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We analyze the origin of the quasiclassical realm from the no-boundary proposal for the Universe’s

quantum state in a class of minisuperspace models. The models assume homogeneous, isotropic, closed

spacetime geometries, a single scalar field moving in a quadratic potential, and a fundamental cosmo-

logical constant. The allowed classical histories and their probabilities are calculated to leading

semiclassical order. For the most realistic range of parameters analyzed, we find that a minimum amount

of scalar field is required, if there is any at all, in order for the Universe to behave classically at late times.

If the classical late time histories are extended back, they may be singular or bounce at a finite radius. The

ensemble of classical histories is time symmetric although individual histories are generally not. The no-

boundary proposal selects inflationary histories, but the measure on the classical solutions it provides is

heavily biased towards small amounts of inflation. However, the probability for a large number of e-

foldings is enhanced by the volume factor needed to obtain the probability for what we observe in our past

light cone, given our present age. Our results emphasize that it is the quantum state of the Universe that

determines whether or not it exhibits a quasiclassical realm and what histories are possible or probable

within that realm.
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I. INTRODUCTION

The inference is inescapable from the physics of the past
80 years that we live in a quantum mechanical universe. If
so, the Universe has a quantum state. A theory of that state
is as important a challenge for fundamental physics as a
theory of the dynamics. Providing that theory and testing
its observational predictions are the goals of quantum
cosmology.

A central prediction of the Universe’s quantum state is
the classical spacetime that is a manifest fact of the present
Universe. Predicting classical spacetime is a constraint on
the theory of the state because we can no more expect to
find classical predictions following from a general state in
quantum gravity than we can in the nonrelativistic quantum
mechanics of a particle. Histories exhibit classical corre-
lations in time only when they are suitably coarse grained
and then only for particular kinds of states (e.g. [1]).

The probabilities for the alternative classical histories of
a quantum universe answer questions such as the follow-
ing: Is approximate homogeneity and isotropy likely? Is
the probability high for sufficient inflation to explain the
present spatial flatness? Is a homogeneous thermodynamic
arrow of time likely? What is the probability that the
Universe bounced at a minimum radius above the Planck
scale in the past?

This paper is concerned with the classical histories
predicted by the no-boundary wave function of the
Universe (NBWF) [2] in homogeneous, isotropic minisu-
perspace models with a fundamental cosmological con-
stant and a single scalar field moving in a quadratic
potential. Many of our results and conclusions together
with speculations concerning their extensions to other
models have been summarized in [3]. This paper presents
the detailed derivations of these and deals exclusively with
quadratic potentials for the scalar field.
By way of introduction we now briefly sketch the stan-

dard procedure for classical prediction in quantum cosmol-
ogy. More details will be found in Sec. II, and derivations
in the context of generalized quantum theory in [4].
States in quantum cosmology are represented by wave

functions on the superspace of three-geometries and spatial
matter field configurations. For the homogeneous, iso-
tropic, spatially closed, minisuperspace models with one
scalar field that are the subject of this paper, wave functions
depend on the scale factor b determining the size of the
spatial geometry and the value � of the homogeneous
scalar field. Thus, � ¼ �ðb; �Þ.
A class of states of particular interest are those whose

wave functions can be approximated to leading order in @

in some region of superspace by the semiclassical form (or
superpositions of such forms)

�ðb; �Þ � expf½�IRðb; �Þ þ iSðb; �Þ�=@g; (1.1)

with both IR and S real. When S varies rapidly and IR varies
slowly such wave functions predict an ensemble of suitably
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coarse-grained Lorentzian histories with high probabilities
for correlations in time governed by classical deterministic
laws for spacetime geometry and the matter field. This
requirement on the gradients of IR and S is part of the
classicality conditions. When they are satisfied the action S
determines the ensemble as in familiar Hamilton-Jacobi
theory. Classical histories not contained in the ensemble
have zero probability in this approximation. The classical
histories that are members of the ensemble have probabil-
ities proportional to exp½�2IRðb; �Þ�=@�. In this way par-
ticular states can predict classical spacetime.

