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We have studied the charged scalar perturbation around a dilaton black hole in 2þ 1 dimensions. The

wave equations of a massless charged scalar field are shown to be exactly solvable in terms of hyper-

geometric functions. The quasinormal frequencies are computed exactly. The relation between the

quasinormal frequencies and the charge of the black hole, charge of the scalar, and the temperature of

the black hole are analyzed. The asymptotic form of the real part of the quasinormal frequencies is

evaluated exactly.
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I. INTRODUCTION

When a black hole is perturbed by an external field, the
dynamics of the scattered waves can be described in three
stages [1]. The first corresponds to the initial wave which
will depend on the source of disturbance. The second
corresponds to the quasinormal modes with complex fre-
quencies. Such modes are called quasinormal in contrast to
normal modes since these are damped oscillations. The
values of the quasinormal modes are independent of the
initial disturbance and only depend on the parameters of
the black hole. The focus of this paper is to analyze
quasinormal modes of a charge scalar around a dilaton
black hole in 2þ 1 dimensions. The last stage of pertur-
bations is described by a power-law tail behavior of the
corresponding field in some cases.

In recent times, there had been extensive work done to
compute quasinormal modes (QNM) and to analyze them
in various black hole backgrounds. A good review is
Kokkotas et al. [2].

One of the reasons for the attention on QNM’s is the
conjecture relating anti-de-Sitter space (AdS) and confor-
mal field theory (CFT) [3]. It is conjectured that the imagi-
nary part of the QNM’s which gives the time scale to decay
the black hole perturbations also corresponds to the time
scale of the conformal field theory (CFT) on the boundary
to reach thermal equilibrium. There are many works on
AdS black holes on this subject [4–7]. Also, if signals due
to QNM’s are detected by the gravitational wave detectors,
one may be able to identify the charges of black holes and
obtain deeper understanding of the inner structure of the
black holes in nature. A recent review on QNM’s and
gravitational wave astronomy written by Ferrari and
Gualtieri discusses such possibilities [8].

There are many papers on the study of perturbations of
black holes by neutral scalars. However, when a charged
black hole is formed with gravitational collapse of charged
matter, one expects perturbations by charged fields to
develop outside the black hole. Hence, it is worthwhile to
study charged scalar field perturbations. The late time

evolution of a charged scalar in the gravitational collapse
of charged matter to form Reissner-Nordstrom black holes
was analyzed by Hod and Pirani [9–11]. QNM’s of a
massive charged scalar field around the Reissner-
Nordstrom black hole were studied by Konoplya [12].
Decay of a charged scalar and the Dirac field around the
Kerr-Newmann-de-Sitter black hole were studied by
Konoplya and Zhidenko in [13]. In [14], decay of massless
charged scalars around a variety of black holes in four
dimensions was studied by Konoplya.
To the author’s knowledge, most of the works on QNM’s

of black holes in four and higher dimensions are numerical
except for few cases. A few we are aware of are the
massless topological black hole calculation done by Aros
et al. [15], exact frequencies computed for gravitational
perturbation of topological black holes in [16], and QNM
computations for de Sitter space in [17,18]. However, in
2þ 1 dimensions, QNM’s can be computed exactly due to
the nature of the wave equations. In particular, the well-
known Bañados-Teitelboim-Zanalli (BTZ) black hole [19]
has been studied with exact results [20–23]. The QNM’s of
the neutral scalars around the dilaton black hole were
computed exactly in [24]. The Dirac QNM’s for the dilaton
black hole were computed in [25]. In this paper we take it a
step further by studying QNM’s of a charged scalar around
dilaton black holes in 2þ 1 dimensions which leads to
exact results. To the author’s knowledge, all work related to
QNM’s of charged scalars has been done numerically.
Extensions of the BTZ black hole with charge have led

to many interesting works. The first investigation was done
by Bañados et al. [19]. Because of the logarithmic nature
of the electromagnetic potential, these solutions give rise to
unphysical properties [26]. The horizonless static solution
with magnetic charge was studied by Hirshmann et al. [27]
and the persistence of these unphysical properties was
highlighted by Chan [26]. Kamata et al. [28] presented a
rotating charged black hole with self(anti-self)-duality
imposed on the electromagnetic fields. The resulting solu-
tions were asymptotic to an extreme BTZ black hole
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solution but had diverging mass and angular momentum
[26]. Clement [29], Fernando and Mansouri [30] intro-
duced a Chern-Simons term as a regulator to screen the
electromagnetic potential and obtained horizonless
charged particlelike solutions. In this paper we consider
an interesting class of black hole solutions obtained by
Chan and Mann [31]. The solutions represent static
charged black holes with a dilaton field. It is a solution to
low-energy string action. Furthermore, it has finite mass
unlike some of the charged black holes described above.

