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Gravitational wave production from bubble collisions was calculated in the early 1990s using numerical

simulations. In this paper, we present an alternative analytic estimate, relying on a different treatment of

stochasticity. In our approach, we provide a model for the bubble velocity power spectrum, suitable for

both detonations and deflagrations. From this, we derive the anisotropic stress and analytically solve the

gravitational wave equation. We provide analytical formulas for the peak frequency and the shape of the

spectrum which we compare with numerical estimates. In contrast to the previous analysis, we do not

work in the envelope approximation. This paper focuses on a particular source of gravitational waves from

phase transitions. In a companion article, we will add together the different sources of gravitational wave

signals from phase transitions: bubble collisions, turbulence and magnetic fields and discuss the prospects

for probing the electroweak phase transition at LISA.
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I. INTRODUCTION

In the next decades, a new science will emerge from
direct detection of gravitational radiation that will open a
qualitatively new way of probing the distant universe.
Ground-based (LIGO [1] and VIRGO [2]) and space-based
(LISA [3]) interferometers will reach the required sensi-
tivity to detect many kinds of distant sources over a range
of more than a million in frequency. Because gravitational
waves (GW) penetrate all regions of time and space, with
almost no attenuation, GW detectors can explore scales,
epochs and new physical effects not accessible in any other
way.

Although the first GW detections will come from astro-
physical processes, such as merging of black holes, another
mission of GWastronomy will be to search for a stochastic
background of GWs of primordial origin. An important
mechanism for generating such a stochastic GW back-
ground is a relativistic first-order phase transition [4,5].
In a first-order phase transition, bubbles are nucleated,
rapidly expand and collide. The free energy contained in
the original vacuum is released and converted into thermal
energy and kinetic energy of the bubble walls and the
surrounding fluid. Most of the gravitational radiation
comes from the final phase of the transition, from many-
bubble collisions and the subsequent MHD turbulent cas-
cades. The associated GW spectrum encodes information
on the temperature of the universe T� at which the waves
were emitted as well as on the strength of the transition.
The characteristic frequency of the waves corresponds to

the physics that produces them. For cosmological pro-
cesses, this is close to the Hubble frequency, H �
T2�=MPl. Once redshifted to today, this corresponds to

f� 1 mHz
T�

100 GeV
: (1)

Remarkably, for transitions occurring near the electroweak
epoch, f is in the frequency range covered by LISA
(10�4–10�2 Hz). It is therefore very exciting that LISA
could help in probing the nature of the electroweak phase
transition, and therefore provide information that is com-
plementary to the Large Hadron Collider and the future
International Linear Collider.
Many types of new physics predict first-order phase

transitions. Electroweak symmetry breaking in extensions
of the standard model may be associated with a first-order
phase transition (see, for example, Ref. [6]). Besides, the
last decade has seen the emergence of the ‘‘landscape
picture,’’ following developments in string theory.
Strongly warped regions (throats) in higher-dimensional
space-time are generic features in the string-theory land-
scape [7] and the phenomenological consequences are only
starting to be explored (for instance through the prototype
of Randall and Sundrum [8]). One interesting aspect is the
cosmological evolution in these backgrounds. Thanks to
holography and the anti–de Sitter/conformal field theory
correspondence, a change in the 5-dimensional metric as
the temperature decreases can be understood as a confining
phase transition in the dual 4-dimensional gauge theory,
and in models like [8], we typically expect first-order phase
transitions at the TeV scale [9–13]. Finally, phenomena
such as preheating at the end of inflation could share some
common features, as far as gravity wave emission is con-
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cerned, with the physics of first-order phase transitions
[14–16].

The GW spectrum resulting from bubble collisions in
first-order phase transitions was computed in the early
1990s [17–20]. It was realized 10 years after the original
calculation of [17–20] that turbulence in the plasma could
be a significant source of GW in addition to bubble colli-
sions [21,22]. Subsequently, the authors of [23] studied the
GW signal due to a first-order electroweak phase transition
in the minimal supersymmetric standard model and its
minimal extension. More recently, model-independent
analysis for the detectability of GW with LISA [24,25],
LIGO and BBO [25] were presented, relying on the for-
mulas derived in [17–22]. The spectrum derived in
Refs. [17–20] was estimated using numerical simulations,
and no alternative calculation was performed afterward. As
argued above, we believe this is of high interest and it is
time to revisit this question. In this paper, we present an
analytical calculation of the stochastic GW background
resulting from bubble collisions only.1 Since bubble colli-
sions take place in a thermal bath, and since we want to
extend our treatment to deflagrations, we use the energy-
momentum tensor of the relativistic fluid in the vicinity of
the bubble wall as the GW source, rather than the energy
momentum of the scalar field. The result we find is com-
parable to that obtained by numerical simulations although
the peak frequency is parametrically larger.

A deterministic spherically symmetric expanding bub-
ble does not produce gravitational radiation by itself. The
reason is that the transverse and traceless part of the
energy-momentum tensor for a radial deterministic distri-
bution of the velocity field is identically zero (as we
demonstrate in Appendix A). To produce a nonzero back-
ground of GW, one has to account for the fact that, towards
the end of the phase transition, the collision of bubbles
breaks spherical symmetry and leads to a nonzero tensor
anisotropic stress. In the numerical simulations of
Refs. [17,19,20], this is accounted for by evaluating the
transverse-traceless component of an ‘‘incomplete’’
energy-momentum tensor coming from the portion of bub-
ble wall that remains uncollided at a given time. This
energy-momentum tensor is not spherically symmetric
and has a nonzero tensor anisotropic stress component.
The total tensor anisotropic stress is obtained by summing
all the contributions from single uncollided bubble walls.
Each simulation provides a given configuration of uncol-
lided bubble walls; bubble nucleation and collision being
random processes, the GW power spectrum is obtained by
averaging the results of several simulations. This proce-

dure is valid under the thin-wall ‘‘envelope’’ approxima-
tion, i.e. when the transition is strong and the bubble front
evolves as a detonation.
In the analytical evaluation which we present here, the

situation is quite different. The GW production comes not
only from the bubble wall, but from the entire fluid velocity
profile in the vicinity of the phase discontinuity. If the
nonzero fluid velocity shell contracts to a surface with
vanishing thickness, no gravitational waves are produced.
Therefore, we are not working in the thin-wall approxima-
tion, and this is why we are able to apply our results also to
the case of deflagrations.
The paper is organized as follows. In Sec. II we review

the general procedure for calculating the relic energy den-
sity stored in a stochastic background of gravitational
waves. Section III describes our model of the GW source,
the calculation of the bubble velocity power spectrum and
the anisotropic stress power spectrum. In Sec. IV we define
the time dependence of the phase transition parameters. In
Sec. V the calculation of the GW spectrum, applicable both
for detonations and deflagrations is presented. In Sec. VI,
we make some comments on our analytical approach. In
the last section we collect our final results and compare
them with the existing formulas used in the literature.
Some technical aspects related to the calculation of the
velocity power spectrum are collected in Appendix B.
Appendix C is a discussion on the behavior of the small
and large scale tails of the GW power spectrum. While the
existing literature provides approximate expressions for
the peak amplitude and peak frequency of the signal, there
is no justification for the shape of the spectrum. Our
analytical approach provides a rationale for it based on
simple dimensional arguments.

II. GRAVITATIONALWAVE POWER SPECTRUM:
GENERAL REMARKS

Our goal is to estimate the gravitational wave energy
density generated by bubbles during a first-order phase
transition. This kind of cosmological source leads to a
stochastic background of GW, which is isotropic, station-
ary, unpolarized and therefore characterized entirely by its
frequency spectrum [30]. We consider a Friedmann uni-
verse with flat spatial sections. The tensor metric perturba-
tions are defined by

ds2 ¼ a2½�d�2 þ ð�ij þ 2hijÞdxidxj�: (2)

The gravitational wave energy density is then given by

�GWð�Þ ¼
h _hijðxÞ _hijðxÞi
8�Gað�Þ2 : (3)

The overdot denotes a derivative with respect to conformal
time and h� � �i denotes both time averaging over several
periods of oscillation and ensemble average for a stochastic
background. The variables x and later also r denote co-

1Turbulent fluid motions triggered by bubble collisions to-
gether with magnetic fields are actually additional relevant
sources for gravity waves from phase transitions. These effects
have been reexamined recently [26–28] and since the subject is
not closed, we will present revisited results from these contri-
butions elsewhere [29].
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moving distances, � and later �, � denote comoving time.
The density parameter is always scaled to today,�Xð�Þ �
�Xð�Þ=�cð�0Þ, where the index 0 indicates the present
time. For relativistic species we have therefore �Xð�Þ ¼
�Xð�0Þ=a4ð�Þ. We normalize að�0Þ ¼ 1 and sometimes
denote the present value of a density parameter simply by
�Xð�0Þ � �X; likewise, �c ¼ �cð�0Þ. H ¼ _a=a
denotes the conformal Hubble parameter. The radiation
energy density today is taken to be �radð�0Þh2 �
�radh

2 ¼ 4:2� 10�5 [31].
We define the statistically homogeneous and isotropic

gravitational wave energy density spectrum by

h _hijðk; �Þ _h�ijðq; �Þi ¼ �ðk� qÞj _hj2ðk; �Þ; (4)

where k is the comoving wave vector. The gravitational
wave energy density, normalized to the critical energy
density is

�GWð�Þ ¼ �GWð�Þ
�c

¼
Z 1

0
dk

k2j _hj2ðk; �Þ
2ð2�Þ6G�ca

2
; (5)

where the factor ð2�Þ�6 comes from the Fourier transform
convention. We want to estimate the present day gravita-
tional wave energy spectrum, in other words the gravita-
tional wave energy density per logarithmic frequency
interval,

d�GWðkÞ
d lnk

���������0

� k3j _hj2ðk; �0Þ
2ð2�Þ6G�c

: (6)

In an expanding radiation-dominated universe, hijðk; �Þ is
the solution of the wave equation

€h ijðk; �Þ þ 2

�
_hijðk; �Þ þ k2hijðk; �Þ

¼ 8�Ga2ð�Þ�ijðk; �Þ: (7)

�ijðk; �Þ is the tensor part of the anisotropic stress, the

transverse-traceless component of the energy-momentum
tensor that generates tensor perturbations hij of the metric:

�ijðk; �Þ ¼ ðPilPjm � 1
2PijPlmÞTlmðk; �Þ; (8)

where Pij ¼ �ij � k̂ik̂j is the transverse projector and

Tlmðk; �Þ are the spatial components of the energy-
momentum tensor. As will be discussed in the next section,
the anisotropic stress is a stochastic variable for the gen-
eration process under consideration. It accounts for the
intrinsic randomness of bubble nucleation and collision.

Our source of gravitational radiation is active for an
interval of time corresponding to the duration of the phase
transition, which is much shorter than one Hubble time
[32,33]. We can therefore neglect the expansion of the
Universe while the source is still active, and rewrite
Eq. (7) as

h00ijðxÞ þ hijðxÞ ¼ 8�Ga2�
k2

�ijðxÞ; (9)

where x ¼ k�, the prime denotes a derivative with respect
to x and a� is the scale factor at the time of the phase
transition. The dependence of hijðk; �Þ on directions of the
wave vector enters only in the polarization of the wave and
is irrelevant for our discussion. As will become clear at the
end of this section, in Eq. (16), this is due to statistical
homogeneity and isotropy of the source. We assume that
the source turns on at time �in and turns off at time �fin.
The solution of (9) is

hijðx � xfinÞ ¼ 8�Ga2�
k2

Z x

xin

dyGðx; yÞ�ijðyÞ; (10)

where y ¼ k� (� denotes conformal time) and G ¼
sinðx� yÞ is the Green function satisfying Gðx; xÞ ¼ 0
and G0ðx; xÞ ¼ 1. Once the source is no longer active, we
have to match the above solution with the solution of the
free wave equation during radiation domination

h00ijðxÞ þ
2

x
h0ijðxÞ þ hijðxÞ ¼ 0 (11)

hijðx > xfinÞ ¼ Aij

sinðx� xfinÞ
x

þ Bij

cosðx� xfinÞ
x

: (12)

The matching procedure gives the coefficients

Bij ¼ 8�Ga2�
k2

xfin
Z xfin

xin

dy sinðxfin � yÞ�ijðyÞ;

Aij ¼
Bij

xfin
þ 8�Ga2�

k2
xfin

Z xfin

xin

dy cosðxfin � yÞ�ijðyÞ:
(13)

In order to simplify the equations, we neglect the first term
in Aij which gives a subdominant contribution to the GW

spectrum in the range of frequencies we are interested in.
In fact, this term contributes in a sizable way only for
modes larger than the horizon,

xfin ¼ k�fin � 1; k � 1=�fin ’ H �; (14)

whereH � denotes the conformal Hubble factor at the time
of the phase transition, and is assumed to be constant from
�in to �fin since the phase transition lasts for a time much
shorter than one Hubble time. We will see that the GW
spectrum grows very steeply at large scales (as k3) and
peaks at a scale corresponding to the maximal size of the
bubbles, which is typically much smaller than the horizon.
Therefore, we are mainly interested in the subhorizon part
of the spectrum and in order to evaluate it we can safely
neglect the term Bij=xfin. Using definition (4) and solution

(12) we finally find (z ¼ k�)
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jh0ðk; xÞj2 ¼ 1

2x2
ðhAijA

�
iji þ hBijB

�
ijiÞ

¼
�
8�Ga2�

k2

�
2 x2fin
2x2

Z xfin

xin

dy
Z xfin

xin

dz

� cosðz� yÞ�ðk; y; zÞ: (15)

In the double integral above, we have combined the prod-
ucts of two Green’s functions into the simpler term cosðz�
yÞ. Moreover, we have introduced the unequal time corre-
lator of the tensor anisotropic stress in Fourier space,

h�ijðk; �Þ��
ijðq; �Þi ¼ �ðk� qÞ�ðk; k�; k�Þ: (16)

The delta function is due to the statistical homogeneity of
the source, and because of statistical isotropy the power
spectrum of the anisotropic stress only depends on the
wave number. Note that for the matching we have used
the free wave propagation equation (11), which is valid in
an expanding, radiation-dominated universe with að�Þ /
�. Hence, solution (15) for �> �� implicitly assumes that
the number of relativistic degrees of freedom is constant.
We come back to this issue in Sec. V.

