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We model the massive dark object at the center of the Galaxy as a Schwarzschild black hole as well as

Janis-Newman-Winicour naked singularities, characterized by the mass and scalar charge parameters, and

study gravitational lensing (particularly time delay, magnification centroid, and total magnification) by

them. We find that the lensing features are qualitatively similar (though quantitatively different) for

Schwarzschild black holes, weakly naked, and marginally strongly naked singularities. However, the

lensing characteristics of strongly naked singularities are qualitatively very different from those due to

Schwarzschild black holes. The images produced by Schwarzschild black hole lenses and weakly naked

and marginally strongly naked singularity lenses always have positive time delays. On the other hand,

strongly naked singularity lenses can give rise to images with positive, zero, or negative time delays. In

particular, for a large angular source position the direct image (the outermost image on the same side as

the source) due to strongly naked singularity lensing always has a negative time delay. We also found that

the scalar field decreases the time delay and increases the total magnification of images; this result could

have important implications for cosmology. As the Janis-Newman-Winicour metric also describes the

exterior gravitational field of a scalar star, naked singularities as well as scalar star lenses, if these exist in

nature, will serve as more efficient cosmic telescopes than regular gravitational lenses.
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I. INTRODUCTION

A naked (visible) singularity is defined as a spacetime
singularity which can be seen by some observer and also
lies to the future of some point of the spacetime [1]. The
well-known weak cosmic censorship hypothesis (WCCH)
of Penrose essentially states that, generically, spacetime
singularities of physically realistic gravitational collapse
are hidden within black holes [1,2]. The concept of visible
singularities is objectionable to many scientists, as their
existence is thought to have alarming astrophysical impli-
cations. On the other hand, a failure of the WCCH would
give us the great opportunity to probe the extremely strong
gravitational fields that will help in the discovery of the
physical laws of quantum gravity. Despite many industri-
ous efforts, we are still far from having a general proof (or
disproof) of this hypothesis, and Penrose [1] expected that
radically new mathematical techniques might be required
for this purpose. As a proof or disproof of this hypothesis
appears to be inordinately difficult, it may be easier to find
a persuading counterexample to demonstrate that the hy-
pothesis is not correct. Numerous diligent efforts have been
put in this direction in the last four decades; however, we
still do not have a single convincing counterexample to the

WCCH (see references in [1–3]). In a seminal review,
Penrose [1] concluded that the question of cosmic censor-
ship is still very much open and considered this to be
possibly the most important unsolved problem in classical
general relativity.
Given that we have neither a proof (or disproof) nor a

convincing counterexample of the WCCH, it is important
to explore whether or not this hypothesis could be tested
observationally. To this end, Virbhadra et al. [4] introduced
a theoretical research project using gravitational lensing
phenomena, and encouraging results came out of that.
Further, Virbhadra and Ellis [5] obtained a new gravita-
tional lens equation that allows large deflection of light,
and therefore it can be used to study strong gravitational
field lensing. They used this lens equation to study the
gravitational lensing due to light deflection close to the
photon sphere of the supermassive ‘‘black hole’’ at the
center of the Galaxy. They found that the presence of a
photon sphere gives rise to a theoretically infinite sequence
of highly demagnified images on both sides of the optical
axis (the line joining the lens and the observer), and they
termed these relativistic images. Virbhadra and Ellis [6]
further extended the previous studies of Virbhadra et al. [4]
in detail. They also organized the investigations by classi-
fying naked singularities into two groups: weakly naked
singularities (WNS) and strongly naked singularities
(SNS). They modeled massive dark objects at the centers
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of a few galaxies as Schwarzschild black holes and Janis-
Newman-Winicour weakly as well as strongly naked sin-
gularities, and studied gravitational lensing by them. The
Schwarzschild black holes as well as weakly naked singu-
larities have qualitatively similar lensing characteristics:
both have one Einstein ring and no radial critical curves.
On the other hand, the strongly naked singularities have
qualitatively different lensing features; i.e., they give rise
to two or zero Einstein rings and one radial critical curve.
After publication of these results [4–7], there has been a
growing curiosity in black hole lensing, and many interest-
ing papers have appeared in last few years (see [8–19] and
references therein).

In this paper, we study the time delay, magnification
centroid, and total magnification of images due to gravita-
tional lensing by Schwarzschild black holes and Janis-
Newman-Winicour naked singularities. One of the most
striking results in this paper is that the strongly naked
singularities can give rise to images with negative time
delays. As relativistic images are known to be extremely
demagnified [5], we do not do computations for those in
this paper. We use geometrized units (i.e., G ¼ 1, c ¼ 1)
throughout this paper; however, we finally compute time
delays in terms of minutes. We use MATHEMATICA [20] for
computations.

II. LENS EQUATION, LIGHT DEFLECTION
ANGLE, AND CLASSIFICATION OF

NAKED SINGULARITIES

In this section, we write, in brief, some of the results
obtained in previous papers [4–7,21,22] and refine the
classification of naked singularities given in [6], because
these are required for computations and analysis of results
in this paper.

Virbhadra and Ellis [5] derived a gravitational lens
equation that permits small as well as large bending angles
of light, and that is given by

tan� ¼ tan�� �; (1)

with

� � Dds

Ds

½tan�þ tanð�̂� �Þ�: (2)

Ds, Dds, and Dd, respectively, are the observer-source, the
lens-source, and the observer-lens distances. �̂ is the light
bending angle. � and � are, respectively, angular positions
of an image and an unlensed source measured from the
optical axis. (See Fig. 1 in [5].) The impact parameter J ¼
Dd sin�. For small angles, Eq. (1) reduces to the most well-
known lens equation used for studying lensing in a weak
gravitational field [23].

In circularly symmetric gravitational lensing, the mag-
nification � of an image is

� ¼
�
sin�

sin�

d�

d�

��1
: (3)

The tangential and radial magnifications are, respectively,
expressed by

�t ¼
�
sin�

sin�

��1
and �r ¼

�
d�

d�

��1
: (4)

The singularities in �t and �r in the lens plane give,
respectively, tangential critical curves (TCCs) and radial
critical curves (RCCs), and their corresponding values in
the source plane are, respectively, known as the tangential
caustic (TC) and radial caustics (RCs).
Virbhadra et al. [4] considered a general static and

spherically symmetric spacetime described by the line
element

ds2 ¼ BðrÞdt2 � AðrÞdr2 �DðrÞr2ðd#2 þ sin2#d’2Þ
(5)

and calculated the deflection angle �̂ðr0Þ and impact pa-
rameter Jðr0Þ for a light ray with the closest distance of
approach r0. These are given by

�̂ðr0Þ ¼ 2
Z 1

r0

�
AðrÞ
DðrÞ

�
1=2

��
r

r0

�
2 DðrÞ
Dðr0Þ

Bðr0Þ
BðrÞ � 1

��1=2

� dr

r
� � (6)

and

Jðr0Þ ¼ r0

ffiffiffiffiffiffiffiffiffiffiffiffi
Dðr0Þ
Bðr0Þ

s
: (7)