We have organized the paper as follows: In Sec. II an
introduction to the geometry of the black hole is given. The
charge scalar perturbation of the black hole is given in
Sec. III. The general solution to the wave equation is given
in Sec. IV. A solution with boundary conditions is given in
Sec. V. QNM frequencies of the black hole are computed
and analyzed in detail in Sec. VI. Finally the conclusion is
given in Sec. VII.

II. GEOMETRY OF THE STATIC CHARGED
DILATON BLACK HOLE

In this section we will present the geometry and impor-
tant details of the static charged black hole. The Einstein-
Maxwell-dilaton action which led to these black holes
considered by Chan and Mann [31] is given as follows:

S ¼
Z

d3x
ffiffiffiffiffiffiffi�g

p ½R� 4ð5�Þ2 � e�4�F��F
�� þ 2e4���:

(1)

Here, � is treated as the cosmological constant. In [31], it
was discussed that black hole solutions exist only for �>
0. Hence throughout this paper we will treat �> 0. The
parameter � is the dilaton field, R is the scalar curvature,
and F�� is the Maxwell’s field strength in the action. This

action is conformally related to the low-energy string
action in 2þ 1 dimensions. The static circularly symmet-
ric solution to the above action is given by

ds2 ¼ �fðrÞdt2 þ 4r2dr2

fðrÞ þ r2d�2

fðrÞ ¼ ð�2Mrþ 8�r2 þ 8Q2Þ;

� ¼ 1

4
ln

�
r

�

�
; Frt ¼ Q

r2
:

(2)

ForM � 8Q
ffiffiffiffi
�

p
, the space-time represents a black hole. It

has two horizons given by the zeros of gtt;

rþ ¼ Mþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � 64Q2�

p
8�

;

r� ¼ M� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � 64Q2�

p
8�

:

(3)

There is a singularity at r ¼ 0 and it is timelike. Note that
in the presence of a nontrivial dilaton, the space geometry
of the black hole does not behave as either de Sitter (�<

0) or anti-de-Sitter (�> 0) [31]. An important thermody-
namical quantity corresponding to a black hole is the
Hawking temperature TH. It is given by

TH ¼ 1

4�

��������
dgtt
dr

��������
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�gttgrr

p ��������r¼rþ
¼ M

4�rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 64Q2�

M2

s
:

(4)

The temperature TH ¼ 0 for the extreme black hole with

M ¼ 8Q
ffiffiffiffi
�

p
. For the uncharged black hole TH ¼ �

� . This

black hole is also a solution to low-energy string action by
a conformal transformation,

gstring ¼ e4�gEinstein: (5)

In string theory, it is possible to create charged solutions
from uncharged ones by duality transformations. For a
review of such transformations see Horowitz [32]. It is
possible to apply such transformations to the uncharged
black hole with charge Q ¼ 0 in the metric in Eq. (2) to
obtain the charged black hole with Q � 0. Such a duality
was discussed in detail in the paper by Fernando [24].

III. CHARGED SCALAR PERTURBATION OF
DILTON BLACK HOLES

We will develop the equations for a charged scalar field
in the background of the static charged dilaton black hole
in this section. The general equation for a massless charged
scalar field in curved space-time can be written as

5� 5� �þ ðieÞ2A�A��� 2ieA�@��

� ie�5� A� ¼ 0: (6)

Using the anzatz,

� ¼ eim� �ðt; rÞffiffiffi
r

p ; (7)

Eq. (6) simplifies to

@2�ðt; rÞ
@t2

� @2�ðt; rÞ
@r2�

þ 2ieQ

r

@�ðt; rÞ
@t

þ VðrÞ�ðt; rÞ ¼ 0:

(8)

Here, VðrÞ is given by

VðrÞ ¼ fðrÞ
2r3=2

d

dr

�
fðrÞ
4r3=2

�
þm2fðrÞ

r2
� e2Q2

r2
(9)

and r� is the tortoise coordinate computed as

dr� ¼ 2rdr

fðrÞ ) r�

¼ 1

4�ðrþ � r�Þ ðrþ lnðr� rþÞ � r� lnðr� r�ÞÞ:
(10)