The no-boundary wave function for these models is
defined by the sum-over-histories

�ðb; �Þ ¼
Z
C
�a�� expð�I½að�Þ; �ð�Þ�=@Þ: (1.2)

Here, að�Þ and�ð�Þ are the histories of the scale factor and
matter field and I½að�Þ; �ð�Þ� is their Euclidean action. The
sum is over cosmological geometries that are regular on a
disk with only one boundary at which að�Þ and �ð�Þ take
the values b and �. The integration is carried out along a
suitable complex contour C which ensures the convergence
of (1.2) and the reality of the result [5].

For some ranges of b and � it may happen that the
integral in (1.2) can be approximated by the method of
steepest descents. Then the wave function will be well
approximated by a sum of terms of the form (1.1)—one
for each extremizing history ðað�Þ; �ð�ÞÞ matching ðb; �Þ
on the boundary of the manifold and regular elsewhere. In
general these solutions will be complex—‘‘fuzzy instan-
tons.’’ For each contribution IRðb; �Þ is the real part of the
action I½að�Þ; �ð�Þ� evaluated at the extremizing history
and �Sðb; �Þ is the imaginary part. When the classicality
conditions are satisfied the no-boundary wave function
predicts an ensemble of classical histories as described
above.

Two key points should be noted about this prescription
for classical prediction: (1) The NBWF provides probabil-
ities for entire classical histories. It therefore supplies a
classical history measure, i.e. a measure on classical phase
space that is conserved along the classical trajectories.
(2) The histories in the classical ensemble are not the
same as the extremizing histories that provide the steepest
descents approximation to the integral (1.2) defining the
NBWF.

We apply this prescription for classical prediction to the
NBWF in minisuperspace models with a cosmological
constant � and a quadratic potential of the form Vð�Þ ¼
ð1=2Þm2�2. Our main aim is determining the ensemble of
classical cosmologies predicted by the no-boundary pro-
posal and the probabilities of its members. From these we
calculate the probabilities for whether the Universe boun-
ces or is singular, for whether it expands forever or recol-
lapses, for the magnitude of any time asymmetries, for

different amounts of matter content, and for different
amounts of inflation.
Our detailed conclusions are given in Sec. IX, but were it

necessary to single out just two they would be the follow-
ing: (1) Not all classical behaviors of the Universe are
allowed by the no-boundary proposal and for some ranges
of model parameters no classical behavior is predicted at
all. The manifest existence of the quasiclassical realm in
this Universe is therefore an important, nontrivial, con-
straint on theories of its initial quantum state. (2) The
probability for significant inflation depends sensitively on
the limitations of the classical ensemble arising from the
classicality conditions and also on the limited scale of our
observations in a large universe as well as the values of
cosmological parameters such as the present age.
The predictions of the no-boundary quantum state were

extensively analyzed in minisuperspace models in the
1980s and 1990s (see e.g. [6]). We are unable to give
anything like a complete survey of this work, but relevant
papers include the following: Classicality conditions were
studied in similar models in [2,7,8] especially in connec-
tion with the amount of inflation predicted by the NWBF.
For related work on this question see [9–11] for the influ-
ence of higher order quantum corrections which are ne-
glected here. Complex solutions were studied in detail by
[12–14]; this paper relies heavily on these works.
What is new is the following: (1) a better understanding

of the prescription for classical prediction attained by
providing a firmer foundation through the probabilities
for histories provided by generalized quantum theory
[4,15]; (2) a more complete analysis of the complex solu-
tions that provide the semiclassical approximation to the
no-boundary proposal and their connection to the proba-
bilities for classical cosmologies; (3) the inclusion of a
fundamental cosmological constant which both generalizes
the discussion and simplifies it; (4) a derivation of the
probabilities for what we observe within our past light
cone from the probabilities for the ensemble of entire
classical histories predicted by the NBWF.
This paper is organized as follows. In Sec. II we review

the prescription for extracting the predictions for classical
cosmologies from a wave function of the Universe.
Section III describes the no-boundary wave function and
its semiclassical approximation. The homogeneous, iso-
tropic minisuperspace models that are the focus of this
paper are laid out in detail in Sec. IV. Section V analyzes
the complex fuzzy instantons that provide the semiclassical
approximation to the NBWF. The predicted ensemble of
classical histories and the probabilities of its members are
discussed in Sec. VI. Section VII discusses conditional
(top-down) probabilities relevant for the amount of infla-
tion of the Universe given our present observations.
Section VIII discusses the arrow of time in those histories
that bounce at a minimum radius in our past. Section IX
contains our conclusions.
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II. CLASSICAL PREDICTION IN QUANTUM
COSMOLOGY

