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We show how one can systematically construct vacuum solutions to Einstein field equations withD� 2

commuting Killing vectors in D> 4 dimensions. The construction uses Einstein-scalar field seed

solutions in four dimensions and is performed both for the case when all the Killing directions are

spacelike, as well as when one of the Killing vectors is timelike. The later case corresponds to

generalizations of stationary axially symmetric solutions to higher dimensions. Some examples represent-

ing generalizations of known higher dimensional stationary solutions are discussed in terms of their rod

structure and horizon locations and deformations.
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I. INTRODUCTION

There has been a renewed interest in higher dimensional
solutions to Einstein field equations. Several interesting
vacuum static/stationary solutions [1], the methods of their
generations [2] and study [3], as well as some general
results on uniqueness of higher dimensional static vacuum
black holes [4–6] in five dimensions have appeared re-
cently. In the case of time-dependent geometries, the
main interest is to study higher dimensional spacetimes
as backgrounds for string propagation [7]. In cosmology
[8], the new trends impose ‘‘lifting’’ the cosmological
models to higher dimensions. Another, and probably the
most relevant reason to study the higher dimensional gen-
eralizations of the Einstein equations, stems from the fact
that we live in a four-dimensional world. It would be
important then, if we were able to convince ourselves, by
studying the higher dimensional solutions, that there is
something special, unique, and deep about four dimen-
sions. This could only be done if we study the alternatives.

Much work has been done previously [9], yet, since the
interests move with time, the motivation, and with it the
boundary/initial conditions imposed on the solutions
change as well. In solving Einstein equations, one usually
imposes some sort of symmetry. What we are good at is the
situation where the spacetime does not depend on more
than two, preferably non-null variables. In four dimen-
sions, these are known as the so-called G2 solutions.
Almost all known interesting four-dimensional solutions
of Einstein equations in vacuum, electrovacuum, or with
some fundamental matter fields belong to this class and
contain at least two commuting Killing directions. Once
we are confronted with the situation where the line element
does depends on at most two coordinates, we are in ‘‘busi-
ness’’: whether these are stationary solutions with axial
symmetry, boost-symmetric spacetimes, anisotropic (iso-
tropic) and inhomogeneous (homogeneous) cosmologies,
cylindrical, or plane gravity and matter waves—there are

dozens of generating techniques, algorithms etc. to con-
struct new solutions of ever increasing complexity [10]
starting from more simple seeds. Because of their general-
ity, on one hand, and applicability, on the other, the known
G2 solutions provide a perfect ‘‘seed’’ or a building block
to construct further new solutions. The construction of
families of higher dimensional solutions is not an excep-
tion: one can efficiently use the known G2 solutions as the
seeds in order to construct their higher dimensional gen-
eralizations and analogues. As usual, the physics enters via
the boundary and initial conditions (asymptotic flatness,
clean horizons, and singularities in the case of compact
objects; singularity structure, inflation, late/early-time
acceleration-for cosmological models etc.). Obtaining suf-
ficiently general solutions, of course, does not necessarily
mean alleviating the search for specialty and physical
meaningfulness, nevertheless, the understanding of the
sufficiently general class of solutions may shed some light
on a problem.
The above considerations lead us to the main purpose of

this paper: the construction, in a possibly most simple and
controllable way of higher dimensional vacuum solutions
to Einstein equations which depend, at most, on two var-
iables. Our starting point would be the four-dimensional
vacuum seed metrics with the G2 symmetry. The vacuum
seed spacetime will be generalized to include massless
dilatons, which will serve to lift the solutions to higher
dimensions. To include the scalar field, the vacuum line
element would be written in the coordinates especially
adopted for this matter. It happens so, that in these coor-
dinates the scalar dilaton coupled to gravity in the G2 case
satisfies a linear differential equation. This equation can be
easily solved with the general solution representing a linear
combination of some elementary solutions. Any term, as
well as, any linear combination of these solutions, may
serve to lift the dilaton spacetime to higher dimensions,
obtaining in such a way a new vacuum solution in any
dimension greater than four. To get interesting solutions,
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one must choose the ‘‘right’’ G2 seed as well as the right
combination of elementary scalar solutions (dilatons). The
scheme works both, in the case when the two commuting
Killing vectors of the seed are spacelike (cosmologies,
cylindrical waves, colliding waves etc.) as well as, when
one of the Killing vectors is timelike. It is important to
mention that there is no need in imposing the hypersurface
orthogonality of the two Killing directions (diagonality of
the metric) and therefore, the solutions obtained this way
generalize, in the case when one of the Killing directions is
timelike, for example, the static higher dimensional solu-
tions due to [1], enabling one to obtain the generalized
stationary solutions, in fact, an infinite dimensional family
of such solutions.

In the following section we briefly review the generating
technique for the case where the two Killing directions of
the seed solution are both spacelike. In Sec. III the case
with one timelike Killing vector is addressed. In Sec. IV
the method is specialized to the 5D case; aspects such as
asymptotic flatness and the interpretation of the method as
the insertion of rod sources are as well included in this
section. In Sec. V, we analyze the trapping of surfaces,
horizons, and singularities of the generated solutions. In
Secs. VI and VII some 5D static and stationary solutions
are generated. Finally, some conclusions are drawn in the
last section.

II. ALL-SPACELIKE KILLING VECTORS

The case and the algorithm where the two Killing direc-
tions of the seed solution are both spacelike was first
presented and discussed in the context of string/M-theory
cosmology [11]. It is worthwhile, however, to briefly re-
view it here since actually passing to the situation when
one of the Killing vectors is timelike can be formally made
by complex coordinate changes which will be given
subsequently.

The starting point is the vacuum solution of the Einstein
field equations in the form

ds2 ¼ ef
vacð�dt2 þ dz2Þ þ �abdx

adxb: (1)

Here fvac and �ab are functions of the t and z coordinates
alone, ðx; yÞ � ðx2; x3Þ and we denote

ffiffiffiffiffiffiffiffiffiffi
det�

p � Kðt; zÞ.
We also assume that the scalar field is normalized as in

[11] and � � PN
i¼1 ’i expressed as a sum of elementary

scalar fields solves the following linear differential equa-
tion

@

@t
½Kðt; zÞ _�ðt; zÞ� � @

@z
½Kðt; zÞ�0ðt; zÞ� ¼ 0: (2)

Then, the solution to the coupled Einstein-scalar field
equations is obtained [12] by keeping the transverse part
characterized by the metric functions Kðt; zÞ and �ab with-
out being changed, but replacing the longitudinal function
fðt; zÞvac by

fðt; zÞvac ���! fðt; zÞvac þ fðt; zÞsc: (3)

The function fðt; zÞsc, then, is solved by quadratures from

_fðt; zÞsc ¼ K

K02 � _K2

�
2K0XN

i¼1

_’i’
0
i� _K

�XN
i¼1

_’2
i þ

XN
i¼1

’02
i

��
;

(4)

f0ðt; zÞsc ¼ K

K02 � _K2

�
K0
�XN
i¼1

_’2
i þ

XN
i¼1

’02
i

�
� 2 _K

XN
i¼1

_’i’
0
i

�
:

(5)

To lift the solution to higher dimensions and to obtain
the vacuum spacetime, we first construct the new scalars
[11]  i ¼ Dij’j, where Dij 2 GLðN;RÞ is given by

D ¼

��ð1=2Þ
1 ��ð1=2Þ

2 ��ð1=2Þ
3 . . . ��ð1=2Þ

N�1 ��ð1=2Þ
N

���ð1=2Þ
1 ��ð1=2Þ

2 ��ð1=2Þ
3 . . . ��ð1=2Þ

N�1 ��ð1=2Þ
N

0 �2��ð1=2Þ
2 ��ð1=2Þ

3 . . . ��ð1=2Þ
N�1 ��ð1=2Þ

N

..

. ..
. ..

. ..
. ..

.

0 0 0 . . . ��ð1=2Þ
N�1 ��ð1=2Þ

N

0 0 0 . . . �ðN � 1Þ��ð1=2Þ
N�1 ��ð1=2Þ

N

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; (6)

along with

�n ¼ 2

3
nðnþ 1Þ; (7)

�N ¼ 1

3
NðN þ 2Þ; (8)

where n ¼ 1; . . . ; N � 1.

Finally, the N-dimensional vacuum solution is given by

ds24þN ¼ e�ð2= ffiffi
3

p ÞPN
i¼1

 ids24 þ
XN
i¼1

eð4=
ffiffi
3

p Þ iðdwiÞ2; (9)

where ds24 is the four-dimensional scalar field solution
constructed previously. The new scalars  need to be
constructed only when one is seeking a solutions in more
than five dimensions. In the five-dimensional case, the
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lifting from four dimensions involves directly the field �
and is straightforward.