Note that when r ! rþ, r� ! �1 and for r ! 1, r� !
1. The function fðrÞ is given by Eq. (2) in Sec. II. By
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substituting the function fðrÞ into Eq. (9), one can obtain a
simplified version of the potential VðrÞ as

VðrÞ ¼ � 12Q4

r4
þ 4MQ2

r3
þ 1

r2

�
�M2

4
þ 8m2Q2

� 8Q2�� e2Q2

�
� 2m2M

r
þ ð8m2�þ 4�2Þ:

(11)

Note that if the function �ðt; rÞ is redefined as

�ðt; rÞ ¼ e�i!t�ðr�Þ; (12)

the wave equation will simplifies to the equation,

�
d2

dr2�
þ!2 þ 2eQ!

r
� VðrÞ

�
�ðr�Þ ¼ 0: (13)

It is clear that if e ¼ 0, Eq. (13) becomes the Schrödinger-
type equation with a potential Ve¼0ðrÞ given by

Ve¼0ðrÞ ¼ � 12Q4

r4
þ 4MQ2

r3
þ 1

r2

�
�M2

4
þ 8m2Q2

� 8Q2�

�
� 2m2M

r
þ ð8m2�þ 4�2Þ: (14)

The potentials are plotted in Fig. 1. The greater the value
e of the charged scalar, the smaller the peak of the
potential.

IV. GENERAL SOLUTION TO THE CHARGED
SCALAR WAVE EQUATION

In order to find exact solutions to the wave equation for
the charged scalar, we will revisit Eq. (6) in Sec. III. Using
the anzatz,

� ¼ e�i!teim�RðrÞ; (15)

Eq. (6) leads to the radial equation,

d

dr

�
fðrÞ
2

dRðrÞ
dr

�
þ 2r2

�
!2

fðrÞ �
m2

r2

�
RðrÞ

� 4eQ!rRðrÞ
fðrÞ þ 2e2Q2RðrÞ

fðrÞ ¼ 0: (16)

In order to solve the wave equation exactly, one can
redefine the r coordinate of Eq. (16) with a new variable
z given by

z ¼
�
r� rþ
r� r�

�
: (17)

Note that in the new coordinate system, z ¼ 0 corresponds
to the horizon rþ and z ¼ 1 corresponds to infinity. With
the new coordinate, Eq. (16) becomes

zð1� zÞd
2R

dz2
þ ð1� zÞ dR

dz
þ PðzÞR ¼ 0: (18)

Here,

PðzÞ ¼ A

z
þ B

�1þ z
þ C; (19)

where

A ¼ ðrþ!� eQÞ2
16ðrþ � r�Þ2�2

; B ¼ 8m2��!2

16�2
;

C ¼ � ðr�!� eQÞ2
16ðrþ � r�Þ2�2

:

(20)

Now, if RðzÞ is redefined as

RðzÞ ¼ z	ð1� zÞ�FðzÞ; (21)

the radial equation given in Eq. (18) becomes

zð1� zÞ d
2F

dz2
þ ð1þ 2	� ð1þ 2	þ 2�ÞzÞ dF

dz

þ
� �A
z
þ �B

�1þ z
þ �C

�
F ¼ 0; (22)

where

�A ¼ Aþ 	2 �B ¼ Bþ �� �2

�C ¼ C� ð	þ �Þ2: (23)

The above equation resembles the hypergeometric differ-
ential equation which is of the form [33]

0.5 1 1.5 2 2.5 3 r

–2000

2000

4000

6000
V

FIG. 1. The behavior of the potentials VðrÞ and Ve¼0ðrÞ with
r for � ¼ 2 M ¼ 120, Q ¼ 3, m ¼ 2, and e ¼ 6. The dark
curve represents VðrÞ and the light curve represents Ve¼0ðrÞ.

