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The methods of effective field theory are used to study generic theories of inflation with a single inflaton

field. For scalar modes, the leading corrections to theR correlation function are found to be purely of the

k-inflation type. For tensor modes the leading corrections to the correlation function arise from terms in

the action that are quadratic in the curvature, including a parity-violating term that makes the propagation

of these modes depend on their helicity. These methods are also briefly applied to nongeneric theories of

inflation with an extra shift symmetry, as in so-called ghost inflation.
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I. GENERIC THEORIES OF INFLATION

Observations of the cosmic microwave background and
large scale structure are consistent with a simple theory of
inflation [1] with a single canonically normalized inflaton
field ’cðxÞ, described by a Lagrangian

L 0 ¼ ffiffiffi
g

p �
�M2

P

2
R� 1

2
g��@�’c@�’c � Vð’cÞ

�
; (1)

where g � �Detg��, MP � 1=
ffiffiffiffiffiffiffiffiffiffi
8�G

p
is the reduced

Planck mass, and Vð’cÞ is a potential down which the
scalar field rolls more-or-less slowly. With this theory,
the strength of observed fluctuations in the microwave
background matter density indicates that the cosmic ex-
pansion rate H � _a=a and the physical wave number k=a
at horizon exit, when these are equal, have the value [2]
H ¼ k=a � ffiffiffi

�
p � 2� 1014 GeV where � is the value of

� _H=H2 at this time, and a is the Robertson–Walker scale
factor. Hence H and k=a at horizon exit are likely to be
much less than MP ’ 2:4� 1018 GeV, and even consider-
ably less than a plausible grand unification scale
� 1016 GeV. This provides a justification after the fact
for using a Lagrangian (1) with a minimum number of
spacetime derivatives. [As is well known, (1) is the most
general Lagrangian density for gravitation and a single
scalar field with no more than two spacetime derivatives.
An arbitrary function of ’ multiplying the first term could
be eliminated by a redefinition of the metric, and an
arbitrary function of ’ multiplying the second term could
be eliminated by a redefinition of ’.]

But H and k=a at horizon exit are not entirely negligible
compared with whatever fundamental scale characterizes
the theory underlying inflation, and at earlier times k=a is
exponentially larger than at horizon exit, so it is worth
considering the next corrections to (1). We assume that (1)
is just the first term in a generic effective field theory, in
which terms with higher derivatives are suppressed by
negative powers of some large mass M, characterizing

whatever fundamental theory underlies this effective field
theory. Rather than committing ourselves to any particular
underlying theory, we will simply assume that all constants
in the higher derivative terms of the effective Lagrangian
take values that are powers of M indicated by dimensional
analysis, with coefficients roughly of order unity. Because
H and k=a are so large during inflation, observations of
fluctuations produced during inflation provide a unique
opportunity for detecting effects of higher derivative terms
in the gravitational action.
To get some idea of the value of M, we note that the

unperturbed canonically normalized scalar field �’c de-

scribed by the Lagrangian (1) has a time derivative _�’c ¼ffiffiffiffiffiffi
2�

p
MPH, so the change in �’c during a Hubble time 1=H

at around the time of horizon exit is of order _�’c=H ¼ffiffiffiffiffiffi
2�

p
MP. If we are to use effective field theory to study

fluctuations at about the time of horizon exit in generic
theories in which the dependence of the action on ’c is
unconstrained by symmetry principles or by other conse-
quences of an underlying theory, and if (1) is at least a fair
first approximation to the full theory, then the mass M that
is characteristic of the effective field theory of inflation

cannot be much smaller than
ffiffiffiffiffiffi
2�

p
MP, for if it were then

there would be no limit on the size of higher-derivative
terms containing many powers of ’c=M. It follows that the
expansion parameter H=M in this class of theories is no

greater than H=
ffiffiffiffiffiffi
2�

p
MP ’ 6� 10�5, whatever the value

of �.
We will tentatively assume here that M is of orderffiffiffiffiffiffi
2�

p
MP, in which case the coefficients of the higher-

derivative terms in the effective Lagrangian have to be
taken as arbitrary functions of ’c=M. This is likely to be
the case if � is not too small, say of order 0.02, since then

