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We present a solution of Einstein equations with quintessential matter surrounding a d-dimensional

black hole, whose asymptotic structures are determined by the state of the quintessential matter. We

examine the thermodynamics of this black hole and find that the mass of the black hole depends on the

equation of state of the quintessence, while the first law is universal. Investigating the Hawking radiation

in this black hole background, we observe that the Hawking radiation dominates on the brane in the low-

energy regime. For different asymptotic structures caused by the equation of state of the quintessential

matter surrounding the black hole, we learn that the influences by the state parameter of the quintessence

on Hawking radiation are different.
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I. INTRODUCTION

String theory predicts the existence of extra dimensions.
This inspired a lot of interest to study whether extra di-
mensions can be observed, which can present the signature
of string and the correctness of string theory. A great deal
of effort has been expended for the detection of extra
dimensions. One among them is the study of perturbations
around braneworld black holes. It has been argued that the
extra dimension can imprint in the wave dynamics in the
braneworld black hole background [1–4]. Another chief
possibility to observe the extra dimension is the spectrum
of Hawking radiation which is expected to be detected in
particle accelerator experiments [5–17]. Recently through
the study of Hawking radiation from squashed Kaluza-
Klein black holes [14–16], it was argued that the luminos-
ity of Hawking radiation can tell us the size of the extra
dimension which opens a window to observe extra
dimensions.

Recent astronomical observations strongly suggest that
our universe is currently undergoing a phase of accelerated
expansion, likely driven by some exotic component called
dark energy. Despite the mounting observational evidence,
the nature and origin of dark energy remains elusive and it

has become a source of vivid debate. Quintessence is one
candidate for the dark energy, which has negative pressure.
If quintessence exists everywhere in the universe, it can
cause the universe to accelerate. Besides with quintessence
around a black hole, the black hole spacetime will be
deformed. The Einstein equations for the static spherically
symmetric quintessence surrounding a black hole in four
dimensions were studied in [18]. It was found that the
condition of additivity and linearity in the energy-
momentum tensor allows one to get a correct limit to the
known solutions for the electromagnetic static field and for
the case of the cosmological constant.
In this work, we first extend [18] to the solution of

Einstein equations with quintessential matter surrounding
a d-dimensional black hole by assuming that quintessence
is not only on the brane but full in the bulk. We get a new
d-dimensional black hole, whose asymptotic structures are
determined by the state of the quintessential matter sur-
rounding the black hole. We examine the thermodynamics
of this black hole and find that the mass of the black hole
depends on the equation of state of the quintessence, while
the first law keeps the same form independent of the
dimensions and the state of the quintessence. In-
vestigating Hawking radiation in this black hole back-
ground, we observe that Hawking radiation dominates on
the brane. For different asymptotic structures caused by the
equation of state of the quintessential matter surrounding
the black hole, we learn that the influences by the state
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parameter of the quintessence on Hawking radiation are
different. The signature of the dimension in Hawking
radiation is also presented.

II. d-DIMENSIONAL STATIC SPHERICALLY
SYMMETRIC BLACK HOLES SURROUNDED BY

QUINTESSENCE

We study the Einstein equation for a static spherically
symmetric black hole surrounded by quintessence in
d-dimensions. The d-dimensional static black hole is de-
scribed by

ds2 ¼ e�dt2 � e�dr2 � r2d�21 � r2sin2�1d�
2
2 � � � �

� r2sin2�1 � � � sin2�d�3d�
2
d�2; (1)

where � and � are functions of radial coordinate r. The
energy-momentum tensor of the quintessence in the static
spherically symmetric state can be written as [18]

Tt
t ¼ AðrÞ; Tt

j ¼ 0; Ti
j ¼ CðrÞrirj þ BðrÞ�i

j:

(2)

After averaging over the angles of the isotropic state we get

hTi
ji ¼ DðrÞ�i

j; DðrÞ ¼ � 1

d� 1
CðrÞr2 þ BðrÞ:

(3)

For quintessence, we have

DðrÞ ¼ �!qAðrÞ: (4)

Thus, in terms of density AðrÞ, we can get the expression of
DðrÞ for fixed state parameter !q. As in Ref. [18], the

appropriate constant coefficientCðrÞ=BðrÞ is defined by the
condition of additivity and linearity.