To summarize, in order to determine the spectrum of the
gravitational radiation equation (6), we have to calculate
the power spectrum of the anisotropic stress evaluated at
different times. This requires computing the correlator of
the energy-momentum tensor. The next section is devoted
to a calculation of �ðk; y; zÞ [Eq. (16)]. For this we need a
model of the energy-momentum tensor that sources the
gravitational waves.

III. MODEL OF THE GW SOURCE

We now develop a model for the stochastic source of
gravitational radiation. We are dealing with a cosmological
first-order phase transition taking place in a thermal bath
[20,34]. The cosmic fluid of the initial metastable phase
supercools until the nucleation of bubbles of the final phase
can start. The initial high-temperature phase or false vac-
uum is typically but not necessarily the symmetric phase.
However, in the remainder of the paper, we will use the
term ‘‘symmetric’’ for the initial phase and ‘‘broken’’ for
the final phase. The phase transition ends when the entire
Universe has been converted to the broken phase by bubble
percolation. We are only interested in the last stages of
bubble growth. Towards the end of the phase transition, the
bubbles can be considered simply as spherical combustion
fronts moving at constant velocity [35]. Any memory of
the initial shape of the bubbles, driven by the scalar field
dynamics, is lost and the problem can be reduced to a
purely hydrodynamical description. The bubbles are mod-
eled as spherically symmetric configurations of fluid ve-
locity. The velocity field is a stochastic variable, following
the intrinsic stochasticity of the nucleation process.

A. Anisotropic stress power spectrum:
General remarks

Since we are interested only in the anisotropic stress, we
start with the spatial, off-diagonal part of the energy-
momentum tensor of the cosmic fluid, quantifying the
spatial components of the kinetic stress-energy tensor of
a bubble configuration [20]:

Tabðx; �Þ ¼ ð�þ pÞvaðx; �Þvbðx; �Þ
1� v2ðx; �Þ : (17)

v is the velocity of the fluid in the frame of the bubble
center, and v ¼ jjvjj. We want to calculate the anisotropic
stress power spectrum given in Eq. (16). In order to sim-
plify the calculation, we neglect the spatial dependence of
the fluid enthalpy density w ¼ �þ p and of the gamma
factor �2 ¼ 1=ð1� v2Þ. This assumption is necessary in
order to be able to proceed analytically. It supposes that the
only stochastic variables in the problem are the fluid ve-
locity components vaðx; �Þ, and that the spatially depen-
dent � factor can be approximated by �ðxÞ ’ h�i � �. The
consequences of this assumption cannot be quantified ex-
actly. However, we know that hv2i varies smoothly from
v2
f ðrint=RÞ2 to v2

f [see Eq. (27)] where rint and R are defined

in Eq. (26). A conservative choice is to always set hv2i to
its smallest value, and this is what we will do in Eqs. (55)
and (56). Under these assumptions, we can write the
Fourier transform,

Tabðk; �Þ ¼ wð�Þ
1� v2ð�Þ

Z
d3pvaðk� p; �Þvbðp; �Þ: (18)

With this expression, the power spectrum of the energy-
momentum tensor involves the four-point function of the
velocity distribution:

hTabðk; �ÞT�
cdðq; �Þi ¼

wð�Þwð�Þ
ð1� v2ð�ÞÞð1� v2ð�ÞÞ

Z
d3p

�
Z

d3hhvaðk� p; �Þvbðp; �Þ
� vcðq� h; �Þvdðh; �Þi: (19)

There is in principle no reason why our stochastic velocity
field should have a Gaussian distribution. However, we
have to make some assumptions in order to calculate
analytically the four-point function in the above expres-
sion. As one often does, we assume that Wick’s theorem,
which is strictly valid only for Gaussian random variables,
gives a good enough approximation to the four-point func-
tion. It certainly gives a better estimate than, for example,
the simple product of expectation values. Applying it we
find
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hTabðk; �ÞT�
cdðq; �Þi ¼

wð�Þwð�Þ
ð1� v2ð�ÞÞð1� v2ð�ÞÞ�ðk� qÞ

�
Z

d3p½Ĉacðp; �; �Þ
� Ĉbdðjk� pj; �; �Þ þ Ĉadðp; �; �Þ
� Ĉbcðjk� pj; �; �Þ�; (20)

where

Ĉacðp; �; �Þ ¼
Z

d3rCacðr; �; �Þeip�r;
Cacðr; �; �Þ ¼ hvaðx; �Þvcðxþ r; �Þi:

(21)

The correlation between point x and point y ¼ xþ r is a
function of r only because of statistical homogeneity.

In our approach, the ensemble average in Eq. (3) is now
traced back into a correlator for the bubble velocities. This
is where the stochasticity of the process is encoded. Since
the velocity field is statistically homogeneous and iso-
tropic, its power spectrum has the general form (see
Sec. III B 1)

Ĉ acðp; �; �Þ ¼ Fðp; �; �Þ�ac þGðp; �; �Þp̂ap̂c: (22)

The power spectrum of the tensor part of the anisotropic
stress is calculated using the definition (16) by applying the
transverse-traceless projector as in Eq. (8):

h�ijðk; �Þ��
ijðq; �Þi ¼ P abcdhTabðk; �ÞT�

cdðq; �Þi
P abcd ¼ ðPiaPjb � 1

2PijPabÞðkÞ
� ðPicPjd � 1

2PijPcdÞðqÞ: (23)

A somewhat lengthy calculation yields

�ðk; �; �Þ ¼ wð�Þwð�Þ
ð1� v2ð�ÞÞð1� v2ð�ÞÞ
�

Z
d3p½4FðpÞFðjk� pjÞ

þ 2ð1� �2ÞFðpÞGðjk� pjÞ
þ 2ð1� 	2ÞGðpÞFðjk� pjÞ
þ ð1� 	2Þð1� �2ÞGðpÞGðjk� pjÞ�; (24)

where 	 ¼ k̂ � p̂ and � ¼ k̂ � dk� p and we have sup-
pressed the time variables � and � in F and G.

The problem is now reduced to the determination of the
functions F and G which define the power spectrum of the
fluid velocity via Eqs. (21) and (22). For this, we need a
model of the fluid velocity which we discuss next.

B. Velocity profile of bubbles

Since we are only interested in the last stage of the phase
transition, we consider the hydrodynamics of bubble

growth at late times, when a steady state solution is
reached. The bubble wall, in other words the combustion
front where the phase transition is happening, is moving at
constant velocity. In the hydrodynamical description of the
combustion, the front is treated as a surface of disconti-
nuity. Energy and momentummust be conserved across the
front and all the entropy production is confined to it
[34,35]. Elsewhere, the fluid is in a state of thermal equi-
librium. The energy-momentum tensor of the burnt (bro-
ken) and unburnt (symmetric) phases is simply that of two
perfect fluids [see Eq. (17)]. There are two kinds of solu-
tions to this hydrodynamical problem, detonations and
deflagrations. These are classified following the character-
istics of the fluid flow in the rest frame of the combustion
front [36,37].
In detonations, the incoming velocity of the symmetric

phase fluid into the front is supersonic v1 > cs in the rest
frame of the front. The outgoing velocity of the broken
phase fluid out of the front can be supersonic v2 > cs for
weak detonations, or equal to the speed of sound for
Jouguet detonations v2 ¼ cs. The case of strong detona-
tions v2 < cs is forbidden [36]. Although weak detonations
are possible [38], in the following we concentrate for
simplicity on the case of Jouguet detonations. This is the
case analyzed in [20], for which the dynamics of the bubble
growth is completely determined in terms of the phase
transition strength. Since both fluid phases are relativistic,

they have the sound speed cs ¼ 1=
ffiffiffi
3

p
. In the rest frame of

the bubble center, the velocity of the bubble front vb is
supersonic, corresponding to vb ¼ v1 > cs: the symmetric
phase fluid is therefore at rest, and the front is followed by
a rarefaction wave in the broken phase fluid. The rarefac-
tion wave brings the fluid motion to rest towards the center
of the bubble. Near the detonation front, the broken phase
fluid velocity vf in the rest frame of the center of the bubble
is simply given by the Lorentz transformation

vf ¼ v1 � v2

1� v1v2

: (25)

The velocity profile of the broken phase fluid for a Jouguet
detonation has been studied in detail in Refs. [20,34,36]
and is shown schematically in the top panel of Fig. 1. As
customary, we show the velocity profile as a function of the
parameter r=t. Here t ¼ 0 is the time of bubble nucleation
and r denotes the distance from the bubble center.2 We
remind one that this situation corresponds to the steady
state solution at late times, long after the nucleation time.
The velocity of the broken phase fluid goes to zero in the
interior of the bubble at a distance from the center corre-
sponding to cst [36].
For deflagrations, on the other hand, the incoming ve-

locity of the symmetric phase fluid into the front is sub-

2Throughout this section, for simplicity we use a generic time
variable t; we switch back to comoving time in Sec. III B 2.
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sonic v1 < cs. The outgoing velocity of the broken phase
fluid out of the front can be subsonic v2 < cs for weak
deflagrations, or equal to the speed of sound for Jouguet
deflagrations v2 ¼ cs. Strong deflagrations are again im-
possible [36]. In the rest frame of the bubble center, the
velocity of the bubble front corresponds in this case to
vb ¼ v2. The front moves at subsonic velocity vb ¼ v2 �
cs and is therefore preceded in the symmetric phase by a
shock wave. Inside the combustion bubble (broken phase)
and outside the shock wave (symmetric phase) the fluid is
at rest; in between, the fluid moves outward. In the case of
planar deflagrations, it does so at constant velocity given
by vf [Eq. (25)] [35,36]. The qualitative features of the
velocity profile for a planar deflagration are shown in the
middle panel of Fig. 1.3

For our analytic calculation, we want to simplify the real
velocity profile both for detonations and deflagrations. We
assume a velocity profile which grows linearly within a
shell near the bubble wall, as shown in the bottom panel of
Fig. 1. We have normalized the velocity profile at the outer
boundary (bubble wall or shock front) to the correct value
vf for detonations and deflagrations. This is because the
biggest contribution to the GWenergy density comes from
the highest velocity region. Therefore, our approximated
profile does reproduce the most relevant feature as far as
GW generation is concerned. The boundaries of the shell,
defined as vint and vout in Fig. 1 are left as free parameters,
in order to allow for an approximated description of both
detonations and deflagrations.

The simplified profile is

vaðx; tÞ ¼
� ðvf=RÞðx� x0Þa for rint ¼ vintt < jx� x0j< R ¼ voutt;
0 otherwise:

(26)

Here x0 is the position of the bubble center. The radii of the
shell’s inner and outer boundaries are respectively rint ¼
vintt and R ¼ voutt, where t is much later than the nuclea-
tion time t ¼ 0. In the case of Jouguet detonations, the
inner boundary is in the broken phase and corresponds to
vint ¼ cs. For deflagrations, it corresponds to the bubble
wall, vint ¼ v2 ¼ vb. The radius of the outer boundary is
R ¼ voutt and for detonations it is associated to the bubble
wall velocity vout ¼ v1 ¼ vb, while for deflagrations to
the shock front vout ¼ vshock. To summarize, the detona-
tions are as follows: vint ¼ cs, and vout ¼ v1 ¼ vb. The
deflagrations are as follows: vint ¼ v2 ¼ vb, and vout ¼
vshock. The numerical values of vint, vout and vf will be
crucial in determining the amplitude of the GW signal and

will be discussed in Secs. VB and VC. A schematic
drawing of the bubble (or shock front) is given in Fig. 2.

