ C

lþ 1=2
� D

ð2l� 1Þð2lþ 3Þ
þ E1

ð2l� 3Þð2l� 1Þð2lþ 3Þð2lþ 5Þ þOðl�6Þ
(45)

where B, C, D, E1, . . . are the regularization parameters.
The particular l dependence of the D, and E1 . . . terms is

related to the expansion of ð1� cos�Þnþ1=2 in terms of
Legendre polynomials Plðcos�Þ; details are derived and
described in Appendix D of Ref. [23].

For our problem it is known analytically that C ¼ 0 and

B ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r� 3m

r2ðr� 2mÞ

s
2F1

�
1

2
;
1

2
; 1;

m

r� 2m

�
(46)

where 2F1 is a hypergeometric function, and r is the
Schwarzschild radial coordinate of the circular orbit.
Work in progress will describe the derivation of a variety
of regularization parameters, including these. This knowl-
edge of B and C, but not D, implies that

�u a �ubhRab ¼ X1
l¼0

ð �ua �ubhretðlÞab � �ua �ubhSðlÞab Þ (47)

converges as 1=l. To increase the rate of convergence, we
augment our knowledge of B and C by numerically deter-
mining further regularization parameters [23]: We use the

fact that the behavior of �ua �ubhretðlÞab , evaluated at �, must

match �ua �ubhSðlÞab as given in Eq. (45) for large l. This allows
us to fit the numerical data to determine the additional
regularization parameters D, and E1 to E3. This results in
the sum converging as�l�9. We sum up to l ¼ 40, provid-
ing sufficient accuracy for the results as presented.

A second gauge-independent quantity is dE=dt as given
in Eq. (19). The regularization parameters for this quantity
are all zero, no regularization is required, and the sum over
l converges faster than any power of l.

Table I has a complete set of the interesting, gauge-
independent data regarding a circular orbit of a
Schwarzschild black hole. Any other gauge-independent
quantity, known by us, may be derived from these data. The
results for 1u

t with the post-Newtonian expansion are
displayed in Figs. 1 and 2 of Sec. I.

Barack and Sago [26] have recently used a time-domain
formalism to calculate the actual gravitational self-force in
the Lorenz gauge. Their Fr corresponds to our
1
2�@rð �ua �ubhRabÞ. However, we worked in the Regge-

Wheeler gauge and are not able to compare results.

C. Gauge difficulties with regularization parameters

If the singular and retarded fields in Eq. (43) are in
different gauges then the schematic description of regu-
larization fails.

The singular field is commonly described in the Lorenz
gauge lzh

S
ab, while the retarded field is easily found in the

Regge-Wheeler [19] gauge rwh
ret
ab, in the context of the

Schwarzschild geometry. By gauge choice rwht� ¼ 0 for

even-parity perturbations, while lzht� is generally not zero

and is singular at �. In this case rwh
ret
t� � lzh

S
t� is neces-

sarily singular, and the ‘‘regularization’’ procedure fails.
We now show that this failure is circumvented when a

gauge-independent quantity is calculated.
Assume that the gauge vector relating the two gauge

choices is known for the retarded field,

2rða�bÞ ¼ rwh
ret
ab � lzh

ret
ab; (48)

and is used to change the retarded field into the Lorenz
gauge mode by mode,

lzh
RðlmÞ
ab ¼ rwh

retðlmÞ
ab � 2rða�

ðlmÞ
bÞ � lzh

SðlmÞ
ab

¼ lzh
retðlmÞ
ab � lzh

SðlmÞ
ab : (49)

Each component of lzh
R
ab is now regular and the sum over

modes converges.
In this paper, we are eager to calculate the gauge-

independent combination �ua �ubhRab for quasicircular orbits

which involves the sum over multipole terms such as

�u a �ublzh
RðlmÞ
ab ¼ �ua �ubrwh

retðlmÞ
ab � 2 �ua �ubrða�

ðlmÞ
bÞ

� �ua �ublzh
SðlmÞ
ab : (50)