ForDðrÞ ¼ 1, Eqs. (6) and (7) yield the results obtained by
Weinberg [24].
The most general static and spherically symmetric so-

lution to the Einstein massless scalar equations was inde-
pendently obtained by Janis, Newman, and Winicour, as
well as Wyman [25]. As both solutions were available in
different coordinates, they were not known to be the same
until Virbhadra [21] showed the equivalence between the
two by a coordinate transformation. As Janis, Newman,
and Winicour obtained this solution about 13 years before
Wyman, we prefer to call it the Janis-Newman-Winicour
solution. Thus, the Janis-Newman-Winicour solution
(characterized by constant and real parameters, the ADM
mass M, and the scalar charge q) is expressed by the line
element

ds2 ¼
�
1� b

r

�
�
dt2 �

�
1� b

r

���
dr2

�
�
1� b

r

�
1��

r2ðd#2 þ sin2#d’2Þ (8)
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and the massless scalar field

� ¼ q

b
ffiffiffiffiffiffiffi
4�

p ln

�
1� b

r

�
; (9)

with

� ¼ 2M

b
and b ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ q2

q
: (10)

Obviously, 0 � � � 1.
This solution is asymptotically Minkowskian and re-

duces to the Schwarzschild solution for q ¼ 0 (i.e., � ¼
1). The Janis-Newman-Winicour solution has a globally
naked strong curvature singularity at r ¼ b for all values
of q � 0, and this solution is physically reasonable as it
satisfies the weak energy condition [22]. Virbhadra et al.
obtained the light deflection angle �̂ðr0Þ for a large value of
r0 [see Eq. (24) in [4]]; we now reexpress that using
Eq. (10), as follows:

�̂ðr0Þ ¼ 2�

�
b

r0

�
þ

�
�ð1� 2�Þ þ �

�
�2 � 1

16

���
b

r0

�
2

þO
�
b

r0

�
3
: (11)

Virbhadra and Ellis [5] as well as Claudel et al. [7] gave
two different definitions of a photon sphere in a static
spherically symmetric spacetime. Both definitions gave
the same results for a general static and spherically sym-
metric metric. Thus, according to both definitions, the
Janis-Newman-Winicour spacetime has only one photon
sphere and it is situated at the radial distance [6,7]

rps ¼ bð1þ 2�Þ
2

: (12)

As r ¼ b is the curvature singularity, the photon sphere
exists only for �: 1=2< � � 1.

Defining

� ¼ r

b
; �0 ¼ r0

b
(13)

and using Eqs. (6)–(8), the deflection angle �̂ and the
impact parameter J for a light ray in the Janis-Newman-
Winicour spacetime are expressed in the form [4,6]

�̂ð�0Þ
¼ 2

Z 1

�0

d�

�
ffiffiffiffiffiffiffiffiffiffiffi
1� 1

�

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�
�0

�
2
�
1� 1

�

�
1�2�

�
1� 1

�0

�
2��1�1

s ��

(14)

and

Jð�0Þ ¼ 2M
�0

�

�
1� 1

�0

�ð1�2�Þ=2
: (15)

Obviously, Eq. (12) can now be reexpressed as

�ps ¼ ð1þ 2�Þ
2

: (16)

Equation (15) along with the expression for the impact
parameter, J ¼ Dd sin�, give

sin� ¼ 2M

Dd

�0

�

�
1� 1

�0

�ð1�2�Þ=2
: (17)

The first derivative of the deflection angle �̂with respect to
� is given by [4,6]

d�̂

d�
¼ �̂0ð�0Þd�0

d�
; (18)

where

d�0

d�
¼

��0

�
1� 1

�0

�ð1þ2�Þ=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

�2

�
M
Dd

�
2
�0

2

�
1� 1

�0

�
1�2�

s

M
Dd
ð2�0 � 2�� 1Þ

(19)

and

�̂ 0ð�0Þ ¼ 2�þ 1� 2�0

�0
2

�
1� 1

�0

� Z 1

�0

ð4��� 2�� 1Þd�

ð2�þ 1� 2�Þ2�
ffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

�

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�
�0

�
2
�
1� 1

�

�
1�2�

�
1� 1

�0

�
2��1 � 1

s : (20)

The prime denotes the first derivative with respect to �0.
Virbhadra and Ellis [6] classified naked singularities in

two groups:Weakly naked singularities are those which are
contained within at least one photon sphere, whereas
strongly naked singularities are those which are not cov-
ered within any photon spheres. Therefore, according to

this classification, the Janis-Newman-Winicour naked sin-
gularities are strongly naked for 0 � � � 1=2 and weakly
naked for 1=2< �< 1.
For Schwarzschild black holes (� ¼ 1) as well as WNS

(1=2< �< 1), the deflection angle �̂ð�0Þ monotonically
increases with the decrease in the closest distance of
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approach �0 and �̂ð�0Þ ! 1 as �0 ! �ps. As both have a

qualitatively similar �̂ vs �0 graph, their lensing features
are also qualitatively similar [4,6]. However, Virbhadra
and Ellis [6] missed noticing a point: Though there are
no photon spheres for � ¼ 1=2, the deflection angle be-
havior, according to Eq. (20), is similar to the cases of the
Schwarzschild black hole and WNS; therefore, their gravi-
tational lensing features will also be qualitatively the same.
In view of this, we now prefer to term � ¼ 1=2 and 0 �
� < 1=2 singularities, respectively, marginally strongly
naked singularities (MSNS) and strongly naked
singularities.

The mass parameter M ¼ 0 in the Janis-Newman-
Winicour solution describes the situation of a purely scalar
field. We do not consider this case henceforth in this paper.

III. TIME DELAY, MAGNIFICATION CENTROID,
AND TOTAL MAGNIFICATION

We consider light propagation in a static spherically
symmetric spacetime described by the line element given
by Eq. (5). The spherical symmetry of the spacetime allows
us to consider, without loss of generality, null geodesics in
the equatorial plane. We first obtain the time required for
light to travel from a source at coordinates fr; # ¼
�=2; ’ ¼ ’1g to the closest point of approach at coordi-
nates fr0; # ¼ �=2; ’ ¼ ’2g. Following the method used
in [24], a straightforward calculation thus gives the time
required for light to travel from r to r0 (or r0 to r), which is
expressed by

tðr; r0Þ ¼ tðr0; rÞ ¼
Z r

r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞ=BðrÞ

1�
�
r0
r

�
2

BðrÞ
Bðr0Þ

Dðr0Þ
DðrÞ

vuuuut dr: (21)

DðrÞ ¼ 1 in the above equation readily gives the result in
[24]. Let Rs and Ro denote, respectively, the radial coor-
dinates of the source and the observer measured from the
center of mass of the deflector (lens). We now express these
distances in terms of the constant parameter b (in the Janis-
Newman-Winicour metric) by introducing

X s ¼ Rs

b
and Xo ¼ Ro

b
: (22)