1. Velocity power spectrum

Given the velocity profile, we can proceed to calculate
the velocity power spectrum. We start by evaluating the
two-point correlation function at equal time for fixed posi-
tions x and y defined in Eq. (21). The position of the bubble
center x0 defined in Eq. (26) is the stochastic variable.
Therefore, in the region of nonzero velocity we have

hviðx; tÞvjðy; tÞi ¼ v2
f

R2
hðx� x0Þiðy � x0Þji (27)

where we remind one that vf is the maximal value of the
fluid velocity in the rest frame of the bubble center. For the
velocity correlation function not to be zero, x and y must
be separated by a distance jx� yj< 2R and they have to
be in the same bubble (or shock wave, in the case of
deflagrations). Moreover, they have to be in the shell where
the fluid velocity (26) is not zero. These conditions are

FIG. 1 (color online). This figure shows the qualitative profile
of the velocity of the broken phase fluid in the frame of the
bubble center, for detonations (top panel), planar deflagrations
(middle panel) and the approximation given in Eq. (26) (bottom
panel). The horizontal axis shows r=t where t denotes the time
after bubble nucleation (t ¼ 0) and r is the distance from the
bubble center.

3In Appendix A of Ref. [20] it is shown that, in the case of
spherical deflagrations, the velocity profile actually decreases
between v2 and vshock. We do not account for this behavior here,
since in any case we are forced to introduce an approximate form
for the velocity profile.
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satisfied provided that the center x0 of the bubble they
belong to is in a volume Vi given by the intersection of two
shells centered in x and y, which have inner radius rint and
outer radius R (see Fig. 3). Therefore, the correlation
function is given by the mean over all the possible center

positions x0 within this intersection volume, multiplied by
the probability 
ðtÞ that there actually is a bubble center in
this region:

hviðx; tÞvjðy; tÞi ¼ 
ðtÞ v
2
f

R2

1

Vi

Z
Vi

d3x0ðx� x0Þiðy � x0Þj:
(28)

As is customary in cosmology, here we use the ergodic
assumption: ensemble averages are equivalent to space
averages. The probability of having a bubble center in
the intersection region is simply given by


ðtÞ ¼ �ðtÞ Vi

Vc

(29)

where �ðtÞ is the fraction of volume occupied by bubbles
at time t, and Vc is the total volume of the two spheres
respectively centered in x and y, i.e., the volume of the
region where x0 can be in order for x or y to be in the
bubble of radius R around x0: the total volume of the two
overlapping spheres in Fig. 3. Setting r ¼ x� y we find

Vc ¼ 2�

3

�
2R3 þ 3

2
R2r� r3

8

�
: (30)

The tensorial structure of the two-point correlation func-
tion of a statistically homogeneous and isotropic field is
known: the correlation function can only depend on the
distance between x and y. We choose an orthonormal basis

with dx� y k ê2. The off-diagonal components of the in-
tegral in Eq. (28) are zero by symmetry, and therefore we

FIG. 2. A schematic drawing of the nonzero velocity region,
corresponding to the bubble (for detonations) or to the shock
front (for deflagrations).

FIG. 3 (color online). This figure shows how the intersection volume Vi changes as a function of the separation between x and
y, r ¼ jx� yj, where x and y are located at the centers of the shells. The upper left, upper right, lower left and lower right plots,
respectively, correspond to 0 � r � R� rint, R� rint � r � 2rint, 2rint < r < Rþ rint and Rþ rint � r � 2R. Therefore, this
figure does not depict bubble collision (in our approach we do not actually collide bubbles). The shaded volume does not represent the
volume of intersection between two different shells, but it accounts for all possible positions of the center of the bubble to which two
given points x and y belong.
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find

Iijðr; R; rintÞ ¼
Z
Vi

d3x0ðx� x0Þiðy � x0Þj; (31)

hviðx; tÞvjðy; tÞi ¼ �ðtÞ v
2
f

R2

1

Vc

Iijðr; R; rintÞ; (32)

Iijðr; R; rintÞ ¼ I11�ij þ ðI22 � I11Þr̂ir̂j (33)

(since I11 ¼ I33). The functions I11 and I22 have to be
calculated by performing the necessary integration in the
four volume regions Vi shown in Fig. 3. The details of the
calculations are given in Appendix B.

The velocity power spectrum is then obtained by Fourier
transforming the two-point correlation function (32) with
respect to the variable r. Remembering the definitions (21)
and (22) one finds the general expressions (F denotes the

Fourier transform)

hviðk; tÞv�
j ðq; tÞi ¼ �ðk� qÞĈijðk; tÞ

¼ �ðk� qÞ½Fðk; tÞ�ij þGðk; tÞk̂ik̂j�;
(34)

Fðk; tÞ ¼ �ðtÞ v
2
f

R2

�
F
�
I11
Vc

�
� 1

k

d

dk
F
�
I22 � I11
r2Vc

��
; (35)

Gðk; tÞ ¼ �ðtÞ v
2
f

R2

�
1

k

d

dk
F
�
I22 � I11
r2Vc

�

� d2

dk2
F
�
I22 � I11
r2Vc

��
; (36)

where we remind one that �ðtÞ is defined below Eq. (29).
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FIG. 4 (color online). Velocity power spectrum. The top left panel shows the function AðKÞ determining the diagonal part of the
velocity power spectrum and the fit given in Eq. (39) for different values of s ¼ vint=vout ¼ rint=R. The solid lines from top to bottom
are the correct functions and the dashed lines are the fits for s ¼ 0, 0.6 and 0.75, respectively. The top right panel shows the function
BðKÞ and the fit given in Eq. (40), again for the same values of s. The approximations overestimate for s > 0:74 by about 16%. The
lower panel shows again AðKÞ and BðKÞ and the fits of Eqs. (39) and (40) for s ¼ 0:6. The flatter curve is AðKÞ and the dashed line is
its fit given in Eq. (39). We note the white noise behavior of AðKÞ for small values of K. The more peaked solid line is BðKÞ and the
dashed line the fit given in Eq. (40). At small K, BðKÞ grows like K2 while AðKÞ is constant. At large K both functions decay like
K�4.
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We define the new dimensionless variable K ¼ kR and
the fraction

s ¼ vint=vout ¼ rint=R: (37)

Note that 1� s ¼ ðR� rintÞ=R is the relative thickness of
the shell, and will contribute to the amplitude of the GW
signal. In our approach, the GW signal will vanish in the
limit of vanishing thickness. We perform the Fourier trans-
form and obtain the following expression for the velocity
power spectrum:

hviðk; tÞv�
j ðq; tÞi ¼ �ðk� qÞ4��ðtÞv2

fRðtÞ3
� ½AðKÞ�ij þ BðKÞk̂ik̂j�; (38)

AðKÞ ’ 0:0025ð1� s3Þ

�
� expð�K2=12Þ if K � 4:5

expð�4:52=12Þð4:5K Þ4 if K 	 4:5;
(39)

BðKÞ ’ 0:0180ð1� s3Þ

�
8><
>:
expð�ð0:7� 2:5Þ2=2Þð K0:7Þ2 if K� 0:7

expð�ðK� 2:5Þ2=2Þ if 0:7�K� 4:5

expð�ð4:5� 2:5Þ2=2Þð4:5K Þ4 if K	 4:5:

(40)

The last two equations are good fits to the real functions
AðKÞ, BðKÞ which are shown in Fig. 4. AðKÞ behaves as
white noise for K & 1 while BðKÞ / K2. On small scales
(large values of K) both AðKÞ and BðKÞ decay like K�4. In
the region where AðKÞ and BðKÞ are maximal, our approx-
imations overestimate the real functions for values of s >
0:65 (we will comment on this in Sec. VB). In the follow-
ing analysis we will consider the maximal value of s ¼
0:74: for this value the approximations overestimate by
about 16%.

The behavior of AðKÞ and BðKÞ can be predicted from
general considerations. First of all, the correlation function
(28) vanishes for r > 2R: the characteristic scale of the
correlation function is the diameter of the bubbles. We
therefore expect this scale to show up in the power spec-
trum at wave number k ’ 2�=2R. This is indeed what
happens, since the functions AðKÞ and BðKÞ change their
behavior at approximately K ’ 2:5 ’ �. Moreover, since
the correlation function is a function with compact support,
its Fourier transform, the power spectrum, must be analytic
in k. We remind one that an analytic function can be
developed in a power series around any point of its domain.
The term AðKÞ�ij of Eq. (39) is analytic for K ! 0, if and

only if AðKÞ / Kn and n is an even integer n 	 0. This
justifies the white noise behavior observed at large scales
for AðKÞ. On the other hand, analyticity of the term

BðKÞk̂ik̂j for K ! 0 is satisfied if and only if BðKÞ / Kn

with n an even integer and n 	 2. This explains why BðKÞ
increases as K2 at large scales.

2. Unequal time correlation function

Up to now we have evaluated the velocity correlation
function at equal times. We note however, from Eq. (21),
that we actually need the correlation function evaluated at
different (comoving) times �, � . The velocity in point x at
time � can be correlated with the velocity in point y at time
� . Consider, for example, � < � . In this case, the unequal
time correlation function is not zero if the velocity shell in
the bubble includes x at time �, and grows to include y at
time � . According to the approach outlined above, evalu-
ating the correlation function at different times means
performing the volume integral of Eq. (28) within regions
Vi given by the intersection of spheres of different radii
(cf. Figure 3). This integral is too complicated to be done
analytically: therefore, within our analytical approach, we
first try to simply approximate the unequal time correlation
function with the one at equal time calculated in the
previous section. This is a reasonable approximation, pro-
vided that the region of nonzero velocity at � overlaps with
the region of nonzero velocity at � . If this is not the case,
we simply set the unequal time correlation function to zero.
Reintroducing �in as the time of nucleation we find that,

in the limiting case, the inner boundary of the nonzero
velocity shell in the bubble at time � equals the outer
boundary at time � if � ¼ ð�� �inÞ=sþ �in, where we
remind one that s ¼ rint=R. Symmetrizing among the
2 times, we have then

hviðx; �Þvjðy; �Þi ’ hviðx; �Þvjðy; �Þi�ð� � �Þ
��ðð�� �inÞ=sþ �in � �Þ
þ hviðx; �Þvjðy; �Þi�ð�� �Þ
��ðð� � �inÞ=sþ �in � �Þ; (41)

where �ð�Þ is the Heaviside function. We choose arbi-
trarily to set the time appearing in the equal time correlator
corresponding to the smaller of the 2 times.
In Sec. V, we derive the gravitational wave spectra

obtained using this approximate form of the unequal time
correlation function and discuss its shortcomings. We will
eventually propose another method, which consists in giv-
ing an approximate form directly for the unequal time
anisotropic stress power spectrum, rather than for the
velocity correlation function. As we will see, proceeding
in this way we can have better control over the positivity of
the power spectrum, and obtain more reliable results.

C. Anisotropic stress power spectrum: Calculation

We now have everything we need to evaluate the aniso-
tropic stress power spectrum of our source, using Eq. (24).
The unequal time correlation function Eq. (41), together

with the equal time velocity power spectrum given in
Eq. (38), leads to
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�ðk; �; �Þ ¼ wð�Þwð�Þ
ð1� v2ð�ÞÞð1� v2ð�ÞÞ

�
½4��ð�Þv2

f �2Rð�Þ3�ð� � �Þ�
�
1

s
ð�� �inÞ þ �in � �

�

�
Z

d3P½4AðP; �ÞAðjK� Pj; �Þ þ 2AðP; �ÞBðjK� Pj; �Þð1� 	2Þ þ 2BðP; �Þ

� AðjK� Pj; �Þð1� �2Þ þ BðP; �ÞBðjK� Pj; �Þð1� �2Þð1� 	2Þ� þ symmetric � $ �

�
; (42)

with P ¼ pRð�Þ, K ¼ kRð�Þ, 	 ¼ k̂ � p̂, and � ¼
k̂ � dk� p. Using the functions AðKÞ and BðKÞ given in
Eqs. (39) and (40), we can perform the above integral. A
good approximation to the integral, after factorizing out the
s-dependence as ð1� s3Þ2, is given by

I ðKÞ ¼ 0:0412
1þ ðK3Þ2

1þ ðK2Þ2 þ ðK3Þ6
: (43)

This fit, together with the exact integral, is shown in Fig. 5.
The function is flat on large scales and changes slope at
K ’ 3. A white noise behavior at large scales is expected,
since the anisotropic stress power spectrum is the convo-
lution of the velocity power spectrum: this simply means
that the anisotropic stress is not correlated at distances
larger than the source correlation scale 2R. In
Appendix C, we derive this in details. As one sees in
Fig. 5, Eq. (43) is a very good approximation to the
numerical integral. On small scales the convolution decays
like AðKÞ and BðKÞ, hence like K�4. This can be under-
stood as follows: whenK 
 Kmax, whereKmax denotes the
wave number at which AðKÞ and BðKÞ peak, the main
contribution to the convolution integral comes from the
region jP�Kj ’ Kmax � K. The value of a typical
term in this region is about AðKÞAðKmaxÞ, and the phase
space volume is K3

max: hence we expect IðKÞ ’
K3

maxAðKmaxÞAðKÞ for K 
 Kmax and analogous for the
contributions containing BðKÞ.

Before we are ready to insert the expression (42) for
�ðk; �; �Þ in Eq. (15) to evaluate the gravitational radiation

power spectrum, we need to determine the time depen-
dence of Rð�Þ and �ð�Þ.

IV. TIME DEPENDENCE OF THE PHASE
TRANSITION PARAMETERS

We now investigate the actual time dependence of some
parameters introduced previously, such as the fraction of
volume occupied by bubbles at time �, �ð�Þ, which we
need in Eq. (29), or the bubble radius.4 In this section we
closely follow Ref. [33] in the modeling of the first-order
phase transition.
The rate of bubble nucleation of the broken phase bub-

bles is defined as �ð�Þ ¼ M4a4�e�Sð�Þ, where M is the
energy scale of the phase transition and Sð�Þ the tunneling
action. We Taylor expand the action at first order around a
fixed time �fin: the time at which the transition ends.