The case of all-spacelike Killing vectors is phenomeno-
logically rich. Depending on the behavior of the function
Kðt; zÞ, the so-called transitivity surface area, one encoun-
ters distinct physical situations depending on the character
of the gradient of K. This function, in a vacuum, electro-
vacuum or massless scalar case, due to the vanishing of the
two-trace in t, z of the stress tensor, is necessarily a
solution of the wave equation of the form

€Kðt; zÞ � K00ðt; zÞ ¼ 0: (10)

The solutions K ¼ t, K ¼ sinht sinhz, or K ¼ sint sinz
are often used in the studies of anisotropic and inhomoge-
neous cosmologies and in colliding wave solutions. The
case K ¼ z � � corresponds to Einstein-Rosen cylindrical
waves etc. For all these cases, the general solutions of the
Klein-Gordon Eq. (2) are known and well understood. For
example, the different modes of the solution for the case
K ¼ t can be written as

� ¼ � logtþLfA! cos½!ðzþ z0Þ�J0ð!tÞg
þLfB! cos½!ðzþ z0Þ�N0ð!tÞg

þX
i

diarc cosh

�
zþ zi
t

�
;

whereL indicates linear combinations of the terms in curly
brackets, ! can have a discrete or continuous spectrum,
and �, A!, B!, di are constants. The arc cosh terms are
somewhat special in the sense that these can not be written
as Fourier-Bessel integrals [13] and are often referred to as
gravitational solitons [14] due to the relation to the inverse
scattering technique where these terms usually pop up. In a
more general case, when the gradient of K may vary from
point to point and we are interested in either cosmologies
with S3 topology of spatial sections, as it happens in the
case, for example, of Bianchi IX models, Gowdy models,
or in a colliding wave problem, the function K may be
taken as K � sint sinz, and the general solution of Eq. (2)
can be expanded in Legendre polynomials of the first and
second kind,

� ¼ �1 log

��������tan
t

2

��������þ�2 log

��������tan
z

2

��������þ�3 logj sint sinzj

þ X1
‘¼0

½A‘P‘ðcostÞ þ B‘Q‘ðcostÞ�

� ½C‘P‘ðcostÞ þD‘Q‘ðcostÞ�;
where �i, A‘, B‘, C‘, D‘ are constants.

In cosmology one is often interested in the solutions for
which the gradient of the transitivity surface K is globally
timelike because most of the homogeneous models have
this property. In this case one may choose K ¼ t as a
solution of Eq. (10). The contribution of the scalar field
to the function f becomes then

_fðt; zÞsc ¼ t

�XN
i¼1

_’2
i þ

XN
i¼1

’02
i

�
; (11)

f0ðt; zÞsc ¼ 2t
XN
i¼1

_’i’
0
i: (12)

As a seed, let us take, for example, the vacuum Kasner
solution for which one has

ds2 ¼ efðt;zÞð�dt2 þ dz2Þ þ tðepðt;zÞdx2 þ e�pðt;zÞdy2Þ;
(13)

with

p ¼ k logt; f ¼ k2 � 1

2
logt: (14)

The scalar field equation becomes now €�þ _�=t�
�00 ¼ 0, and one may take the simplest homogeneous
solution as

� ¼ a logt: (15)

Choosing the inhomogeneous scalar field solution would
have lead to an inhomogeneous scalar field generalization
of the Kasner (Bianchi I) model, and when lifted to higher
dimensions would have produced inhomogeneous vacuum
solutions in higher dimensions.
The corresponding function f ¼ fvac þ fsc becomes

f ¼ k2 þ a2 � 1

2
logt: (16)

The vacuum 5D solution is then easily obtained using
the expressions above, and has the following synchronous
form:

ds2 ¼ �dt2 þ tAdz2 þ tBdx2 þ tCdy2 þ tDdw2; (17)

where

A ¼ 6ðk2 þ a2 � 1Þ � 8
ffiffiffi
3

p
a

3k2 þ 3a2 þ 9� 4
ffiffiffi
3

p
a
;

B ¼ 12ðkþ 1� 2
ffiffiffi
3

p
a=3Þ

3k2 þ 3a2 þ 9� 4
ffiffiffi
3

p
a
;

C ¼ 12ð1� k� 2
ffiffiffi
3

p
a=3Þ

3k2 þ 3a2 þ 9� 4
ffiffiffi
3

p
a
;

D ¼ 16
ffiffiffi
3

p
a

3k2 þ 3a2 þ 9� 4
ffiffiffi
3

p
a
:

(18)

III. ONE TIMELIKE KILLING DIRECTION

We now turn to the case where one of the Killing vectors
is timelike. This situation corresponds to the stationary
axially symmetric spacetimes. The procedure to build
higher dimensional solutions is similar to the previously
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discussed one but with some minor sign changes, once an
adapted coordinate system is used.

Surprisingly, little is known on scalar field generaliza-
tions of axially symmetric spacetimes. Basically, this is
due to the fact that scalar field stationary axisymmetric
solutions are probably not that exciting. Unlike in cosmol-
ogy, where the scalar fields play central role in inflation,
dark matter, and dark energy models, the interest in scalar
field generalizations of axially symmetric solutions of the
Einstein field equations is rather scarce. One of the reasons
as to why the scalar fields in axisymmetric spacetimes are
of little interest is because these do not admit, apart from
some very special cases, a perfect fluid description as in
cosmological case, where the scalar field serves as velocity
potential for the fluid. Moreover, the various no-hair theo-
rems [15] exclude scalar field black holes in four dimen-
sions. Several specific solutions, however, in the spherical
case, Kerr-type generalizations [16], and the case with
conformally coupled scalar fields [17] are known. A spe-
cific algorithm which converts a gravitational degree of
freedom into a scalar field is also known [18], but is less
adapted for the purposes of this paper.

Our starting point, this time, is the following line ele-
ment [19]:

ds2 ¼ e�
vacðdr2 þ dz2Þ þ �abdx

adxb; (19)

which we take to be a solution of the vacuum Einstein
equations in four dimensions. The functions �vac and �ab
are now functions of z and r alone and ð�; tÞ � ðx3; x0Þ. In
this case, as long as the determinant of � is not a constant,
we may take without any lost of generality [19],

det� ¼ �r2: (20)

We now assume, as in the previous section, that the
scalar field � � P

N
i¼1 ’i is a solution of the following

equation:

�rr þ 1

r
�r þ�zz ¼ 0: (21)

This equation is easily obtained from the Klein-Gordon
Eq. (2) of the previous section with the following change of
coordinates t! r, z! iz and is a consequence of the
formal relationship between the G2—eneralized Einstein-
Rosen class, and the G2—stationary axially symmetric
class metrics. If the vacuum solution is globally diagonal-
izable (the static Weyl case) then the ‘‘Weyl potential’’ U
which appears as a metric function eUdt2 (see
Appendix A), solves exactly the same Eq. (21) as �. The
general solution to the linear Eq. (21) is obtained by
considering the following integral:

�¼
Z 1

�¼�1

Z 2�

�¼0

Fð�Þd�d�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þðz��Þ2þG2ð�Þ� 2G2ð�Þcos�p :

(22)

It is convenient, nevertheless, in a way analogous to the
solutions of Eq. (2), to express the solution of the Eq. (21)
as a superposition of the following terms:

� ¼ � logrþLfA! cosh½!ðzþ z0Þ�J0ð!rÞg
þLfB! cosh½!ðzþ z0Þ�N0ð!rÞg

þX
i

diarc sinh

�
zþ zi
r

�
;

where the arc sinh terms are the Weyl-analogs of the
arc cosh terms, and can be written as

arc sinh
zþm

r
¼ log½ðzþmÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðzþmÞ2

q
� � logr:

(23)

The arbitrary constantm is often called a soliton ‘‘pole’’
and may be either real or complex in which case one must
takeRe½arc sinhzþmr � or Im½arc sinhzþmr � as the solution. If
the soliton has a real pole, then the pole is directly related
to the ‘‘rod’’ structure of the Weyl solutions. In fact it is an
interesting way to exactly perturb the solitonic solutions by
allowing the poles m to ‘‘catch’’ some imaginary part mþ
i	, see for example [20].
It is simple to show that the solution to the coupled

Einstein-scalar field equations (see Appendix A), indepen-
dently whether static or stationary, can be obtained by
keeping the transverse part characterized by the metric
function �ab without a change, but with the longitudinal
function �ðr; zÞvac replaced by

�ðr; zÞvac ���! �ðr; zÞvac þ �ðr; zÞsc: (24)

The function�ðr; zÞsc is then solved by quadratures from

�sc
r ¼ r

�XN
i¼1

’2
ir �

XN
i¼1

’2
iz

�
; (25)

�sc
z ¼ 2r

�XN
i¼1

’ir’iz

�
: (26)

To find the above expressions one can either, directly
work with the Einstein equations as in [12], or put in the
previous all-spacelike Killing vector case K ¼ t and per-
form formally the following coordinate transformation:

t� r; z� iz; x� i
; y� t: (27)

One should also perform a global signature change after
Wick rotating the solution if one desires to maintain the
same signature. Equationwise, but not solutionwise, there
is a one-to-one correspondence between the case of all-
spacelike Killing vectors and the case when one of the
Killing directions is timelike. Some solutions do not have a
stationary analogue and vice versa, especially, when the
two pertinent Killing vectors are not hypersurface orthogo-
nal. In the diagonal case, however, all the solutions can be
formally ‘‘copied’’ from one case to another.
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From here one may now use the previous lifting expres-
sions for  i ¼ Dij’j and the Eq. (9) to construct the

higher dimensional solutions. Before proceeding any fur-
ther, some remarks are in order. In the static axially sym-
metric case, the four-dimensional solutions of the vacuum
Einstein equations depend just on one functionU, theWeyl
potential, which as mentioned above, solves Eq. (21) with
� ! U in vacuum or in the scalar case. In the higher
dimensional case there may be an extra scalar degree of
freedom for each extra dimension. In the stationary case,
one should allow for an additional rotational degree of
freedom, but, at any rate, we assume that the vacuum
four-dimensional solutions are already given and do not
enter into their generation—there is little to add on what is
already known in this field [21].