there is not much difference between
ffiffiffiffiffiffi
2�

p
MP andMP, and

M is unlikely to be much larger than MP. (The consider-
ations presented below would still be valid if M were

instead much larger than
ffiffiffiffiffiffi
2�

p
MP, as for instance if M �

MP and � is very small, but then we would have to count
powers of ’c=M as well as numbers of derivatives in
judging how much the various higher-derivative terms are*weinberg@physics.utexas.edu
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suppressed, and some of the coefficient functions in the
effective Lagrangian derived below would be negligible,
and all others very simple.) From now on we will work
with a dimensionless scalar field ’ � ’c=M, and write (1)
as

L 0 ¼ ffiffiffi
g

p �
�M2

P

2
R�M2

2
g��@�’@�’�M2

PUð’Þ
�
;

(2)

where Uð’Þ � VðM’Þ=M2
P. Note that the unperturbed

value of U is ð3� �ÞH2, so we can think of U as well as
@�’@

�’ as both being of order H2 at horizon exit.

The leading correction to (2) will consist of a sum of all
generally covariant terms with four spacetime derivatives
and coefficients of order unity [3]. By a judicious weeding
out of total derivatives, the most general such correction
term can be put in the form [4]

�L ¼ ffiffiffi
g

p ½f1ð’Þðg��’;�’;�Þ2 þ f2ð’Þg��’;�’;�h’

þ f3ð’Þðh’Þ2 þ f4ð’ÞR��’;�’;�

þ f5ð’ÞRg��’;�’;� þ f6ð’ÞRh’þ f7ð’ÞR2

þ f8ð’ÞR��R�� þ f9ð’ÞC����C�����
þ f10ð’Þ�����C��

��C����; (3)

where as usual commas denote ordinary derivatives and
semicolons denote covariant derivatives; h’ � g��’;�;�

is the invariant d’Alembertian of ’; ����� is the totally
antisymmetric tensor density with �1230 � þ1; and the
fnð’Þ are dimensionless functions, treated here as of order
unity. In the last two terms, instead of the Riemann–
Christoffel tensor R����, we have used the Weyl tensor

C���� � R���� � 1

2
ðg��R�� � g��R�� � g��R��

þ g��R��Þ þ R

6
ðg��g�� � g��g��Þ: (4)

Writing the last two terms in Eq. (3) as bilinears in C����

rather than R���� has no effect in the last term, and in the

penultimate term of course just amounts to a different
definition of f7 and f8. (Similarly, instead of writing the
penultimate term as a bilinear inC���� or R����, we could

have written it as the linear combination of curvature bi-
linears that appears in the Gauss–Bonnet identity; even
though this linear combination is a total derivative, it
would affect the field equations because its coefficient
f9ð’Þ is not constant.) Our reason for choosing to use the
Weyl tensor in the last two terms will become apparent
soon.

The correction term (3) involves second time deriva-
tives, as well as fields and their first time derivatives. If we
took such a theory literally, we would find more than just
the usual two adiabatic modes for single-field inflation, and
the commutation relations (as given by the Ostrogradski

formalism [5]) would be bizarre, with ’ commuting with
_’. (For instance, Kallosh, Kang, Linde, and Mukhanov [6]
encounter such additional modes when the Ostrogradski
formalism is applied to a scalar field Lagrangian involving
second time derivatives.) Similarly, there are metric com-
ponents (such as g00 and g0i in the ADM formalism [7])
whose time derivatives do not appear in L0, but that do
appear in �L. If we were to take L0 þ �L as the full
Lagrangian, then the correction term �L would cause
these auxiliary fields to become dynamical, with a further
expansion of the modes of the system.
Instead, we should remember that from the point of view

of effective field theory, Eqs. (2) and (3) represent just the
lowest two terms in an expansion in inverse powers of M,
so we must rule out any modes that cannot be expanded in
this way [8]. This means, in particular, that we must
eliminate all second time derivatives and time derivatives
of auxiliary fields in the first correction terms in the effec-
tive action by using the field equations derived from the
leading terms in the action.1 In the present case, we must