QUASINORMAL MODES OF CHARGED SCALARS AROUND . . . PHYSICAL REVIEW D 77, 124005 (2008)

124005-3



zð1� zÞ d
2F

dz2
þ ðc� ð1þ aþ bÞzÞ dF

dz
� abF ¼ 0: (24)

By comparing the coefficients of Eq. (22) and (24), one can
obtain the following identities:

c ¼ 1þ 2	 (25)

aþ b ¼ 2	þ 2� (26)

�A ¼ Aþ 	2 ¼ 0;) 	 ¼ � iðrþ!� eQÞ
4�ðrþ � r�Þ (27)

�B ¼ Bþ �� �2 ¼ 0;) � ¼ 1þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!2�8m2�

4� � 1
q

Þ
2

(28)

ab ¼ � �C ¼ ð	þ �Þ2 � C: (29)

From Eqs. (26) and (29),

a ¼ 	þ �þ 
 b ¼ 	þ �� 
: (30)

Here,


 ¼ ffiffiffiffi
C

p ¼ � iðr�!� eQÞ
4�ðrþ � r�Þ : (31)

With the above values for a, b, and c, the solution to the
hypergeometric function FðzÞ is given by [33]

Fða; b; c; zÞ ¼ �ðcÞ
�ðaÞ�ðbÞ�

�ðaþ nÞ�ðbþ nÞ
�ðcþ nÞ

zn

n!
(32)

with a radius of convergence being the unit circle jzj ¼ 1.
Hence the general solution to the radial part of the charged
scalar wave equation is given by

RðzÞ ¼ z	ð1� zÞ�Fða; b; c; zÞ (33)

with a, b, and c given in the above equations. The general
solution for the charged wave scalar equation is

�ðz; t; �Þ ¼ z	ð1� zÞ�Fða; b; c; zÞeim�e�i!t: (34)

V. SOLUTION WITH BOUNDARY CONDITIONS

In this section we will obtain solutions to the charged
scalar with the boundary condition that the wave is purely
ingoing at the horizon. The solutions are analyzed closer to
the horizon and at infinity to obtain exact results for the
wave function.

A. Solution at the near-horizon region

First, the solution of the wave equation closer to the
horizon is analyzed. For the charged black hole,

z ¼ ðr� rþÞ
ðr� r�Þ (35)

and as the radial coordinate r approaches the horizon, z
approaches 0. In the neighborhood of z ¼ 0, the hyper-
geometric function has two linearly independent solutions
given by [33]

Fða;b;c;zÞ and zð1�cÞFða� cþ 1;b� cþ 1;2� c;zÞ:
(36)

Substituting the values of a, b, c in terms of 	, �, and 
,
the general solution for RðzÞ can be written as

RðzÞ ¼ C1z
	ð1� zÞ�Fð	þ�þ
;	þ��
;1þ 2	;zÞ

þC2z
�	ð1� zÞ�Fð�	þ�þ
;�	þ��
;1

� 2	; zÞ: (37)

Here, C1 and C2 are constants to be determined. Before
proceeding any further, we want to point out that the above
equation is symmetric for 	 $ �	. Note that in Eq. (27),
	 could have both � signs. Because of the above symme-
try in Eq. (37), we will choose the ‘‘ þ’’ sign for 	 for the
rest of the paper.
Since closer to the horizon z ! 0, the above solution in

Eq. (37) approaches

Rðz ! 0Þ ¼ C1z
	 þ C2z

�	: (38)

Closer to the horizon, r ! rþ. Hence, z can be approxi-
mated with

z � r� rþ
rþ � r�

: (39)

The ‘‘tortoise’’ coordinate for the charged black hole is
given in Eq. (10). Near the horizon r ! rþ, the tortoise
coordinate can be approximated to be

r� � rþ
4�ðrþ � r�Þ lnðr� rþÞ: (40)

Hence,

r� rþ ¼ eð4�ðrþ�r�Þ=rþÞr� (41)

leading to

z � r� rþ
rþ � r�

¼ 1

ðrþ � r�Þ e
ð4�ðrþ�r�Þ=rþÞr� : (42)

Hence Eq. (38) can be rewritten in terms of r� as

Rðr ! rþÞ ¼ C1

�
1

rþ � r�

�
	
ei!̂r�

þ C2

�
1

rþ � r�

��	
e�i!̂r� : (43)

To obtain the above expression, 	 is substituted from
Eq. (27) and

!̂ ¼ !� eQ

rþ
: (44)

The first and the second term in Eq. (43) corresponds to the
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outgoing and the ingoing wave, respectively. Now, one can
impose the condition that the wave is purely ingoing at the
horizon. Hence we pick C1 ¼ 0 and C2 � 0. Therefore the
solution closer to the horizon is

Rðz ! 0Þ ¼ C2z
�	ð1� zÞ�Fð�	þ �þ 
;�	

þ �� 
; 1� 2	; zÞ: (45)