The demonstration that �ua �ubhab is gauge independent for
quasicircular orbits does not rely on hab being the retarded,
the singular or the regular field, and it clearly shows that

�ua �ubrða�
ðlmÞ
bÞ ¼ 0 at the particle, for any gauge vector.3

Thus the ra�b term in Eq. (50) is identically zero, and

�u a �ubhRab ¼
X
lm

½ �ua �ubrwhretðlmÞ
ab � �ua �ublzh

SðlmÞ
ab � (51)

converges to a value that is independent of any gauge
choice.
This technique can be used to regularize any gauge-

independent linear combination of components of hab
and its derivatives. In fact, Moncrief [27] noted that the
nonzero components of rwhab may be described in terms of

gauge-independent, linear combinations of components of
hab and its derivatives in a generic gauge. Thus, if the
regularization parameters for rwh

S
ab are known and if h

ret
ab is

known in an arbitrary gauge, then what might be termed
the regularized gravitational self-force in the Regge-
Wheeler gauge could be determined in just this manner.
And the result would, at least, be mathematically well
defined.

3The helical symmetry need not be respected by �a, but the
entire discussion of the gauge independence is then substantially
more complicated.
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V. CONCLUSION

In Ref. [28] Barack and Ori state ‘‘The meaningful
description of the gravitational self-force must include
both F�

self and the metric perturbation h�	.’’ We agree

wholeheartedly with this statement. But we go a step
further and believe that the value in calculating the gravi-
tational self-force, in any particular gauge, is to apply it to a
question whose answer is related to some physical observ-
able. And a physical observable ought to be independent of
the gauge choice. In Appendix C we give an example of
how easily gauge confusion appears even in Newtonian
physics where the direction of the gravitational self-force
contains no useful physical information without additional
knowledge about the coordinates and how the self-force is
being evaluated.

Similarly, we prefer to describe the effects of the self-
force as geodesic motion in the perturbed and regularized
metric gab þ hab. The alternative description ‘‘accelera-
tion aaSF in gab’’ depends upon the gauge choice and bears

no relationship to any actual acceleration which an ob-
server moving with the particle would measure with a
collection of small masses and springs. At this level of
approximation � is in free-fall in the actual, physical
spacetime metric gab þ hab. To give aaSF in some gauge

seems to imply that aaSF contains a true physical conse-

quence—if that is the case we would prefer a description of
that consequence.

The circular orbits of the Schwarzschild metric perhaps
provide the simplest framework for any self-force problem.
The angular decomposition and elementary discrete fre-
quency spectrum imply that only ordinary differential
equations need to be solved in order to determine the
metric perturbations. Apparently, few problems can be
formulated in a gauge-independent way within this simple
framework. We would be surprised if another first-order
self-force effect in this particular context were found which
did not have a solution in terms of the data available in
Table I.

A general orbit has none of the natural symmetry of the
quasicircular orbit. Then none of our�, ut, u�, E or J can
be described in terms of gauge-independent quantities. In
this situation, where understanding the meaning of a ques-
tion is likely to be as difficult as determining its answer,
perhaps the only significant questions concern the
waveform.

However, our preference for gauge invariance is a matter
of taste. So it is important to note that the value of aaSF in the
Lorenz gauge for circular orbits is precisely defined and
can be determined in a precise way, as ably demonstrated
by Barack and Sago [26]. Their time-domain implementa-
tion is sharply focused on aaSF and takes a significant step in
the direction of calculating the elusive self-force effect
upon waveforms.