The time delay �ð�0Þ of light traveling from the source to
the observer with the closest distance of approach �0 is
defined as the difference between the light travel time for
the actual ray in the gravitational field of the lens (deflec-
tor) and the travel time for the straight path between the
source and the observer in the absence of the lens (i.e., if
there were no gravitational fields). As mentioned in Sec. II,

we do not consider the case of the purely scalar field in this
paper; therefore, we assume that � � 0 (i.e., M � 0).
Using Eqs. (8), (10), and (21), and the geometry of the
lens diagram (see Fig. 1 in [5]), we obtain the following
expression for the time delay in the Janis-Newman-
Winicour spacetime:

�ð�0Þ ¼ 2M

�

�Z Xs

�0

d�

fð�Þ þ
Z Xo

�0

d�

fð�Þ
�
�Ds sec� (23)

with

X s ¼ �

2

Ds

M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Dds

Ds

�
2 þ tan2�

s
; Xo ¼ �

2

Dd

M
; (24)

and

fð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1� 1

�

�
2� �

�
�0

�

�
2
�
1� 1

�

�
4��1

�
1� 1

�0

�
1�2�

s
:

(25)

The first and second terms in Eq. (23) give, respectively,
the travel time of the light from the source to the point of
closest approach and from that point to the observer. The
last term gives the light travel time from the source to the
observer in the absence of any gravitational field.
We use Eq. (23) for computations in the next section.

However, to see the behavior of the time delay function for
a light ray traveling in the weak gravitational field far away
from the lens, we carry out some analytical calculations
following the method used in [15]. We obtain the time
delay for images with large impact parameters. For given
angular positions of the source and image, the time delay is
given by

�ð�;�Þ ¼ 1

2

DdDs

Dds

�
��

2� 1

�

�
�2Eþ�2��2��2E ln

�
�2Dd

4Dds

��
; (26)

where

�E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M

Dds

DdDs

s
(27)

is an approximate expression for angular radius of the
Einstein ring of Schwarzschild lensing.
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Equation (26) shows that, for � < 1=2 (SNS), the time
delay of the direct image is negative for large �. This fact
reflects in our computations in the next section.

We denote the time delay in the outermost image on the
same side as the source (also called the direct image) by
�os. The differential time delay �� of an image with time
delay � is defined by

�� ¼ �� �os: (28)

(When there is only one image on the same side as the
source, we use the symbol �s instead of �os.) The differ-
ential time delay is thus measured in reference to the direct
image. The magnification-weighted centroid position (also
called magnification centroid) of images is defined by

�̂ ¼
P

�ij�ijP j�ij : (29)

Angles measured in clockwise and anticlockwise direc-
tions from the optical axis have positive and negative signs,
respectively. Further, the magnification centroid shift of
images is defined by

��̂ ¼ �� �̂: (30)

The total absolute magnification (also simply called total
magnification) �tot is defined by

�tot ¼
X j�ij: (31)

The magnification centroid and the total magnification are
very important physical quantities in studying microlens-
ing when the images are not resolved.

IV. COMPUTATIONS AND RESULTS

Virbhadra and Ellis [6] modeled massive dark objects
(MDOs) at the centers of four different galaxies (including
our Galaxy) as Schwarzschild black holes (SBH) and
Janis-Newman-Winicour naked singularities, and studied
point source gravitational lensing by them. They obtained
the angular positions of critical curves and caustics, and
studied the variation of magnification against the angular
position of images near the critical curves. However, they
did not study the time delay, magnification centroid, or the

total magnification; we accomplish these tasks in this
paper.
We now consider the MDO at the center of our Galaxy

with the recent values for the mass M ¼ 3:61� 106M�
and the lens-observer distance Dd ¼ 7:62 kpc [26]. As in
[6], we take the lens (MDO) to be situated halfway be-
tween the source and the observer, i.e.,Dds=Ds ¼ 1=2. We
model the Galactic MDO as a Schwarzschild black hole, as
well as Janis-Newman-Winicour WNS, MSNS, and SNS
lenses. As we are considering updated values forM andDd

of the Galactic MDO, we first recompute critical curves
and caustics, and their corresponding deflection angles of
the light ray for several values of �. Then for given values
of �, using MATHEMATICA we numerically solve the lens
equation (1) and obtain image positions. For these images,
we compute numerically other physical quantities, such as
deflection angles, time delays, and magnifications. Our
numerical computations are exact in the sense that we do
not take weak or strong field limits. For continuity and
clarity in the analysis of the results, we will also mention
some results from [4,6] in the present and next sections of
this paper. All tables are put in the Appendix.
As shown in Table I, there is only one Einstein ring and

no RCC for the case of SBH (� ¼ 1), WNS (� ¼ 0:9, 0.8,
0.7, 0.6), and MSNS (� ¼ 0:5). The angular positions of
the Einstein rings decrease very slowly with a decrease in
the value of � [equivalently, an increase in the value of
ðq=MÞ2]. In the case of SNS lensing (0< �< 1=2), there
are two situations: there is always one RCC; however, there
can be two (for example, for � ¼ 0:4, 0.3, etc.) or zero
Einstein rings (for example, for � ¼ 0:001 and any lower
values of �). For the cases of double Einstein rings, the
angular radii of the outer and inner rings, respectively,
decrease and increase with a decrease in the value of �.
For a detailed analysis of these RCCs and TCCs, see [6].
We now compute image positions, the corresponding

deflection angles of light, magnifications, time delays,
and differential time delays for several values of the angu-
lar source position for different values of � ¼ 1 (SBH),
� ¼ 0:7 (WNS), � ¼ 0:5 (MSNS), and � ¼ 0:04, 0.02,
0.001 (SNS). Though we give only a few data in the tables,
we have computed and used many more data points for the
figures.
The gravitational lensing effects due to the SBH, WNS,

and MSNS are qualitatively similar, though they differ
quantitatively by small values (see Tables II, III, and IV
and Fig. 1). For each case, there are two images, one on
each side of the optical axis. As the source moves away
from the optical axis, the image on the same side as the
source (i.e., the direct image) moves away from the axis,
whereas the image on the opposite side of the lens from the
source moves toward the axis. The absolute magnification
of both images decreases. For a given value of �, with an
increase in the angular position of the source, the time
delay of the image on the same side as the source de-
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creases, whereas the time delay and differential time delay
of the image on the opposite side from the source increase.
The rate of decrease in the time delay of the image on the
same side as the source is much slower than the rate of
increase in the time delay of the image on the opposite side
from the source. For any given value of the angular source
position, the time delays of both images and the differential
time delay of the image on the opposite side from the
source decrease with a decrease in the value of � [equiv-
alently, an increase in ðq=MÞ2].

Gravitational lensing by a SNS is qualitatively very dif-
ferent from lensing by SBH,WNS, or MSNS (see Tables V,
VI, VII, VIII, and IX and Figs. 2–4 ). For � ¼ 0:04 and
0.02, when the lens components (the source, lens, and
observer) are perfectly (or nearly) aligned, there are two
concentric Einstein rings (the inner ring much fainter than
the outer one). As the alignment is broken, the two Einstein
rings break into four images, two images on each side of
the optical axis. The time delay of the direct image de-
creases with an increase in �. For � ¼ 0:04, the time delay
of the direct image is positive for small � and negative for
large �; however, the time delays for other images are
positive for all values of �. On the other hand, for � ¼
0:02, the time delay of the direct image is always negative;
however, the other three images have negative time delays
for small � and positive for large �, passing through a zero
time delay point.