A separate remark is about what kind of solutions are
‘‘interesting’’ for the scalar field in the higher dimensional
generalization of axially symmetric solutions. We believe
that those of interest happen to be the same solutions as
the ones producing interesting Weyl potentials (the soli-

tonic terms): log½ðzþ aÞ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðzþ aÞ2 þ r2
p � � logrþ

arc sinh½ðzþ aÞ=r�, logr, and their linear combinations.
Note that the linear Eq. (21) allows solutions obtained by
reflection (z! �z), by shift (z! zþ a), as well as by
multiplying the solution by an arbitrary constant A.
Moreover, if a complex function � is a solution of
Eq. (21), then both the real and the imaginary parts of �
are also solutions.

IV. THE 5D CASE

Let us now specialize to a five-dimensional case. The
above described procedure of constructing a 5D general-
ization of the axially symmetric solutions may be put in a
more compact statement. Consider we have a vacuum
solution to the Einstein field equations in four dimensions
of the form

ds2 ¼ �eUðdtþ Ad�Þ2 þ e�Ur2d�2 þ e�
vacðdr2 þ dz2Þ:

(28)

The following line element

ds2 ¼ �eU�ð2= ffiffi
3

p Þ�ðdtþ Ad�Þ2 þ e�U�ð2= ffiffi
3

p Þ�r2d�2

þ e�
vacþ�sc�ð2= ffiffi

3
p Þ�ðdr2 þ dz2Þ þ eð4=

ffiffi
3

p Þ�dw2;

(29)

is a vacuum solution of the 5D Einstein equations, pro-
vided � is a solution of the Eq. (21) and �sc is given by

�sc
r ¼ rð�2

r ��2
zÞ; (30)

�sc
z ¼ 2r�r�z: (31)

Thus we see that the construction of the vacuum general-
izations of the 4D axially symmetric solutions is reduced to
simple algebra.

A. Coping the Weyl analogues

Before applying the algorithm to generate the stationary
solutions we may start by copying the already known
solutions obtained with the two spacelike Killing vectors
into stationary solutions. Obviously most of these ‘‘cop-
ies’’ will not have interesting physical properties.
To exemplify such a direct copying of solutions from

cosmology to their Weyl analogue, we consider the open
scalar Friedmann-Robertson-Walker (FRW) universe. To
construct a scalar field FRW cosmology with open spatial
section one starts with the following solution to the vacuum
Einstein equations:

ds2vac ¼ ðsinh2tÞ�ð1=2Þðcosh4t� cosh4zÞð3=4Þð�dt2 þ dz2Þ
þ 1

2 sinh2t sinh2zðtanhzdx2 þ cotanhzdy2Þ; (32)

and ‘‘dresses’’ it with the scalar field

� ¼
ffiffiffi
3

p
2

logðtanhtÞ: (33)

Immediately one gets a solution which describes an
isotropic homogeneous universe with spatial sections of
negative curvature [11],

ds2 ¼ sinh2tð�dt2 þ dz2Þ
þ 1

2 sinh2t sinh2zðtanhzdx2 þ cotanhzdy2Þ: (34)

To pass to Weyl coordinates, we first choose

T ¼ sinh2t sinh2z; Z ¼ cosh2t cosh2z; (35)

and express

logðtanhtÞ ¼ 1

2
arccosh

�
1� Z

T

�
þ 1

2
arccosh

�
1þ Z

T

�
;

(36)

and

logðtanhzÞ ¼ 1

2
arccosh

�
1� Z

T

�
� 1

2
arccosh

�
1þ Z

T

�
:

(37)

After some algebra we find that the Weyl potential and
the scalar field for the analogue of the open FRW universe
are

eU ¼ logrþ 1

2
log

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðz� 1Þ2p þ ðz� 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðzþ 1Þ2p þ ðzþ 1Þ

�
; (38)

� ¼ 1
2 logf½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðz� 1Þ2

q
þ ð1� zÞ�

� ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðzþ 1Þ2

q
þ ðzþ 1Þ�g; (39)

for the metric given in [11]. Physically, the Weyl analogues
of the open FRW universe have nothing to do with the
original solution and probably have little relevance as static
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solutions. We have presented this here only to exemplify
the procedure of ‘‘copying.’’

B. Asymptotic flatness

Dealing with the stationary axisymmetric solutions, one
often imposes the asymptotically flat behavior of the line
element away from the axis (r� z). In five dimensions,

this behavior translates into gww /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ r2

p
þ z, gtt /

�1, and g��=r
2 / g�1

ww ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ r2

p
� z. Therefore, to

build asymptotically flat solutions we have that if the scalar
field � is given by

� ¼ XN
i¼1

ai’i; (40)

where

’i ¼ log½ðmi � zÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmi � zÞ2 þ r2

q
�; (41)

one must have (gww /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ r2

p
þ z)

4ffiffiffi
3

p XN
i¼1

ai ¼ 1: (42)

In the static case if we take the solution forU of the form

U ¼ XN
i¼1

biVi; (43)

where

Vi ¼ log½ðni � zÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðni � zÞ2 þ r2

q
�; (44)

to get the asymptotically flat solutions we must impose
(gtt / �1)

� 2ffiffiffi
3

p XN
i¼1

ai þ
XN
i¼1

bi ¼ 0; ���! XN
i¼1

bi ¼ 1

2
; (45)

the last condition then (g��=r
2 / g�1

ww) is trivially satisfied.

C. The method in terms of the rod structure

As mentioned before, the interesting Weyl potentials are
those associated with the solitonic terms or ‘‘rods’’ in the z
axis [22]. Considering these terms, the generating method
can be described as adding up a source to the fifth dimen-
sion. Given the form of the new metric by (29), in fact, we
are also ‘‘subtracting’’ the same source from the other two
Killing directions, thus ‘‘compensating’’ the extra sources
that we have introduced to the system.

We can add either a finite rod of length ða0 � aÞ, or the
interval ða; a0Þ, by choosing

� ¼ log

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðzþ aÞ2p � ðzþ aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðz� a0Þ2

p � ðz� a0Þ
�
; (46)

or a semi-infinite rod ða;1Þ (ð�1;�aÞ taking the lower
sign) with

� ¼ logf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðz� aÞ2

q
� ðz� aÞg: (47)

V. TRAPPED SURFACES AND HORIZONS OF THE
GENERATED SOLUTIONS

In N > 4 is not easy to figure out topological features of
spacetime; to extract interesting information one needs
invariant objects. One of the most interesting properties
to study in these spacetimes is the trapness of two-
dimensional surfaces. These are imbedded spatial surfaces
such that any portion of them has a decreasing area along
any future evolution direction. A practical way to study the
trapped surfaces and locate horizons was introduced in [23]
through evaluating a certain scalar �. The sign of this
scalar defines the trapping of a surface S. We shall analyze
the effect of introducing rods in the 5D generated spaces.
For completeness we include some steps in the construc-

tion of such scalar � introduced in [23]. Let us consider the
line element

ds2 ¼ gabdx
adxb þ 2gaAdx

adxA þ gABdx
AdxB; (48)

and a family of ðD� 2Þ-dimensional spacelike surfaces
SXa with intrinsic coordinates f�Ag; A; B; :: ¼ 2; . . . ; D�
1, imbedded into the spacetime. There are fixed coordi-
nates, fxa ¼ Xag; a; b ¼ 0; 1; . . . ; Xa, while xA denotes the
local coordinates on the surface.G ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detgAB
p ¼ eU gives

the canonical ðD� 2Þ volume element of the surfaces SXa .
Introducing H� ¼ a�ðU;a �r � gaÞ, ga ¼: gaAdx