The Einstein equations of metric (1) have the form

2Tt
t ¼ d� 2

2

�
�e��

�
d� 3

r2
� �0

r

�
þ d� 3

r2

�
; (5)

2Tr
r ¼ d� 2

2

�
�e��

�
d� 3

r2
þ �0

r

�
þ d� 3

r2

�
; (6)

2T�1
�1 ¼ 2T�2

�2 ¼ � � � 2T�d�2

�d�2

¼ � e��

2

�
�00 þ �02

2
� �0�0

2
þ ðd� 3Þð�0 � �0Þ

r

þ ðd� 3Þðd� 4Þ
r2

�
þ ðd� 3Þðd� 4Þ

2r2
; (7)

where the prime denotes the derivative with respect to r.
The appropriate general expression of the energy-

momentum tensor of quintessence in the d-dimensional
spherically symmetric spacetime is given by

Tt
t ¼ �qðrÞ;

Ti
j ¼ �qðrÞ�

�
�½1þ ðd� 1ÞBðrÞ� rir

j

rnr
n þ B�i

j

�
:
(8)

This leads the spatial part of the energy-momentum tensor
in proportion to the time component with the arbitrary
parameter BðrÞ which depends on the internal structure
of quintessence. After taking isotropic average over the
angles, we obtain

hrirji ¼ 1

d� 1
rnr

n�i
j; (9)

hTi
ji ¼ ��qðrÞ �

d� 1
�i

j ¼ �pq�i
j: (10)

From the state equation pq ¼ !q�q, it is easy to see

!q ¼ �

d� 1
: (11)

For quintessence, we have �1<!q < 0 and �ðd� 1Þ<
�< 0.
As in Ref. [18], we can define a principle of additivity

and linearity by the equality

Tt
t ¼ Tr

r ) �þ � ¼ 0: (12)

And then substituting

� ¼ � lnf; (13)

we can obtain the linear differential equations in f

Tt
t ¼ Tr

r ¼ �d� 2

4r2
½rf0 þ ðd� 3Þðf� 1Þ�; (14)

T�1
�1 ¼ T�2

�2 ¼ � � �T�d�2

�d�2

¼ � 1

4r2
½r2f00 þ 2ðd� 3Þrf0

þ ðd� 4Þðd� 3Þðf� 1Þ�: (15)

From Eqs. (8) and (14), we can fix the free parameter B in
the energy-momentum tensor for the matter

B ¼ � ðd� 1Þ!q þ 1

ðd� 1Þðd� 2Þ!q

: (16)

Thus the energy-momentum tensor (8) has the form

Tt
t ¼ Tr

r ¼ �q; (17)

T�1
�1 ¼ T�2

�2 ¼ � � �T�d�2

�d�2

¼ � 1

d� 2
�q½ðd� 1Þ!q þ 1�: (18)

Making use of Eqs. (14), (15), (17), and (18), we obtain a
differential equation for f
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r2f00 þ ½ðd� 1Þ!q þ 2d� 5�rf0
þ ðd� 3Þ½ðd� 1Þ!q þ d� 3�ðf� 1Þ ¼ 0: (19)

The general solution of the above equation has the form

f ¼ 1� rg

rd�3
þ c1

rðd�1Þ!qþd�3
; (20)

where rg and c1 are normalization factors. When c1 ¼ 0,

the function f describes the usual d-dimensional
Schwarzschild black hole. Moreover, we also note that in
the case !q ¼ 0, the second and the third term in f have

the same order of r.
The energy density �q for quintessence can be described

by

�q ¼ c1!qðd� 1Þðd� 2Þ
4rðd�1Þð!qþ1Þ ; (21)

which should be positive. Since !q � 0, it requires the

normalization constant c1 for quintessence to be negative.
If we take rg ¼ 2M and c ¼ �c1, the metric of the

d-dimensional spherically symmetric black hole sur-
rounded by quintessence reads

ds2 ¼
�
1� 2M

rd�3
� c

rðd�1Þ!qþd�3

�
dt2

�
�
1� 2M

rd�3
� c

rðd�1Þ!qþd�3

��1
dr2 � r2d�d�2:

(22)

This spacetime depends not only on the dimension d, but
also on the state parameter !q of quintessence. When d ¼
4, our result reduces to that obtained in [18]. In the limit
!q ¼ �1, the metric (22) becomes

ds2 ¼
�
1� 2M

rd�3
� cr2

�
dt2 �

�
1� 2M

rd�3
� cr2

��1
dr2

� r2d�d�2; (23)

which reduces to the d-dimensional Schwarzschild-
de Sitter black hole. We also note that the metric (22)
can reduce to the d-dimensional Reissner-Nordström black
hole if we take

!q ¼ d� 3

d� 1
: (24)

This implies that the state parameter!q of the electromag-

netic field is a function of the dimension d of the space-
time, so that we might fix the number of extra dimensions
of the spacetime by measuring the relation between the
pressure pq and the energy density �q.