Defining ~� � �dS=d�j�fin
, one can rewrite the nucleation

rate as �ð�Þ ¼ �ð�finÞ expð ~�ð�� �finÞÞ. Note that we de-
fine ~� ¼ a�� in terms of comoving time, differently from
the usual convention. The probability that a given point
remains in the false vacuum at time � is given by

pð�Þ ¼ e�Ið�Þ (44)

where Ið�Þ is the fraction of volume occupied by broken

FIG. 5 (color online). These two figures show the exact integral in Eq. (42) by the solid line, and the fit IðKÞ given in Eq. (43) by the
dashed line. In the right panel we clearly see the white noise behavior for small values of K and the K�4 behavior for large values of
K, as expected (see discussion above and in Appendix C).

4In this section we specify what we actually take for the
bubble radius, and we will denote it by �Rð�Þ. We remind one
that, in the case of deflagrations, this does not coincide with R,
which is the position of the shock front, but with rint.
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phase bubbles at time � without considering bubble over-
lap [33,39,40]. Assuming that the universe remains static
for the entire duration of the phase transition, and assuming
a constant velocity for the bubble expansion vb, Ið�Þ is
simply given by

Ið�Þ ¼ 4�

3

Z �

�in

d��ð�Þv3
bð�� �Þ3 ’ 8�

v3
b

~�4
�ð�Þ (45)

The quantity �ð�Þ in Eq. (29) is given by �ð�Þ ¼ 1�
pð�Þ. The times �in and �fin are defined such that pð�inÞ ’
1 and pð�finÞ ’ 0. Following [19,33], we choose a number

M 
 1 and define �fin as �ð�finÞ ¼ ~�4M=8�v3
b, so that

pð�finÞ ¼ expð�MÞ ’ 0. In the same way, we choose a

number m � 1 such that ~�ð�fin � �inÞ ¼ lnðM=mÞ and
pð�inÞ ¼ expð�mÞ ’ 1. This gives the duration of the
phase transition

�fin � �in ¼ ~��1 ln
M

m
: (46)

In order to evaluate the mean bubble radius, we consider
the number of bubbles which have a given radius � at time
�. Calling �� the nucleation time of a bubble with radius �
at time �, one has

_dN

d�

���������
¼ �ð��Þpð��Þ

vb

: (47)

The shape of this distribution is shown in Fig. 5 of
Ref. [33]. For each �, it has a maximum at the value
�Rð�Þ ¼ vb

~�
lnIð�Þ: this value defines the mean radius of

the bubbles at time �. Calling �� the time at which pð ��Þ ¼
1=e, so that Ið ��Þ ¼ 1, we set

�Rð�Þ ¼
�
0 for �in <�< ��;
vb
~�
lnðIð�ÞÞ for ��< �< �fin:

The condition Ið ��Þ ¼ 1 defines �� ¼ �fin � ~��1 lnM.
As already explained in Sec. III B, bubbles can be

treated as combustion fronts moving at constant velocity
only at times much later than nucleation time. Therefore,
we identify �in � �� in the evaluation of the emitted gravi-

tational radiation. This leads to �fin ¼ �in þ ~��1 lnM. We
further decide to neglect the logarithms and simply set

�fin � �in ’ ~��1 (48)

�Rð�Þ ’ vbð�� �inÞ: (49)

If we do not neglect the logarithms, we have to replace the

final bubble size vb
~��1 by vb

~��1 lnðM=mÞ. Neglecting
the logs, we identify the duration of the phase transition

with ~��1, and the radius of the bubbles at time � with its
mean value �Rð�Þ. We do not account for the possibility of
having bubbles of different sizes at a given time.

V. EVALUATION OF THE GRAVITATIONALWAVE
SPECTRUM

We now want to evaluate the gravitational wave energy
density per logarithmic frequency interval (6), which is
given in terms of the GW power spectrum (15). According
to Eq. (15), the latter evolves as x�2 / ��2; however, this
behavior is strictly valid only in a radiation-dominated
universe with a constant number of relativistic degrees of
freedom (cf. Sec. II) and thus lacks generality. To estimate
the GW power spectrum at �> ��, we therefore evaluate
it at the end of the phase transition, jh0j2ðk; ��Þ, for which
no assumptions have been made concerning the number of
relativistic degrees of freedom. Then, we simply use its
radiationlike evolution:

d�ðk; �Þ
d lnk

¼ d�ðk; ��Þ
d lnk

�
a�
a

�
4
: (50)

From Eqs. (6) and (15), reminding one that x ¼ k� we
have

d�ðk; ��Þ
d lnk

¼ k5jh0j2ðk; ��Þ
2ð2�Þ6G�ca

2�
; (51)

jh0j2ðk; x�Þ ¼ 1

2

�
8�Ga2�

k2

�
2 Z xfin

xin

dy
Z xfin

xin

dz

� cosðz� yÞ�ðk; y; zÞ; (52)

where in the last equality we have set xfin ’ x�. In the
above equation, we further have to substitute expression
(42) for the anisotropic stress source. As already discussed
in Sec. II, since the source is active for an amount of time
much shorter than one Hubble time, we neglect the expan-
sion of the Universe while gravitational waves are pro-
duced. Therefore, in Eq. (42) we set the enthalpy density to
a constant, denoted by w� ¼ wð�Þ ’ wð�Þ. Moreover, we

eliminate the time dependence of the � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
factors

by substituting vð�Þ, vð�Þ with the constant fluid velocity
svf , corresponding to the fluid velocity of the inner bound-
ary of the shell (cf. Equation (26) and Fig. 2), remembering
that s ¼ rint=R. We explain the reasons for this choice
below. We remind one that the double integration in
Eq. (52) is in time, with the notation y ¼ k�, z ¼ k� .
Inserting IðKÞ given in Eq. (43) in the expression for
�ðk; y; zÞ, Eqs. (51) and (52) lead to

d�ðk; �Þ
d lnk

¼ 4

�2

G

�c

a6�
a4

w2�
v4
f ð1� s3Þ2

ð1� ðsvfÞ2Þ2
k
Z xfin

xin

dy
Z xfin

xin

dz cosðz� yÞ

�
�
�2ð�ÞR3ð�Þ�ð� � �Þ�

�
1

s
ð�� �inÞ þ �in � �

�
IðkRð�ÞÞ þ symmetric y $ z

�
: (53)
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Let us first investigate the prefactor in the above ex-
pression. The enthalpy density is

w� ¼ 4

3
��
rad; ��

rad ¼
�
g0
g�

�
1=3 �0

rad

a4�
; (54)

where ��
rad denotes the radiation energy density in the

Universe, g0 ¼ 3:36 and g� denotes the effective number
of relativistic degrees of freedom today and at the time of
the phase transition, respectively. We also define a dimen-
sionless parameter estimating the amount of kinetic energy
present in the source, with respect to the radiation energy
density. From the definition (17) of the energy-momentum
tensor:

��
kin ¼

4

3
��
rad

ðsvfÞ2
1� ðsvfÞ2

; (55)

��
kin

��
rad

¼ ��
kin

��
rad

¼ 4

3

ðsvfÞ2
1� ðsvfÞ2

: (56)

We have chosen to define the above parameter in terms of
the fluid velocity at the inner boundary of the velocity shell
svf , which always satisfies svf < cs both for detonations
and deflagrations. This ensures that ��

kin=�
�
rad < 1 remain

consistent with an isotropic Friedmann universe.

Summarizing, we can rearrange the prefactor in Eq. (53)
in terms of the above defined parameters, of the conformal
Hubble factor H � ¼ a�H� and of �rad, as

4

�2

G

�c

a6�
a4

w2�
v4
f

ð1� ðsvfÞ2Þ2
ð1� s3Þ2

¼ 3

2�3

�
g0
g�

�
1=3 �radH 2�

a4

�
��

kin

��
rad

�
2 ð1� s3Þ2

s4
: (57)

The gravitational wave energy density is therefore propor-
tional to the square of the kinetic energy density of the
source, as one would expect.
In the double integral of Eq. (53), we define the new

integration variable u ¼ kRðyÞ ¼ voutðy� xinÞ, and the
new dimensionless parameter

Z ¼ kvout

~�
: (58)

Following the discussion in Sec. IV, the function �ð�Þ
becomes

�ð�Þ ¼ 1� expð� expð1þ ~�ð�� �finÞÞÞ: (59)

We finally obtain for the gravitational wave energy density
spectrum

d�ðk; �0Þh2
d lnk

’ 3

2�3

�
g0
g�

�
1=3

�radh
2

�
��

kin

��
rad

�
2
�
H �
~�

�
2 ð1� s3Þ2

s4
2vout

Z2

�
�Z sZ

0
duð1� e�eð1þu=ZÞ Þ2u3IðuÞ sin

�
u

vout

1� s

s

�
þ

Z Z

sZ
duð1� e�eð1þu=ZÞ Þ2u3IðuÞ sin

�
Z� u

vout

��
: (60)

We recover the known result that the amplitude of the
gravitational wave spectrum is proportional to the square
of the ratio between the duration of the phase transition and
the Hubble time, H �= ~� [4,41]. The parameter s ¼ 1
means that the fluid motions vanish everywhere, and there-
fore no gravitational radiation is produced. The divergence
in s ! 0 is only apparent, due to our definition of the
kinetic energy density parameter in Eq. (56).

Expression (60) gives in all generality the power spec-
trum of gravitational radiation produced by spherically
symmetric, stochastic configurations of fluid motions
(such as broken phase bubbles in a phase transition),
characterized by a velocity distribution which increases
linearly in a shell of inner radius rint ¼ vintt and outer
radius R ¼ voutt. The integral determines the shape of
the spectrum, and depends on the values of s and of the
velocity vout. These parameters should be chosen accord-
ing to the physical situation under consideration.

We expect the large scale part of the GW spectrum to
increase as k3. As explained in detail in Appendix C, this is
a simple consequence of the fact that the source has a finite
correlation scale (corresponding in our case to the length
scale 2R). It is therefore a generic behavior for causal

sources. Conversely, the small scale part of the spectrum
depends on the details of the source correlation function.
This part of the spectrum is in principle affected by our
choice of a linear growth for the velocity profile in the
nonzero velocity shell (cf. Sec. III B). If we could account
for the correct velocity profile, the power law dependence
of the GW power spectrum at large k might be different
from what we find. On the other hand, the frequency at
which the GW power spectrum peaks can again be pre-
dicted by general considerations. In fact, the velocity
power spectrum given in Eq. (38) has a characteristic
wave number corresponding to the bubble diameter, k ’
�=R ’ 2:5=R. Also the anisotropic stress power spectrum
changes slope at about k ’ �=R ’ 3=R. For the gravita-
tional radiation power spectrum we therefore expect a peak
at approximatively the same wave number k ’ �=Rð�finÞ
given by the mean bubble size at the end of the phase
transition.

A. Unequal time approximations

The expression (60) has been derived using the approxi-
mation Eq. (41) for the unequal time correlation function
of the velocity field. Under this approximation, the aniso-
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tropic stress power spectrum at different times takes the
form given in Eq. (42), which has been substituted in
Eq. (52) in order to evaluate the GW power spectrum.
According to the definition of the GW spectrum jh0ðxÞj2,
the time integral appearing in Eq. (52) should give a
positive result. Therefore, the unequal time anisotropic
stress power spectrum should be, by definition, a positive
kernel, such thatZ xfin

xin

dy
Z xfin

xin

dzGðx; yÞG�ðx; zÞ�ðk; y; zÞ 	 0; (61)

whereGðx; yÞ generically denotes the Green function of the
wave equation (9). Even though the approximated form for
the unequal time correlation function for the velocity field
Eq. (41) seems reasonable from a physical point of view, it
does not lead to a positive kernel for�ðk; y; zÞ as it should.
Expression (60) is not always positive and therefore it is
unacceptable. To avoid this problem, we now define ap-
proximations directly for the unequal time correlator
�ðy; zÞwhich are positive by construction. We first discuss
two cases which are physically less motivated, but are very
useful for comparison: the completely incoherent and
completely coherent approximations. Finally, we discuss
a third and better motivated approximation for�ðy; zÞ that
still gives a positive result. We believe that this last ap-
proximation is the one that best recovers the true result.
Apart from being strictly positive, it has the advantage to
be very close to the physically motivated approximation
for the unequal time correlators of the velocity field. As we
shall see, the peak position of the GW spectra is very
similar in all cases, while the peak amplitude varies by
up to 1 order of magnitude.