A,

where the divergence operator acts on vectors at SXa , the
invariant � is defined by

�fXag ¼ �gbcHbHcjXa : (49)

The hypersurfaces H , defined locally by the vanishing
of �, are the so-called SXa horizons [23], and coincide in
many instances with the classical horizons.
In what follows we have found it convenient to work in

prolate spheroidal coordinates ðx; yÞ which make the alge-
bra much easier. These are related to the Weyl coordinates
by

r ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � 1Þð1� y2Þ

q
; z ¼ �xy; (50)

with ranges x 	 1 and �1 
 y 
 1.
In prolate spheroidal coordinates the generated space-

times (29) take the following form:

ds2 ¼ e�ð2�= ffiffi
3

p Þ
�
e�

vacþ�sc
�2ðx2 � y2Þ

�
dx2

x2 � 1
þ dy2

1� y2

�

þ �abdx
adxb

	
þ e4�=

ffiffi
3

p
d!2; (51)

where a; b ¼ t; �. We shall consider spacelike surfaces
with t ¼ const and x ¼ const. Taking fxag ¼ ft; xg and

N. BRETÓN, A. FEINSTEIN, AND L.A. LÓPEZ PHYSICAL REVIEW D 77, 124021 (2008)

124021-6



fxAg ¼ fy;�;!g, the scalar �ft;xg is given by

�ft;xg ¼ �e2�=
ffiffi
3

p ��sc��vac ðx2 � 1Þ
4�2ðx2 � y2Þ3�2

��

U2
x; (52)

with

Ux ¼ ���½ðx2 � y2Þð�vac
x þ �sc

x Þ þ 2x� þ ðx2 � y2Þ���;x:
(53)

The invariant �, as compared with that one of the seed, is

modified by the factor e2�=
ffiffi
3

p ��sc
. The inclusion of a semi-

infinite rod ð�1;�a0Þ produces therefore
eð2�=

ffiffi
3

p Þ��sc ¼ ðxþ yÞ4A2
a2A=

ffiffi
3

p
0 ½ðxþ 1Þð1þ yÞ�ð2A=

ffiffi
3

p Þ�4A2
;

(54)

while with the finite rod ða; a0Þ, the modification corre-
sponds to

eð2�=
ffiffi
3

p Þ��sc ¼
�
a

a0

�
2A=

ffiffi
3

p
ðx2 � y2Þ4A2 ðx� 1Þð2A=

ffiffi
3

p Þ�4A2

ðxþ 1Þð2A=
ffiffi
3

p Þþ4A2
:

(55)

Hence, using this method new horizons or singularities

arise, depending on the value of the exponent 2A=
ffiffiffi
3

p �
4A2. For instance, in the case of a finite rod, if 2A=

ffiffiffi
3

p �
4A2 > 0 in Eq. (55), � vanishes at x ¼ 1 and there is a

horizon. While if 2A=
ffiffiffi
3

p � 4A2 < 0, � diverges at the
same point.

VI. GENERATING STATIC 5D SOLUTIONS

We now illustrate how the method works by generating
some static 5D solutions by taking the Minkowski 4D and
the Schwarzschild 4D black hole as seeds.

A. Generating 5D solutions from Minkowski seed

We first consider Minkowski 4D spacetime in the
Rindler coordinates of uniformly accelerated observers
[1,21]

ds2M4 ¼ �e2U1dt2 þ e2U2d�2 þ e�
vacðdr2 þ dz2Þ;

U1 ¼ 1
2 log½�aþ zþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�aþ zÞ2 þ r2

q
� þ const;

U2 ¼ 1
2 log½a� zþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� zÞ2 þ r2

q
� þ const;

�vac ¼ � log½r2 þ ða� zÞ2�:

(56)

The corresponding rod structure consists of a semi-
infinite rod ð�1; aÞ in the @t direction and a semi-infinite
rod ða;1Þ in the @� direction, as is shown in Fig. 1.

Now, consider adding up a semi-infinite rod ð�1;�a0Þ
in a fifth dimension using � ¼ A log½a0 þ zþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða0 þ zÞ2 þ r2
p �, where A is a constant characterizing
the scalar charge and a0 defines a new interval on the z

axis. The method produces a 5D solution given by

ds2M5 ¼ e�ð2= ffiffi
3

p Þ�þ�vacþ�scðdr2 þ dz2Þ
þ e�ð2= ffiffi

3
p Þ�½�e2U1dt2 þ e2U2d�2�

þ eð4=
ffiffi
3

p Þ�d!2; (57)

with �sc ¼ 4A2 log½a0þzþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þða0þzÞ2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þða0þzÞ2

p �.
In prolate spheroidal coordinates it becomes

ds2M5 ¼ a�ð2A= ffiffi
3

p Þ
0

�
ðxþ yÞ1�4A2½ð1þ yÞð1þ xÞ�4A2�ð2A= ffiffi

3
p Þ

�
�
dx2

x2 � 1
þ dy2

1� y2

�
þ ðxþ 1Þ1�ð2A= ffiffi

3
p Þ

� ð1þ yÞ�ð2A= ffiffi
3

p Þð1� yÞd�2 � ð1þ yÞ1�ð2A= ffiffi
3

p Þ

� ð1þ xÞ�ð2A= ffiffi
3

p Þðx� 1Þdt2

þ a6A=
ffiffi
3

p
0 ½ðxþ 1Þð1þ yÞ�4A=

ffiffi
3

p
d!2

	
: (58)

The value of the scalar charge A defines several impor-
tant features of the generated spacetime. We illustrate it by
analyzing the above generated solutions for two different

values of scalar charge: A ¼
ffiffi
3

p
2 and A ¼

ffiffi
3

p
4 .

1. Case with scalar charge A ¼
ffiffi
3

p
2

Choosing scalar charge as A ¼
ffiffi
3

p
2 , (58) gives

ds2M5 ¼ a�1
0

�
ðxþ yÞ�2½ð1þ yÞð1þ xÞ�2

�
dx2

x2 � 1
þ dy2

1� y2

�

þ ð1� yÞ
ð1þ yÞd�

2 � ðx� 1Þ
ðxþ 1Þdt

2

	

þ ½a0ðxþ 1Þð1þ yÞ�2d!2: (59)

For x ¼ 1 (r ¼ 2m), gtt ¼ 0 and a horizon is present,
while g�� diverges at y ¼ �1. The solution is not asymp-

totically flat as seen from the behavior of g!!. The corre-
sponding rod structure is as follows (Fig. 2).
A finite rod ð�a0; aÞ in the @t direction (event horizon),

a semi-infinite rod ða;1Þ in the @� direction (axis of

rotation of�), a semi-infinite rod ð�1;�a0Þwith negative

FIG. 1. Rod structure of the Minkowski 4D spacetime.
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mass density in the @� direction, and a semi-infinite rod

ð�1;�a0Þ in the @w direction.
The previous solution (59) can be compared with the

static Myers-Perry (MPs) black hole [24] [Eq. (5.16) with-
out rotation, a1 ¼ a2 ¼ 0 in [3]], whose line element and
rod structure (Fig. 3) we include here for completeness

ds2MPs ¼
r20
4

�
2ðxþ 1Þ

�
dx2

x2 � 1
þ dy2

1� y2

�

þ ðxþ 1Þð1� yÞd�2 � 4

r20

ðx� 1Þ
ðxþ 1Þdt

2

þ ðxþ 1Þð1þ yÞd!2

	
: (60)

Comparing Fig. 2 with Fig. 3, note the similarity in rod
structure, it is the same except for the presence of the
negative mass density along the Killing direction @�.

We now consider the spacelike surfaces with t ¼ const
and x ¼ const (r ¼ const) for both solutions. The corre-
sponding scalars � that define the trapping of such surfaces
are

�MPs ¼ � 9

2r20

ðx� 1Þ
ðxþ 1Þ2 ¼ � 9m

2r20

ðr� 2mÞ
r2

; (61)

�M5 ¼ �a0 ðx� 1Þðxþ 2y� 1Þ2
ðxþ 1Þ3ð1þ yÞ2

¼ �a0 ðr� 2mÞ½r� 2mð1� cos
Þ�2
r3ð1þ cos
Þ2 : (62)

Both scalars exhibit singularity at r ¼ 0 as well as the
horizon at r ¼ 2m. Note, however that the solution (59)
presents an additional marginally trapped surface (� ¼ 0)
defined by r ¼ 2mð1� cos
Þ. The scalar � also becomes
singular at 
 ¼ �. The profiles of the marginally trapped
surfaces are shown in Fig. 4 and then rotated in Fig. 5.