A quantum system behaves classically when the proba-
bility is high for histories of its motion that exhibit patterns
of classical correlation in time governed by deterministic
dynamical laws. The Moon can be said to move on a
classical orbit when the quantum mechanical probability
is high for histories of coarse-grained positions of the
Moon’s center of mass that obey Newton’s laws. The
Universe behaves classically when the quantum probabil-
ity is high for histories of coarse-grained geometry and
matter fields that are correlated in time by the Einstein
equation.

In this section we summarize the prescription for clas-
sical prediction in quantum cosmology. The context is the
minisuperspace models with homogeneous, isotropic ge-
ometries and homogeneous scalar field studied in this
paper. These rules can be derived in a quantum framework
that predicts probabilities for sets of alternative, coarse-
grained histories of cosmological geometries and matter
fields whether or not they behave classically [15–17].
Alternatively the rules can be motivated as a simple ex-
tension of the analogous algorithm derived in nonrelativ-
istic quantum mechanics. For brevity here we defer both of
these arguments to a separate paper [4].

A detailed discussion of our minisuperspace models will
be given in Sec. IV. For the present discussion it is suffi-
cient to note that they lie in the class specified by a classical
action S of the form

S½Nð�Þ; qAð�Þ� ¼ K
Z

d�N̂

�
1

2
GAB

�
1

N̂

dqA

d�

��
1

N̂

dqB

d�

�

�V ðqAÞ
�
: (2.1)

Here, qA is a set of coordinates for the minisuperspace of
homogeneous, isotropic three-geometries and homogene-
ous three-dimensional field configurations. For our models

the scale factor b and the field value � are the qA. N̂ is a
multiplier ensuring reparametrization invariance. (The hat
is for consistency with later notation.) Histories are curves
in minisuperspace specified by giving these coordinates as
a function of a parameter �, viz. qAð�Þ. The metric1 on
superspace GABðqAÞ and the potential V ðqAÞ specify the
model. The constant K is fixed by scaling conventions for
the variables and the conventions for S.

The action (2.1) is invariant under reparametrizations of
the histories qAð�Þ. As a consequence there is a constraint
relating the coordinates qA and their conjugate momenta

pA. This can be found by varying (2.1) with respect to N̂ð�Þ
and expressing the result in terms of qA and pA. The result
can be put in the form

HðpA; q
BÞ � 1

2G
ABpApB þV ðqAÞ ¼ 0: (2.2)

In quantum cosmology the state of the Universe is
specified by giving a wave function on superspace. For
minisuperspace models this is �ðqAÞ. In this paper that is
the no-boundary wave function (1.2). All wave functions
satisfy an operator implementation of the classical con-
straint (2.2)

H

�
�i@

@

@qA
; qB

�
�ðqAÞ ¼

�
� @

2

2
r2 þV ðqAÞ

�
�ðqAÞ ¼ 0:

(2.3)

(We retain the factors of @ for later convenience in discus-
sing classicality.) This is the Wheeler-DeWitt equation for
these models. There is a conserved current associated with
the Wheeler-DeWitt equation

JA � � i@

2
�� @

$

@qA
�: (2.4)

This will play an important role in defining the probabil-
ities for histories.
Suppose that in some region of superspace the wave

function of the Universe has the approximate semiclassical
form (or is a sum of such forms)

�ðqAÞ � AðqAÞe�iSðqAÞ=@; (2.5)

where SðqAÞ=@ varies rapidly over the region and AðqAÞ
varies slowly. Under these circumstances the Wheeler-
DeWitt equation (2.3) requires that SðqAÞ satisfies the
classical Hamilton-Jacobi equation to a good approxima-
tion

H

�
@S

@qA
; qB

�
� 1

2
GAB @S

@qA
@S

@qB
þV ðqAÞ ¼ 0: (2.6)