There is reason for optimism regarding waveforms. The
difficulty of two disparate length scales for the extreme-

mass-ratio problem can be avoided by using the analyti-
cally known singular field hSab to construct a smoothed out

source [26,29–31] for the wave equation of an approxima-
tion to the regular field hRab. The smoothed out source

shows no structure with a length scale of �. The numeri-
cally determined hRab can be guaranteed to be at least C

2 at

� [13,31]. In this case hRab directly gives the self-force

effects on the motion and simultaneously provides the
waveform in the wave zone.
To take full advantage of the self-force formalism will

require that hRab be evaluated at second order in�. But, this

impediment does not appear to be fundamental. It is likely
that techniques based upon the current successes of nu-
merical relativity will be able finally to reveal a better
description of the dissipative effects of the self-force on
gravitational waveforms.
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APPENDIX A: CONVENIENT IDENTITIES FOR
GEODESICS OF THE PERTURBED
SCHWARZSCHILD GEOMETRY

The following identities are useful for simplifying an
equation by transforming terms involvingE and J back and
forth into terms only involving �ua. These equations are all
elementary consequences of Eq. (9):

�u a �ubhab ¼ rE

r� 2m
�ubhtb þ J

r2
�ubh�b; (A1)

@ �ua

@r
�ubhab ¼ � 2mE

ðr� 2mÞ2 �ubhtb � 2J

r3
�ubh�b; (A2)
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and

2

r
�ua �ubhab þ @ �ua

@r
�ubhab ¼ 2ðr� 3mÞ

ðr� 2mÞ2 E �ubhtb; (A3)

2m

rðr� 2mÞ �u
a �ubhab þ @ �ua

@r
�ubhab

¼ � 2ðr� 3mÞ
r3ðr� 2mÞ J �u

bh�b: (A4)

APPENDIX B: GAUGE TRANSFORMATIONS

The change in the metric perturbation under a gauge
transformation xanew ¼ xaold þ �a where �a is considered to

be infinitesimal (also known as an infinitesimal coordinate
transformation) is

�hab ¼ �L�gab ¼ ��c@cgab � gac@b�
c � gcb@a�

c

¼ ra�b �rb�a: (B1)

To preserve reflection symmetry we assume that �� and
its derivatives are all zero on the equatorial plane. Then, for
the Schwarzschild geometry we obtain

�hrr ¼ 2m

ðr� 2mÞ2 �
r � 2

ð1� 2m=rÞ @r�
r; (B2)

�htr ¼ �@r�t þ 2m

rðr� 2mÞ�t � 1

1� 2m=r
@t�

r; (B3)

�htt ¼ 2m

r2
�r � 2@t�t; (B4)

�h�� ¼ �2r�r � 2@���; (B5)

�ht� ¼ �@t�� � @��t; (B6)

and

�hr� ¼ �@r�� þ 2

r
�� � 1

1� 2m=r
@��

r: (B7)

For quasicircular orbits of perturbed Schwarzschild we
consider htt þ�h�t and ht� þ�h��; these are propor-

tional to �uahat and �uaha�, respectively. Under a gauge

transformation

�htt þ��h�t ¼ 2m

r2
�r � 2@t�t ��@t�� ��@��t;

(B8)

�ht� þ��h�� ¼ �@t�� � @��t � 2�r�r � 2�@���:

(B9)

Combining these first provides

�ðhtt þ 2�ht� þ�2h��Þ
¼ 2r

�
m

r3
��2

�
�r � 2ð@t þ�@�Þ�t

� 2�ð@t þ�@�Þ��; (B10)

and subsequently

�ua �ub�hab ¼ E2

ð1� 2m=rÞ2 �ðhtt þ 2�ht� þ�2h��Þ

¼ E2

ð1� 2m=rÞ2
�
2r

�
m

r3
��2

�
�r

� 2ð@t þ�@�Þ�t � 2�ð@t þ�@�Þ��

�
:

(B11)

With the assumption that �a respects the helical symmetry
Lk�

a ¼ ð@t þ�@�Þ�a ¼ 0, the above effect of a general

gauge transformation simplifies to

�u a �ub�hab ¼ E2

ð1� 2m=rÞ2
�
2r

�
m

r3
��2

�
�r

�
¼ 0;