2. Case A ¼
ffiffi
3

p
4

Another interesting case occurs if we choose A ¼
ffiffi
3

p
4 in

(58). The generated solution then becomes

ds2M5 ¼ a�ð1=2Þ
0

�
½ðxþ yÞð1þ yÞð1þ xÞ�1=4

�
�
dx2

x2 � 1
þ dy2

1� y2

�
þ ð1� yÞðxþ 1Þ1=2

ð1þ yÞ1=2 d�2

� ðx� 1Þð1þ yÞ1=2
ðxþ 1Þ1=2 dt2

	
þ a0ðxþ 1Þð1þ yÞd!2:

(63)

This time the g!! component satisfies the condition for

asymptotic flatness Eq. (42), but gtt ’ x1=2 does not and the

FIG. 2. Rod structure of the solution generated using the
Minkowski 4D and inserting a semi-infinite rod ð�1;�a0Þ in
the fifth dimension with scalar charge A ¼

ffiffi
3

p
2 . The bold dotted

line along @� corresponds to a rod with negative mass density.

FIG. 4. Squeme of the horizons, for a fixed angle � and
sweeping 
 for the 5D solution generated from Minkowski

and adding the rod ð�1;�a0Þ with A ¼
ffiffi
3

p
2 . The solid circle

represents the trapped surface r ¼ 2m, while the dotted curve
corresponds to r ¼ 2mð1� cos
Þ.

FIG. 3. Rod structure of Myers-Perry static 5-D black hole. For
the static case � ¼ m.

N. BRETÓN, A. FEINSTEIN, AND L.A. LÓPEZ PHYSICAL REVIEW D 77, 124021 (2008)

124021-8



solution is not globally asymptotically flat. The rod struc-
ture is shown in Fig. 6.

New marginally trapped surfaces also arise in this case.
The scalar �ft;rg that characterizes the trapping of a space-

like surface of constant t and r for (63) is

�ft;rg ¼ � ffiffiffiffiffi
a0

p
m3=4

ðr� 2mÞ½r� 7
8mð1� cos
Þ�2

ð1þ cos
Þ1=4½r�mð1� cos
Þ�9=4r5=4 :
(64)

From Eq. (64) we learn that the solution has two margin-
ally trapped surfaces, one situated at the Schwarzschild

horizon, r ¼ 2m, while the second apparent horizon is the
surface defined by r ¼ 7

8mð1� cos
Þ, with rmax ¼ 7
4m.

This second surface remains hidden inside r ¼ 2m.

B. Starting with a Schwarzschild seed

Consider now the Schwarzschild 4D line element in
prolate spheroidal coordinates,

ds2 ¼ m2ðxþ 1Þ2
�
dx2

x2 � 1
þ dy2

1� y2

�

þm2ð1� y2Þðxþ 1Þ2d�2 � ðx� 1Þ
ðxþ 1Þ dt

2: (65)

The rod structure of this solution is as follows: a finite rod
of length 2m in the timelike direction, @t, and two semi-
infinite rods ð�1;�mÞ; ðm;1Þ in the spacelike direction
@�, as shows Fig. 7.

Adding up the semi-infinite rod ð�1;�mÞ by taking

� ¼
ffiffi
3

p
4 log½mðxþ 1Þð1þ yÞ� and lifting to 5D results in

the following spacetime:

ds25 ¼m3=2fðxþ 1Þ9=4 ð1þ yÞ1=4
ðxþ yÞ3=4

�
dx2

x2 � 1
þ dy2

1� y2

�

þðxþ 1Þ3=2ð1� yÞð1þ yÞ1=2d�2

� 1

m2

ðx� 1Þ
ðxþ 1Þ3=2

dt2

ð1þ yÞ1=2
	
þmðxþ 1Þð1þ yÞd!2:

(66)

This procedure introduces a singularity in gtt due to the

factor ð1þ yÞ�ð1=2Þ. The corresponding rod structure is
shown in Fig. 8.
Several interesting properties of the spacetime (66) are

worth to point out: the metric is asymptotically flat, it has a
horizon at x ¼ 1 and g�� is finite in all the domain of x and

y. There is a divergence in gtt at y ¼ �1.
The spacetime possesses, besides the surface r ¼ 2m,

another marginally trapped surface that deforms the spheri-
cal symmetry of the horizon. To see it we calculate the
scalar �ft;rg for (66),

FIG. 5 (color online). Marginally trapped surfaces of the
Minkowski 5D, generated with a Minkowski 4D seed plus a

dilaton field � ¼
ffiffi
3

p
2 log½a0ðxþ 1Þð1þ yÞ�, these surfaces are

the rotated slices of Fig. 4.

FIG. 6. Rod structure for the 5D solution generated from

Minkowski and adding the rod ð�1;�a0Þ with A ¼
ffiffi
3

p
4 . The

dotted line between t and ! indicates that the rod ð�1;�a0Þ
has components in both directions, @t and @!.

FIG. 7. Rod structure of the Schwarzschild 4D black hole with
mass 2m.
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�Schw�5D ¼ � 1

43m3=2

ðx� 1Þð16xþ 19y� 3Þ2
ðxþ 1Þ13=4ð1þ yÞ1=4ðxþ yÞ5=4

¼ �4
ðr� 2mÞ½r� 19

16mð1� cos
Þ�2
ð1þ cos
Þ1=4r13=4½r�mð1� cos
Þ�5=4 :

(67)

The vanishing of the scalar � indicates the presence of a
marginally trapped surface that can be associated to a
horizon. For the solution (66), � vanishes on two surfaces:
r ¼ 2m and r ¼ 19

16mð1� cos
Þ, indicating the distortion

of horizon that we have mentioned before. The new hori-
zon ‘‘intermingles’’ with portions of the classical

Schwarzschild horizon, presenting for an external observer
a nonspherical horizon of a ‘‘peanut’’ shape. Also there is
the singularity at r ¼ 0 where � diverges. Therefore the
solution may be thought of a 5D black hole distorted by the
presence of a string with a negative mass density, hence
deforming its horizon. Slices of the horizons are shown in
Fig. 9 and rotated in Fig. 10.

C. The static Myers-Perry solution

We note in passing that the static Myers-Perry solution
(60) can be obtained by our lifting method using the
appropriated seed

U ¼ 1

4
log

�ðr� þ z� �Þðrþ þ r� � 2�Þ
�ðrþ þ r� þ 2�Þ

�

¼ 1

4
log

�ð1þ yÞðx� 1Þ2
ðxþ 1Þ

�
; (68)

where r2� ¼ r2 þ ðz� �Þ2. Using U in the line element
(28) and adding up a semi-infinite rod ð�1;��Þ as in
(29), with the dilaton

� ¼
ffiffiffi
3

p
4

log½ðxþ 1Þð1þ yÞ�

¼
ffiffiffi
3

p
4

log½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðzþ �Þ2

q
þ zþ ��: (69)

We do not discuss this case further for it was thoroughly
done in the literature.

FIG. 8. Rod structure of the static 5D solution generated from
Schwarzschild spacetime by adding a semi-infinite rod

ð�1;�mÞ with � ¼
ffiffi
3

p
4 log½mðxþ 1Þð1þ yÞ�. The bold dotted

line indicates negative mass density in the interval ð�1;�mÞ;
the dotted line between � and ! symbolizes that the semi-
infinite rod ð�1;�mÞ has components in both directions @�
and @!.

FIG. 9. Squeme of the horizons, for a fixed angle � and
sweeping 
, of the generated Schwarzschild 5D black hole,

with A ¼
ffiffi
3

p
4 ; rmax ¼ 2:37m at 
 ¼ �.

FIG. 10 (color online). Marginally trapped surfaces of the
Schwarzschild 5D, generated with a Schwarzschild 4D seed

plus a dilaton field � ¼
ffiffi
3

p
4 log½ðxþ 1Þð1þ yÞ�; these are the

rotated slices of Fig. 9.
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D. Changing the dilaton

We again start with the Schwarzschild seed, line element
(65) or (C2). Taking the dilaton field as

� ¼ c

�
arc sinh

ðmþ zÞ
r

þ arc sinh
ðm� zÞ

r

	
: (70)

Now, changing to prolate spheroidal coordinates, ðx; yÞ,

x ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzþmÞ2 þ r2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz�mÞ2 þ r2

q
Þ=2m; (71)

y ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzþmÞ2 þ r2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz�mÞ2 þ r2

q
Þ=2m; (72)

the dilaton field (70) is written as

� ¼ c log

�
x� 1

xþ 1

�
; (73)

changing now to curvature coordinates ðr; 
Þ

x ¼ r

m
� 1; y ¼ cos
; (74)

we find the following 5D metric:

ds2 ¼
�
1� 2m

r

��ð2c= ffiffi
3

p Þ��
�
1� 2m

r

�
a
dt2

þ
�
1� 2m

r

��a
dr2 þ

�
1� 2m

r

�
1�a

� r2ðd
2 þ sin
2d�2Þ
�
þ

�
1� 2m

r

�
4c=

ffiffi
3

p
dw2;

(75)

here a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4c2

p
. We recognize the metric in square

brackets as the 4D scalar solution derived in [16].
The corresponding scalar �ft;rg is given by

�ft;rg ¼ � 4

r2

�
1�mð1þ aÞ

r

�
2
�
1� 2m

r

�
aþð2c= ffiffi

3
p Þ�2

: (76)

In general this spacetime does not possess a regular
horizon, as can be seen from (76) since the exponent aþ
2cffiffi
3

p � 2< 0. There is a marginally trapped surface at r ¼
mð1þ aÞ that is always hidden inside the singular surface
r ¼ 2m since a < 1. However, an interesting situation

occurs when c ¼ ffiffiffi
3

p
=4 when the metric becomes

ds2 ¼ �dt2 þ
�
1� 2m

r

��1
dr2 þ r2ðd
2 þ sin2
d�2Þ

þ
�
1� 2m

r

�
dw2: (77)

This spacetime is the Kaluza-Klein bubble and is asymp-
totically flat. Performing the Wick rotation t� i!, !�
it we finish with the black string S2 � R, Schwarzschild�
R.