In a suitable coarse graining, the only histories that have
significant probability are the classical histories corre-
sponding to the integral curves of SðqAÞ=@ (e.g. [4]).
These are curves qAð�Þ which satisfy

pA � GAB

1

N̂

dqB

d�
¼ @S

@qA
: (2.7)

In short, wave functions of the form (2.5) with rapidly
varying SðqaÞ=@ and slowly varying AðqAÞ predict an en-
semble of classical Lorentzian cosmological histories.
Consider any surface in minisuperspace that is spacelike

with respect to the metric GAB and has unit normal nA. We
assume that the relative probability density } of classical
histories passing through this surface is the component of
the conserved current (2.4) along the normal if it is posi-
tive. In leading order in @ this is1Up to factors this is the inverse DeWitt metric.
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}ðqAÞ � J � n ¼ jAðqAÞj2rnSðqAÞ (2.8)

in any region in which it is positive. The first order in @

implications of the Wheeler-DeWitt equation (2.3) ensures
that these probabilities are constant along classical trajec-
tories. Thus the formula (2.8) could be evaluated on any
spacelike surface with the same result for the probabilities
of the classical histories that intersect it.2

Several key points should be noted about this prescrip-
tion for classical prediction:

(i) The no-boundary wave function provides probabil-
ities for entire four-dimensional classical histories.
When the strong energy condition is not satisfied (as
for the present models) these may bounce at a mini-
mum radius. If that radius is large enough we expect
a classical extrapolation from present data to be a
good approximation over the whole history of the
Universe—from an infinite volume in the past to an
infinite volume in the future. Alternatively when
extrapolated from present data some classical histor-
ies assigned probabilities may have initial or final
singularities or both.

(ii) Singularities in the extrapolation of classical solu-
tions do not signal the breakdown of quantum me-
chanics but rather of the approximation. In
particular, the NBWF predicts probabilities for the
classical description of late time observables such as
cosmic microwave background (CMB) fluctuations
whatever happens to an extrapolation of that classi-
cal description. That is because the NBWF predicts
probabilities for histories not their initial data. In
this sense the NBWF resolves classical singularities.

(iii) The histories in the classical ensemble are not the
same as the extremizing histories that provide the
steepest descents approximation to the integral
(1.2) defining the NBWF. The classical histories
are real and Lorentzian. The extrema are generally
complex—neither Euclidean nor Lorentzian except
in very special cases. The classical histories may
contract from an infinity in the past and reexpand to
another one in the future; the no-boundary extrema
can have only one infinity. Indeed, in the no-
boundary case the classical histories and extremiz-
ing histories are on different manifolds. This clean
separation into real classical histories and complex
extremizing ones helps to clarify the meaning of
both, and resolves issues that arise from their iden-
tification such as those discussed in [8].

From this point of view, a wave function of the Universe
is best thought of, not as an initial condition, but rather in a
four-dimensional sense as giving probabilistic weight to
the possible four-dimensional histories of a quantum
universe.

III. THE NO-BOUNDARY WAVE FUNCTION AND
ITS SEMICLASSICAL APPROXIMATIONS

This section considers the steepest descents approxima-
tion to the NBWF for homogeneous isotropic minisuper-
space models. It describes when this leads to a
semiclassical form like (2.5) which predicts an ensemble
of classical Lorentzian histories with probabilities for each.

A. Steepest descents approximation

The NBWF is defined by a path integral over homoge-
neous field configurations and homogeneous isotropic met-
rics of the form

ds2 ¼ ð3=�Þ½N2ð�Þd�2 þ a2ð�Þd�2
3�: (3.1)

Here, d�2
3 is the round metric on the unit three-sphere and

the factor in front is a convenient normalization. The
defining path integral has the specific form [cf. (1.2)]

�ðb; �Þ � �ðqAÞ ¼
Z
C
�N�x expð�I½Nð�Þ; xAð�Þ�=@Þ;

(3.2)

where xAð�Þ ¼ ðað�Þ; �ð�ÞÞ are histories of the scale factor
and scalar field. The integral is over all ðxAð�Þ; Nð�ÞÞ that
define regular geometries on a disk which match the values
of qA ¼ ðb; �Þ on its boundary. The functional I is the
Euclidean action which for our class of models is [cf. (2.1)]