1This is equivalent to what is generally done in deriving
Feynman rules in effective flat-space quantum field theories.
Consider for instance the very simple effective Lagrangian

L ¼ �1
2½@�’@�’þm2’2 þM�2ðh’Þ2� þ J’

where M � m is some very large mass, and J is a c-number
external current. We can easily find the connected part � of the
vacuum persistence amplitude:

� ¼ i
Z

d4k
jJðkÞj2

k2 þm2 þ k4=M2
:

If we took this result seriously, then we would conclude that in
addition to the usual particle with mass mþOðm3=M2Þ, the
theory contains an unphysical one particle state with mass Mþ
Oðm2=MÞ. But if we regard L as just the first two terms in a
power series in 1=M2, then we must treat the termM�2ðh’Þ2 as
a first-order perturbation, so that the vacuum persistence ampli-
tude is

� ¼ i
Z

d4kjJðkÞj2
�

1

k2 þm2
� k4

M2ðk2 þm2Þ2 þ . . .

�
;

and the only pole is at k2 ¼ �m2. This is just the same result for
� that we would find if we were to eliminate the second time
derivatives in the OðM�2Þ term in L by using the field equation
derived from the leading term in the Lagrangian

h’ ¼ m2’� J:

In this case the effective Lagrangian becomes

L ¼ � 1

2
½@�’@�’þm2’2 þm4M�2’2� þ ð1þm2=M2ÞJ’

� J2=2M2:

Taking into account all J-dependent terms, it is straightforward
to see that with this Lagrangian we get the same vacuum
persistence amplitude as found above for the original
Lagrangian, when M�2ðh’Þ2 is treated as a first-order
perturbation.
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eliminate second time derivatives and time derivatives of
auxiliary fields in (3) by using the zeroth order field
equations derived from (2):

M2h’ ¼ M2
PU

0ð’Þ;
R�� ¼ �ðM2=M2

PÞ’;�’;� �Uð’Þg��:
(5)

Using these field equations in Eq. (3) allows us, with
some redefinitions, to eliminate all of the terms in (3)
except the first one and the last two. Specifically, the
second term in Eq. (3) just provides a field-dependent
correction to the kinematic term in (2), which can be
eliminated by a redefinition of the inflaton field; the third
term just provides a correction f3U

02M4
P=M

4 to the poten-
tial in (2), which can be absorbed into a redefinition of
Uð’Þ; the fourth and fifth terms supply corrections to both
f1ð’Þ and the kinematic term in (2); the sixth term provides
corrections to the kinematic term and the potential in (2);
and the seventh and eighth terms provide corrections to the
kinematic term and potential in (2) and to f1ð’Þ. That is,
with suitable redefinitions of ’, Uð’Þ, and f1ð’Þ, and with
various total derivatives dropped, the Lagrangian is the
sum of (2) and a correction term of the form

�L ¼ ffiffiffi
g

p
f1ð’Þðg��’;�’;�Þ2 þ ffiffiffi

g
p

f9ð’ÞC����C����

þ f10ð’Þ�����C��
��C����; (6)

The first term is of the type encountered in theories of
‘‘ k-inflation’’ [9]. This term must be included in the
Lagrangian, as a counterterm to ultraviolet divergences
encountered when the leading terms in (2) are used in
one-loop order. The second term (or an equivalent
Gauss–Bonnet term) has been considered in connection
with inflation and the evolution of dark energy [10].