We consider first a totally incoherent source that is
uncorrelated for unequal times � � � . We take the ansatz
[cf. Eq. (42)]

h�ijðk; �Þ��
ijðq; �Þi ¼ �ðk� qÞ�ðk; �; �Þ�ð�� �Þ

~�
;

(62)

�ðk; �; �Þ ¼ w2�
ð1� ðsvfÞ2Þ2

½4��ð�Þv2
f �2Rð�Þ3ð1� s3Þ2

� IðKð�ÞÞ: (63)

We multiply the �-function by the characteristic time 1= ~�
in order to maintain the correct dimensions. Under this
assumption, the oscillating term in Eq. (52), cosðx� yÞ,
integrated with the delta function, becomes simply 1 and

we recover a positive result. Using the same notations as in
Eq. (60), the GW spectrum from totally incoherent bubbles
is (see Fig. 6)

d�ðk; �0Þh2
d lnk

��������incoh
’ 3

2�3

�
g0
g�

�
1=3

�radh
2

�
��

kin

��
rad

�
2
�
H �
~�

�
2

� ð1� s3Þ2
s4

1

Z

�
Z Z

0
duð1� e�eð1þu=ZÞÞ2u3IðuÞ:

(64)

The opposite situation is given by a totally coherent
source that is correlated for every time � and � . In this
case, the ansatz for the anisotropic stress power spectrum is

h�ijðk; �Þ��
ijðq; �Þi ¼ �ðk� qÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ðk; �Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðk; �Þp

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðk; �Þp ¼ w�

1� ðsvfÞ2
4��ð�Þv2

fRð�Þ3=2ð1� s3Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IðKð�ÞÞp

:

(65)

We rewrite the oscillating term cosðx� yÞ using the duplication formula. This allows us to split the double integral into a
sum of two positive terms. The GW spectrum is in this case (see Fig. 6)

FIG. 6 (color online). Integrals determining the GW spectra as
a function of Z ¼ kvout= ~� for different approximations, in the
detonation case with � ¼ 1=2. The top, bottom (oscillating) and
middle curves are, respectively, the incoherent [Eq. (64)], co-
herent ]Eq. (66)] and top hat in wave number [Eqs. (70) and (71)
with xc ¼ 0:9�] approximations. The middle line with the
spikes is the absolute value of the approximation with top hat
in the velocity correlation [Eq. (60)]. The spikes represent the
passages through zero of this unphysical spectrum. All the
spectra are comparable at large scales and have a similar peak
frequency. The incoherent approximation overestimates the peak
amplitude by nearly an order of magnitude.
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: (66)

The positive part of the result based on the approximated
unequal time correlation function for the velocity field is in
between these two extreme cases: the Heaviside functions
introduce correlation only among times � and � which are
sufficiently close to each other. We therefore expect also
the correct result for the GW spectrum to be in between the
limiting cases described above. Moreover, for sufficiently
large scales the details of the time correlation do not
matter, and we expect that the GW spectra derived using
these different approximations become comparable at

these scales. As we will see below, this is indeed the case
(cf. Fig. 6).
Finally we introduce top-hat unequal time correlations

directly in the anisotropic stress power spectrum, rather
than in the velocity correlation function. This approxima-
tion is also an intermediate case between the completely
coherent and incoherent ones, and it is constructed to
always give a positive result for the GW power spectrum
as we will discuss. We make the following symmetric
ansatz:

h�ijðk; �Þ��
ijðq; �Þi ¼ �ðk� qÞ½�ðk; �Þ�ðk� � k�Þ�ðxc � ðk� � k�ÞÞ þ�ðk; �Þ�ðk�� k�Þ�ðxc � ðk�� k�ÞÞ�;

(67)

�ðk;�Þ¼ w2�
ð1�ðsvfÞ2Þ2

½4��ð�Þv2
f �2Rð�Þ3ð1� s3Þ2IðKð�ÞÞ:

(68)

Under this assumption, we set the correlation to zero for modes with a time separation larger than xc=k, where xc is a
positive, dimensionless parameter of order unity (to be specified later). Therefore, the anisotropic stresses at different times
are correlated if the time separation is less than about one wavelength. Physically, this just means that longer wavelengths
are correlated over a longer time. This corrects the lack of correlation that resulted from our very first approximation. The
GW power spectrum becomes

d�ðk; �0Þh2
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dv cos
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u� v
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�ðv� uÞ�

�
xc � v� u

vout

�
; (69)

which is apparently positive for xc � �=2. Resolving the Heaviside functions, we have to consider two separate cases. For
Z < xcvout we find the spectrum (see Fig. 6)
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Z < xcvout; (70)

and for Z > xcvout we find
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�
Z� u
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��
; Z > xcvout: (71)

The GW spectrum remains positive for 0< xc < � since
in the range Z < xcvout, sinðZ�u

vout
Þ> 0, and in the range Z >

xcvout, both sinðxcÞ and sinðZ�u
vout

Þ are positive. In the limit
xc ! 0 the result tends to zero. A reasonable value is

�=2< xc < �. In Fig. 7 we show how the power spectrum
depends on the value of xc. We now present the results
obtained for the different approximations discussed above,
in the cases of detonations and deflagrations.
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B. GW from detonations

As explained in Sec. III B, in the case of detonations
RðtÞ ¼ voutt is the outer radius of the bubbles. Therefore,
vout ¼ vb ¼ v1. We restrict ourselves to the case of

Jouguet detonations, so that vint ¼ cs ¼ 1=
ffiffiffi
3

p
. The value

of the bubble wall velocity in Jouguet detonations is given
in Refs. [20,34] in terms of the ratio

� ¼ �vac=�
�
rad; (72)

where ��
rad denotes the radiation energy density in the

Universe:

vb ¼ cs þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 2�=3

p
1þ �

: (73)

The outer maximal fluid velocity is given by the Lorentz
transformation [see Eq. (25)]

vf ¼ vb � cs
1� vbcs

¼
ffiffiffi
3

p ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�2 þ 2�

p � �Þ
2þ 3�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3�2 þ 2�
p ; (74)

where for the last equality we have substituted (73) and

cs ¼ 1=
ffiffiffi
3

p
. Moreover, the parameter s ¼ vint=vout takes

the form

s ¼ cs
vb

¼ 1þ �

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�2 þ 2�

p : (75)

For detonations,5 it is therefore sufficient to specify �, and
all the quantities necessary to evaluate the integrals in
Eqs. (60), (64), (66), (70), and (71) are determined.
Knowing in addition the duration of the phase transition

H �= ~� fully determines the gravitational wave signal. We
choose a broad range of values for �: � ¼ 0:1, 1=2, 1, 10.
�> 0:1 corresponds to s < 0:74. As discussed in
Sec. III B 1, for s ¼ 0:74 our approximations for the ve-

FIG. 7 (color online). The top left panel shows the weak �-dependence of our result Eqs. (70) and (71): the different curves are,
respectively, for � ¼ 0:1, 1=2, 1, 10. The top right panel shows the dependence on xc, for fixed � ¼ 1=2. We remind one that xc
defines the time interval xc=k beyond which the correlator of the anistropic stress tensor vanishes. The lines from top to bottom plot
the integral in Eqs. (70) and (71) evaluated at xc ¼ �=2, 0:9�, 0:1�, 0:99�, 0:999� respectively. The lower panel shows the GW
spectrum of Eqs. (70) and (71) and its approximation Eq. (76) for � ¼ 1=2 and xc ¼ 0:9�.

5To be in the detonation regime means that there is essentially
no friction. In other words, interactions between the bubble wall
(the Higgs field) and the particles in the thermal bath can be
neglected. This is a strong assumption which can work if the
released latent heat is indeed very large. Model-independent
studies (such as Ref. [25]) have used Eq. (70) for the bubble
wall velocity. However, when considering a particular model,
one should compute friction effects and therefore derive a more
realistic value for the bubble wall velocity, following for instance
the procedure of Ref. [42]. This requires one to compute the
bubble wall profile.
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locity power spectrum overestimate the true result by about
16%.

Let us first discuss the shape of the spectrum. We have
four different approximations for the unequal time corre-
lator: the top-hat unequal time correlator for the velocity
field in real space, Eq. (60), the incoherent case Eq. (64),
the coherent case Eq. (66), and the top-hat unequal time
correlator for the anisotropic stress in Fourier space,
Eqs. (70) and (71). They give rise to comparable spectra.
In Fig. 6 we show the result of the integrals as a function of

Z ¼ kvout= ~�. We have fixed the values � ¼ 1=2 and xc ¼
0:9�. The spectra increase like k3 at large scales, and have
comparable amplitudes. This is expected, since the details
of the time correlations should not matter at sufficiently
large scales and the source is uncorrelated in real
space (cf. Appendix C). Also, the positions of the peak
approximatively coincide in the four cases, and correspond

to Zpeak ’ 4:6, so kpeak ’ 4:6 ~�=vout ¼ 4:6=Rð�finÞ ’
�=Rð�finÞ. This is comparable to the peak of the aniso-
tropic stress power spectrum k ’ 3=Rð�Þ, due to the fact
that GW production accounts for the full evolution of the
bubbles, and Rð�Þ � Rð�finÞ for all times � < �fin. The
peak of the GW spectrum is independent of time and
corresponds to the mean bubble radius at the final stages
of the phase transition, close to Rð�finÞ. The amplitude at
the peak is roughly the same for the two top-hat approx-
imations and for the coherent case, with the value of the
integral at the peak of the order of 0:08� 0:02. Within the
precision of our analytical evaluation this difference is
negligible. On the other hand, the incoherent case over-
estimates the amplitude by a factor 5. The small scale part
of the spectrum is also different in the incoherent case with
respect to the others: it decays slower, as Z�0:8 as opposed
to Z�� with � ¼ 2� 0:2. The reason for this behavior is
apparent by looking at the integral in Eq. (64): once Z has
overcome the value at which the integrand peaks, the
contribution from the integral becomes small and the func-
tion decays nearly like Z�1. Conversely, in the cases of
Eqs. (66), (70), and (71), at sufficiently large scales the
spectrum scales nearly like Z�2. We explain the small scale
decay on the basis of dimensional arguments in
Appendix C. The two top-hat approximations are in very
good agreement up to Z ’ 10. For larger Z, the spectrum

obtained for the top hat in the velocity correlation becomes
negative. This is due to the contribution from the first
integral in Eq. (60), which is negative after sZ > 8. Its
absolute value is between the totally coherent approxima-
tion and the top hat in wave-number approximation. We
consider the top hat in wave-number ansatz which is given
in Eqs. (70) and (71) to be the best approximation for the
unequal time correlators.
In the top left panel of Fig. 7 we show that the integral of

Eqs. (70) and (71) is only weakly dependent on �. The
parameter � plays a greater role in determining the overall
amplitude of the GW signal (which will be discussed later
on). On the other hand, the shape of the spectrum depends
significantly on the choice of xc once xc approaches �. We
remind one that xc defines the time interval xc=k beyond
which the correlator of the anistropic stress tensor van-
ishes. In the top right panel of Fig. 7 we fix � ¼ 1=2 and
vary xc. Values of Z around the peak correspond to the
region Z > xcvout, where the result is dominated, for a
wide range of values of xc, by the first integral in
Eq. (71). The prefactor of this integral decays like Z�2 at
high enough values of Z. This is roughly the decay we see
in Fig. 7 for low xc. When xc becomes very close to �, the
factor sinðxcÞ multiplying the first integral in Eq. (71)
becomes so small that the contribution from the second
integral in (71) takes over. For high values of Z, the second
integral decays much faster than Z�2. However, because of
the integration limits, it is more and more suppressed as Z
increases: therefore, at some given Z value, the first inte-
gral takes over again and the spectrum decays roughly like
Z�2. More precisely we find a Z�1:8 decay at large Z. This
behavior is reached for higher and higher values of Z as xc
approaches �, as is shown in Fig. 7. For our final results,
we choose the value xc ¼ 0:9�. This may underestimate
the signal somewhat at high frequencies compared to
values xc � �=2, but this is a reasonable conservative
choice. Values xc still closer to � would be unjustifiably
fine-tuned.
The following approximate gravitational wave power

spectrum is fairly general. We chose� ¼ 1=2 but as shown
in Fig. 7, the shape of the spectrum is almost insensitive to
the value of �; the � dependence is essentially only in the
prefactor ð��

kin=�
�
radÞ2 and implicitly in ð1� s3Þ2=s4:
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intjdetoðZÞ;

where intjdetoðZÞ ¼
0:21ð ZZm

Þ3
1þ 1

2 ð ZZm
Þ2 þ ð ZZm

Þ4:8 ; Zm ¼ 3:8; Z ¼ kRfin: (76)

This approximation for intðZÞ is shown in the lower panel of Fig. 7, and we remind one that ��
kin=�

�
rad is defined as a

function of s and vf in Eq. (56).
Let us now investigate the overall amplitude of the signal at the peak frequency.
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0:084; (77)

where the factor 0.084 accounts for the contribution of the
integral at the peak frequency k ’ 4:6 ~�=vout (cf. bottom
panel of Fig. 7). In order for the bubbles to percolate and
convert the entire Universe to the broken phase, the phase

transition must occur much faster than one Hubble time.
We study the values of ~�=H � �Oð10Þ, Oð100Þ, and
Oð1000Þ. Since the velocity of the bubbles vb ¼ vout is
fully determined by the parameter�, so is the fluid velocity
vf and, in turn, the factor s ¼ cs=vout and the mean kinetic
energy parameter��

kin=�
�
rad, see Eqs. (73)–(75). We plot s

and ��
kin=�

�
rad as a function of � in Fig. 8. Specifying �

and ~� fully determines the amplitude. Substituting in (77),
and setting a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3�2 þ 2�
p

, we find

d�ðk; �0Þh2
d lnk

��������peak
’ 1:7 � 10�6

�
H �
~�

�
2 ð�� aÞ4ð�3a� ð3þ 2aÞ�� 3ð2þ aÞ�2 þ �3Þ2
ð1þ aÞ2ð1þ aþ 5a�� ð5� 3aÞ�2 � 3a�3 þ 6�4Þ ; (78)

which we plot in Fig. 9.
The peak amplitude depends quadratically on the dura-

tion of the phase transition ~��1 and grows steeply (also
roughly quadratically) with � as long as �< 1. At �> 1
the dependence on � becomes rather weak, since the

bubble velocity approaches its maximum, vb ! 1. The
maximum gravity wave density parameter which can be
achieved by bubble collisions in a strongly first-order

phase transition �> 1, vb ’ 1 and ~�� 10H � is of the
order of 5� 10�10. Note that our approximations break

FIG. 8 (color online). In the left panel we show sð�Þ ¼ cs=vbð�Þ and in the right panel ��
kin=�

�
rad, as functions of �, for the

Jouguet detonation case.