III. THERMODYNAMICS OF THE
d-DIMENSIONAL STATIC SPHERICALLY

SYMMETRIC BLACK HOLE SURROUNDED BY
QUINTESSENCE

We now study the thermodynamical property at the
black hole event horizon in the background (22). We write
the mass E of a d-dimensional black hole as a product

E ¼ FðdÞM; (25)

where FðdÞ is a function of dimension d. We will see that
the first law of thermodynamics at the black hole event
horizon does not depend on this function. The entropy S,
mass E, and Hawking temperature T of the black hole (22)
can be described by

S ¼ Ah

4
¼ ðd� 1Þ�ðd�1Þ=2

4�½dþ1
2 � rd�2

h ¼ rd�2
h

GðdÞ ; (26)

E ¼ FðdÞ
2

½GðdÞS�ðd�3Þ=ðd�2Þ � FðdÞc
2

�½GðdÞS��ð!qðd�1ÞÞ=ðd�2Þ; (27)

T ¼ FðdÞGðdÞ
2ðd� 2Þ ½ðd� 3Þ½GðdÞS��1=ðd�2Þ

þ!qcðd� 1Þ½GðdÞS��ð!qðd�1Þþd�2Þ=ðd�2Þ�; (28)

respectively. As we did in [19], we treat the constant c as a
variable, and have the generalized force

�c ¼
�
@E

@c

�
S
¼ �FðdÞ

2
½GðdÞS��ð!qðd�1ÞÞ=ðd�2Þ: (29)

We find that the first law takes the form

d� 3

d� 2
E ¼ TSþ!qðd� 1Þ þ d� 3

d� 2
�cc: (30)

It is clear that the mass depends on the state parameter !q

of quintessence. In the limit !q ! �1, the second term in

the right-hand side of Eq. (30) becomes� 2
d�2�cc. Setting

c ¼ 1
l2
, where l2 is defined as the cosmological constant �

through l2 ¼ ðd�1Þðd�2Þ
2� , we have �l ¼ � 2

l3
�c and

� 2
d�2�cc ¼ 1

d�2�ll. Then Eq. (30) reduces to the first

law in the d-dimensional de Sitter (dS) black hole space-
times [19]. In the case!q ¼ d�3

d�1 , setting c ¼ �Q2, we can

obtain �Q ¼ �2Q�c, and 2ðd�3Þ
d�2 �cc ¼ d�3

d�2�QQ. The

first law returns to that in the d-dimensional Reissner-
Nordström black hole[20].
From Eqs. (26)–(28), it is easy to obtain that

T ¼
�
@E

@S

�
c
: (31)

Combining it with Eq. (29), we have
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dE ¼
�
@E

@S

�
c
dSþ

�
@E

@c

�
S
dc ¼ TdSþ�cdc; (32)

which is the differential form of the first law of thermody-
namics in the background of (22). Obviously, in the case of
a d-dimensional static black hole surrounded by spheri-
cally symmetric quintessence, the differential form of the
first law does not depend on the state parameter !q.

IV. GREYBODY FACTOR FOR A d-DIMENSIONAL
STATIC SPHERICALLY SYMMETRIC BLACK
HOLE SURROUNDED BY QUINTESSENCE

In this section, we study the greybody factors for the
emission of scalar field in the low-energy limit on the brane
and into the bulk from the d-dimensional static spherically
symmetric black hole surrounded by quintessence (22).
The greybody factors of the scalar field in the
d-dimensional Schwarzschild and Schwarzschild-dS black
holes have been investigated [21,22].

The equation of motion for a massless scalar particle
propagating in the curved spacetime is described by

1ffiffiffiffiffiffiffi�g
p @�ð ffiffiffiffiffiffiffi�g

p
g��@�Þ�ðt; r;�Þ ¼ 0; (33)

where �ðt; r;�Þ denotes the scalar field. Separating
�ðt; r;�Þ ¼ e�i!t�bulkðrÞYlmð�Þ, we can obtain the radial
equation for the scalar field propagating into the bulk

1

rd�2

d

dr

�
rd�2f

d�bulkðrÞ
dr

�

þ
�
!2

f
� lðlþ d� 3Þ

r2

�
�bulkðrÞ ¼ 0; (34)

with f ¼ 1� 2M
rd�3 � c

rðd�1Þ!qþd�3 . Similarly, we can also ob-

tain the radial equation for scalar field propagating on the
brane

1

r2
d

dr

�
r2f

d�braneðrÞ
dr

�
þ

�
!2

f
� lðlþ 1Þ

r2

�
�braneðrÞ ¼ 0:

(35)

Adopting the tortoise coordinate x ¼ R
dr
f , radial equa-

tions (34) and (35) can be further written as

�
d2

dx2
þ!2 � VbulkðrÞ

�
½rðd�2Þ=2�bulkðrÞ� ¼ 0; (36)

and

�
d2

dx2
þ!2 � VbraneðrÞ

�
½r�braneðrÞ� ¼ 0; (37)

with the effective potentials

VbulkðrÞ ¼ f

�ðd� 2Þðd� 4Þf
4r2

þ ðd� 2Þf0
2r

þ lðlþ d� 3Þ
r2

�
; (38)

and

VbraneðrÞ ¼ f

�
f0

r
þ lðlþ 1Þ

r2

�
: (39)

Here we only consider the greybody factor for the mode
l ¼ 0 which dominates in the low-energy regime ! � TH

and !RH � 1. From the expression of f, we find that the
spacetime (22) is asymptotically flat if 0>!q >�ðd�
3Þ=ðd� 1Þ and is asymptotically dS-like when �1 �
!q <�ðd� 3Þ=ðd� 1Þ. As in [21], we write f ¼ faðrÞ þ
fhðrÞ. The function faðrÞ is the asymptotic part of f and the
function fhðrÞ contains physics which is specific for the
black hole. We can define the asymptotic region to be
faðrÞ � fhðrÞ.
Near the black hole horizon r� RH, taking into account

the ingoing boundary condition, we obtain the solution of
the radial equations (34) and (35) in the same form

�ðrÞRH ¼ AIe
i!x: (40)

Near the black hole horizon x� 1
2	H

logr�RH

RH
, the solution

(40) can be written as

�ðrÞRH ¼ AI

�
1þ i!

2	H

log
r� RH

RH

�
: (41)

In the intermediate region where the effective potentials
VbulkðrÞ � !2 and VbraneðrÞ � !2, the radial equa-
tions (34) and (35) can be reduced to

1

rd�2

d

dr

�
rd�2f

d�bulkðrÞ
dr

�
¼ 0; (42)

and

1

r2
d

dr

�
r2f

d�braneðrÞ
dr

�
¼ 0; (43)

respectively. The general solutions for Eqs. (42) and (43)
can be determined as

�bulkðrÞ ¼ AII þ BIIGðrÞ;
and �braneðrÞ ¼ AII þ B0

IIG
0ðrÞ; (44)

where

GðrÞ ¼
Z r

1
dr

rd�2f
; and G0ðrÞ ¼

Z r

1
dr

r2f
: (45)

For r� RH, we have
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GðrÞ ¼ 1

2Rd�2
H 	H

logðr� RHÞ; and

G0ðrÞ ¼ 1

2R2
H	H

logðr� RHÞ: (46)

Matching this solution to the wave function (41) of the near
black hole horizon region, we obtain

AII ¼ AI; BII ¼ i!Rd�2
H AI; B0

II ¼ i!R2
HAI:

(47)

The asymptotic expressions of wave functions (44) in the
limit r � RH with VðrÞ � !2 read

�bulkðrÞ ¼ AI

�
1þ i!Rd�2

H

Z r

1
dr

rd�2faðrÞ
�
;

�braneðrÞ ¼ AI

�
1þ i!R2

H

Z r

1
dr

r2faðrÞ
�
:

(48)

We shall use these expressions to match the general solu-
tion for the scalar wave equation in the asymptotic region.

Until now, we just concentrated on the black hole. In the
following, we will do the matching in the asymptotic
region for the case of asymptotically flat spacetime and
asymptotically dS spacetime, respectively.

Let us first consider the asymptotically flat spacetime
where 0>!q >�ðd� 3Þ=ðd� 1Þ. In this case, we take

faðrÞ ¼ 1.
The general solutions of the wave equations (34) and

(35) in asymptotically flat spacetime are given by

�bulkðrÞ ¼ �ð3�dÞ=2½C1H
ð1Þ
ðd�3Þ=2ð�Þ þ C2H

ð2Þ
ðd�3Þ=2ð�Þ�;

�braneðrÞ ¼ ��ð1=2Þ½C1H
ð1Þ
1=2ð�Þ þ C2H

ð2Þ
1=2ð�Þ�; (49)

where � ¼ r!, Hð1Þ
� ð�Þ ¼ J�ð�Þ þ iN�ð�Þ and Hð2Þ

� ð�Þ ¼
J�ð�Þ � iN�ð�Þ are the Hankel functions defined by the
Bessel functions J�ð�Þ and N�ð�Þ. In the limit � � 1, we
have