For given values of � and �, the time delays of the
images are in the following decreasing order: the inner
image on the opposite side from the source, the inner image
on the same side as the source, the outer image on the
opposite side from the source, and the direct image.

However, the absolute magnifications of the images are
not in the exact reverse sequence; they are rather in the
following decreasing order: the direct image, the outer
image on the opposite side from the source, the inner image
on the opposite side from the source, and the inner image
on the same side as the source. The differential time delays
are always positive. It is worth emphasizing that the nega-
tive and positive time delays are, respectively, not neces-
sarily due to negative and positive bending angles. A light
ray with a positive deflection angle may give rise to a
positive or negative time delay, and the same is true for a
light ray with a negative deflection angle. If � increases,
the angular separation between the images on the same side
as the source increases (the inner and outer images move,
respectively, toward and away from the optical axis).
However, the angular separation between the images on
the opposite side from the source decreases (the outer and
inner images move, respectively, toward and away from the
optical axis), and for some value of � these two images
coalesce to form one highly magnified image; for ex-
ample, for � ¼ 0:02, the angular positions of the source
and image are � � 210:2934 arcsec (RC) and � �
�0:004 591 arcsec (RCC), respectively. The opposite
signs on these two values show that the RCC and RC are
on opposite sides of the optical axis (see Table I). For
further increase in �, there are no images on the opposite
side from the source.
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FIG. 2 (color online). The time delays of the outer image on
the same side as the source �os, the inner image on the same side
as the source �is, the inner image on the opposite side from the
source �io, and the outer image on the opposite side from the
source �oo are plotted against the angular source position � for
� ¼ 0:04 (SNS). Also, the differential time delays of the inner
image on the same side as the source ��is, the inner image on
the opposite side from the source ��io, and the outer image on
the opposite side from the source ��oo are plotted against � for
the same value of �. Dds=Ds ¼ 1=2 and M=Dd � 2:26�
10�11. The time delays as well as differential time delays are in
minutes, whereas the angular source position is expressed in
arcseconds.
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FIG. 1 (color online). The time delays of the images on the
opposite side from the source �o, the same side as the source �s,
and the differential time delay of the images on the opposite side
from the source ��o are plotted against the angular source
position � for � ¼ 1 (SBH), � ¼ 0:7 (WNS), and � ¼ 0:5
(MSNS). M=Dd � 2:26� 10�11 and Dds=Ds ¼ 1=2. The time
delays as well as differential time delays are expressed in
minutes, whereas the angular source position is given in arc-
seconds.
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For � ¼ 0:001, see Table IX and Fig. 4. If the lens
components are aligned, there are no Einstein rings.
Also, for small values of �, there are no images on either
side of the optical axis. For � � 0:808 397 arcsec (RC),
there is a highly magnified image at the angular position
� � 1:115 015 arcsec (RCC). The signs on RC and RCC
being the same implies that this image appears on the same
side as the source. As � further increases, the image splits
into two, and the inner and outer (direct) images move
toward and away from the optical axis, respectively; the
magnification of the inner image decreases much faster
than the outer one. The time delay of the direct image for
this case is always negative and decreases slowly with an
increase in �. The time delay of the inner image, however,
is negative for small � and positive for large �, passing
through the zero time delay for a certain value of �. The
increase rate of the time delay of the inner image is much
higher than the decrease rate of the time delay of the direct
image. For the inner image, the deflection angles are
positive and negative, respectively, for small and large
values of �; however, for the direct image it is always
positive. As for other cases already discussed, the differ-
ential time delay of the inner image is always positive.
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FIG. 4 (color online). The time delays of the outer image on the same side as the source �os and the inner image on the same side as
the source �is are plotted against the angular source position � for � ¼ 0:001 (SNS); see the left figure. The differential time delay of
the inner image on the same side as the source ��is is plotted against � (right figure). The time delays as well as the differential time
delay and the angular source position are, respectively, given in minutes and arcseconds. Dds=Ds ¼ 1=2 and M=Dd � 2:26� 10�11.
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FIG. 3 (color online). The time delays of the direct image �os,
the inner image on the same side as the source �is, the inner
image on the opposite side from the source �io, and the outer
image on the opposite side from the source �oo are plotted
against the angular source position � for � ¼ 0:02 (SNS). The
differential time delays of the inner image on the same side as the
source ��is, the inner image on the opposite side from the
source ��io, and the outer image on the opposite side from the
source ��oo are plotted against � for the same value of �. The
angular source position is expressed in arcseconds, whereas the
time delays as well as differential time delays are shown in
minutes. M=Dd � 2:26� 10�11 and Dds=Ds ¼ 1=2.
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FIG. 5 (color online). The magnification centroid �̂, the magnification centroid shift ��̂, and the total magnification �tot are
plotted against the angular source position � for � ¼ 1 (SBH), � ¼ 0:7 (WNS), � ¼ 0:5 (MSNS), and � ¼ 0:04, 0.02, 0.001 (SNS).

Dds=Ds ¼ 1=2 and M=Dd � 2:26� 10�11. �̂, ��̂, and � are expressed in arcseconds.
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We now compute the magnification centroid, the mag-
nification centroid shift, and the total magnification for
� ¼ 1 (SBH), � ¼ 0:7 (WNS), � ¼ 0:5 (MSNS), and � ¼
0:04, 0.02, 0.001 (SNS) for several values of � (see
Tables X, XI, and XII). We then plot these quantities
against � (see Fig. 5). For a fixed value of �, the magni-
fication centroid increases with an increase in �. For small
values of �, the graph is bulged up and then tends to
become straight as � increases. For a fixed value of �,
the magnification centroid decreases with a decrease in �
[i.e., an increase in ðq=MÞ2]; the decrease is, however, too
small for these five graphs to appear resolved even if these
were plotted on an entire page. As � increases, the mag-
nification centroid shift first increases, reaches a maximum
value, and then starts decreasing to the limiting value zero.
For a given value of �, the magnification centroid shift
decreases with a decrease in the value of �. For a given
value of �, the total magnification is, as expected, very high
for small �, and it decreases to the limiting value of 1, as �
increases. For any given value of �, however, the total
magnification increases with a decrease in the value of �.
Thus, the presence of scalar charge helps increase the total
magnification. This would provide a modest increase in the
likelihood of observing lensing by SgrA� (see [27] and
references therein).

V. DISCUSSION AND CONCLUSION

The naked singularities are classified in three catego-
ries: WNS, MSNS, and SNS. We modeled the Galactic
MDO as the SBH, and Janis-Newman-Winicour WNS,
MSNS, and SNS lenses, and studied point source gravita-
tional lensing by them. We found that the gravitational
lensing effects due to the SBH, WNS, and MSNS are
qualitatively similar (but these differ slightly quantita-
tively) to each other; however, they differ qualitatively
from SNS lensing. Therefore, it will be easier to observa-
tionally differentiate a SNS (compared to a WNS or a
MSNS) from a SBH.