B. Solution at asymptotic region

Now the question is what the wave equation is when r !
1. For large r, the function fðrÞ ! 8�r2. When fðrÞ is
replaced with this approximated function in the wave
equation given by Eq. (16), it simplifies to

d

dr

�
4�r2

dRðrÞ
dr

�
þ 2r2

�
!2

8�r2
�m2

r2

�
RðrÞ

� eQ!RðrÞ
2�r

þ e2Q2RðrÞ
4�r2

¼ 0: (46)

For large r, one can neglect the last two terms in the above
equation. Hence finally, the wave equation at large r can be
expanded to be

r2R00 þ 2rR0 þ pR ¼ 0; (47)

where

p ¼ !2

16�2
� m2

2�
: (48)

One can observe that p ¼ �B from Eq. (20). Also Eq. (47)
is the well-known Euler equation with the solution

RðrÞ ¼ D1

�
rþ � r�

r

�
a1 þD2

�
rþ � r�

r

�
a2

(49)

with

a1 ¼ 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4p

p
2

¼ �;

a2 ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4p

p
2

¼ ð1� �Þ:
(50)

The expression for � is given in Eq. (28). Note that the
form in Eq. (49) is chosen to facilitate to compare it with
the matching solutions in Sec. VC.

C. Matching the solutions at the near horizon and the
asymptotic region

In this section we match the asymptotic solution given in
Eq. (49) to the large r limit (or the z ! 1) of the near-
horizon solution given in Eq. (45) to obtain an exact
expression for D1 and D2. To obtain the z ! 1 behavior
of Eq. (45), one can perform a well-known transformation
on hypergeometric function given as follows [33]:

Fða;b;c;zÞ¼�ðcÞ�ðc�a�bÞ
�ðc�aÞ�ðc�bÞFða;b;aþb�cþ1;1�zÞ

þð1�zÞc�a�b�ðcÞ�ðaþb�cÞ
�ðaÞ�ðbÞ

�Fðc�a;c�b;c�a�bþ1;1�zÞ: (51)

Applying this transformation to Eq. (45) and substituting
for the values of a, b, and c, one can obtain the solution to
the wave equation in the asymptotic region as follows:

RðzÞ ¼ C2z
�	ð1� zÞ�

� �ð1� 2	Þ�ð1� 2�Þ
�ð1� 	� �� 
Þ�ð1� 	� �þ 
Þ

� Fð�	þ �þ 
;�	þ �� 
; 2�; 1� zÞ
þ C2z

�	ð1� zÞ1��

� �ð1� 2	Þ�ð�1þ 2�Þ
�ð�	þ �þ 
Þ�ð�	þ �� 
Þ

� Fð1� 	� �� 
; 1� 	� �

þ 
; 2� 2�; 1� zÞ: (52)

Now we can take the limit of RðzÞ as z ! 1 (or r ! 1)
which will lead to

Rðz ! 1Þ

¼ C2ð1� zÞ� �ð1� 2	Þ�ð1� 2�Þ
�ð1� 	� �� 
Þ�ð1� 	� �þ 
Þ

þ C2ð1� zÞ1�� �ð1� 2	Þ�ð�1þ 2�Þ
�ð�	þ �þ 
Þ�ð�	þ �� 
Þ :

(53)

Note that we have replaced Fða; b; c; 1� zÞ and z	 with 1
when z approaches 1. Since

1� z ¼ rþ � r�
r� r�

; (54)

for large r, the above can be approximated with

1� z � rþ � r�
r

: (55)

By replacing 1� z with the above expression in Eq. (55),
RðrÞ for large r can be written as

Rðr ! 1Þ ¼ C2

�
rþ � r�

r

�
�

� �ð1� 2	Þ�ð1� 2�Þ
�ð1� 	� �� 
Þ�ð1� 	� �þ 


þ C2

�
rþ � r�

r

�
1��

� �ð1� 2	Þ�ð�1þ 2�Þ
�ð�	þ �þ 
Þ�ð�	þ �� 
Þ : (56)

By comparing Eqs. (49) and (56), the coefficients D1 and
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D2 can be written as

D1 ¼ C2

�ð1� 2	Þ�ð1� 2�Þ
�ð1� 	� �þ 
Þ�ð1� 	� �� 
Þ (57)

D2 ¼ C2

�ð1� 2	Þ�ð�1þ 2�Þ
�ð�	þ �þ 
Þ�ð�	þ �� 
Þ : (58)