�bulkðrÞ � C1 þ C2

�ðd�1
2 Þ2ðd�3Þ=2 � iðC1 � C2Þ

�ðd�3
2 Þ2ðd�3Þ=2

��ðd�3Þ=2 ;

�braneðrÞ �
ffiffiffi
2

p ðC1 þ C2Þffiffiffiffi
�

p � i
ffiffiffi
2

p ðC1 � C2Þffiffiffiffi
�

p
�ðd�3Þ=2 : (50)

Matching the wave function (50) in the asymptotic
region to that in the intermediate region, we get the rela-
tionship between the coefficients C1 and C2

C1 þ C2 ¼ �

�
d� 1

2

�
2ðd�3Þ=2AI;

C1 � C2 ¼ �!d�2Rd�2
H

ðd� 3Þ�ðd�3
2 Þ2ðd�3Þ=2 AI;

(51)

in the bulk and

C1 þ C2 ¼
ffiffiffiffi
�

2

r
AI; C1 � C2 ¼

ffiffiffiffi
�

2

r
!2R2

HAI; (52)

on the brane. From the definition of greybody factor in the
low-energy limit !RH � 1,


ð!Þ ¼ 1� jC2j2
jC1j2

’ 4
C1 � C2

C1 þ C2

; (53)

we obtain the greybody factor


ð!Þ ¼ 4�!d�2Rd�2
H

2d�2�ðd�1
2 Þ2 ; (54)

in the bulk and


ð!Þ ¼ 4!2R2
H; (55)

on the brane. Obviously, the greybody factors in the bulk
and on the brane depend on the black hole horizon radius.
The changes of RH and Rd�2

H with the state parameter !q

and dimension d are listed in Table I and the factor
2d�2�ðd�1

2 Þ2 in (54) is only a monotonically increased

function of the dimension numbers d, thus the greybody
factors (54) and (55) increase with the increase of the
absolute value of !q and decrease with the increase of d.

In the d-dimensional black hole spacetime, the luminos-
ity of the black hole Hawking radiation for the mode l ¼ 0
in the bulk and on the brane is given by

Lbulk ¼
Z 1

0

d!!d�1Rd�2
H

2d�3�ðd�1
2 Þ2

1

e!=TH � 1
; (56)

Lbrane ¼
Z 1

0

d!

2�

4!3R2
H

e!=TH � 1
: (57)

The integral expressions above are just for the sake of

TABLE I. The changes of RH and Rd�2
H with different state parameter !q and dimension

numbers d in the asymptotically flat case. Here M ¼ 1 and c ¼ 0:01.

RH Rd�2
H

!q ¼ �0:1 !q ¼ �0:2 !q ¼ �0:3 !q ¼ �0:1 !q ¼ �0:2 !q ¼ �0:3

d ¼ 4 2.0122 2.0151 2.0188 4.0481 4.0602 4.0756

d ¼ 5 1.4183 1.4189 1.4200 2.8530 2.8566 2.8633

d ¼ 6 1.2623 1.2626 1.2629 2.5389 2.5413 2.5438

d ¼ 7 1.1909 1.1910 1.1912 2.3954 2.3964 2.3984
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completeness by writing the integral range from 0 to
infinity. However, as our analysis has focused only in the
low-energy regime of the spectrum, an upper cutoff will be
imposed on the energy parameter so that the low-energy
conditions ! � TH and !R � 1 are satisfied. The values
derived for the luminosities of the black hole on the brane
and in the bulk will therefore be based on the lower part of
the spectrum and modifications may appear when the high-
energy part of the spectrum is included in the calculation.
The Hawking temperature TH of the black hole in the
asymptotically flat spacetime is listed in Table II. It is
shown that TH increases with of the dimension number d
and decreases with the increase of the absolute value of!q.

Table III tells us that both the luminosity of Hawking
radiation in the bulk and on the brane decrease with the
increase of the absolute !q and increase with the dimen-

sion number d. We observe that Hawking radiation domi-
nates on the brane and the ratio Lbrane=Lbulk increases with
the magnitude of !q and dimension d.