FIG. 9 (color online). Amplitude of the GW signal at the peak frequency from Jouguet detonations for ~�=H � ¼ 10, 100, 1000, as a
function of � (left panel) and as a function of vb. The signal reaches a plateau at large � since it is bounded by the maximal possible
value of the bubble wall velocity, vb < 1.
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down for smaller values of ~�, since we have neglected the

factor lnðM=mÞ so that ~��1 becomes the duration of the
phase transition which must be significantly smaller than a
Hubble time.

C. GW from deflagrations

In the case of deflagrations, RðtÞ ¼ voutt coincides with
the shock front of the shock wave taking place in the
symmetric phase. Therefore, we set vout ¼ vshock. The
inner radius is the bubble wall, so that vint ¼ vb ¼ v2.
The fluid velocity is given by

vf ¼ vb � v1

1� vbv1

(79)

where v1 is the incoming velocity of the symmetric phase
fluid into the front, in the rest frame of the discontinuity.

In order to estimate the gravitational wave production,
we follow the analysis of deflagrations presented in
Appendix A of Ref. [20]. There, the authors numerically
integrate the energy-momentum conservation equations at
the deflagration front with different initial conditions. The
velocity profile they find is in principle different both from
the constant one occurring in planar deflagrations, and
from the linear one that we took in our simplified analysis.
However, we choose two different cases which they have
analyzed, for which the deflagration is quite strong and the
velocity profile is actually almost constant. In the first case,
they set vb ¼ 0:1 and vf ¼ 0:09, and find vshock ’ 0:59
(and consequently s ¼ vint=vout ¼ vb=vshock ¼ 0:17). In
the second case, close to Jouguet deflagrations, they set
vb ¼ 0:5 and vf ¼ 0:45, and find vshock ’ 0:73 (and con-
sequently s ¼ 0:68). The velocity profiles for these values
are shown in Fig. 9 of [20]. Since in the case of deflagra-
tions there is no simple relation among the velocity of the
shock front and the parameter � denoting the strength of
the phase transition, we simply leave vshock as a free
parameter in our analysis, for which we take the two values
given above.

The analysis of the shape of the spectrum is on the same
footing as for detonations. The results of the unequal time
correlator for the anisotropic stress are shown in Fig. 10 for
fixed values of vshock ¼ 0:59 and xc ¼ 0:9�. The results
for the incoherent and top hat in the anisotropic stress cases
are similar to the case of detonation. We recover the
expected k3 behavior at large scales, and the amplitudes
are comparable at low wave number. The peak is located

at Zpeak ’ 4:2, corresponding to kpeak ’ 4:2 ~�=vout ¼

4:2=Rð�finÞ ’ �=Rð�finÞ. On the other hand, the coherent
and top hat in the velocity correlation cases are slightly
different in the high frequency range, because the fre-
quency of the oscillations is increased, due both to the
smaller value of vout ¼ vshock ¼ 0:59 and to the smaller
value of s ¼ 0:17. These parameters in fact appear in the
arguments of the Green functions in Eq. (60) and (66). In
the region where the power spectrum becomes negative, in
the top hat in the velocity case, the solution is no longer
reliable. We therefore discard it and take as best approxi-
mation the unequal time correlator of the anisotropic stress
power spectrum, as we did for detonations.
The result of Eqs. (70) and (71) is very weakly depen-

dent on the value of the velocity vshock. This is analogous to
the weak dependence on � found for detonations. We do
not display this dependence as it is very similar to the top
left panel of Fig. 7 where the role of � is played by vshock

which is varied between 0.59 and 0.73. Correspondingly,
when varying xc, we obtain a dependence similar to the one
shown in Fig. 7. For fixed xc ¼ 0:9� and vshock ¼ 0:59 we
can approximate the result as follows:
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2 ð ZZm

Þ4:8 ; Zm ¼ 3:6: (80)

FIG. 10 (color online). Same as Fig. 6 but for the case of
deflagrations. We fix vshock ¼ 0:59. Compared to detonations,
the oscillations are enhanced in approximation Eqs. (60) and
(66) corresponding to top hat in the velocity correlation.
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This is essentially identical to Eq. (76) except for the
values of s and vf in�

�
kin=�

�
rad: In the case of deflagrations

we cannot reduce the dependence exclusively to the two
parameters � and ~�, since no direct relation between the
velocities of the shock front, the velocity of the bubble wall
and the strength of the phase transition � is known in
general. In this case, the velocity of the shock front is
expected to depend also on the properties of the ambient
plasma, like friction, and not only on the strength of the
phase transition determined by �. The amplitude at the
peak frequency is the same as the detonation formula (77)
except that 0.084 is replaced by 0.050. This factor accounts
for the contribution of the integral at the peak frequency
k ’ 4:2 ~�=vout (cf. Fig. 10):

d�ðk; �0Þh2
d lnk

��������peak
’ 3

2�3

�
g0
g�

�
1=3

�radh
2

�
��

kin

��
rad

�
2
�
H �
~�

�
2

� ð1� s3Þ2
s4

0:050: (81)

The first plot of Fig. 11 shows��
kin=�

�
rad as a function of

the fluid velocity vf for two values of s ¼ vb=vshock,
corresponding to the cases analyzed in [20]. Obviously,
the value of vf is in principle fixed once�, vb and vshock are
given; however, the relation among these parameters is not
known explicitly. Therefore, we have decided to keep vf as
a free parameter. The fluid velocity vf induces the biggest
variation in the amplitude of the signal, and is therefore the
most relevant parameter determining ��

kin=�
�
rad. This ap-

pears clearly in the second plot of Fig. 11, where we show
the amplitude of the GW signal Eq. (81) as a function of vf ,

for the same two values of s and varying ~�=H �. The
dependence on s is negligible compared to the dependence
on vf .

VI. SOME COMMENTS ON OUR APPROACH

In numerical simulations, the stochastic background of
GWs arises from averaging over several deterministic real-
izations of bubble collisions. In our approach instead, to
account for the intrinsic randomness of the nucleation
process, we define the bubble velocity as a random vari-
able. The source of the stochastic background of GWs is
the tensor part of the anisotropic stress of the stochastic,
homogeneous and isotropic velocity field.
The calculation of the velocity correlation function in

Sec. III B 1 implicitly assumes that the bubbles, and con-
sequently the velocity configuration, are all independent
from each other: the velocity correlation function is differ-
ent from zero only if the points x and y can be in the same
bubble. Therefore, one may wonder in which sense this
procedure is a model of bubble collisions. Indeed, in our
model the only nonvanishing correlation coming from a
(possibly) collided region is given by the sum of correla-
tions from two independent points: for every x and y we
can find a bubble center position such that a bubble en-
compasses the two points, giving a nonzero result, pro-
vided that the probability to find a center in that position is
not zero. This is accounted for by multiplying the correla-
tion with the probability that a given point is in the broken
phase at a given time, cf. Eq. (28).
Therefore, even though we do not model in a determi-

nistic way the resulting velocity field from the collision of
bubbles, we do account for their overlap; it is the overlap
from several bubbles which gives us a nonzero correlation
function for the tensor part of the anisotropic stress, as
opposed to the spherically symmetric situation described in
Appendix A. The anisotropic stress correlation function, in
fact, involves the four-point correlation function of the
velocity field, cf. Eq. (19). This quantity, in contrast with

FIG. 11 (color online). The case of deflagrations: The left plot shows ��
kin=�

�
rad as a function of vf . The bottom curve corresponds

to the first case analyzed in [20], for which s ¼ 0:17, with vb ¼ 0:1 and vshock ’ 0:59 and the top one to the second case with
s ¼ 0:68, vb ¼ 0:5 and vshock ’ 0:73. The right plot shows the amplitude of the GW signal at the peak frequency given in Eq. (81) as
a function of vf for different values of ~�=H �. Solid lines are for s ¼ 0:68 corresponding to vb ¼ 0:5 and vshock ’ 0:73, and dashed
ones for s ¼ 0:17 corresponding to vb ¼ 0:1 and vshock ’ 0:59. As long as svf � 1, we have ��

kin=�
�
rad / v2

f and correspondingly

d�peakh2=d lnk / v4
f .
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the two-point correlation function, is nonzero also for
points x and y belonging to different bubbles. This comes
in via Wick’s theorem,6 hence over the stochasticity, and
this is how we take into account the collisions of bubbles.
In other words, when we calculate the two-point correla-
tion function of the velocity field Eq. (28), we break
spherical symmetry since every point in space becomes
equivalent to another and there is no longer a center of
symmetry. The center of symmetry x0 has become a ran-
dom variable, and we average over all its possible posi-
tions. Using the ergodic theorem, this is equivalent to an
average over several realizations for the center positions,
i.e. several realizations of the nucleation process, i.e. sev-
eral realizations of the velocity field distribution. In this
way, we account for the overlap of several bubbles, which
breaks spherical symmetry and leads to a nonzero power
spectrum of the tensor anisotropic stress, generating gravi-
tational radiation.

VII. SUMMARY

Since the GW signal from bubble collisions was already
evaluated in Refs. [17–20], in this section we gather our
final formulas and compare them with the ones given so far
in the literature. We conform to the notation used previ-
ously, for the comparison to be straightforward. The rele-
vant formulas are compiled for instance in Ref. [24]: there,
Eq. (4) gives the frequency at which the GW spectrum
peaks and Eq. (5) shows the dependence of the amplitude
of the GW signal at the peak frequency on the relevant
parameters of the bubbles evolution. These formulas are
valid in the case of Jouguet detonations, and do not show
how the GW spectrum depends on other than the peak
frequency. Before proceeding with the comparison, we
recap the main assumptions in our calculation: 1) we as-
sume radiation domination; 2) the fluid velocity profile
inside the bubble is linear; and 3) vi is our stochastic
variable via the bubble center as we average over all
possible positions of the bubble center. Therefore, we do
not model collisions in a deterministic way. We rather
account for all possible configurations of the velocity field
which include the case where bubbles overlap, even though
we use the velocity profiles of uncollided bubbles; 4) we
use the Wick theorem to express the four-point correlation
function in terms of the two-point correlation function,
even if the velocity is presumably not a Gaussian random
variable; 5) all bubbles have the same size R ¼ vbð��
�inÞ; 6) we use the top-hat approximation for the correlator
of the anisotropic stress tensor at different times; and 7) the
enthalpy w and the Lorentz factor � do not depend on x.