(B12)

when evaluated at the particle where �2 ¼ m=r3 þOðhÞ.
Equation (B12) and ��ua ¼ OðhÞ then imply that
�ð �ua �ubhabÞ ¼ 0, at OðhÞ. The fact that

�ð �ua �ub@thabÞ ¼ 0; (B13)

at the particle, follows simply from Eq. (B11). A similar
argument reveals the gauge independence of �ua �ub@�hab
when evaluated at the particle.
It also follows from Eq. (B11) that

�u a �ub
@

@r
�hab ¼ E2

ð1� 2m=rÞ2
��6m

r3

�
�r (B14)

evaluated at the particle. For a quasicircular orbit E2=ð1�
2m=rÞ2 ¼ 1=ð1� 3m=rÞ þOð�Þ, so that a general gauge
transformation induces a change at the particle

�ð �ua �ub@rhabÞ ¼ � 6m

r2ðr� 3mÞ�
r: (B15)

This result shows that the expression for �2 in Eq. (28) is
invariant under a general gauge transformation, while the
radius of the orbit changes with the radial coordinate,
rnew ¼ rold þ �r, and is not gauge independent.

APPENDIX C: GAUGE DEPENDENCE OF THE
NEWTONIAN GRAVITATIONAL SELF-FORCE

In Newtonian gravity, when one mass m1 of a circular
binary is infinitesimal, then the orbital frequency is �2 ¼
Gm2=r

3. If m1 is small but finite, then � changes by
Oðm1=m2Þ. This change in � is properly described as a
consequence of a Newtonian gravitational self-force [32].
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The orbital acceleration of m1 in a binary is given by

r1�
2 ¼ Gm2

ðr1 þ r2Þ2
(C1)

where r1 and r2 are the radii of the orbits and are also the
distances from the masses to the center of mass. Thus
m1r1 ¼ m2r2.

Note that

lim
m1!0

r1 þ r2 ¼ r1: (C2)

And in this same limit,

lim
m1!0

r1�
2 ¼ Gm2=r

2
1: (C3)

But how does the acceleration of m1 change as the limit is
taken? The answer would determine the sign of the self-
force. For an extreme mass ratio, the magnitude of the
acceleration of m1 is precisely

r1�
2 ¼ Gm2

ðr1 þ r2Þ2
(C4)

on the one hand, but also

r1�
2 ¼ Gm2

ðr1 þ r2Þ2
¼ Gm2

r21

�
1� 2m1

m2

þ . . .

�
; (C5)

on the other.
The acceleration and the self-force depend upon the

detail of how r1 þ r2 approaches r1. If the distance r1 þ
r2 between the masses is held fixed during the limit (r1
grows slightly while r2 shrinks) then Eq. (C4) implies that
the acceleration of m1 is constant and that there is no self-
force. However, if m1’s orbital radius r1 is held fixed
during the limit, then Eq. (C5) implies that the limit of
the acceleration is approached from below, and the self-
force points outward.

Even in Newtonian physics the gravitational self-force is
ambiguously defined and not particularly relevant to under-
standing Eq. (C1).

This Newtonian ambiguity is precisely equivalent to the
gauge ambiguity of the gravitational self-force in general
relativity. For an extreme-mass-ratio binary, if the origin of
the Schwarzschild coordinates is at the center of the black
hole then the coordinate value of r at the orbit would
represent the distance between the particle center and the
black hole center, i.e. r1 þ r2, and Eq. (C4) would imply
that there is no self-force. However, a dipole gauge trans-
formation can move the origin of the coordinates to the
center of mass of the system and then the coordinate value
of r at the orbit would represent the distance between the
particle and the center of mass, i.e. r1 alone, and Eq. (C5)
would imply that the self-force points outward. Con-
sequently, a simple dipole gauge transformation substan-
tially changes the appearance of the gravitational self-
force.