Now we start to consider asymptotically dS-like space-
time with �1 � !q <�ðd� 3Þ=ðd� 1Þ. The function

faðrÞ is now given by

faðrÞ ¼ 1� c

r!qðd�1Þþd�3
: (58)

The metric (22) now has a cosmological-like horizon

located at r ¼ rc ¼ c1=½!qðd�1Þþd�3�. Assuming that rc �
RH, we have that fhðrÞ � faðrÞ for r � RH and the fhðrÞ
contribution to fðrÞ is negligible. This allows us to define
an intermediate region, RH � r � rc, in between the near
horizon and the asymptotic region. Thus, for r � RH,
r=rc � 1, and r! � 1, the wave functions (48) have the

form

�bulkðrÞ ¼ AI

�
1� i

!Rd�2
H

ðd� 3Þrd�3

�
;

�braneðrÞ ¼ AI

�
1� i

!R2
H

r

�
:

(59)

In the asymptotic region, r � RH, we define the coor-
dinate

z ¼
�
r

rc

��n
; (60)

with n ¼ !qðd� 1Þ þ d� 3, which is negative because in

this dS-like spacetime !q <�ðd� 3Þ=ðd� 1Þ. Then ra-

dial equations (34) and (35) can be approximated as

ð1� zÞz d
2Pbulk

dz2
�

�
nþ 1

n
� z

2nþ 1

n

�
dPbulk

dz

þ
�

!2r2c
n2ð1� zÞ �

d� 2

4zn2
½d� 4� zðd� 2n� 4Þ�

�
Pbulk

¼ 0; (61)

and

ð1� zÞz d
2Pbrane

dz2
�

�
nþ 1

n
� z

2nþ 1

n

�
dPbrane

dz

þ
�

!2r2c
n2ð1� zÞ �

1

n

�
Pbrane ¼ 0; (62)

respectively. Here Pbulk ¼ rðd�2Þ=2�bulkðrÞ and Pbrane ¼
r�braneðrÞ.
The general solution to the Eq. (61) is

TABLE II. The change of TH with different state parameter !q and dimension numbers d in the asymptotically flat case. Here
M ¼ 1 and c ¼ 0:01.

!q ¼ �0:1 !q ¼ �0:2 !q ¼ �0:3 !q ¼ �0:4 !q ¼ �0:5 !q ¼ �0:6

d ¼ 4 0.039 47 0.039 31 0.039 09 � � � � � � � � �
d ¼ 5 0.112 08 0.111 87 0.111 61 0.111 27 0.110 86 � � �
d ¼ 6 0.188 95 0.188 69 0.188 37 0.187 98 0.187 52 0.186 96

d ¼ 7 0.267 07 0.266 76 0.266 39 0.265 95 0.265 42 0.264 80

TABLE III. The changes of Lbulk, Lbrane and Lbrane=Lbulk with different state parameter !q and dimension numbers d in the
asymptotically flat case. Here M ¼ 1 and c ¼ 0:01.

Lbulkð10�5Þ Lbraneð10�5Þ Lbrane=Lbulk

!q ¼ �0:1 !q ¼ �0:2 !q ¼ �0:3 !q ¼ �0:1 !q ¼ �0:2 !q ¼ �0:3 !q ¼ �0:1 !q ¼ �0:2 !q ¼ �0:3

d ¼ 4 4.064 00 4.0087 3.9330 � � � � � � � � � � � � � � � � � �
d ¼ 5 31.405 31.145 30.818 131.27 130.39 129.26 4.180 4.186 4.194

d ¼ 6 99.774 99.036 98.135 839.67 835.39 830.17 8.416 8.435 8.460

d ¼ 7 263.32 261.38 259.06 2982.9 2969.9 2954.4 11.33 11.36 11.40
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Pbulk ¼ C1z
�ðd�2Þ=2nð1� zÞi!rc=n

2 F1

�
i!rc
n

;
3� dþ n

n
þ i!rc

n
;
3� dþ n

n
; z

�

þ C2z
ðd�4Þ=2nð1� zÞi!rc=n

2 F1

�
1þ i!rc

n
;
d� 3

n
þ i!rc

n
;
d� 3þ n

n
; z

�
; (63)

where 2F1½a; b; ~c; z� is the standard hypergeometric function. Since, n < 0, for z ! 0, or r=rc � 1, we have

�bulkðrÞ ¼ C1r
ð2�dÞ=2
c þ C2r

ðd�4Þ=2
c

rd�3
: (64)

Matching this wave function to the behavior (59) in the intermediate region, we can fix the coefficients C1 and C2

C1 ¼ rðd�2Þ=2
c AI; C2 ¼ �irð4�dÞ=2

c
!Rd�2

H

ðd� 3ÞAI: (65)

In order to find the behavior of the wave function for z ! 1, we change the argument of the hypergeometric function of the
solution (63) from z to 1� z and find that it has the form