I½Nð�Þ; xAð�Þ� ¼ K
Z 1

0
d�N

�
1

2
GABðqAÞ

�
1

N

dxA

d�

��
1

N

dxB

d�

�

þV ðqAÞ
�
; (3.3)

where the parameter values labeling the end points have
been conventionally chosen to be 0 and 1. The integration
measure in (3.2) contains the usual apparatus of gauge-
fixing terms and their associated determinants made nec-
essary by reparametrization invariance. We have left all of
this unspecified because it will not be important in the
leading steepest descents approximation. From now on in
this paper �ðqAÞ should be understood to be this no-
boundary wave function.
The steepest descents approximation to the path integral

(3.2) defining the NBWF starts with those paths that ex-
tremize the action in the class integrated over. Such paths
ðNextð�Þ; xAextð�ÞÞ are solutions to the equations of motion

�I

�xAð�Þ ¼ 0;
�I

�Nð�Þ ¼ 0 (3.4)

that are regular on the disk and match the values qA on its
boundary The explicit form of the equations (3.4) will be
displayed in Sec. IV.
The steepest descents approximation to the NBWF is

then given by

2This expression for probability of classical histories has been
advocated by other authors; see e.g. [18,19].
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�ðqAÞ � X
ext

exp½�AextðqAÞ=@�; (3.5)

where the sum is over all extrema that contribute to the
integral. The exponent has an expansion in powers of @ of
the form

A extðqAÞ ¼ IextðqAÞ þ @Ið1ÞextðqAÞ þ � � � : (3.6)

The leading order in this expansion is the Euclidean action
evaluated at the extremum:

IextðqAÞ � I½Nextð�Þ; xAextð�Þ�: (3.7)

Next order corrections in @ include terms like

� ð1=2ÞTr logð�2IÞ; (3.8)

where �2I is the operator resulting from the second varia-
tion of the action.3 Factors arising from the measure would
also contribute at this order.

The Hamiltonian-Jacobi equation for the Euclidean ac-
tion is the order @0 consequence of the Wheeler-DeWitt
equation (2.3). The order @1 implication is the conservation
of the probabilities (2.8). We therefore should retain both
orders in the steepest descents approximation to be con-
sistent with these features. Traditionally the order @ con-
tributions are written as a prefactor to the exponential.
Thus we have to write for the contribution to the wave
function of one extremum

�extðqAÞ � PextðqAÞ exp½�IextðqAÞ=@�: (3.9)

From now on we will consider the extrema one at a time
and drop the subscript ‘‘ext’’ that distinguished one from
the other.

B. Classicality

There is no reason to assume that the leading steepest
descents approximation will be given by a real path
ðNð�Þ; xAð�ÞÞ. The reality of the NBWF only means that
the extrema must come in complex conjugate pairs. (See
Sec. III D below for more on the consequences of this.)
Indeed, we will show in Sec. III C how the extremizing
paths are necessarily complex. The action at an extremum
will therefore have both real and imaginary parts which we
write

IðqAÞ ¼ IRðqAÞ � iSðqAÞ: (3.10)

The first two orders in steepest descents approximation to
the wave function therefore take the form (2.5)

�ðqAÞ ¼ AðqAÞeiSðqAÞ=@; (3.11)

with A given by

AðqAÞ � PðqAÞe�IRðqAÞ=@: (3.12)

As reviewed in Sec. II, a wave function with the semi-
classical form (3.11) in some region of minisuperspace
predicts an ensemble of classical trajectories provided
that SðqAÞ=@ is rapidly varying and AðqAÞ is slowly vary-
ing. Assuming that PðqAÞ is slowly varying, a necessary
condition for this is that the gradient of IRðqAÞ be small
compared to the gradient of SðqAÞ in the coordinates qA

that enter into the defining path integral and for which we
expect to have classical equations of motion e.g. ðb; �Þ [4].
That is,

jrAIRj � jrASj: (3.13)

Further, as we saw in Sec. II, when the action SðqAÞ
satisfies the classical Hamilton-Jacobi equation