SBH, WNS, and MSNS lensing.—These do not give rise
to any radial caustics; however, they do produce one
Einstein ring when the lens components are aligned (i.e.,
� ¼ 0). When � increases, the Einstein ring splits into two
images, one on each side of the optical axis. The time
delays for both images are positive for all values of�. For a
given value of �, a decrease in �, i.e., an increase in
ðq=MÞ2, decreases the absolute angular image positions,
time delays, magnification centroid, and magnification
centroid shift; however, it increases the total magni-
fication of images. The differences are, however, very
small. The deflection angle �̂ becomes unboundedly large
as the impact parameter J ! Jps for the SBH andWNS [6].

SNS lensing.—There are two types of lensing in this
category. In the first, for example for the case of � ¼
0:02, there are double concentric Einstein rings (when

� ¼ 0) and one radial critical curve (when � �
210:2934 arcsec). As the angular position of the source
increases from the alignment position of the lens compo-
nents (i.e., � ¼ 0), the two Einstein rings ‘‘break’’ into
four images, giving two images on each side of the optical
axis. The separation between images on the same and
opposite sides from the source, respectively, increases
and decreases as � increases, and eventually the two
images on the opposite side from the source coalesce to
form a single, highly magnified image. For any further
increase in �, there are only two images on the same
side as the source. For the second category of SNS lensing,
for example for � ¼ 0:001, there is one RC; however, there
is no Einstein ring when � ¼ 0. Moreover, there is no
image for small values of �. As � increases, a highly
magnified image (RCC) first appears on the same side as
the source. A further increase in � splits this into two
images, and the separation between them keeps increasing
(both images remaining on the same side as the source).
The time delay of images of SNS lensing may be positive,
zero, or negative depending on the values of � and �.
However, the time delay of a direct image is negative for
any SNS lensing if � is large. As shown in [6], the
deflection angle �̂ approaches�� as the impact parameter
approaches its minimum value of zero. Therefore, if a light
ray with a very small impact parameter is sent toward a
SNS, it will ‘‘bounce’’; however, it remains to be computed
whether or not the ‘‘reflected’’ light has enough magnifi-
cation to be observed by present instruments or by those
likely to be available in the near future. This may serve as a
crucial test for the existence of SNS.
All the images produced by the Galactic MDO (modeled

as a Schwarzschild black hole and as naked singularity
lenses) may be resolved from each other by observational
facilities available in the near future. Therefore, the results
of the magnification centroid and total magnification may
not be needed. However, our studies help us understand the
role of the scalar field on the magnification centroid and
total magnification, which could be useful while studying
gravitational lensing by exotic dark objects having rather
small values of M=Dd and Dds=Ds. For several reasons,
gravitational lensing observations in the vicinity of a ga-
lactic center are very difficult (see [5] for details).
However, we expect that improved observational facilities
in the future will overcome these difficulties.
The existence of a photon sphere covering a gravita-

tional lens is a sufficient (but not necessary) condition for
the occurrence of relativistic images. The SBH as well as
WNS are contained inside a photon sphere, and both give
rise to relativistic images. The MSNS also produces rela-
tivistic images, even though it is not covered by a photon
sphere. The relativistic images are transient and extremely
demagnified, and therefore their observations do not seem
to be feasible in the near future [5]. For this reason, we did
not do computations for relativistic images in this paper.
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In lensing observations, what has been measured until
now is the differential time delay (not the time delay
itself). However, there are scenarios in which it is conceiv-
able that the time delay can be measured. Suppose a pulsar
orbits a compact object (another neutron star, or a black
hole, or a naked singularity). The pulses provide a pre-
cise clock that makes it possible to measure changes in the
light travel time as the pulsar moves through its orbit. In
particular, the pulse arrival times can be analyzed to de-
termine the lensing time delay. Rafikov and Lai [28] have
discussed this possibility for binary pulsar systems, such as
J0737-3039. The same idea would apply to a pulsar orbit-
ing the massive dark object at the center of our Galaxy.
Thus, it is possible to test our fascinating results of negative
time delay.

Naked singularity lensing gives rise to images of smaller
time delay and stronger total magnification than black hole
lensing. Therefore, if naked singularities indeed exist in
nature, then these will serve as better cosmic telescopes
and will help probe the Universe more efficiently. The
results obtained in this paper also help us understand the
effects of the scalar field on gravitational lensing, which
could have valuable implications for research in
cosmology.

The Janis-Newman-Winicour metric also describes the
exterior gravitational field of a scalar star. Therefore, re-

sults obtained in this paper for naked singularities are also
applicable to scalar stars. The scalar star, however, must be
compact enough for the images not to be obstructed.
The metric we considered in this paper may or may not

be physically realistic. However, gravitational lensing
studies with this metric serve as stepping stones to under-
stand the distinctive lensing features of black holes and
naked singularities. Rauch and Blandford’s [29] pioneering
work on Kerr black hole lensing has been recently followed
up by many researchers (see [30] and references therein). It
would be indeed of great astrophysical significance to
obtain distinguishing qualitative lensing characteristics of
Kerr black holes and Kerr naked singularities, so that the
weak cosmic censorship hypothesis could be tested obser-
vationally without any ambiguity.
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APPENDIX

Tables I, II, III, IV, V, VI, VII, VIII, IX, X, XI, and XII
are given in this section.

TABLE I. Critical curves and caustics due to gravitational lensing by the Galactic MDO modeled as a Schwarzschild black hole, and
as weakly, marginally strongly, and strongly naked singularities. �E, �r, and �r denote, respectively, the angular positions of the
tangential critical curves (Einstein rings), radial critical curves, and radial caustics, whereas �̂ stands for the corresponding light
deflection angles. (a) The lens has mass M ¼ 3:61� 106M� and the distance Dd ¼ 7:62 kpc so that M=Dd � 2:26� 10�11. The
ratio of the source-lens distance to the source-observer distance, i.e., Dds=Ds ¼ 1=2. All angular positions are given in arcseconds.