For a general function f10ð’Þ the final term in Eq. (6)
violates parity conservation [11]. That is, although the
action is invariant under coordinate transformations x� !
x0� that are ‘‘small,’’ in the sense thatDetð@x0=@xÞ> 0, it is
not invariant under inversions, that is, under coordinate
transformations withDetð@x0=@xÞ< 0. It is only invariance
under ‘‘small’’ coordinate transformations that is needed to
ensure the conservation of the energy-momentum tensor,
and no sequence of small coordinate transformations can
ever add up to an inversion, so there is no a priori reason to
impose invariance under inversions, including space inver-
sion. The fact that parity has always been observed to be
conserved in gravitational interactions is sufficiently ex-
plained by the fact that terms in the effective action for
gravity and scalars with no more than two spacetime
derivatives that are invariant under small coordinate trans-
formations cannot be complicated enough to violate in-
variance under inversions.

From now on we shall work in perturbation theory,
writing

g��ðx; tÞ ¼ �g��ðtÞ þ h��ðx; tÞ;
’ðx; tÞ ¼ �’ðtÞ þ 	’ðx; tÞ; (7)

where �g��ðtÞ is the flat-space Robertson–Walker metric

with �g00 ¼ �1, �g0i ¼ 0, and �gij ¼ a2ðtÞ	ij; �’ðtÞ is the

unperturbed scalar field; and h�� and 	’ are first-order

perturbations. In this paper we will mostly be concerned
with the terms in the Lagrangian that are quadratic in
perturbations, which are needed for the calculation of
Gaussian correlations. Terms of higher order in perturba-
tions that are needed for the calculation of non-Gaussian
effects will be considered only briefly.
Because the spatially flat Robertson–Walker metric is

also conformally flat it has a vanishing Weyl tensor, and so
the Weyl tensor starts with a term of first order in pertur-
bations. This saves us from having to calculate the Weyl
tensor to second order in perturbations; we have simply

½�L�ð2Þ ¼ ½ ffiffiffi
g

p
f1ð’Þðg��’;�’;�Þ2�ð2Þ

þ a3f9ð �’Þ �g�� �g�� �g�
 �g��Cð1Þ
��
�C

ð1Þ
����

þ f10ð �’Þ����� �g�
 �g��Cð1Þ
��
�C

ð1Þ
����; (8)

where the superscripts (1) and (2) denote terms of first and
second order in perturbations, respectively. Furthermore,
the Weyl tensor is traceless, which to first order in pertur-
bations gives

Cð1Þ
i0k0 ¼ a�2Cð1Þ

ijkj; Cð1Þ
ijj0 ¼ Cð1Þ

i0i0 ¼ Cð1Þ
ijij ¼ 0: (9)

Since scalar and tensor fluctuations do not interfere in
Gaussian correlations, they will be considered separately.

II. SCALAR FLUCTUATIONS

Here we are interested in terms in the Lagrangian that,
after eliminating auxiliary fields, are quadratic in R, the
familiar gauge-invariant quantity that is conserved outside
the horizon [1]

R � A

2
�H	’

_�’
; (10)

with A defined by writing the spatial part of the metric
perturbation for scalar perturbations in a general gauge as

hijðx; tÞ ¼ a2ðtÞ
�
	ijAðx; tÞ þ @2Bðx; tÞ

@xi@xj

�
: (11)

Let us consider in turn the contribution of the three terms in
Eq. (8) to the quadratic part of the Lagrangian for R.
First, terms in the effective Lagrangian like the first term

in Eq. (8) that depend only on’ and @�’@
�’ are known to

enter into the part of the Lagrangian quadratic in scalar
fluctuations only through their effect on the sound speed
csðtÞ [12]. That is, after eliminating auxiliary fields,
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�
�

ffiffiffi
g

p
M2

P

2
Rþ ffiffiffi

g
p

Pð�@�’@
�’=2; ’Þ

�ð2Þ

¼ �M2
P
_H

H2
a3
�
1

c2s
_R2 � 1

a2
ð ~rRÞ2

�
; (12)

where

c�2
s ¼ 1þ 2

�
X
@2PðX; �’Þ

@X2
=
@PðX; �’Þ

@X

�
X¼ _�’2=2

: (13)