1
2 ðrSÞ2 þV ðqAÞ ¼ 0; (3.14a)

the Lorentzian histories in the classical ensemble are the
integral curves of SðqAÞ. Specifically, choosing N ¼ i so
the metrics (3.1) are Lorentzian, the integral curves obey
the equations of motion

pAðqAÞ � GAB

dxB

d�
¼ rASðqAÞ (3.14b)

for SðqAÞ.
Defined in (3.10) as (minus) the imaginary part of the

Euclidean action evaluated at an extremum, there is no
reason to believe that Eqs. (3.14) hold in all regions of
minisuperspace, and indeed they do not. Rather the
Euclidean action satisfies its own ‘‘Euclidean Hamilton-
Jacobi’’ equation,

� 1
2ðrIÞ2 þV ðqAÞ ¼ 0; (3.15a)

with its own equation of motion,

GAB

1

N

dxB

d�
¼ rAIðqAÞ: (3.15b)

These follow directly from the definition (3.3).
Using (3.10) the real and imaginary parts of the

Euclidean Hamilton-Jacobi relation (3.15a) can be written
as

�1
2ðrIRÞ2 þ 1

2ðrSÞ2 þV ðqAÞ ¼ 0; (3.16a)

rIR � rS ¼ 0: (3.16b)

Equation (3.16a) shows that the Hamilton-Jacobi
equation (3.14a) for SðqAÞ holds when

jðrIRÞ2j � jðrSÞ2j: (3.17)

Equations (3.13) and (3.17) together constitute the classi-
cality conditions that play such an important part in this
work. We need both. We need (3.13) to ensure that the
equations of motion are satisfied in the form (3.14b). We
need (3.17) so that the SðqAÞ in those equations satisfies the

3This correction leads to a well-known prefactor which can be
written as the inverse square root of the determinant of �2I.
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Lorentzian Hamilton equation (3.14a) and the Lagrangian
equations of motion follow in their usual form. Generically
we can expect that (3.13) will imply (3.17), but sinceGAB is
not positive definite this is not a necessary consequence.

The other consequence of the Euclidean Hamilton-
Jacobi equation is (3.16b). This implies that IRðqAÞ is
constant along the integral curves of SðqAÞ. That is, each
classical Lorentzian history is associated with a value of IR.
Indeed, in a two-dimensional minisuperspace like that of
this paper, (3.16b) implies that curves of constant IR are
integral curves of S.

In principle the probability for any history can be calcu-
lated from the wave function �ðqAÞ without a semiclassi-
cal approximation. Equations (3.13) and (3.17) are only a
sufficient criterion for classicality. We will assume that
once classical histories have been identified in a region
of minisuperspace where the classicality conditions hold,
they may be extended to regions where it does not hold
using the classical equations of motion unless they become
classically singular. It is plausible, for instance, that a
bouncing universe whose radius never falls below the
Planck length will remain classical throughout its history
even if it can only be identified by a steepest descents
approximation in some regions of minisuperspace. That
is an assumption which can in principle be checked by
calculating the probabilities of an appropriate set of alter-
native histories in the full quantum mechanical theory.

We next turn to the probabilities predicted by the NBWF
for the individual histories in the classical ensemble.
According to (2.8), the relative probability density } for
classical histories passing through a spacelike surface in
minisuperspace with unit normal nA is given by

}ðqAÞ ¼ jPðqAÞj2e�2IRðqAÞrnS; (3.18)

where this expression is positive. For this to be a probabil-
ity for histories it must be constant along the integral
curves of S. As discussed in Sec. II, the order @0 approxi-
mation to the Wheeler-DeWitt equation (2.3) ensures this.
But since IR is already constant along classical trajectories
the rest of the measure (3.18) must be separately constant.

In this paper we will consider only the lowest order
semiclassical approximation to the probabilities and ignore
the prefactor P which arises in the next order. That is, we
discuss only the expð�2IRÞ contribution to the probabil-
ities which is possible because it is conserved along clas-
sical histories. This ‘‘approximation’’ is forced on us by
our limited ability to compute the corrections to the leading
term at this time. Higher order corrections can be crucial
for some questions (e.g. [11]) but for the diagnosis of
classicality we expect that the lowest approximation is
enough.