The resolution of this confusion in Newtonian physics is
to refrain from introducing the concept of the self-force. It
seems reasonable that general relativity would follow the
Newtonian lead.

APPENDIX D: USING THE ENERGY FLUX FOR
RADIATION REACTION

For the special case of quasicircular inspiral, it has long
been common knowledge that the dissipative effects of
radiation reaction could be calculated by determining
(i) the total energy of particle�E, (ii) the orbital frequency
�, and (iii) the rate of energy loss dEtot=dt via gravita-
tional waves. Each of these is to be calculated as a function
of the radius r of the orbit of �. As energy is lost � slowly
spirals inward, and the rate of change of� is then expected
to be

d�

dt
¼ dEtot

dt
� d�=dr

�dE=dr
: (D1)

In this appendix we show that d�=dt in this equation is
equivalent to d�=dt as determined in Eq. (1), which is
based upon the self-force formalism.
Equation (D1) and (1) appear similar but have an im-

portant difference. In Eq. (D1), dEtot=dt is the rate that
energy is radiated out at a large distance and down into the
black hole, while in Eq. (1) �dE=dt is determined locally
from hab via Eq. (19) and is the rate at which the self-force
removes energy from the particle. These two equations
give the same d�=dt only if the rate that energy is lost
through gravitational waves is equal to the rate that the
self-force removes energy from the orbit. We now show
that this is the case.
We assume that gab is the Schwarzschild metric, and

only in this appendix an overdot represents a derivative
with respect to the Schwarzschild time coordinate t.
The perturbed Einstein equations, with a perturbing

stress-energy tensor Tab ¼ Oð�Þ being the source, may
be written as (see Eq. (35.58) of Ref. [33])

16
Tab ¼ �EabðhÞ (D2)

where

EabðhÞ ¼ r2hab þrarbh� 2rðarchbÞc þ 2Ra
c
b
dhcd

þ gabðrcrdhcd �r2hÞ; (D3)

with h � habg
ab.

For arbitrary symmetric tensors kab and hab, the operator
EabðhÞ satisfies the identity [13]

kabEabðhÞ ¼ rcF
cðk; hÞ � hkab; habi (D4)

with

Fcðk; hÞ � �kabrc �hab � 1
2
�krc �h� 2 �kcbra �hab (D5)

where �hab � hab � 1
2gabh

c
c, and similarly for �kab. Also
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hkab; habi � rc �kabrc
�hab � 1

2rc �krc
�h� 2ra

�kacrb �hbc

� 2 �kabRa
c
b
d �hcd (D6)

is symmetric under interchange of hab and kab.

Let kab ¼ _hab. Then a consequence of Eq. (D2) is

16
Tab _hab ¼ �rcF
cð _h; hÞ þ h _hab; habi (D7)

We now evaluate an integral of both sides of this equation
over a constant t surface �.

The stress-energy tensor for a point mass moving along a
path through space XiðtÞ is

Tab ¼ �
uaub

ut
ffiffiffiffiffiffiffi�g

p �3ðxi � XiðtÞÞ: (D8)

So, an integral of the left-hand side of Eq. (D7) is

16

Z
�
Tab _habr

2 sin�drd�d� ¼ 16
�

ut
uaub _hab; (D9)

where the right-hand side is evaluated at the particle.
Assume that � is bounded by one two-sphere @�1 at a

large radius and by a second two-sphere @�2m close to the
event horizon. And integrate Eq. (D7) over �. Then sub-
stitute Eq. (D9) into the left-hand side and the result is

16
�
uaub _hab

ut
¼ �

Z
�
rcF

cð _h; hÞr2 sin�drd�d�

þ 1

2

d

dt

Z
�
hhab; habir2 sin�drd�d�

(D10)

where the time derivative was moved outside the second
integral by the virtues of the time independence of the
metric and of the symmetry of h; i. That same term is
then zero because � is moving along a circular geodesic
and hab respects the helical symmetry Lkhab ¼ 0. Thus,
the integral is