VII. GENERATION OF 5D STATIONARY
SOLUTIONS

According to the above outlined method, to construct
nonstatic solutions one must start with vacuum stationary
solutions, since the method does not introduce nondiagonal
elements into the generated 5D metric. The simplest sta-
tionary seed is the Kerr solution, whose line element in
Boyer-Lindquist coordinates ðt; r; 
;�Þ is

ds2Kerr ¼ ��� a2sin2


�
dt2 � 2asin2


r2 þ a2 � �

�
dtd�

þ ðr2 þ a2Þ2 � �a2sin2


�
sin2
d�2

þ�

�
dr2

�
þ d
2

�
; (78)

where � ¼ r2 � 2mrþ a2 and � ¼ r2 þ a2cos2
. The
corresponding rod structure is shown in Fig. 11.
Using the Kerr solution as seed we construct deforma-

tions to the Myers-Perry 5D rotating black hole. The
generated solutions present a rod structure very close to
the original undeformed one, except for some new singu-
larities that can be avoided using a different seed. In what
follows we explore two cases: the Kerr seed plus a semi-

infinite rod ð�1;��Þ with scalar charge A ¼
ffiffi
3

p
2 and Kerr

seed again with an extra distinct semi-infinite rod ða0;1Þ
with the same scalar charge.

A. Inserting a semi-infinite rod ð�1;��Þ
Lifting the Kerr solution to a fifth dimension by adding

the semi-infinite rod ð�1;��Þ, corresponding to � ¼ffiffi
3

p
2 log½�ðxþ 1Þð1þ yÞ�, we obtain the following line ele-

ment,

FIG. 11. Rod structure of the stationary Kerr black hole; the
dotted line that intersects @t and @� is intended to indicate that

the orientation of the finite rod ð��;�Þ has one component
along @t and other along @�.
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ds2 ¼ e�
�
dx2

x2 � 1
þ dy2

1� y2

�
þ gijdx

idxj; i; j ¼ t; �;!; e� ¼ m2

�

ðxþ 1Þ2ð1þ yÞ2
ðxþ yÞ3 ½ð1þ pxÞ2 þ q2y2�;

gtt ¼ � 1

�ðxþ 1Þð1þ yÞ
ðp2x2 þ q2y2 � 1Þ
½ð1þ pxÞ2 þ q2y2� ; gt� ¼ � 2að1� yÞ

�ðxþ 1Þ
ð1þ xpÞ

½ð1þ pxÞ2 þ q2y2� ;

g�� ¼ � ð1� yÞ
�ðxþ 1Þ

f4a2ð1� y2Þð1þ xpÞ2 � �2ðx2 � 1Þ½ð1þ pxÞ2 þ q2y2�2g
½ð1þ pxÞ2 þ q2y2�½p2x2 þ q2y2 � 1� ; g!! ¼ ½�ðxþ 1Þð1þ yÞ�2;

(79)

where the parametrization is p ¼ �=m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � a2

p
=M,

q ¼ a=m, and p2 þ q2 ¼ 1, a and m stand for the accel-
eration and mass, respectively. From the inspection of g!!
it is apparent that the solution is not asymptotically flat and
an extra source is introduced. The rod structure of (79) is
analyzed in detail in Appendix B and it is shown in Fig. 12.
The rod structure resembles the one of the Myers-Perry
rotating black hole [24], except for the divergence of gtt in
the interval ð�1;��Þ. In spite of the similarity in the rod
structure, the corresponding metric functions are different
and the reason is that using Kerr solution as seed, the 5D
generated metric inherits second degree polynomials in x
and y.

For the stationary solutions, it is interesting to compare
the corresponding scalar �ft;rg for the Kerr solution and the
generated solutions. If we choose the fixed coordinates as
fxag ¼ t; r and the coordinates describing the hypersurface
as fxAg ¼ 
;�, the scalar � defining the trapping for such
spacelike surface in the Kerr spacetime is given by

�Kerr
ft;rg ¼ �grrðUKerr

r Þ2

¼ ��

�

½rð2r2 þ a2 þ a2cos2
Þ þ a2msin2
�2
½ðr2 þ a2Þ2 ��a2sin2
�2 ;

(80)

where � ¼ r2 � 2mrþ a2 and � ¼ r2 þ a2cos2
.
The terms in square brackets are always strictly positive,

therefore � ¼ 0 determines the only marginally trapped

surfaces or horizons described by the spheres r� ¼ m�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � a2

p
corresponding to the inner and outer horizons in

Kerr geometry. When lifted to five dimensions, the new
solution (79) presents, besides the Kerr horizons, addi-

tional marginally trapped surfaces, as can be seen analyz-
ing the invariant � given by

�Kerr5
ft;rg ¼ ��

�

ðr�mþ � cos
Þ
ðr�mþ �Þ4ð1þ cos
Þ2

� ½Uðr; 
Þ�2
½ðr2 þ a2Þ2 � �a2sin2
�2 ;

Uðr; 
Þ ¼ 3�

2
ðcos
� 1Þ½ðr2 þ a2Þ2 � �a2sin2
�

þ ðr�mþ �Þðr�mþ � cos
Þ
� ½rð2r2 þ a2 þ a2cos2
Þ þ a2msin2
�:

(81)

The last expression (81) shows that �ft;rg vanishes when
� ¼ 0, coinciding with the Kerr inner and outer horizons;
but it also vanishes when r ¼ rh ¼ m� � cos
. This addi-
tional marginally trapped surface lies between the inner
and outer Kerr horizons, touching them tangentially. For

rh < m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � a2

p
cos
, �ft;rg becomes positive and the

surface becomes trapped. Furthermore, another marginally
trapped surface exists for those values of r such that

FIG. 12. Rod structure of the 5D stationary solution generated
from Kerr spacetime by inserting in the direction @! a semi-

infinite rod ð�1;��Þ with � ¼
ffiffi
3

p
2 log½�ðxþ 1Þð1þ yÞ�. The

bold dotted rod has negative density.

FIG. 13. Horizon squeme for the 5D stationary solution gen-
erated from Kerr spacetime adding a semi-infinite rod

ð�1;��Þ, with � ¼
ffiffi
3

p
2 log½�ðxþ 1Þð1þ yÞ�.
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Uðr; 
Þ ¼ 0. Since U is a fifth degree polynomial in r it
must have at least one real root generating a marginally
trapped surface. When a ¼ 0, the surface U ¼ 0 corre-
sponds to the one found in the static example of the
previous section at r ¼ 19

16mð1� cos
Þ. In Fig. 13 a nu-

merical profile of U ¼ 0 is shown along with slices of
other horizons. The rotated slices are shown in Fig.14.

We now compare these results with those obtained for
�ft;rg corresponding to the Myers-Perry five-dimensional

spinning black hole [24]. The Myers-Perry metric with one

rotation a1 � 0 in Boyer-Lindquist coordinates is

ds2 ¼ �dt2 þ r20
�
½dt� a1sin

2
d��2 þ ðr2 þ a21Þsin2
d�2

þ r2cos2
d 2 þ�

�
dr2

�
þ d
2

�
; (82)

where � ¼ r2 þ a21cos
2
 and � ¼ r2 þ a21 � r20. While

the scalar �ft;rg is given by

�MPft;rg ¼ ��

�

½r2ðr2 þ a21Þ þ ð2r2 þ a21Þðr2 þ a21cos
2
Þ þ r20a

2
1sin

2
�2
r2½ðr2 þ a21cos

2
Þðr2 þ a21Þ þ r20a
2
1sin

2
�2 : (83)

The expression (83) clearly diverges at r ¼ 0 which
corresponds to a strong curvature singularity, while the
unique horizon is given by � ¼ r2 þ a21 � r20 ¼ 0, and is
described by the sphere r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 � a21

q
.