In particular, the first term in Eq. (8) shifts the squared
speed of sound by

�c2s ¼ 16 _HM2
Pf1ð �’Þ

M4
; (14)

corresponding to a second-order perturbation

½ ffiffiffi
g

p
f1ð’Þðg��’;�’;�Þ2�ð2Þ ¼ 16M4

Pa
3 _H2f1ð �’Þ

M4H2
_R2: (15)

The other terms in Eq. (8) are greatly simplified by
noting that, for scalar modes, Cijk0 must take the form of

	ik@j � 	jk@i acting on some scalar, so the above trace

condition Cð1Þ
ijj0 ¼ 0 implies that Cð1Þ

ijk0 ¼ 0. Hence all we

need to evaluate the second term in (8) are the purely
spatial components of the Weyl tensor. Using the field
equations (5) to eliminate auxiliary fields and second
time derivatives, we find after a straightforward though
tedious calculation that

a3f9ð �’Þ �g�� �g�� �g�
 �g��Cð1Þ
��
�C

ð1Þ
����

¼ a�5f9ð �’Þ½Cð1Þ
ijklC

ð1Þ
ijkl þ 4Cð1Þ

ijkjC
ð1Þ
ilkl�

¼ 16 _H2

3H2
a3f9ð �’Þ _R2: (16)

Comparing this with Eq. (15), we see that the effect of the
second term in Eq. (8) is the same as a change in the
coefficient f1 of the first term by an amount

�f1ð’Þ ¼ M4

3M4
P

f9ð’Þ: (17)

Finally, because Cð1Þ
ijk0 vanishes for scalar modes, the last

term in Eq. (8) is

f10ð �’Þ����� �g�
 �g��Cð1Þ
��
�C

ð1Þ
����

¼ f10ð �’Þ�ijk0½4a�4Cð1Þ
ijlmC

ð1Þ
k0lm � 8Cð1Þ

ijl0C
ð1Þ
k0l0� ¼ 0:

(18)

We conclude that the leading corrections to the Gaussian
correlations of R are solely of the k -inflation type. This
justifies the calculation of the effective Lagrangian for
Gaussian scalar correlations in slow-roll inflation in
Sec. 3 of Ref. [3] even for generic theories of inflation.
In such theories the terms in Eq. (3) that are left out in
Ref. [3] can indeed be omitted in calculating the part of the
effective Lagrangian quadratic in scalar fluctuations, not
because they are small, but because as we have seen for
scalar Gaussian fluctuations they yield nothing new. But
this is not the case for Gaussian tensor fluctuations, and
does not seem to be the case when non-Gaussian correla-
tions are considered.
We have so far only considered the terms in the effective

action of second order inR, which are needed to calculate
Gaussian correlations, but for actions of the k-inflation
type, which only involve first derivatives of fields, it is
not difficult also to calculate terms in the action of higher
order inR, which generate non-Gaussian correlations. For
this purpose it is convenient to adopt a gauge in which there
are no scalar perturbations to gij; that is, in which gij ¼
a2ðtÞ½expðDðx; tÞÞ�ij, where Dij is a gravitational wave

amplitude with Dii ¼ 0 and @iDij ¼ 0. In this gauge,

Eq. (10) gives R ¼ �H	’= _�’. If we tentatively ignore
the interaction of the inflaton with gravitational perturba-
tions, and assume that H, f1, and _�’ are varying slowly,
then it is trivial, by simply setting ’ equal to �’þ 	’ inL,
and using _H ¼ � _�’2ðM2 þ 4f1 _�’

2Þ=2M2
P, to write a

Lagrangian for � � �R=H ¼ 	’= _�’:

ffiffiffi
g

p �
�M2

2
g��@�’@�’�M2

PUð’Þ þ f1ð’Þðg��@�’@�’Þ2
�

¼ �Lþ a3M2
P
_Hð� _�2 þ a�2ð ~r�Þ2Þ þ 16a3M4

P
_H2f1ð �’Þ

M4

�
_�2 þ _�3 � _�ð ~r�Þ2

a2
þ _�4

4
� _�2ð ~r�Þ2

2a2
þ ð ~r�Þ4

4a2

�
: (19)