16
�
uaub _hab

ut
¼ �

Z
�
@c½r2 sin�Fcð _h; hÞ�drd�d�

¼ � d

dt

�Z
�
Ftð _h; hÞr2 sin�drd�d�

�

�
Z
�

@

@xi
½r2 sin�Fið _h; hÞ�drd�d�

¼ �
�I

@�1
�
I
@�2m

�
� ½r2 sin�Frð _h; hÞ�d�d� (D11)

where the first term on the right-hand side of the second
equation is zero because of the helical symmetry, and the
third equality follows from Gauss’ law.

The definition of Faðk; hÞ in Eq. (D5) gives

Frð _h; hÞ ¼ _�h
abrr �hab � 1

2
_�hrr �h� 2 _�h

rbra �hab: (D12)

Note that when the integrals in the last line of Eq. (D11) are
evaluated close to the event horizon and far into the wave

zone Frð _h; hÞ is then equal to 32
T r
t , a component of the

effective stress-energy tensor of a gravitational wave in a
background geometry as given in Eq. (35.70) of Ref. [33].
Thus, the right-hand side of Eq. (D11) is 32
 times

dEtot=dt, the rate that the gravitational waves carry energy
out through the boundaries of �. Our conclusion is

dEtot

dt
¼ � �

2ut
uaub@thab ¼ dE

dt
; (D13)

so that Eq. (D1) and (1) have the same implications.
In a numerical study of quasicircular orbits, a compari-

son of dEtot=dt with �dE=dt is a useful test of the nu-
merical implementation and accuracy, but is not a test of
the self-force formalism.
For completeness, we note that the actual, slow inspiral

of a quasicircular orbit is solely a result of the radiative
energy and angular momentum losses which lead to �
slowly falling inward to a tighter orbit. The radial compo-
nent of the self-force does no work on � and is not
responsible for the inspiral.

APPENDIX E: THE POST-NEWTONIAN
EXPANSIONS OF ut AND �

Recently we have used the analysis by Blanchet, Faye
and Ponsot (BFP) [17,18] to determine the post-Newtonian
relationship between the two gauge-independent quantities
� and ut in the extreme mass ratio limit.
We use many of the results and much of the notation of

BFP without extensive clarification, and we limit our in-
terest to orbits which are circular up to the effects of
radiation reaction. In this appendix only, c is not set to
unity, and an expression of the form OðnÞ refers to general
terms of order 1=cn in the limit c ! 1.
The two components of the binary system are m1 and

m2, and

M � m1 þm2 (E1)

is the total mass. The components are located at ~y1 and ~y2
with velocities ~v1 ¼ d~y1=dt and ~v2 ¼ d~y2=dt, whose
magnitudes v1 and v2 are given in Eqs. (E15) and (E16)
below. For convenience the Cartesian dot product between
two vectors is denoted

ðv1v2Þ � ~v1 � ~v2 ¼ �v1v2 (E2)

for the circular orbits of interest.
Also the relative position of the masses is ~r12 � ~y1 � ~y2,

and the relative velocity is ~v12 � ~v1 � ~v2. The magnitude
of the relative velocity is

v12 ¼ �r12 þOð6Þ (E3)

where � is the angular velocity. The Oð6Þ term is a con-
sequence of radiation reaction at 2.5PN.
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We summarize some results from BFP and Blanchet’s
Living Review [18]. One dimensionless measure of the
strength of the gravitational field is

� � GM

r12c
2
; (E4)

and a second is

v2
12

c2
¼ �2r212

c2
þOð8Þ: (E5)

These two parameters are precisely equal only in the
Newtonian limit,

� ¼ v2
12

c2
þOð4Þ: (E6)

It is natural, then, to introduce a third dimensionless pa-
rameter

x3 � �2 v
2
12

c2
¼ �2 �

2r212
c2

¼ G2M2�2

c6
(E7)

which has the useful features that x ¼ v2
12=c

2 þOð4Þ and
that it depends only upon the quantitiesM and�which are
independent of any choice of coordinates.