To determine which part of the solution in Eq. (49) corre-
sponds to the ‘‘ingoing’’ and ‘‘outgoing’’ respectively, we
will first find the tortoise coordinate r� in terms of r at large
r. Note that for large r, fðrÞ ! 8�r2. Hence the equation
relating the tortoise coordinate r� and r in Eq. (10) sim-
plifies to

dr� ¼ dr

4�r
: (59)

The above can be integrated to obtain

r� � 1

4�
ln

�
r

rþ

�
: (60)

Hence,

r � rþe4�r� : (61)

Substituting r from Eq. (61) and � from Eq. (28) into
Eq. (49), Rðr ! 1Þ is rewritten as

Rðr ! 1Þ ! D1

�
rþ � r�

rþ

�
�

� e�i!r�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ð4�2=!2Þðð2m2=�Þþ1Þ

p
�2�r�

þD2

�
rþ � r�

rþ

�
1��

� ei!r�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ð4�2=!2Þðð2m2=�Þþ1Þ

p
�2�r� : (62)

From the above it is clear that the first term and the second
term represent the ingoing and outgoing waves,
respectively.

VI. QUASINORMAL MODES OF THE DILATON
BLACK HOLE

Quasinormal modes of a classical perturbation of black
hole space-times are defined as the solutions to the related
wave equations with purely ingoing waves at the horizon.
In addition, one has to impose boundary conditions on the
solutions at the asymptotic region as well. In asymptoti-
cally flat space-times, the second boundary condition is the
solution to be purely outgoing at spatial infinity. For non-
asymptotically flat space-times, there are two possible
boundary conditions to impose at sufficiently large dis-
tances from the black hole horizon: one is the field to
vanish at large distances and the other is for the flux of
the field to vanish at far from the horizon. Here, we will
choose the first. This is the condition imposed in Ref. [24].
Another example in 2þ 1 dimensions, where the vanishing

of the field at large distance is imposed, is given in
Ref. [20] where QNM’s of scalar perturbations of BTZ
black holes were computed exactly.
Let us consider the field RðrÞ at large distances given by

Eq. (56). Clearly the second term vanishes when r ! 1.
This also can be seen from Eq. (52) where the second term
vanishes for z ! 1. Since C2 is not zero, the first term
vanishes only at the poles of the Gamma functions �ð1�
	� �þ 
Þ or �ð1� 	� �� 
Þ. Note that the Gamma
function �ðxÞ has poles at x ¼ �n for n ¼ 0; 1; 2 . . . .
Hence to obtain QNM’s, the following relation has to hold:

1� 	� �� 
 ¼ �n (63)

or

1� 	� �þ 
 ¼ �n: (64)

The above two equations lead to two possibilities for � as
follows:

� ¼ ð1þ nÞ � 	� 
: (65)

We want to recall here that 
 in Eq. (31) could have both
signs. Because of the nature of Eq. (65), there is no need to
choose a specific sign to proceed from here. The two
possibilities lead to two equations for � given by

� ¼ ð1þ nÞ � i!

4�
(66)

and

� ¼ ð1þ nÞ � ið�1!� �2eQÞ; (67)

where

�1 ¼ 1

4�

�
rþ þ r�
rþ � r�

�
; �2 ¼ 1

2�ðrþ � r�Þ : (68)

By combining the above equations with Eq. (28) given by

m2

2�
� !2

16�2
¼ ��þ �2; (69)

one can obtain the quadratic equation for ! given by

!2

�
1

ð16�2�2
1 � 1Þ

�
þ!ðið2nþ 1Þ�1 � 2�1�2eQÞ

þ
�
m2

2�
� n2 � n� ið2nþ 1Þ�1eQþ ð�2eQÞ2

�
:

(70)

Note that the� in Eq. (66) corresponds to the QNM’s of the
neutral scalars for the uncharged black hole with Q ¼ 0
leading to r� ¼ 0. Hence by taking r� ¼ 0 in �1, one
recovers the quadratic equation for the neutral scalar for
Q ¼ 0. One can solve the above quadratic equation to
obtain exact values of QNM frequencies!. There are three
cases one can consider: QNM’s of neutral scalars (for Q ¼
0 and Q � 0) and charged scalars. The QNM’s of the
neutral scalars were analyzed in detail in the paper by
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Fernando [24]. We will anyway state the results in order to
compare the QNM’s of the charged scalars in the following
section.