Pbulk ¼ C1b11z
�ðd�2Þ=2nð1� zÞi!rc=n

2 F1

�
i!rc
n

;
3� dþ nþ i!rc

n
; 1þ i2!rc

n
; 1� z

�

þ C1b21z
�ðd�2Þ=2nð1� zÞ�i!rc=n

2 F1

�
3� dþ n� i!rc

n
;� i!rc

n
; 1� i2!rc

n
; 1� z

�

þ C2b12z
ðd�4Þ=2nð1� zÞi!rc=n

2 F1

�
1þ i!rc

n
;
d� 3þ i!rc

n
; 1þ i2!rc

n
; 1� z

�

þ C2b22z
ðd�4Þ=2nð1� zÞ�i!rc=n

2 F1

�
d� 3� i!rc

n
; 1� i!rc

n
; 1� i2!rc

n
; 1� z

�
; (66)

with

b11 ¼
�ð3�dþn

n Þ�ð� i2!rc
n Þ

�ð3�dþn�i!rc
n Þ�ð� i!rc

n Þ ;

b12 ¼
�ðd�3þn

n Þ�ð� i2!rc
n Þ

�ðd�3�i!rc
n Þ�ð1� i!rc

n Þ ;
(67)

b21 ¼
�ð3�dþn

n Þ�ði2!rc
n Þ

�ði!rc
n Þ�ðnþ3�dþi!rc

n Þ ;

b22 ¼
�ðd�3þn

n Þ�ði2!rc
n Þ

�ðd�3þi!rc
n Þ�ð1þ i!rc

n Þ :
(68)

Thus, in the limit z ! 1, the wave function becomes

�bulkðrÞ ¼ ~C1r
ð2�dÞ=2
c e�i!rc�=nei!x

þ ~C2r
ð2�dÞ=2
c ei!rc�=ne�i!x; (69)

where � ¼ � �ð1�1=nÞ
�ð�1=nÞ ½EulerGammaþ PolyGammað0;

�1=nÞ�. The relations between ~C1, ~C2 and C1, C2 can be
expressed as

�
~C1
~C2

�
¼

�
b11b12
b21b22

��
C1

C2

�
: (70)

Then the greybody factor is given by


ð!Þbulk ¼ 1� j ~C2j2
j ~C1j2

¼
��������
b21
b11

��������
2
��������1� b11b22 � b12b21

b11b21

C2

C1

��������
2

¼ 4hð!rcÞ
�
RH

rc

�
d�2

; (71)

where the function hð!rcÞ is defined by

hð!rcÞ ¼ 1

4jb11j2
: (72)

Similarly, the greybody factor for the scalar emission on
the brane is


ð!Þbrane ¼ 1

jb011j2
�
RH

rc

�
2
; (73)

with

b011 ¼
�ðn�1

n Þ�ð� i2!rc
n Þ

�ðn�1�i!rc
n Þ�ð� i!rc

n Þ : (74)

The greybody factors 
ð!Þbulk and 
ð!Þbrane depend on !
and the ratio RH=rc. The changes of RH and rc in the case
!qðd� 1Þ þ d� 3< 0 with !q and d are listed in
Table IV. One can find that the ratio RH=rc increases
with the increase of the absolute value of!q and decreases
with the increase of the dimension d. In the low-energy
limit !rc < 1, we have the quantities jb11j2 � 1=4 and
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jb011j2 � 1=4; then the greybody factors 
ð!Þbulk and

ð!Þbrane also increase with !q and decrease with d.

The luminosity of Hawking radiation for the mode l ¼ 0
in the bulk and on the brane can be given by

Lbulk ¼
Z 1

0

d!!
ð!Þbulk
e!=TH � 1

; (75)

Lbrane ¼
Z 1

0

d!

2�

!
ð!Þbrane
e!=TH � 1

: (76)

As we did in (56) and (57), here we also focus only in the
low-energy regime of the spectrum and impose an upper
cutoff on the energy parameter so that the low-energy
conditions ! � TH and !R � 1 are satisfied. The values
obtained for the luminosities of the black hole on the brane
and in the bulk are based on the lower part of the spectrum.
When the high-energy part of the spectrum is included, the
results may significantly change.