The second dimensionless parameter v2
12=c

2 is known in
terms of � at the 2PN order to be

v2
12

c2
¼ �� ð3� �Þ�2 þ

�
6þ 41

4
�þ �2

�
�3 þOð8Þ

(E8)

as given in BFP Eq. (8.6) or Eq. (190) in Ref. [18], with
� ¼ m1m2=M

2. From Eqs. (E7) and (E8)

x3 ¼ �3 � ð3� �Þ�4 þ
�
6þ 41

4 �þ �2

�
�5 þOð12Þ:

(E9)

Alternatively, � may be expanded in terms of x which
results in

� ¼ xþ
�
1� �

3

�
x2 þ

�
1� 65�

12

�
x3 þOð8Þ (E10)

as in Eq. (193) of Ref. [18].
Now we focus on ut and its post-Newtonian expansion

via the regularized metric at m1 given by BFP in their
Eq. (7.6).

Let Va ¼ ðc; ~v1Þ, and let ua be parallel to Va but nor-
malized so that uaua ¼ �1. Thus, ua ¼ utVa is the ap-
propriately parametrized four velocity of m1. In this
appendix our major task is to find the post-Newtonian
expression for

ut ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�VaVbgab

q
¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgtt þ 2vi

1git þ vi
1v

j
1gijj

q
:

(E11)

Our restriction to circular orbits allows for simplifica-
tions of the more general regularized 2PN metric at the
location of m1 given in BFP Eq. (7.6). For example,
ðn12v12Þ � ~r12 � ~v12=r12 ¼ Oð5Þ, and such terms in
Eq. (7.6) do not lead to a contribution to ut at Oð6Þ.
Starting with BFP Eq. (7.6), specializing to the circular
orbit case, and dropping terms whose contributions to ut

are smaller than Oð6Þ, we obtain the metric components

ðg00Þ1 ¼ �1þ 2
Gm2

c2r12
þ Gm2

c4r12

�
4v2

2 � 3
Gm1

r12
� 2

Gm2

r12

�

þ Gm2

c6r12
ð4v4

2Þ þ
G2m1m2

c6r212

�
23

4
v2
1 �

39

2
ðv1v2Þ

�

þ 47

4

G2m1m2

c6r212
v2
2 þ

Gm2

c6r12

�
Gm2

r12
½�v2

2� �
G2m2

1

r212

þ 17

2

G2m1m2

r212
þ 2

G2m2
2

r212

�
þOð8Þ; (E12)

ðg0iÞ1 ¼ �4
Gm2

c3r12
vi
2 þ

Gm2

c5r12

�
4
Gm1

r12
vi
1

þ vi
2

�
�4v2

2 � 2
Gm1

r12
þGm2

r12

��
þOð7Þ; (E13)

ðgijÞ1 ¼ �ij þ 2
Gm2

c2r12
�ij þ Gm2

c4r12
�ij

�
Gm1

r12
þGm2

r12

�

þ Gm2

c4r12
f4vi

2v
j
2g þOð6Þ: (E14)

The order of terms, bracketing and other details in these
equations are as close as possible to the original form given
in BFP to facilitate a comparison of this form to the
original, which an enthusiastic reader might attempt.
In the center of mass frame of reference

v1 � j ~v1j ¼ ½m2 þ 3�2�ðm1 �m2Þ�v12=MþOð6Þ;
(E15)

and

v2 � j ~v2j ¼ ½m1 � 3�2�ðm1 �m2Þ�v12=MþOð6Þ;
(E16)

from Eq. (187) of Ref. [18].
With these substitutions, the use of Eqs. (E12)–(E14)

and G being removed in favor of � via Eq. (E4), we obtain
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1=ut2 ¼ �VaVbgab ¼ 1�m2
2v