A. QNM frequencies of neutral scalars with e ¼ 0

By letting e ¼ 0 in the quadratic equation given above,
one can solve it for ! as discussed in [24]. First, one can
consider the QNM’s for the uncharged black hole with
Q ¼ 0. The solution for ! is given as

! ¼ �2i

2nþ 1
ð2�nð1þ nÞ �m2Þ: (71)

They are pure imaginary. Because of the minus sign in
front, these oscillations will be damped leading to stable
perturbations for 2�nð1þ nÞ>m2. However, for
2�nð1þ nÞ<m2, the oscillations would lead to unstable
modes. This was pointed out in [25].

One can also compute the QNM’s for the neutral scalar
for the charged dilaton black hole with Q � 0 as

! ¼ �i

ð16�2�2
1 � 1Þ ð8�

2�1ð1þ 2nÞ

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2�ð16�2�2

1 � 1Þ þ 4�2ð4�2�2
1 þ n2 þ nÞ

q
Þ:

(72)

Note that 16�2�1 > 1 and ! will always be pure imagi-
nary. Also, due to the minus sign in front, these oscillations
will be damped leading to stable neutral scalar
perturbations.

B. QNM’s of the charged scalar with e � 0

Now, one can solve Eq. (70) to obtain the exact results
for the QNM frequencies for the charged scalar as

! ¼ 1

ð16�2�2
1 � 1Þ ð�i8�2�1ð1þ 2nÞ þ 16e�1�2Q�2

� 2i

2m2�ð16�2�2

1 � 1Þ þ 4�2ð4�2�2
1 þ n2 þ nÞ � 4e2�2

2Q
2�2 þ 4ie�2Q�2ð2nþ 1Þ

q
Þ: (73)

! is not pure imaginary in this case: it has a real part which
depends on e. For e ! 0, the above QNM approaches the
values for the neutral scalar in Eq. (72). To separate the real
part and the imaginary part of !, the part inside the square
root is redefined as follows: Let the parameters z1, z2, �,
and Z be defined as

z1 ¼ 2m2�ð16�2�2
1 � 1Þ þ 4�2ð4�2�2

1 þ n2 þ nÞ
� 4e2�2

2Q
2�2 (74)

z2 ¼ 4e�2Q�2ð2nþ 1Þ (75)

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 þ z22

q
(76)

� ¼ tan�1

�
z2
z1

�
: (77)

Then, ! ¼ !real þ i!imaginary can be separated with

!real ¼ 1

ð16�2�2
1 � 1Þ ð16e�1�2Q�2 þ 2

ffiffiffiffi
Z

p
sinð�=2ÞÞ

(78)

!imaginary ¼ 1

ð16�2�2
1 � 1Þ ð�8�2�1ð1þ 2nÞ

� 2
ffiffiffiffi
Z

p
cosð�=2ÞÞ: (79)

When e ! 0, � ! 0 which leads to !real ! 0 as expected.
In Fig. 2, !imaginary is plotted against the charge Q of the

black hole. It is clear that the magnitude of !imaginary is

larger for the charged scalar in comparison to the neutral

scalar. Hence, the neutral scalar decays slower compared to
the charged scalar. A similar behavior was observed in the
charged scalar decay compared to the neutral scalar in
Reissner-Nordstrom and Reissner-Nordstrom anti-de-
Sitter black hole [14].
Next, we observe the behavior of ! vs charge e for two

different values of black hole charge Q as given in Fig. 3.

2 4 6 8 10 Q

-2.5

-2.25

-1.75

-1.5

-1.25

-1
wi

FIG. 2. The imaginary part of ! vs Q for � ¼ 2 M ¼ 120,
m ¼ 2, and n ¼ 1. The dark curve represents the curve for e ¼
4 and the light curve represents for e ¼ 0.
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The higher the Q, the larger the !imaginary. Similarly, the

real part of ! is larger for large Q as given in Fig. 4.
In Fig. 5, !imaginary is plotted vs the temperature of the

black hole. For both the neutral scalar and the charged
scalar, there is a linear behavior of !imaginary vs T.

In Fig. 6, the behavior of !imaginary is plotted vs the

horizon radius rþ. It is concluded that, for the same rþ,
the neutral scalar has a smaller decay rate than the charged
scalar.