Using the notation

h2�collðfÞ � d�ðk; �0Þh2
d lnk

; where f ¼ k

2�
and

h2�peak � d�ðk; �0Þh2
d lnk

��������peak
;

(82)

from the results given in Sec. VB, Eqs. (76) and (77) and
Sec. VC, Eqs. (80) and (81), we find that h2�collðfÞ
increases at small f as f3 (compared to f2:8 in Kosowsky
et al. [17]), and at large f it scales as f�1:8 (as in Kosowsky
et al).7 The full spectrum is given by

h2�collðfÞjdeto ¼ h2�peakjdeto
2:5ð ffmÞ3

1þ 1
2 ð ffmÞ2 þ ð ffmÞ4:8

;

fm ¼ 0:87fpeak; (83)

h2�collðfÞjdefla ¼ h2�peakjdefla
4:5ð ffmÞ3

1þ 2ð ffmÞ2 þ 3
2 ð ffmÞ4:8

;

fm ¼ 0:87fpeak: (84)

Let us first discuss the peak frequency. It is given by

fpeak ¼
kpeak
2�

; kpeak ’ 4:5
~�

vout

; where ~� ¼ a��

(85)

and

vout ¼ vb for detonations;

vout ¼ vshock for deflagrations:
(86)

We remind one that in our notations ��1 expresses the
duration of the phase transition: bubbles are generated at
the beginning of the phase transition and collide after a
time given approximately by ��1. We have in fact set to 1

the logarithm relating ~� and �fin � �in, cf. Eq. (46) of
Sec. IV [this logarithm can be easily inserted in all of the
following equations: it will introduce a multiplying factor
in the ratio �=H and will also change the value of the
integral (60)]. Moreover, vout corresponds to either the
characteristic bubble velocity (in detonations) or the shock
wave velocity (in deflagrations). The characteristic fre-
quency at the time of emission is fpeak=a�  �=vout. As

expected, it is associated with the maximal size of the
spherical fluid velocity configuration which generates the
GW signal. This can be either the bubble itself, in the case
of detonations, or the spherical shock front preceding the
bubble, in the case of deflagrations. Since vshock < vb, the
peak frequency for detonations is smaller than that for
deflagrations (the size of the velocity configuration is

6 hvaðxÞvbðxÞvcðyÞvdðyÞi � hvaðxÞvbðxÞihvcðyÞvdðyÞi.
7Note however that the slope at large f depends on our choice

of approximation for the unequal time anisotropic stress.
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bigger). Using H � ¼ a�H� and a� ¼ a�=a0 ¼
T0=T�ðg0=g�Þ1=3, we can rewrite the peak frequency as

fpeak ’ 4:5

2�

1

vout

~�

H �

T0

T�

�
g0
g�

�
1=3

H�; (87)

which yields

fpeak ’ 1:12� 10�2 mHz

�
g�
100

�
1=6 T�

100 GeV

�

H�
1

vout

;

(88)

where of course ~�=H � ¼ �=H�.
The above peak frequency is bigger than the one in

Refs. [20,24] by a factor �2=vout. The factor 1=vout, that
shifts the peak to higher frequencies for low velocities, is
absent in [20,24], and is related to the fact that the char-
acteristic frequency we find is determined by the size of the
bubbles instead of the duration of the phase transition [4].
The property of causality of the source directly determines
this characteristic frequency. Since the source is causal, the
velocity correlation function goes to zero at the
length scale corresponding to the size of the bubbles. The
same length scale determines the peak in the velocity
power spectrum, and from there it is transferred to the
GW power spectrum (cf. also the discussion in Ref. [43],
where it is explained that gravity waves emitted during
short cosmological events such as phase transitions typi-
cally inherit the wave number and not the frequency of the
source).8

The factor 2, instead, comes from the details of our
modeling of the source. It follows from the factor 4.5 in
Eq. (85) (see Figs. 6 and 9 and discussion thereafter). We
find that the velocity power spectrum has a characteristic
wave number �2:5=R, corresponding quite well to that
coming from the bubble diameter 2�=2R. The time-
dependent anisotropic stress power spectrum instead
changes slope around 3=R (see Fig. 5). The characteristic
wave number of the GW spectrum is associated to Rfin, the
typical radius of bubbles at the end of the phase transition
when bubbles collide, and is found to be kpeak � 4:5=Rfin.

This differs from the value obtained in Kamionkowski
et al. kpeak � 2� (see Fig. 7 of Ref. [20] and the associated

uncertainty). For �=H� ¼ 100, T� ¼ 100 GeV and g� �
100, corresponding to a typical (first-order) electroweak
phase transition, we find fpeak � 1 mHz=vout to be com-

pared with LISA’s peak sensitivity which is estimated to be

2 mHz. The increase in the peak frequency that we obtain
relative to Ref. [20] is actually welcome for probing the
electroweak phase transition with LISA.
Let us now discuss the peak amplitude. A simple order

of magnitude estimate shows how the result depends on the
duration and the energy density of the source. From the
perturbed Einstein’s equations �G� ¼ 8�GT�, one gets

the following order of magnitude estimate for the ampli-
tude of the tensor perturbation h (we drop indices for
simplicity):

�2h� 8�GT; (89)

where we inserted 1=� as the characteristic time on which
the perturbation is evolving, and T denotes the energy-
momentum tensor of the source. From Eq. (17) and defi-
nition (56), we can write

T � �rad

��
kin

��
rad

: (90)

We want to estimate the energy density in gravitational
waves, defined in Eq. (3). The above Eq. (82) suggests that
_h� 8�GT=�, and so we obtain

�GW �
_h2

8�G
� 8�G

�2
T2 � 8�G

�
H

�

�
2 �rad

H2
�rad

�
��

kin

��
rad

�
2
:

(91)

Substituting the Friedmann equation in the radiation-
dominated era H2 ¼ 8�G

3 �rad, and considering that the

GW energy density evolves like radiation, we obtain for
the GW energy density the simple expression

�GW ��rad

�
H

�

�
2
�
��

kin

��
rad

�
2
: (92)

This shows that the GW energy density scales like the
square of the ratio between the time duration of the source
and the Hubble time, and the square of the energy density
in the source.
More precisely, from Eqs. (77) and (81) we get the

following result:

h2�peak ’ 3

2�3

�
g0
g�

�
1=3

�radh
2

�
��

kin

��
rad

�
2
�
H �
~�

�
2

� ð1� s3Þ2
s4

0:084; (93)

where 0.084 is replaced by 0.050 for deflagrations, and

��
kin

��
rad

¼ 4

3

ðsvfÞ2
1� ðsvfÞ2

(94)

with s ¼ rint=R:

8Note that, being in a cosmological context, we do not perform
a time Fourier transform of the energy-momentum tensor in
contrast to Eq. (23) of Ref. [20]. In [20] the authors assume
that ‘‘the frequency dependence of the spectrum is set by the
time scale ��1’’ (as written before Eq. (28) of [20]). Our finding,
on the other hand, is that the frequency dependence of the
spectrum is set by the bubble size R. Since in the detonation
regime vout approaches 1, in the simulations of Ref. [20] one
does not really see this difference.
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s ¼ cs
vb

; vf ¼ vb � cs
1� vbcs

;

vb ¼
1ffiffi
3

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 2�=3

p
1þ �

for Jouguet detonations;

(95)

s ¼ vb

vshock

for deflagrations: (96)

There is no simple analytic relation between vb, vf and
vshock in the case of deflagrations. For detonations, vbð�Þ is
given above, taken from Refs. [20,34]. Using g0 ¼ 3:36
and �radh

2 ¼ 4:2� 10�5 we find the peak amplitude:

h2�peak ’ 5:4� 10�8 ð1� s3Þ2
s4

�
��

kin

��
rad

�
2
�
H�
�

�
2
�
100

g�

�
1=3

;

(97)

h2�peak ’ 9:8� 10�8v4
f

ð1� s3Þ2
ð1� s2v2

f Þ4
�
H�
�

�
2
�
100

g�

�
1=3

;

(98)

where 9.8 is replaced by 5.8 for deflagrations. The signal
vanishes if the fluid velocity is zero. It also vanishes when
the shell’s thickness is zero (s ¼ 1); this happens if vb ¼
cs (corresponding to vf ¼ 0) for detonations and for vb ¼
vshock for deflagrations. Our result is to be compared with
the expression reported in Eq. (5) of Ref. [24], which is
only valid for Jouguet detonations:

h2�peak ’ 1:1� 10�6

ð1þ �Þ2
v3
b

0:24þ v3
b

�2�2

�
H�
�

�
2
�
100

g�

�
1=3

:

(99)

Here �ð�Þ ¼ ð0:715�þ 4ð3�=2Þ1=2=27Þ=ð1þ 0:175�Þ is
the parameter defined in Eq. (22) of Ref. [20], denoting the
fraction of vacuum energy which goes into kinetic energy
of the fluid (rather than thermal energy). Therefore, the
combination �� is equivalent in our notation to the pa-
rameter ��

kin=�
�
rad ¼ �kin=�rad. The above expression for

�ð�Þ is a fitting formula that the authors of [20] determined
by integrating numerically the energy-momentum tensor
of the velocity profile corresponding to a Jouguet detona-
tion, for different values of �. On the other hand, we have
defined��

kin=�
�
rad in terms of the fluid velocity at the inner

boundary of the velocity shell, starting from the approxi-
mated velocity profile given in Eq. (26). As it should be,
the dependence on � of the two parameters is comparable,
see Fig. 12 where we used s ¼ cs=vb, vf ¼ ðvb �
csÞ=ð1� vbcsÞ and vbð�Þ ¼ ðcs þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 2�=3

p Þ=ð1þ
�Þ. In Fig. 13, we show the comparison between our
peak amplitude (98) and the result used in [24] [Eq. (99)].
In summary, our amplitude for the signal is comparable

(but can differ by 1 order of magnitude for some values of
the parameters) to the one obtained with an inherently
different method, that of numerical simulations in the
envelope approximation [17–20]. This confirms that the
details of the collision’s modeling are not so crucial and
what really matters at the end is the size of the velocities
involved in the process. Note also that we computed the
GW energy density spectrum without using the Weinberg
formula, i.e., without making the wave zone approxima-
tion. The latter assumes that the observer is at a distance
much larger than the dimension of the source, while our
source is spread over the entire universe.

0.1 0.2 0.5 1 2
α

0.005

0.01

0.05

0.1

0.5

1

kin rad

FIG. 12. Comparison of ��ð�Þ defined in Ref. [20] (dashed
line) with ��

kin=�
�
rad (solid line), where vbð�Þ is given by

Eq. (73). In the case of Jouguet detonations, both parameters are
fully determined in terms of �. We remind one that ��ð�Þ and
��

kin=�
�
rad are not defined exactly in the same way (see text), but

they reflect the same physical quantity.
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FIG. 13. The case of Jouguet detonation. Comparison of the peak amplitude used in Ref. [24] [dashed line, Eq. (99)] with our value
[solid line, Eq. (98)] as a function of � in the left-hand panel and as a function of vb in the right-hand panel.
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Kamionkowski et al. obtain a nonvanishing signal in the
limit of vanishing thickness. This can be understood as
follows. In Refs. [17–19], they first study bubble collisions
taking place in vacuum, so that the source of GW was the
energy-momentum tensor of the scalar field: being given
by the spatial gradient of the scalar field, this is nonzero
only at the bubble wall. In their later work, Ref. [20], they
consider bubble collisions in a thermal bath and in this case
they use as the GW source the energy-momentum tensor of
the relativistic fluid rather than that of the scalar field.
Nevertheless, they keep using the envelope approximation.
This is why they obtain a large signal even if the shell of
fluid velocity has vanishing thickness. In contrast, by con-
struction, there is no signal in this limit in our model,
meaning that the kinetic energy of the fluid (which is our
only source as we did not include the gradient energy of the
scalar field) is different from zero only over a finite vol-
ume. On the other hand, we can extrapolate our results to
the deflagration regime. Typically, for the detonation case,
in the limit vb ! cs Ref. [20] finds a nonzero GW signal,
since in the envelope approximation this is just the lower
bound of the bubble wall velocity. Within our model, in this
limit, the thickness of the nonzero velocity shell goes to
zero and the GW signal as well; however, this only shows
the breakdown of the detonation regime, and the necessity
of treating the problem in the deflagration approach.

In Fig. 14, we plot the peak amplitude as a function of
the maximal fluid velocity vf . In contrast with the case of

Jouguet detonations, for deflagrations, we cannot express
the signal as a function of � only. Indeed, for small
velocities, the relation between � and the bubble velocity
will depend on the interactions between the bubble wall
(the Higgs field) and the particles in the thermal bath. In
any given model of a first-order phase transition, one can in
principle compute the bubble wall velocity and the conse-
quent fluid velocity profile, see e.g. Ref. [42] for the case of
a weakly first-order EW phase transition, and Ref. [44] for
the strongly first-order phase transition presented in
Ref. [6]. Provided that the released latent heat is large,
one can obtain a large bubble wall velocity. In addition, one
would have to look carefully at the physics of deflagrations
to derive the relation between the fluid velocity and that of
the bubble wall, see for instance Ref. [35].
To conclude, our main new results can be summarized as

follows:
(i) Our description applies to both detonation and def-

lagration (the fluid velocity is nonzero over a finite
volume rather than on an infinitely thin wall and v �
1).

(ii) Our peak frequency is parametrically larger
( / 1=v).

(iii) We provide an analytic expression for the shape of
the spectrum.