2
12

M2c2
� 2

m2�

M

� 2
m3

2v
2
12�

M3c2
ð1þ 4�1 þ 2�2

1Þ þ
m2

2�
2

M2
ð2þ 3�1Þ

� 4
m3

2�
2
1v

4
12�

M3c4
�m4

2v
2
12�

2

4M4c2
ð4þ 27�1 þ 114�2

1

þ 47�3
1Þ þ

m3
2�

3

2M3
ð�4� 17�1 þ 2�2

1Þ þOð8Þ;
(E17)

with �1 � m1=M.
Next v2

12=c
2 is removed in favor of � using Eq. (E8),

1=ut2 ¼ 1þ ð�3þ 4�1 ��2
1Þ�þ ð3� 10�1 þ 11�2

1

� 5�3
1 þ�4

1Þ�2 þ ð�3þ 1
2�1 þ 1

2�
2
1 � 51

4�
3
1

� 59
4�

4
1 þ 6�5

1 ��6
1Þ�3 þOð8Þ: (E18)

And � is removed in favor of x using Eq. (E10) which
yields

ut ¼ 1þ ð32 � 2�1 þ 1
2�

2
1Þxþ ð278 � 13

2�1 þ 53
12�

2
1 � 4

3�
3
1

þ 1
24�

4
1Þx2 þ ð13516 � 175

8 �1 þ 409
16�

2
1 � 97

6�
3
1 þ 69

16�
4
1

� 1
4�

5
1 � 1

48�
6
1Þx3 þOð8Þ (E19)

as theOð6Þ expression for ut ofm1 in a circular binary with
m2.

To change from this expansion, appropriate for a com-
parable mass binary, to a similar one with an extreme mass
ratio it is necessary to replace the post-Newtonian dimen-
sionless parameter

x ¼
�
�Gm2

c3

�
1þm1

m2

��
2=3

(E20)

with a dimensionless parameter

x� �
�
�Gm2

c3

�
2=3

(E21)

more convenient for simultaneous, independent expan-
sions in v=c and in � � m1=m2. [Note that x� ¼
Gm2=R�c

2, from Eq. (36).] It follows that

x ¼ x�ð1þ �Þ2=3; (E22)

and expanding yields

x ¼ x�

�
1þ 2

3
�� 1

9
�2 þ 4

81
�3 þOð�4Þ

�
: (E23)

The final steps are the substitutions of�1 ¼ �=ð1þ �Þ and
of Eq. (E23) into Eq. (E19) and the subsequent collection
of powers of the small quantities � and of x�. Thus, for an
extreme mass ratio with a particle of mass m1 in a circular
orbit with the orbital frequency � about a Schwarzschild
black hole of mass m2

ut ¼ 1þ ð32 � �þ �2 � 28
27�

3Þx�
þ ð278 � 2�þ 3�2 � 67

18�
3Þx2�

þ ð13516 � 5�þ 97
8 �

2 � 97
6 �

3Þx3� þOð8Þ þOð2Þ
�Oð�4Þ: (E24)

This result is consistent with the post-Newtonian expan-
sion of the geodesic value of ut

0u
t ¼ ð1� 3m=rÞ�1=2 ¼ ð1� 3x�Þ�1=2

¼ 1þ 3
2x� þ 27

8 x
2
� þ 135

16 x
3
� þOðx�Þ4: (E25)

And the first-order self-force effect on ut is

1u
t ¼ ��x� � 2�x2� � 5�x3� þOð�x4�Þ; (E26)

which is plotted in Figs. 1 and 2. In the future, a second-
order perturbation analysis might be compared with

2u
t ¼ �2x� þ 3�2x2� þ 97

8 �
2x3� þOð�2x4�Þ: (E27)
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