� Inner Einstein ring Radial critical curve and caustic Outer Einstein ring

�E �̂ �r �̂ �r �E �̂

1.0 � � � � � 1.388 176 2.776 352

0.9 � � � � � 1.388 176 2.776 352

0.8 � � � � � 1.388 176 2.776 352

0.7 � � � � � 1.388 176 2.776 351

0.6 � � � � � 1.388 175 2.776 351

0.5 � � � � � 1.388 175 2.776 350

0.4 0.000 012 0.000 024 �0:000 019 286 883.8 252 026.7 1.388 174 2.776 348

0.3 0.000 015 0.000 030 �0:000 026 121 357.9 66 413.69 1.388 172 2.776 343

0.2 0.000 027 0.000 054 �0:000 051 46 469.19 23 533.19 1.388 165 2.776 330

0.1 0.000 095 0.000 191 �0:000 188 10 759.36 5383.343 1.388 131 2.776 262

0.05 0.000 371 0.000 741 �0:000 739 2641.816 1320.961 1.387 993 2.775 986

0.04 0.000 577 0.001 154 �0:001 151 1687.159 843.5924 1.387 890 2.775 780

0.03 0.001 023 0.002 046 �0:002 043 947.4574 473.7291 1.387 667 2.775 334

0.02 0.002 297 0.004 593 �0:004 591 420.5955 210.2934 1.387 029 2.774 057

0.01 0.009 176 0.018 352 �0:018 345 105.0746 52.518 93 1.383 568 2.767 135

0.005 0.036 717 0.073 434 �0:073 177 26.263 79 13.058 72 1.369 456 2.738 911

0.004 0.057 426 0.114 853 �0:113 887 16.807 84 8.290 033 1.358 574 2.717 148

0.003 0.102 472 0.204 944 �0:199 693 9.450 634 4.525 624 1.334 103 2.668 206

0.002 0.236 134 0.472 268 �0:420 122 4.166 782 1.663 269 1.254 966 2.509 932

0.001 � � 1.115 015 0.613 237 0.808 397 � �
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TABLE II. Image positions due to lensing by the Galactic MDO modeled as a Schwarzschild black hole (� ¼ 1), and their
respective bending angles, magnifications, time delays, and differential time delays. (a) � and �̂, respectively, stand for the angular
positions of images and their corresponding deflection angles. �, �, and �� represent the magnification, time delay, and differential
time delay of the images, respectively. (b) The subscripts s and o on the symbols, respectively, denote for the images on the same and
opposite side from the source. (c) The same as (a) of Table I.

� Image on the opposite side from the source Image on the same side as the source

�o �̂o �o �o ��o �s �̂s �s �s

0 �1:388 176 2.776 352 � 14.922 09 0 1.388 176 2.776 352 � 14.922 09

10�5 �1:388 171 2.776 362 �69 407:97 14.922 10 0.000 017 1.388 181 2.776 342 69 408.97 14.922 08

10�3 �1:387 676 2.777 353 �693:5848 14.922 94 0.001 706 1.388 676 2.775 353 694.5848 14.921 24

10�1 �1:339 077 2.878 153 �6:454 348 15.008 95 0.170 636 1.439 076 2.678 152 7.454 345 14.838 31

2 �0:710 863 5.421 726 �0:073 840 17.380 33 3.687 537 2.710 855 1.421 709 1.073 838 13.692 80

4 �0:434 558 8.869 117 �0:009 696 21.747 18 8.734 391 4.434 547 0.869 094 1.009 695 13.012 79

6 �0:305 617 12.611 23 �0:002 355 28.338 06 15.771 41 6.305 604 0.611 208 1.002 354 12.566 65

8 �0:234 044 16.468 09 �0:000 809 37.268 52 25.029 69 8.234 031 0.468 062 1.000 808 12.238 82

10 �0:189 138 20.378 28 �0:000 345 48.587 14 36.606 42 10.189 12 0.378 250 1.000 345 11.980 72

TABLE III. Image positions due to lensing by the Galactic MDO modeled as a weakly naked singularity (� ¼ 0:7), and their
respective bending angles, magnifications, time delays, and differential time delays. (a) The same as (a) and (b) of Table II. (b) The
same as (a) of Table I.

� Image on the opposite side from the source Image on the same side as the source

�o �̂o �o �o ��o �s �̂s �s �s

0 �1:388 176 2.776 351 � 14.668 36 0 1.388 176 2.776 351 � 14.668 36

10�5 �1:388 171 2.776 361 �69 407:97 14.668 36 0.000 017 1.388 181 2.776 341 69 408.97 14.668 35

10�3 �1:387 676 2.777 352 �693:5848 14.669 21 0.001 706 1.388 676 2.775 352 694.5848 14.667 50

10�1 �1:339 076 2.878 152 �6:454 347 14.755 21 0.170 636 1.439 076 2.678 151 7.454 345 14.584 57

2 �0:710 862 5.421 724 �0:073 840 17.126 60 3.687 536 2.710 855 1.421 709 1.073 838 13.439 06

4 �0:434 558 8.869 115 �0:009 696 21.493 45 8.734 389 4.434 547 0.869 094 1.009 695 12.759 06

6 �0:305 616 12.611 23 �0:002 355 28.084 32 15.771 41 6.305 604 0.611 208 1.002 354 12.312 92

8 �0:234 043 16.468 09 �0:000 809 37.014 78 25.029 69 8.234 031 0.468 062 1.000 808 11.985 09

10 �0:189 137 20.378 27 �0:000 345 48.333 40 36.606 42 10.189 12 0.378 250 1.000 345 11.726 98

TABLE IV. Image positions due to lensing by the Galactic MDO modeled as a marginally strongly naked singularity (� ¼ 0:5), and
their respective bending angles, magnifications, time delays, and differential time delays. (a) The same as (a) and (b) of Table II.
(b) The same as (a) of Table I.

� Image on the opposite side from the source Image on the same side as the source

�o �̂o �o �o ��o �s �̂s �s �s

0 �1:388 175 2.776 350 � 14.330 04 0 1.388 175 2.776 350 � 14.330 04

10�5 �1:388 170 2.776 360 �69 407:97 14.330 05 0.000 017 1.388 180 2.776 340 69 408.97 14.330 03

10�3 �1:387 675 2.777 350 �693:5848 14.330 89 0.001 706 1.388 675 2.775 350 694.5848 14.329 19

10�1 �1:339 075 2.878 150 �6:454 347 14.416 89 0.170 636 1.439 075 2.678 150 7.454 345 14.246 26

2 �0:710 861 5.421 721 �0:073 840 16.788 28 3.687 533 2.710 854 1.421 708 1.073 838 13.100 75

4 �0:434 556 8.869 112 �0:009 696 21.155 13 8.734 385 4.434 547 0.869 094 1.009 695 12.420 74

6 �0:305 614 12.611 23 �0:002 354 27.746 00 15.771 40 6.305 604 0.611 208 1.002 354 11.974 60

8 �0:234 041 16.468 08 �0:000 809 36.676 46 25.029 68 8.234 031 0.468 062 1.000 808 11.646 78

10 �0:189 135 20.378 27 �0:000 345 47.995 08 36.606 40 10.189 12 0.378 250 1.000 345 11.388 67
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TABLE V. Image positions on the same side as the source due to lensing by the Galactic MDO modeled as a strongly naked
singularity (� ¼ 0:04), and their respective bending angles, magnifications, time delays, and differential time delays. (a) The same as
(a) of Table II. (b) The subscripts is and os on the symbols, respectively, denote for the inner and outer images on the same side as the
source. (c) The same as (a) of Table I.