This agrees with the result obtained in Eq. (28) of [3],
except that here we include terms quartic in �. In [3] the
neglect of interactions of the inflaton with gravitational
perturbations is justified on the basis of a ‘‘high energy’’
approximation, which amounts to the usual slow-roll ap-
proximation that � � 1, plus the assumption that, in our
terms, M2 � �HMP, which is much weaker than the

assumptionM � ffiffiffiffiffiffi
2�

p
MP that we found necessary to treat

generic theories of inflation by the methods of effective
field theory. We see that the nonquadratic terms in L0 that
can generate non-Gaussian correlations are suppressed in
the slow-roll approximation, as found by Maldacena [13],
but in�L the coefficients of the quadratic and higher order
terms are of the same order of magnitude.

STEVEN WEINBERG PHYSICAL REVIEW D 77, 123541 (2008)

123541-4



III. TENSOR FLUCTUATIONS

Tensor fluctuations appear solely in the perturbation to
the purely spatial metric:

hijðx; tÞ ¼ a2ðtÞ½expD�ijðx; tÞ; Dii ¼ 0;

@iDij ¼ 0;
(20)

with 	’ ¼ 0. The first term in Eq. (8) involves only the
metric components g00 and Detg��, so it gets no contribu-

tion from tensor fluctuations. On the other hand, here the
second and third terms in (8) make a nontrivial contribu-
tion to the Lagrangian for Dij. Another straightforward

calculation (dropping total derivatives) gives these terms as

a3f9ð �’Þ �g�� �g�� �g�
 �g��Cð1Þ
��
�C

ð1Þ
����

¼ f9ð �’Þ½a�5Cð1Þ
ijklC

ð1Þ
ijkl � 4a�3Cð1Þ

ijk0C
ð1Þ
ijk0

þ 4a�1Cð1Þ
i0k0C

ð1Þ
i0k0�

¼ a3f9ð �’Þf _Dik½2H2 þ 2r2=a2� _Dik

� 4H _Dikðr2=a2ÞDik þ 2Dikðr4=a4ÞDikg; (21)

and

f10ð �’Þ����� �g�
 �g��Cð1Þ
��
�C

ð1Þ
����

¼ f10ð �’Þ�ijk0½4a�4Cð1Þ
lmijC

ð1Þ
lmk0 � 8a�2Cð1Þ

l0ijC
ð1Þ
l0k0�

¼ 4f10ð �’Þ�ijk0 @

@t
½Dil@jr2Dkl�: (22)

The field equation for the tensor mode (with the term
proportional to f9 dropped for simplicity) is then

€Dilþ 3H _Dil �ðr2=a2ÞDil ¼�64�G _f10a
�3ð�ijk0@jr2Dkl

þ �ljk0@jr2DkiÞ: (23)

For a plane wave with comoving wave number ~k in the 3-
direction, the only nonvanishing tensor amplitudes are
D11 ¼ �D22 and D12 ¼ D21. They satisfy the field equa-
tions

€D� þ 3H _D� þ ðk2=a2ÞD� ¼ 	128�Gðk=aÞ3 _f10D�
(24)

where D� � D11 	 iD12 are the amplitudes with helicity
�2. As found in Ref. [11], the wave equation depends on
helicity because parity is violated.

IV. A NONGENERIC EXAMPLE:
GHOST INFLATION

Up to now, we have been concerned with generic theo-
ries of inflation, in which the dependence of the action on
the inflaton field is unconstrained, and in consequence the
characteristic massM cannot be taken to be much less thanffiffiffi
�

p
MP. For an example of a different sort, we might impose

on the action a shift symmetry, under a transformation’ !