B. Second stationary example

Another interesting example is obtained by taking the
Kerr solution and introducing a semi-infinite rod ða0;1Þ
with � ¼

ffiffi
3

p
2 log½a0ðxþ 1Þð1� yÞ�. It follows that the rod

FIG. 14 (color online). Marginally trapped surfaces of Kerr

5D, generated with a Kerr 4-D seed plus a dilaton field � ¼ffiffi
3

p
2 log½ðxþ 1Þð1þ yÞ�, these are the rotated slices of Fig. 13.

FIG. 15. Rod structure of the 5D stationary solution generated
using Kerr spacetime as seed and inserting in the direction @! a
semi-infinite rod ða0;1Þ.

FIG. 16. Horizon slices for the stationary solution generated

from Kerr spacetime adding a semi-infinite rod ða0;1Þ; r� ¼
m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � a2

p
.
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structure resembles the Emparan-Reall black ring [1], as shown in Fig. 15. The metric is given by the following expression

ds2 ¼ e�
�
dx2

x2 � 1
þ dy2

1� y2

�
þ �abdx

adxb; a; b ¼ t; �;!; e� ¼ m2

a0

ðxþ 1Þ2ð1� yÞ2
ðx� yÞ3 ½ð1þ pxÞ2 þ q2y2�;

gtt ¼ � 1

a0ðxþ 1Þð1� yÞ
ðp2x2 þ q2y2 � 1Þ
½ð1þ pxÞ2 þ q2y2� ; gt� ¼ � 2að1þ yÞ

a0ðxþ 1Þ
ð1þ xpÞ

½ð1þ pxÞ2 þ q2y2� ;

g�� ¼ � ð1þ yÞ
a0ðxþ 1Þ

f4a2ð1� y2Þð1þ xpÞ2 � �2ðx2 � 1Þ½ð1þ pxÞ2 þ q2y2�2g
½ð1þ pxÞ2 þ q2y2�½p2x2 þ q2y2 � 1� ; g!! ¼ ½a0ðxþ 1Þð1� yÞ�2:

(84)

Finally the scalar �ft;rg for the solution (84) amounts to

�ft;rg ¼ �a0m
2

�

�

�

ðr�m� � cos
Þ
ðr�mþ �Þ4ð1� cos
Þ2

� Gðr; 
Þ2
½ðr2 þ a2Þ2 ��a2sin2
�2 ;

Gðr; 
Þ ¼ 3�

2
ðcos
þ 1Þ½ðr2 þ a2Þ2 � �a2sin2
�

� ðr�mþ �Þðr�m� � cos
Þ
� ½rð2r2 þ a2 þ a2cos2
Þ þ a2msin2
�:

(85)

The corresponding rod structure resembles the one of a
black ring due to Emparan-Reall [1], however, the horizons
rather correspond to the 5D rotating black hole and not the
ring. The marginally trapped surfaces are located at � ¼ 0

and ðrh �m� � cos
Þ ¼ 0, or r� ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � a2

p
and

rh ¼ mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � a2

p
cos
. A new marginally trapped sur-

face arises from Gðr; 
Þ ¼ 0 and has the shape of the
previously studied U ¼ 0 (Fig. 13), but turned upside
down. The profiles of horizons are shown in Fig. 16.

The generated stationary metrics (79) and (84) acquire a
simpler form in Boyer-Lindquist coordinates, the expres-
sions are presented in the Appendix C.

VIII. CONCLUSIONS

In this paper we addressed the construction in a simple
and controllable way of higher dimensional vacuum solu-
tions to Einstein equations which depend, at most, on two
variables. The four-dimensional vacuum seed metrics with
G2 symmetry are generalized to include massless dilatons,
which serve to lift the solutions to higher dimensions. The
method works both, in the case when the two commuting
Killing vectors of the seed are spacelike as well as when
one of the Killing vectors is timelike. The ‘‘translation’’ of
the algorithm to the case of one spacelike and one timelike
Killing vector is given here for the first time.

The algorithm is illustrated with the generation of some
static and stationary solutions. Starting with Minkowski,
Schwarzschild, and Kerr seeds and ‘‘adding’’ rods to the
fifth dimension, deformed 5D black hole solutions were
generated. The corresponding rod structure of some of
these solutions resembles the Myers-Perry black hole or
the Emparan-Reall black ring, however the topology of the

horizons is rather different. The generated solutions
present distorted horizons due to the presence of extra
sources.
We have seen that the rod structure alone does not reflect

some important properties of spacetime, since it is insen-
sitive to the exponents or powers of the metric functions.
Neither rod directions are apparent from the metric ex-
pressions in the sense that even for static metrics the rods
may have crossed components aligned with spacelike and
timelike Killing directions. Therefore in order to character-
ize these spacetimes one must perform the singularity
analysis and study their horizons. Nevertheless, by impos-
ing conditions on asymptotic behavior of spacetimes as
well as certain physical properties one may show [6] how
the rod structure is important to single out such a
spacetime.
In future works it would be interesting to consider five-

dimensional solutions with double rotation. Such solutions
can be obtained by lifting stationary solutions with both
electromagnetic and scalar fields. In this case, the second
rotation will be induced by the crossed terms which appear
due to the lifting of the electromagnetic degrees of free-
dom. These solutions will be discussed elsewhere.
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APPENDIX A: EINSTEIN-SCALAR EQUATIONS IN
WEYL COORDINATES

Here we present for completeness the Einstein-scalar
coupled field equations in Weyl coordinates. The general
stationary axisymmetric line element can be put

ds2 ¼ �eUðdtþ Ad�Þ2 þ e�Ur2d�2 þ e�ðdr2 þ dz2Þ:
(A1)

The Einstein field equations are:
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(a) The U-A equations

Urr þ ð1=rÞUr þUzz þ e2U

4r2
½A2

r þ A2
z� ¼ 0; (A2)

�
e2UAr

r

�
r
þ

�
e2UAz

r

�
z
¼ 0: (A3)

(b) The � equation

�rr þ 1

r
�r þ�zz ¼ 0: (A4)

(c) And finally, the � equation

�r þUr ¼ r½�2
r ��2

z� þ r

2
½U2

r �U2
z �

� e2U

2r
½A2

r � A2
z�; (A5)

�z þUz ¼ 2r�r�z þ rUrUz � e2U

r
ArAz: (A6)

When A ¼ 0 we deal with static solutions. Notice that
the contribution of the function U to the nonlinear � is
identical to that of �. The solutions are defined by U, �,
and A, while the function � is obtained by quadratures.

APPENDIX B: ANALYSIS OF THE ROD
STRUCTURE FOR THE KERR 5D SOLUTION (79)

To determine the direction of each rod we follow the
steps of Sec. III in [3], for the solution (79). The equation to
analyze for each interval on the z axis is gij ~v ¼ 0, explic-

itly

e�ð2�= ffiffi
3

p Þ
�tt �t� 0
��t ��� 0

0 0 eð6�=
ffiffi
3

p Þ

0
B@

1
CA v1

v2

v3

0
B@

1
CA ¼ 0; (B1)

where � ¼
ffiffi
3

p
2 log½�ðxþ 1Þð1þ yÞ� is the introduced rod,

while ~v is the direction of the rod corresponding to the
analyzed interval and �ab denote the seed metric functions.
The analysis is performed in the limit r! 0 that is

x ¼ jzþ �j þ jz� �j
2�

; y ¼ jzþ �j � jz� �j
2�

:

(B2)

The rod structure is as follows:
(i) The semi-infinite spacelike rod z 2 ð�1;��Þ cor-

responds to x ¼ � z
� and y ¼ �1. Substituting in

(79), we get

gtt ¼
p2ð1þ z

�Þ
�ð1þ yÞ½ð1� pz

� Þ2 þ q2� ;

gt� ¼ � 4a

�

ð1� pz
� Þ

ð1� z
�Þ½ð1� pz

� Þ2 þ q2� ;

g�� ¼ 2�

p2

½ð1� pz
� Þ2 þ q2�

ð1� z
�Þ

;

g!! ¼ �2

�
1� z

�

�
2ð1þ yÞ2 ¼ 0:

(B3)

Note that g!! ¼ 0 and gtt diverges in this interval.
The vanishing of g!! means that the rod ð�1;��Þ
is entirely located along the @! direction, i.e. v1 ¼
v2 ¼ 0, v3 ¼ 1.
The analysis is analogous for the rod z 2 ð�;1Þ that
corresponds to x ¼ z

� and y ¼ 1. Substituting in (79)

we obtain that gtt � 0, gt� ¼ g�� ¼ 0, while

g!! � 0. Solving the system gij ~v ¼ 0 gives that

the rod ð�;1Þ has the direction v1 ¼ v3 ¼ 0 and
v2 ¼ 1, i. e. it is situated along @�.