� Inner image on the same side as the source Outer image on the same side as the source

�is �̂is �is �is ��is �os �̂os �os �os

0 0.000 577 0.001 154 � 8.164 602 7.452 653 1.387 890 2.775 780 � 0.711 949

10�5 0.000 577 0.001 134 �9:9� 10�6 8.164 602 7.452 662 1.387 895 2.775 770 69 408.97 0.711 940

10�3 0.000 577 �0:000 846 �9:9� 10�8 8.164 602 7.453 505 1.388 390 2.774 780 694.5849 0.711 097

10�1 0.000 577 �0:198 846 �9:9� 10�10 8.167 637 7.539 395 1.438 800 2.677 600 7.454 397 0.628 242

2 0.000 577 �3:998 847 �4:9� 10�11 9.391 988 9.908 244 2.710 736 1.421 472 1.073 866 �0:516 256
4 0.000 576 �7:998 848 �2:5� 10�11 13.075 56 14.271 26 4.434 496 0.868 992 1.009 705 �1:195 693
6 0.000 576 �11:998 85 �1:6� 10�11 19.215 33 20.856 81 6.305 578 0.611 155 1.002 358 �1:641 480
8 0.000 576 �15:998 85 �1:2� 10�11 27.811 28 29.780 34 8.234 015 0.468 030 1.000 810 �1:969 056
10 0.000 575 �19:998 85 �9:7� 10�12 38.863 43 41.090 40 10.189 11 0.378 229 1.000 346 �2:226 996

TABLE VI. Image positions on the opposite side from the source due to lensing by the Galactic MDO modeled as a strongly naked
singularity (� ¼ 0:04), and their respective bending angles, magnifications, time delays, and differential time delays. (a) The same as
(a) of Table II. (b) The subscripts io and oo on the symbols, respectively, denote for the inner and outer images on the opposite side
from the source. (c) The same as (a) of Table I.

� Outer image on the opposite side from the source Inner image on the opposite side from the source

�oo �̂oo �oo �oo ��oo �io �̂io �io �io ��io

0 �1:387 890 2.775 780 � 0.711 949 0 �0:000 577 0.001 154 � 8.164 602 7.452 653

10�5 �1:387 885 2.775 790 �69 407:97 0.711 957 0.000 017 �0:000 577 0.001 174 9:9� 10�6 8.164 602 7.452 662

10�3 �1:387 390 2.776 780 �693:5848 0.712 801 0.001 704 �0:000 577 0.003 154 9:9� 10�8 8.164 603 7.453 506

10�1 �1:338 780 2.877 560 �6:454 297 0.798 725 0.170 483 �0:000 577 0.201 154 9:9� 10�10 8.167 708 7.539 465

2 �0:710 409 5.420 818 �0:073 812 3.168 027 3.684 283 �0:000 577 4.001 155 5:0� 10�11 9.393 405 9.909 661

4 �0:434 037 8.868 073 �0:009 686 7.531 250 8.726 943 �0:000 578 8.001 155 2:5� 10�11 13.078 40 14.274 09

6 �0:305 070 12.610 14 �0:002 351 14.116 91 15.758 39 �0:000 578 12.001 16 1:7� 10�11 19.219 58 20.861 06

8 �0:233 486 16.466 97 �0:000 807 23.040 51 25.009 57 �0:000 578 16.001 16 1:2� 10�11 27.816 95 29.786 01

10 �0:188 575 20.377 14 �0:000 344 34.350 62 36.577 58 �0:000 579 20.001 16 1:0� 10�11 38.870 51 41.097 48

TABLE VII. Image positions on the same side as the source due to lensing by the Galactic MDO modeled as a strongly naked
singularity (� ¼ 0:02), and their respective bending angles, magnifications, time delays, and differential time delays. (a) The same as
(a) of Table II. (b) The same as (b) of Table V. (c) The same as (a) of Table I.

� Inner image on the same side as the source Outer image on the same side as the source

�is �̂is �is �is ��is �os �̂os �os �os

0 0.002 297 0.004 593 � �8:271 824 5.808 667 1.387 029 2.774 057 � �14:080 49

10�5 0.002 297 0.004 573 �6:3� 10�4 �8:271 824 5.808 675 1.387 034 2.774 047 69 409.04 �14:080 50

10�3 0.002 297 0.002 593 �6:3� 10�6 �8:271 825 5.809 517 1.387 529 2.773 058 694.5857 �14:081 34

10�1 0.002 296 �0:195 407 �6:3� 10�8 �8:268 894 5.895 250 1.437 970 2.675 940 7.454 558 �14:164 14

2 0.002 291 �3:995 418 �3:1� 10�9 �7:046 546 8.261 433 2.710 378 1.420 757 1.073 949 �15:307 98

4 0.002 286 �7:995 428 �1:5� 10�9 �3:365 073 12.622 05 4.434 343 0.868 685 1.009 733 �15:987 12

6 0.002 280 �11:995 44 �1:0� 10�9 2.772 596 19.205 37 6.305 498 0.610 996 1.002 370 �16:432 77

8 0.002 275 �15:995 45 �7:5� 10�10 11.36 646 28.126 74 8.233 968 0.467 935 1.000 816 �16:760 28

10 0.002 270 �19:995 46 �5:9� 10�10 22.416 52 39.434 66 10.189 08 0.378 166 1.000 349 �17:018 14
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TABLE VIII. Image positions on the opposite side from the source due to lensing by the Galactic MDO modeled as a strongly naked
singularity (� ¼ 0:02), and their respective bending angles, magnifications, time delays, and differential time delays. (a) The same as
(a) of Table II. (b) The same as (b) of Table VI. (c) The same as (a) of Table I.

� Outer image on the opposite side from the source Inner image on the opposite side from the source

�oo �̂oo �oo �oo ��oo �io �̂io �io �io ��io

0 �1:387 029 2.774 057 � �14:080 49 0 �0:002 297 0.004 593 � �8:271 824 5.808 667

10�5 �1:387 024 2.774 067 �69 408:04 �14:080 48 0.000 017 �0:002 297 0.004 613 6:3� 10�4 �8:271 824 5.808 675

10�3 �1:386 528 2.775 057 �693:5853 �14:079 64 0.001 703 �0:002 297 0.006 593 6:3� 10�6 �8:271 822 5.809 520

10�1 �1:337 888 2.875 776 �6:454 149 �13:993 77 0.170 377 �0:002 297 0.204 594 6:3� 10�8 �8:268 612 5.895 533

2 �0:709 041 5.418 082 �0:073 730 �11:625 81 3.682 166 �0:002 302 4.004 604 3:2� 10�9 �7:040 905 8.267 074

4 �0:432 460 8.864 920 �0:009 657 �7:264 419 8.722 705 �0:002 308 8.004 615 1:6� 10�9 �3:353 791 12.633 33

6 �0:303 414 12.606 83 �0:002 339 �0:680 750 15.752 03 �0:002 313 12.004 63 1:1� 10�9 2.789 520 19.222 29

8 �0:231 793 16.463 59 �0:000 801 8.240 791 25.001 07 �0:002 319 16.004 64 8:2� 10�10 11.389 03 28.149 30

10 �0:186 860 20.373 72 �0:000 341 19.548 80 36.566 94 �0:002 325 20.004 65 6:7� 10�10 22.444 73 39.462 87

TABLE IX. Image positions on the same side as the source due to lensing by the Galactic MDO modeled as a strongly naked
singularity (� ¼ 0:001), and their respective bending angles, magnifications, time delays, and differential time delays. (a) The same as
(a) of Table II. (b) The same as (b) of Table V. (c) The same as (a) of Table I.