The possibility that the signals discussed here, if they are
produced at the electroweak phase transition, could be
detected with LISA will be discussed in an upcoming
publication [29]. We confirm that the GW signal coming
just from bubble collisions is observable only for very large
fluid velocities. Indeed, LISA’s best sensitivity is not much
below �h2 � 10�12. Such a value can be reached if
�=H� � 10 and vf � 0:2. More realistic values �=H� �
102 would require vf � 0:5 in order to lead to an observ-
able signal. As mentioned in the Introduction and as will be
presented in [29], there are other sources (magnetic field
and turbulence) of GW during phase transitions and the
signal from bubble collisions is just one contribution.
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APPENDIX A: ONE SINGLE BUBBLE

If there was only one bubble, there would not be any
gravitational radiation since a single bubble corresponds to
a spherically symmetric distribution of energy and momen-
tum which cannot emit gravitational waves. In this
Appendix we show that the anisotropic stress �ij from a

single bubble is purely scalar: this means that there exists a
function f such that

�ij ¼ Tij � 1
3T�ij ¼ ð@j@j � 1

3�ij�Þf; (A1)

0.02 0.05 0.1 0.2 0.5 1
vf1. 10 16

1. 10 14

1. 10 12

1. 10 10

1. 10 8

peak h2 H β 2 100 g 1 3

FIG. 14. The GW signal at the peak frequency, given in
Eq. (98), as a function of the maximal value of the fluid velocity
vf , for fixed s ¼ 0:68. One can have vf < cs both for def-
lagrations and detonations, while vf > cs is possible only for
detonations. One should keep in mind that in principle once s is
fixed, vf is not a free parameter. In the case of Jouguet
detonations its value is well known, vf ¼ csð1� sÞ=ðs� c2sÞ;
for deflagrations there is no analytic formula, and in order to
derive vf one needs to know vb as well as v1, the incoming
fluid velocity in the frame of the bubble discontinuity
(cf. Sec. III B). Nonetheless, the aim of this figure is just to
show the order of magnitude of the GW signal when the fluid
velocity is taken as a free parameter. This gives a reasonable
estimate, since the dependence on s is small, cf. Fig. 11.
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where Tij denotes the energy-momentum tensor of a bub-

ble. Such a scalar component is projected out by the tensor
projection operator which is given in Fourier space in
Eq. (8), and therefore does not contribute. In this case,
from the above equation the function f must satisfy the
condition

�2f ¼ 3
2@j@i�

ij: (A2)

We now demonstrate that this condition is always satisfied
for a single, spherically symmetric bubble. For one spheri-
cally symmetric bubble we have, up to the constant en-
thalpy �þ p,

�ij ¼ viðrÞvjðrÞ � 1
3�ijv

2ðrÞ; (A3)

so that

@j@i�
ij ¼ @i@j½viðrÞvjðrÞ � 1

3�ijv
2ðrÞ� (A4)

¼ 4

3

�
vv00 þ v02 þ 5

vv0

r
þ 3

2r2
v2

�
(A5)

¼
�
@r þ 2

r

��
4

3
v0vþ 2

r
v2

�
: (A6)

For the third equal sign we have used spherical symmetry,
we work with the ansatz v ¼ vðrÞer, and the prime denotes
the derivative with respect to r. On the other hand, for a
spherically symmetric function f we have

�2f ¼
�
@r þ 2

r

��
f00 þ 2

r
f0
�0
:

Therefore, if we find a function f which satisfies

4

3
v0vþ 2

r
v2 ¼ 2

3

�
f00 þ 2

r
f0
�0
;

or, equivalently

f00 � 1

r
f0 ¼ r

�
f0

r

�0 ¼ v2; (A7)

the anisotropic stress (A3) is equal to the expression given
in Eq. (A1), therefore, it is a pure scalar. This is indeed the
case, since Eq. (A7) is an ordinary linear differential
equation which always has a solution for a given radial
velocity v.

Hence a single spherically symmetric bubble only gen-
erates scalar perturbations and does not contribute to the
tensorial part of the energy-momentum tensor �ij, which

is the source of gravity waves. This is of course not
surprising given that spherically symmetric configurations
only have scalar degrees of freedom. Nevertheless, we
have added this brief calculation here since one might
draw wrong conclusions from the fact that the anisotropic
stress of a single, spherically symmetric bubble does not
vanish.

Another way to arrive at the same result is to show that
the tensor projection operator given in Eq. (8),

Mijkl � PikPjl � 1
2PijPkl (A8)

with

Pik � ��1ð��ik � @i@kÞ (A9)

vanishes when applied to a spherically symmetric stress
tensor. For a single bubble one has then

�ij ¼ MijklTkl ¼ MikjlðvkðrÞvlðrÞÞ ¼ 0:

APPENDIX B: CALCULATIONOF THEVELOCITY
FIELD POWER SPECTRUM

In this Appendix we explain how to evaluate the velocity
correlation function Eq. (28) and Fourier transform it to
obtain the velocity power spectrum Eq. (38). The quantity
we need to calculate is the tensor

Iijðr; R; rintÞ ¼
Z
Vi

d3x0ðx� x0Þiðy � x0Þj: (B1)

The intersection volume Vi varies with the distance be-
tween x and y, as shown in Fig. 3, with r ¼ jx� yj. We

choose an orthonormal basis with ê2 k dx� y. One identi-
fies four different regions: setting a ¼ jx� yj=2 ¼ r=2,
they are given by the limiting values

0 � a � R� rint
2

;
R� rint

2
� a � rint;

rint � a � Rþ rint
2

;
Rþ rint

2
� a � R:

(B2)

The intersection volume is symmetric under rotations
around ê2, so in order to perform the integral in (B1) we
choose cylindrical coordinates with z k ê2 and � k ê3. We
have

d3x0 ¼ �d�dzd’; x0 ¼ ð� cosð’Þ; z; � sinð’ÞÞ;
x ¼ ð0;�a; 0Þ; y ¼ ð0; a; 0Þ: (B3)

Substituting the above formulas in (B1) and performing the
integration in d’, one sees that, because of cylindrical
symmetry, the tensor Iij is diagonal. Evaluating (B1) re-

duces simply to calculate the two integrals

I11 ¼ I33 ¼ �
Z
Vi

dzd��3;

I22 ¼ 2�
Z
Vi

dzd��ðz2 � a2Þ:
(B4)

The limits of integration, here generically denoted with Vi,
depend in fact on the variable a. As an example, in the
region 0 � a � ðR� rintÞ=2, the first integral becomes
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I11 ¼ �

�Z �z1

�z2

dz
Z �1

0
d��3 þ

Z 0

�z1

dz
Z �1

�2

d��3

þ
Z z1

0
dz

Z �4

�3

d��3 þ
Z z2

z1

dz
Z �4

0
d��3

�
;

z1 ¼ rint þ a; z2 ¼ R� a;

�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � ða� zÞ2

q
; �2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2int � ðaþ zÞ2

q
;

�3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2int � ðz� aÞ2

q
; �4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � ðaþ zÞ2

q
:

Analogous expressions can be found for the remaining
three regions, and similarly for I22. The final results of
the integrations are the two continuous functions
I11ða; rint; RÞ and I22ða; rint; RÞ, as a function of the variable
0 � a � R, which are too long of expressions to be written
explicitly here.

Knowing I11 ¼ I33 and I22, we impose the condition of
statistical homogeneity and isotropy for the velocity field,
meaning that we impose the tensorial structure

Iij � f�ij þ gr̂ir̂j ¼ I11�ij þ ðI22 � I11Þr̂ir̂j; (B5)

where the second equality is a straightforward conse-

quence of our choice r̂ ¼ dx� y k ê2. The two-point cor-
relation function for the velocity field takes the final form
[cf. Equation (32)]

hviðx; tÞvjðy; tÞi ¼ �ðtÞ v
2
f

R2

�
I11
Vc

�ij þ I22 � I11
Vc

r̂ir̂j

�
;

(B6)

where the prefactor is independent of a ¼ r=2 and the
volume Vc is given in Eq. (30).

In order to know the power spectrum, we have to Fourier
transform the above equation with respect to the variable r.
Because of homogeneity and isotropy, we get a delta
function in momentum. We rewrite the Fourier transform
of the second term in the sum, which is direction depen-
dent, in terms of derivatives with respect to the wave
vector, and we obtain

hviðk; tÞv�
j ðq; tÞi ¼ �ðk� qÞ�ðtÞ v

2
f

R2

�
F
�
I11
Vc

�
�ij

� @ki@kjF
�
I22 � I11
r2Vc

��
: (B7)

The Fourier transform of a function only of r gives a
function only of wave-number k. Knowing this, we can
reexpress the partial derivatives, to obtain expression (34)
and followings. The Fourier integrals, as for example

4�

k

Z 1

0
drr sinðkrÞ I11ðr; rint; RÞ

VcðrÞ (B8)

need to be further divided in the sum over the four integrals
corresponding to the regions described above, depending
on the value of r, since in each of these regions the

integrand takes a different form. Again, we do not write
the complicated full expression of the result, for which we
found the fitting formulas (39) and (40) shown in Fig. 4.

APPENDIX C: LARGE AND SMALL SCALE PART
OF THE GW POWER SPECTRUM

We have seen that the gravitational wave power spec-
trum, independently of the different time approximations,
always grows like k3 at scales larger than the peak scale
k�1
peak ’ Rð�finÞ=4:5. The reason for this general behavior is
that the source is uncorrelated at these scales. Therefore,
the power spectrum of the anisotropic stress source is
simply the incoherent sum of uncorrelated regions, and is
white noise. The white noise behavior for the anisotropic
stress in turn determines the k3 increase for the GW power
spectrum.
On the other hand, we also saw that for the small scale

part of the spectrum we always recover roughly a k�2

decrease, with the only exception of the completely inco-
herent case [cf. Equations (62) and (64)]. The small scale
decrease can be understood from dimensional arguments.
In this Appendix we present general arguments for the
origin of the above mentioned power laws for the large
and small scale part of the GW power spectrum.
Let us first concentrate on the large scale limit. We start

with a generic velocity power spectrum showing a peak at a
characteristic scale k ¼ L�1. The scale L, corresponding
in our case to the bubble diameter L ¼ 2R, may depend on
time. We assume that the large and small scale behaviors
are given by two power laws,

PðkÞ / v2L3

� ðLkÞn for Lk < 1;
ðLkÞm for Lk > 1;

(C1)

satisfying the conditions n >�3, m<�3 so that the
energy density is dominated by the contribution at the
peak. The prefactor v2 denotes the average energy per
unit enthalpy of the source. For bubbles, we have n ¼ 0
for the function AðkÞ and n ¼ 2 for BðkÞ, cf. Equations (39)
and (40) and the discussion thereafter (we will treat the
small scale decrease of these functions later on). The
anisotropic stress power spectrum is given by the convo-
lution of the velocity power spectrum [cf. Equation (24)].
Setting Q ¼ qL and K ¼ kL, and neglecting angular de-
pendencies, we have

�ðkÞ /
Z 1

0
dqq2Pðjk� qjÞPðqÞ

/ v4L3

�Z 1

0
dQQnþ2PðjK�QjÞ

þ
Z 1

1
dQQmþ2PðjK�QjÞ

�
(C2)

In the large scale limit k � L�1, in the second integral we
can safely neglect K with respect to Q and simply set
PðjK�QjÞ ’ Qm. In the first integral we have to be a little
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more careful. If n <�3=2, the main contribution to the
integral comes from the divergence at Q ! K and the
integral picks a behavior K2nþ3. In our physical bubble
situation, we have n ¼ 0, n ¼ 2; we therefore choose to
analyze only the case n 	 �3=2, for which we find

�ðk ! 0Þ / v4L3

�Z 1

0
dQQ2nþ2 þ

Z 1

1
dQQ2mþ2

�

¼ v4L3

�
1

2nþ 3
� 1

2mþ 3

�
: (C3)

Therefore, the anisotropic stress at large scales is white
noise. Going back to Eqs. (6) and (15), we see that for a
constant anisotropic stress power spectrum, the GW power
spectrum behaves like

d�ðkÞ
d lnðkÞ

��������k!0
/ k5jh0ðkÞj2 / k3�ðkÞ: (C4)

Here we have reexpressed the conformal time derivative
appearing in Eq. (6) in terms of a derivative with respect to
x ¼ k�, and we have taken into account that converting the
double integral over the Green function in Eq. (15) into a
double integral with respect to conformal time, induces an
additional factor k2. We therefore recover the observed
large scale behavior / k3.

We now turn to the small scale limit, k 
 L�1. In this
case, our fits to the functions AðkÞ and BðkÞ decrease like
k�4. As argued in Sec. III C, this power law is transferred to
the small scale behavior of the anisotropic stress power
spectrum, cf. Equations (42) and (43), which takes the form

h�ijðk; �Þ��
ijðq; �Þi / �ðk� qÞRð�Þ3IðKð�ÞÞ; (C5)

where IðKÞ decreases like K�4 for K 
 1, and we neglect
all the other time-dependent factors, which are irrelevant
for the argument presented here. Inserting the above ex-
pression in Eq. (15), one finds

jh0ðkÞj2 / 1

k4

Z
dy

Z
dzR3ð�Þ cosðy� zÞIðKð�ÞÞ

/ 1

k7

Z
dy

Z
dzy3 cosðy� zÞIðyÞ; (C6)

where for the second equality we have used the fact that
Rð�Þ / �. Substituting the above formula into Eq. (6) re-
written in terms of the derivative with respect to x, one
finally obtains

d�ðkÞ
d lnðkÞ

��������k
L�1
/ k5jh0ðkÞj2

/ 1

k2

Z
dy

Z
dzy3 cosðy� zÞIðyÞ; (C7)

where the double integral simply causes a modulation in
the spectrum. We recover, in the large wave-number limit,
the k�2 decrease, which is a simple consequence of dimen-
sional analysis since I is a function of y ¼ k� only in the
relevant regime. This power law usually acquires small
corrections due to the fact that the integral in Eq. (C7) is
not completely independent of k. Depending on the ap-
proximation for the unequal time anisotropic stress power
spectrum, we actually found power laws k�� with � in the
range 1:8<�< 2:2. Within our approximation, these may
well also be logarithmic corrections to the slope � ¼ 2.
In the case of the totally incoherent unequal time ap-

proximation, the argument is changed because of the delta
function in time: the form of the anisotropic stress power
spectrum is now [cf. Equation (62)]

h�ijðk; �Þ��
ijðq; �Þi / �ðk� qÞ�ð�� �ÞRð�Þ2IðKð�ÞÞ:

(C8)

Repeating the above argument, one easily finds that the
large wave-number power law is now changed to k�1 (k�0:8

with the corrections from the integral).
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