(ii) The finite timelike rod ð��;�Þ corresponds to y ¼
z
� and x ¼ 1. Substituting in (79) we get

gtt ¼
q2ð1� z

�Þ
2�½ð1þ pÞ2 þ q2ðz�Þ2�

;

gt� ¼ � a

�

ð1þ pÞð1� z
�Þ

½ð1þ pÞ2 þ q2ðz�Þ2�
;

g�� ¼ 2a2ð1þ pÞ2
�q2

ð1� z
�Þ

½ð1þ pÞ2 þ q2ðz�Þ2�
;

g!! ¼ 4�2

�
1þ z

�

�
2
:

(B4)

Solving the system gij ~v ¼ 0 gives that the rod ð�;1Þ
has components along the two Killing directions @t and @�,

v3 ¼ 0, v1 ¼ 1, and v2 ¼ � ¼ q
2mð1þpÞ . The correspond-

ing rod structure is shown in Fig. 12.

APPENDIX C: 5D STATIONARY METRICS IN
BOYER-LINDQUIST COORDINATES

The generated stationary metrics with Kerr as seed, ex-
pressed in Boyer-Lindquist coordinates, are given below.
At the end we include the Schwarzschild 4D solution in
Weyl coordinates. The transformation between prolate
spheroidal coordinates and Boyer-Lindquist coordinates
is x ¼ ðr�mÞ=�, y ¼ cos
.
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ds2 ¼ e�
�
dr2

�
þ d
2

�
þ gijdx

idxj; i; j ¼ t; �;!;

e� ¼ �

a0
�
ðr�mþ �Þ2ð1� cos
Þ2

ðr�m� � cos
Þ3 ;

gtt ¼ � �

a0

ð�� a2sin2
Þ
�ðr�mþ �Þð1� cos
Þ ;

gt� ¼ � 2am�ð1� cos
Þr
a0ðr�mþ �Þ� ;

g�� ¼ � �ð1� cos
Þ
a0ðr�mþ �Þ� ½ðr2 þ a2Þ2 � �a2sin2
�;

g!! ¼ a20
�2

ðr�mþ �Þ2ð1� cos
Þ2;
� ¼ r2 � 2mrþ a2; � ¼ r2 þ a2cos2
:

(C1)

The upper sign corresponds to a rod structure of Kerr
when the semi-infinite rod ð�1;�a0Þ is inserted, while
the lower sign is for the spacetime generated from Kerr
with the inserted semi-infinite rod ða0;1Þ, both with the

scalar charge A ¼
ffiffi
3

p
2 . In the first case we took a0 ¼ �.

The Schwarzschild solution inWeyl coordinates is given
by the line element

ds2 ¼ �eUdt2 þ e�
vacðdr2 þ dz2Þ þ r2e�Ud�2;

�vac ¼ �Uþ �; U ¼ � log

�
m� zþ r�
�m� zþ rþ

�
;

� ¼ log

�ðr� þ rþÞ2 � 4m2

4r�rþ

�
;

(C2)

where r2� ¼ ðm� zÞ2 þ r2.

[1] R. Emparan and H. S. Reall, Phys. Rev. Lett. 88, 101101
(2002); Phys. Rev. D 65, 084025 (2002).

[2] H. Iguchi and T. Mishima, Phys. Rev. D 74, 024029
(2006); 73, 121501 (2006); T. Mishima and H. Iguchi,
Phys. Rev. D 73, 044030 (2006); A. A. Pomeransky and
R.A. Sen’kov, arXiv: hep-th/0612005; S. Tomizawa and
M. Nozawa, Phys. Rev. D 73, 124034 (2006); S.
Tomizawa, Y. Morizawa, and Y. Yasui, Phys. Rev. D 73,
064009 (2006); P. Figueras, J. High Energy Phys. 07
(2005) 039; S. S. Yazadjiev, Phys. Rev. D 73, 104007
(2006); J. High Energy Phys. 07 (2006) 036.

[3] T. Harmark, Phys. Rev. D 70, 124002 (2004); T. Harmark
and P. Olesen, Phys. Rev. D 72, 124017 (2005).

[4] G.W. Gibbons, D. Ida, and T. Shiromizu, Prog. Theor.
Phys. Suppl. 148, 284 (2003).

[5] S. Hollands, A. Ishibashi, and R.M. Wald, Commun.
Math. Phys. 271, 699 (2007).

[6] S. Hollands and S. Yazadjiev, arXiv:0707.2775; Classical
Quantum Gravity 25, 095010 (2008).

[7] O. Aharony, M. Fabinger, G. Horowitz, and E. Silverstein,
J. High Energy Phys. 07 (2002) 007.

[8] M. Gasperini and G. Veneziano, Astropart. Phys. 1, 317
(1993); G. Veneziano, in The Primordial Universe,
Proceedings to the 1999 Les Houches Summer School,
Session LXXII, edited by P. Binetruy, R. Schaeffer, J. Silk,
and F. David (Springer-Verlag, Berlin, 2001); J. E. Lidsey,
D. Wands, and E. J. Copeland, Phys. Rep. 337, 343 (2000).

[9] H. Leutwyler, Archives des sciences / editees par la
Societe de physique et d’histoire naturelle de Geneve
B13, 549 (1960); P. Dobiasch and D. Maison, Gen.
Relativ. Gravit. 14, 231 (1982); A. Chodos and S.
Detweiler, Gen. Relativ. Gravit. 14, 879 (1982); D.
Pollard, J. Phys. A 16, 565 (1983); G.W. Gibbons, Nucl.
Phys. B207, 337 (1982); A. Davidson and D. Owen, Phys.
Lett. 155B, 247 (1985); G.W. Gibbons and D. L.
Wiltshire, Ann. Phys. (N.Y.) 167, 201 (1986); 176, 393
(E) (1987); M. Cvetic and D. Youm, Phys. Rev. D 52, 2144

(1995); Phys. Rev. Lett. 75, 4165 (1995); D. Rasheed,
Nucl. Phys. B454, 379 (1995); D. J. Gross and M. J. Perry,
Nucl. Phys. B226, 29 (1983); R. D. Sorkin, Phys. Rev.
Lett. 51, 87 (1983); W. Kinnersley and M. Walker, Phys.
Rev. D 2, 1359 (1970); F. J. Ernst, J. Math. Phys. (N.Y.)
17, 515 (1976); F. Dowker, J. P. Gauntlett, D. A. Kastor,
and J. Traschen, Phys. Rev. D 49, 2909 (1994); G.W.
Gibbons and D. L. Wiltshire, Nucl. Phys. B287, 717
(1987); S. C. Lee, Lett. Nuovo Cimento 44, 133 (1985);
J. Math. Phys. (N.Y.) 28, 893 (1987); R. Becerril and T.
Matos, Phys. Rev. D 46, 1540 (1992); T. Matos, J. Math.
Phys. (N.Y.) 35, 1302 (1994); A. Macias and T. Matos,
Classical Quantum Gravity 13, 345 (1996); K. A.
Bronnikov and V.N. Melnikov, Gravitation Cosmol. 1,
155 (1995); V.N. Melnikov, A.G. Radynov, and S. B.
Fadeev, Russ. Phys. J. 38, 663 (1995).

[10] A. Einstein and N. Rosen, J. Franklin Inst. 223, 43 (1937);
A. S. Kompaneetz, Sov. Phys. JETP 7, 659 (1958); K. S.
Thorne, Phys. Rev. 138, B251 (1965); R. Gowdy, Phys.
Rev. Lett. 27, 826 (1971); W.B. Bonnor, Gen. Relativ.
Gravit. 24, 551 (1992); W. B. Bonnor, J. B. Griffiths, and
M.A.H. MacCallum, Gen. Relativ. Gravit. 26, 687
(1994); P. J. Adams, R.W. Hellings, R. L. Zimmerman,
H. Farhoosh, D. I. Levine, and S. Zeldich, Astrophys. J.
253, 1 (1982); M. Carmeli and Ch. Charach, Found. Phys.
14, 963 (1984); T. Piran, P. N. Safier, and R. F. Stark, Phys.
Rev. D 32, 3101 (1985); J. B. Griffiths, Colliding Plane
Waves in General Relativity (Oxford University Press,
Oxford, 1991).

[11] A. Feinstein and M.A. Vazquez-Mozo, Nucl. Phys. B568,
405 (2000).

[12] P. S. Letelier, J. Math. Phys. (N.Y.) 20, 2078 (1979); J.
Wainwright, W. Ince, and B. Marshman, Gen. Relativ.
Gravit. 10, 259 (1979); Ch. Charach and S. Malin, Phys.
Rev. D 19, 1058 (1979).

[13] A. Feinstein, Phys. Rev. D 35, 3263 (1987).
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