’þ constant, which requires that the Lagrangian density
involve only spacetime derivatives of’ rather than’ itself.
This possibility was discussed briefly in [9], and in more
detail under the name ‘‘ghost inflation’’ in [14]. We will
take ’ to be normalized so that @�’ is dimensionless, and

has an unperurturbed value at horizon exit of order unity.
The term in the Lagrangian density that depends only on
@�’ is then

L 0 ¼ M4 ffiffiffi
g

p
Pð�@�’@

�’Þ; (25)

where PðXÞ is a power series in X, with coefficients
assumed to be of order unity, and M is the characteristic
mass of the theory. Since powers of ’ are excluded by the
shift symmetry, M here can be much smaller than in
generic theories of inflation, and, in particular, we will
assume that M is much less than the Planck mass MP.
Any additional derivatives acting on @�’ or on the metric

yield factors of orderH 
M2=MP � M, so Eq. (25) along
with the Einstein term can be taken as the leading term in
L, with any correction terms suppressed by factors of
H=M.
Let us first consider a theory in which (25) is the whole

Lagrangian density for the scalar field, with no higher-
derivative corrections. The field equation for the unper-
turbed scalar field �’ðtÞ in this theory is

d

dt
ða3P0ð _�’2Þ _�’Þ ¼ 0: (26)

As noted in [9], in the limit of late time when a ! 1,
either _�’ ! 0, or _�’ ! v, where v is a quantity of order
unity satisfying P0ðv2Þ ¼ 0. We will consider only the
latter case. In Ref. [14] the limit �’ ¼ vt is supposed to
be already reached, in which case interesting fluctuations
occur only when higher-derivative correction terms are
added to (25). But if we take �’ðtÞ to be only close to vt,
but not yet there, then we find a nontrivial spectrum of
propagating fluctuations even when no correction terms are
added to (25). In this case the solution of Eq. (26) [with an
appropriate normalization of aðtÞ] has _�’ ! vþ a�3; the

speed of sound is cs !
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1=va3

p
; the expansion rate ap-

proaches a limit H1 ¼ ðM2=MPÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðv2Þ=3p

; and the
Fourier transform of R is

R k / a�3=2Hð1Þ
3=5

�
2k

5H1v1=2a5=2

�
; (27)

with a k-independent constant of proportionality. At late
times, when the perturbation wave length is outside the
acoustic horizon, this approaches a time-independent
quantity Ro

k , with

jRo
k j2 / k�6=5; (28)

corresponding to a conventional scalar slope index nS ¼
14=5, which of course is empirically ruled out. Thus to
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have a realistic theory of this sort, we must consider
corrections to the leading term (25).

The first correction to this Lagrangian density contains
just one factor of a second derivative of ’, and in general is
of the form

�L ¼ M3 ffiffiffi
g

p
Qð�@�’@

�’Þh’; (29)

and is therefore suppressed relative to (25) by factors of
order H=M � M=MP. (A term proportional to
g��g��’;�’;�’;�;� can be put in the form (29) by adding

suitable total derivatives. In Ref. [14] these terms were
excluded by imposing an additional symmetry under the
reflection ’ ! �’, in which case the first correction is
quadratic rather than linear in second derivatives of ’.)
Once again, we must eliminate the second time derivatives
in �L by setting €’ equal to the same quantity as given by
the field equation derived from the leading part of the
Lagrangian

P0ð�@�’@
�’Þh’�2P00ð�@�’@

�’Þð@�’Þ;�@�’@�’¼ 0:

(30)

This is pretty complicated, so for simplicity let us consider

the case of a metric fixed in the flat-space Robertson–
Walker form. Then after using (30) to eliminate second
time derivatives in (29), the correction term is

�L ¼ M3a3
�

2QP00

P0 þ 2P00 _’2

�
ð�2a�2 _’@i’@i _’

þ a�2H _’@i’@i’þ a�4@i’@j’@i@j’þ 3H _’3

� a�2 _’2r2’Þ; (31)

where Q, P0 and P00 all have arguments �@�’@
�’ ¼

_’2 � a�2@i’@i’. This is the correction that has to be
added to L0 in order to find the commutation relations of
the field as well as the field equations by canonical
quantization.
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