� Inner image on the same side as the source Outer image on the same side as the source

�is �̂is �is �is ��is �os �̂os �os �os

0.75 � � � � � � � � �
0.85 0.985 460 0.270 920 �1:634 301 �577:4174 0.004 886 1.273 212 0.846 424 3.146 478 �577:4223

2 0.632 970 �2:734 059 �0:038 933 �576:9387 0.841 932 2.488 924 0.977 849 1.150 355 �577:7807

4 0.486 179 �7:027 642 �0:005 625 �573:9272 4.363 376 4.349 611 0.699 223 1.026 918 �578:2905

6 0.415 912 �11:168 18 �0:001 874 �568:3368 10.325 23 6.262 637 0.525 273 1.008 728 �578:6620

8 0.371 325 �15:257 35 �0:000 859 �560:2218 18.727 13 8.208 527 0.417 054 1.003 774 �578:9489

10 0.339 464 �19:321 07 �0:000 467 �549:6044 29.577 00 10.172 36 0.344 712 1.001 941 �579:1814

25 0.231 031 �49:537 94 �0:000 037 �390:9432 189.2497 25.074 04 0.148 084 1.000 121 �580:1930

35 0.199 350 �69:601 30 �0:000 014 �208:0429 372.5350 35.053 54 0.107 070 1.000 043 �580:5779

45 0.178 218 �89:643 56 �0:000 007 36.420 54 617.2886 45.041 91 0.083 823 1.000 020 �580:8680

TABLE X. Magnification centroid due to lensing by the Schwarzschild black hole (� ¼ 1); and weakly (� ¼ 0:7), marginally
strongly (� ¼ 0:5), and strongly (� ¼ 0:04, 0.02, 0.001) naked singularities. (a) The same as (a) of Table I.

� Magnification centroid

� ¼ 1ðSBHÞ � ¼ 0:7ðWNSÞ � ¼ 0:5ðMSNSÞ � ¼ 0:04ðSNSÞ � ¼ 0:02ðSNSÞ � ¼ 0:001ðSNSÞ
10�5 0.000 015 000 000 000 4 0.000 015 000 000 000 3 0.000 015 000 000 000 3 0.000 014 999 999 343 3 0.000 014 999 989 507 3 �
10�3 0.001 499 999 870 32 0.001 499 999 870 31 0.001 499 999 870 31 0.001 499 999 804 61 0.001 499 998 821 01 �
10�1 0.149 870 601 362 0.149 870 601 362 0.149 870 601 361 0.149 870 594 833 0.149 870 497 099 �
2 2.490 707 198 63 2.490 707 198 62 2.490 707 198 62 2.490 707 176 80 2.490 706 848 78 2.428 167 682 65

4 4.388 236 394 45 4.388 236 394 45 4.388 236 394 45 4.388 236 390 45 4.388 236 321 68 4.328 563 385 84

6 6.290 110 811 74 6.290 110 811 74 6.290 110 811 74 6.290 110 810 57 6.290 110 780 80 6.251 795 026 25

8 8.227 195 245 92 8.227 195 245 92 8.227 195 245 92 8.227 195 245 33 8.227 195 222 97 8.201 829 221 37

10 10.185 550 248 9 10.185 550 248 9 10.185 550 248 9 10.185 550 248 4 10.185 550 228 0 10.167 771 538 0

TABLE XI. Magnification centroid shift due to lensing by the Schwarzschild black hole (� ¼ 1); and weakly (� ¼ 0:7), marginally
strongly (� ¼ 0:5), and strongly (� ¼ 0:04, 0.02, 0.001) naked singularities. (a) The same as (a) of Table I.

� Magnification centroid shift

� ¼ 1ðSBHÞ � ¼ 0:7ðWNSÞ � ¼ 0:5ðMSNSÞ � ¼ 0:04ðSNSÞ � ¼ 0:02ðSNSÞ � ¼ 0:001ðSNSÞ
10�5 5:000 000 000 37� 10�6 5:000 000 000 34� 10�6 5:000 000 000 28� 10�6 4:999 999 343 27� 10�6 4:999 989 507 28� 10�6 �
10�3 0.000 499 999 870 316 0.000 499 999 870 313 0.000 499 999 870 306 0.000 499 999 804 606 0.000 499 998 821 007 �
10�1 0.049 870 601 361 8 0.049 870 601 361 5 0.049 870 601 360 9 0.049 870 594 832 6 0.049 870 497 098 7 �
2 0.490 707 198 627 0.490 707 198 624 0.490 707 198 620 0.490 707 176 798 0.490 706 848 782 0.428 167 682 651

4 0.388 236 394 450 0.388 236 394 449 0.388 236 394 447 0.388 236 390 447 0.388 236 321 681 0.328 563 385 839

6 0.290 110 811 742 0.290 110 811 742 0.290 110 811 741 0.290 110 810 567 0.290 110 780 796 0.251 795 026 246

8 0.227 195 245 922 0.227 195 245 922 0.227 195 245 921 0.227 195 245 327 0.227 195 222 966 0.201 829 221 370

10 0.185 550 248 860 0.185 550 248 859 0.185 550 248 859 0.185 550 248 432 0.185 550 228 011 0.167 771 538 043
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TABLE XII. Total magnification due to lensing by the Schwarzschild black hole (� ¼ 1); and weakly (� ¼ 0:7), marginally
strongly (� ¼ 0:5), and strongly (� ¼ 0:04, 0.02, 0.001) naked singularities. (a) The same as (a) of Table I.

� Total magnification

� ¼ 1ðSBHÞ � ¼ 0:7ðWNSÞ � ¼ 0:5ðMSNSÞ � ¼ 0:04ðSNSÞ � ¼ 0:02ðSNSÞ � ¼ 0:001ðSNSÞ
10�5 138 816.932 541 138 816.932 541 138 816.932 542 138 816.941 647 138 817.077 259 �
10�3 1388.169 595 52 1388.169 595 52 1388.169 595 53 1388.169 686 59 1388.171 042 70 �
10�1 13.908 692 659 9 13.908 692 660 0 13.908 692 660 1 13.908 693 567 8 13.908 707 085 9 �
2 1.147 678 000 38 1.147 678 000 38 1.147 678 000 38 1.147 678 017 08 1.147 678 263 38 1.189 288 130 01

4 1.019 390 699 71 1.019 390 699 71 1.019 390 699 71 1.019 390 701 36 1.019 390 726 80 1.032 542 982 20

6 1.004 708 845 75 1.004 708 845 75 1.004 708 845 75 1.004 708 846 06 1.004 708 852 30 1.010 602 079 86

8 1.001 616 965 92 1.001 616 965 92 1.001 616 965 92 1.001 616 966 03 1.001 616 969 10 1.004 632 472 08

10 1.000 689 289 92 1.000 689 289 92 1.000 689 289 92 1.000 689 289 98 1.000 689 292 09 1.002 408 857 84
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