Although the black hole Hawking temperature TH

(which is listed in Table V) decreases with the increase
of the absolute value of !q, Table VI tells us that the

luminosity of the black hole Hawking radiation increases
with the increase of the magnitude of !q. This is different

from that in the asymptotically flat case with !qðd� 1Þ þ
d� 3> 0. Moreover comparing with the asymptotically
flat case, although the ratio Lbrane=Lbulk tells us that the
black hole Hawking radiation still dominates on the brane
in the dS-like spacetime, its dependence on j!qj is differ-
ent in the dS-like situation from that in the asymptotically
flat spacetime. These differences can be understood from
the behavior of the ratio RH=rc � 1, which increases with
j!qj. This means that when j!qj becomes bigger, the black

hole horizon and the cosmological horizon will come
closer, so that Hawking radiation on the black hole event
horizon will be enhanced by the contribution from
Hawking radiation from the cosmological horizon.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we obtain an exact solution of Einstein
equations for the static spherically symmetric quintessen-
tial matter surrounding a black hole in d-dimensional
spacetimes. For different state parameters !q of quintes-

TABLE IV. The changes of RH, rc and RH=rc with different state parameter !q and dimension numbers d in the asymptotically
dS-like case. Here M ¼ 1 and c ¼ 0:01.

RH rc RH=rc
!q ¼ �0:8 !q ¼ �0:9 !q ¼ �1 !q ¼ �0:8 !q ¼ �0:9 !q ¼ �1 !q ¼ �0:8 !q ¼ �0:9 !q ¼ �1

d ¼ 4 2.0564 2.0714 2.0915 25.294 13.680 8.789 0.0813 0.1514 0.2380

d ¼ 5 1.4252 1.4269 1.4289 46.380 17.712 9.897 0.0307 0.0806 0.1444

d ¼ 6 1.2653 1.2660 1.2667 100.00 21.542 9.990 0.0127 0.0588 0.1268

d ¼ 7 1.1927 1.1930 1.1935 316.23 26.827 9.999 0.0038 0.0445 0.1194

TABLE V. The change of TH with different state parameter !q and dimensional numbers d in the asymptotically dS-like case. Here
M ¼ 1 and c ¼ 0:01.

!q ¼ �0:4 !q ¼ �0:5 !q ¼ �0:6 !q ¼ �0:7 !q ¼ �0:8 !q ¼ �0:9 !q ¼ �1:0

d ¼ 4 0.038 79 0.038 38 0.037 84 0.037 12 0.036 15 0.034 84 0.033 06

d ¼ 5 � � � � � � 0.110 34 0.109 71 0.108 94 0.108 00 0.106 84

d ¼ 6 � � � � � � � � � 0.186 29 0.185 50 0.184 55 0.183 42

d ¼ 7 � � � � � � � � � 0.264 07 0.263 20 0.262 19 0.261 01

TABLE VI. The changes of Lbulk, Lbrane and Lbrane=Lbulk with different state parameter !q and dimensional numbers d in the
asymptotically dS-like case. Here M ¼ 1 and c ¼ 0:01.

Lbulkð10�5Þ Lbraneð10�5Þ Lbrane=Lbulk

!q ¼ �0:8 !q ¼ �0:9 !q ¼ �1:0 !q ¼ �0:8 !q ¼ �0:9 !q ¼ �1:0 !q ¼ �0:8 !q ¼ �0:9 !q ¼ �1:0

d ¼ 4 0.9045 2.9143 6.4797 � � � � � � � � � � � � � � � � � �
d ¼ 5 0.0361 0.6386 3.5966 1.1734 7.9265 24.912 32.544 12.413 6.9267

d ¼ 6 9:2� 10�5 0.0425 0.9108 0.5769 12.318 56.647 6246.3 289.54 62.195

d ¼ 7 5:5� 10�9 0.0013 0.1728 0.1032 14.238 101.64 1:864� 107 11 369.5 588.06
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sence, our solution can lead to different limits, such as the
Schwarzschild, Reissner-Nordström, and de Sitter black
holes in d-dimensions. We study the thermodynamics in
this d-dimensional black hole spacetime and find that the
first law is universal for the arbitrary state parameter !q of

the quintessence.
We investigate the greybody factors and Hawking radi-

ations of a scalar field in the bulk and on the brane, in the
low-energy regime, in this d-dimensional black hole sur-
rounded by quintessence. We observe that Hawking ra
diation dominates on the brane. For the case 0>!q >

�ðd� 3Þ=ðd� 1Þ, the black hole is asymptotically flat;
the luminosity of Hawking radiation both in the bulk and
on the brane decreases with the increase of j!qj. But for
the case �ðd� 3Þ=ðd� 1Þ>!q >�1, the black hole is

in the asymptotically dS spacetime; Hawking radiation
increases with the magnitude of j!qj. The difference can

be attributed to the different asymptotic structures of the
spacetimes. In the asymptotic dS spacetime, besides the
black hole event horizon, there also exists the cosmological

horizon. When the absolute value of !q becomes bigger,

these two horizons come closer. The contribution of
Hawking radiation from the cosmological horizon enhan-
ces the Hawking radiation near the black hole event
horizon.
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