As noted in the Introduction, there are several papers
focused on computing the asymptotic value of the !real of
black holes with regard to the quantization of the black
holes. In Fig. 7, !real is plotted vs n. It is observed that it
reaches a constant for large n. The asymptotic from of the

real part of QNM is computed taking the limit of !real as
n ! 1: the value is simply

!realðn ! 1Þ ¼
e

ffiffiffiffiffiffiffiffiffi
rp�

q
ffiffiffiffiffiffi
rm

p : (80)

1 2 3 4 5 e

-2.76

-2.74

-2.72

-2.68

-2.66

-2.64

wi

FIG. 3. The imaginary part of ! vs e for � ¼ 2 M ¼ 120,
m ¼ 2, and n ¼ 1. The dark curve represents the curve for Q ¼
5 and the light curve represents for Q ¼ 2.

1 2 3 4 5 e

0.5

1

1.5

2

2.5

wr

FIG. 4. The real part of ! vs e for � ¼ 2 M ¼ 120, m ¼ 2,
and n ¼ 1. The dark curve represents the curve for Q ¼ 5 and
the light curve represents for Q ¼ 2.

0.25 0.35 0.4 0.45 0.5
T

0.6

0.8

1.2

1.4

1.6

1.8

2

| wi |

FIG. 5. The imaginary part of ! vs T for � ¼ 2 r� ¼ 2,
m ¼ 2, and n ¼ 1. The dark curve represents the curve for fixed
e ¼ 2 and the light curve represents for fixed e ¼ 0.

4 5 6 7 8 9 10 r +

-2.25

-1.75

-1.5

-1.25

-1

-0.75

wi

FIG. 6. The imaginary part of ! vs rþ for � ¼ 2 rm ¼ 2,
m ¼ 2, and n ¼ 1. The dark curve represents the curve for e ¼
4 and the light curve represents for fixed e ¼ 0.
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VII. CONCLUSION

We have studied the perturbation of the dilaton black
hole in 2þ 1 by a charged scalar. The wave equations are
solved exactly as hypergeometric functions. The QNM
frequencies are computed exactly. It is observed that the
QNM’s have both a real and an imaginary component. The
QNM’s of the neutral scalars were pure imaginary [24].
Also it is noted that the charged scalars decay faster
compared to the neutral scalars for a given black hole.
This observation is in agreement with the behavior ob-
served by Konoplya [14] in Reissner-Nordstrom and
Reissner-Nordstrom-anti-de-Sitter black holes in four di-
mensions. The behavior of ! with various parameters are
analyzed in detail. We observe the linear relation of
!imaginary with the temperature of the black hole. Similar

observations were reported for QNM frequencies of higher
dimensions in AdS space in [4]. The asymptotic value of

!real is computed to be
e

ffiffiffiffiffiffiffi
rp�

p
ffiffiffiffi
rm

p .

It would be interesting to compute the greybody factors
and particle emission rates for the charged scalars for this
black hole. The greybody factors were studied for the
neutral scalar in [34]. Since the wave equation has been
already solved, it should be a welcome step towards under-
standing the Hawking radiation from these black holes.
There are few works related to such computations of
charged particles: the particle emission by charged leptons
from nonrotating black holes by Page [35] and emission of
charged particles by four- and five-dimensional black holes
by Gubser and Klebanov [36].
Since the asymptotic values of the real part of the QNM

frequencies are computed exactly, it would be interesting
to study the area spectrum of these black holes along the
lines of the work by Setare [37,38].
Another interesting avenue to proceed would be to

analyze the QNM’s of the extreme dilaton black hole
studied in this paper. Some extreme black holes have
proven to be supersymmetric. For example, the extreme
Reissner-Nordstrom black hole is shown to be supersym-
metric since it can be embedded in N ¼ 2 supergravity
theory [39]. Onozawa et al. [40] showed that the QNM’s of
the extreme Reissner-Nordstrom black hole for spin 1, 3=2,
and 2 are the same. If it is possible to find a suitable
supergravity theory to embed the dilaton black hole in
this paper, one may be able to observe if extremality plays
a role in it. Hence it would be interesting to compute the
QNM’s for the extreme dilaton black hole in 2þ 1 dimen-
sions for the charged Dirac fields and vector fields along
with the charged scalar to understand such behavior in low
dimensions.
The dilaton black hole considered in this paper is one of

the most favorable charged black holes in 2þ 1 dimen-
sions to study many issues discussed above in a simpler
setting with exact values for QNM frequencies.
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