C. Extrema of the Euclidean action
and fuzzy instantons

We now return to a more detailed examination of the
conditions determining the complex paths that extremize
the action and the differential equations (3.4) which are
necessary conditions for an extremum. The set of equa-
tions (3.4) consists of two second order differential equa-
tions for að�Þ and �ð�Þ together with a constraint
involving only their first derivatives. There are thus four
real second-order differential equations and two real con-
straint conditions.
We first show that there are no free parameters in the

boundary conditions that determine the solutions to these
equations. The domain on which the equations are to be
solved ranges from the center of symmetry of the geometry
on the 3-disk at � ¼ 0 [called the ‘‘South Pole’’ (SP)] to
the boundary where b and � are specified at � ¼ 1. The
conditions for the geometry and field to be regular at the SP
are

að0Þ ¼ 0; �0ð0Þ ¼ 0; (3.19a)

where a prime denotes a derivative with respect to �. The
conditions at the boundary are

að1Þ ¼ b; �ð1Þ ¼ �; (3.19b)

where b and � are real. Equations (3.19) constitute eight
real conditions for the four real second-order equations for
að�Þ and �ð�Þ.
With a suitable choice of parametrization the multiplier

Nð�Þ can be taken to be a complex constant N. For each N
solve the second-order differential equations with the
boundary conditions (3.19) for að�Þ and �ð�Þ. Then find
the real and imaginary parts of N so that the two real
constraint conditions are satisfied. Were the equations
linear the solutions would be determined. There may be
more than one solution to this nonlinear set of equations
with the boundary conditions (3.19) but there are no free
parameters to specify. Hence, whether the solutions are
real or complex is not up to us; it is determined by the
equations and the boundary conditions.
In the case of a cosmological constant and no scalar

field, there is a real solution consisting of a real Euclidean
instanton with the geometry of half a round 4-sphere joined
smoothly onto de Sitter space through a sphere of mini-
mum radius [20]. But as shown by a number of authors (see
e.g. [8]), and as will be verified here, there are no real
extrema when the scalar field is nonzero except for special
‘‘false-vacuum’’ potentials. In general, the extrema are
necessarily complex. There is thus generally no meaning-
ful notion of a Euclidean instanton nucleating the
Universe. As we will see in Sec. V, for a wide range of
parameters the imaginary parts of extremizing solutions
that satisfy the classicality conditions (3.13) and (3.17) are
small. In this regime we can therefore think of these
extremizing geometries as ‘‘fuzzy instantons’’ in which
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there is a transition from a real Euclidean geometry at the
South Pole to an asymptotically real Lorentzian geometry
at large volume. The transition is not sharp as in the zero
scalar field case, but rather spread out over a region. We
will give explicit examples in Sec. V.

We stress again, however, that the complex fuzzy in-
stantons that provide the semiclassical approximation to
the NBWF are distinct from the Lorentzian histories in the
classical ensemble for which they provide probabilities
through the real part of their complex action.

D. Time symmetry of the classical ensemble

The metric GABðqAÞ and the potentialV ðqAÞ that define
the Euclidean action (3.3) are real analytic functions of
their arguments for the models we will consider. So, there-
fore, are the coefficients in the equations (3.4) which are
the necessary conditions for an extremum of the action.
The boundary conditions for their solutions (3.19) are real.

Therefore, for every extremum ðNð�Þ; að�Þ; �ð�ÞÞ,
there is also a complex conjugate extremum
ðN�ð�Þ; a�ð�Þ; ��ð�ÞÞ. If

Iðb; �Þ ¼ IRðb; �Þ � iSðb; �Þ (3.20a)

is the action for the first solution, then the action for the
second will be

Iðb; �Þ ¼ IRðb; �Þ þ iSðb; �Þ: (3.20b)

The real part of both actions is the same. Both extrema
therefore count equally in their contribution to the steepest
descents approximation to the NBWF. This shows explic-
itly that the NBWF is real in the semiclassical approxi-
mation.

The opposite signs for S in (3.20) mean that the mo-
menta of a classical history passing through qA will be
opposite in the two cases [cf. (2.7)]. The classical ensem-
bles of each extremum consist of histories that are time
reversals of one another. Both will have the same proba-
bility because IRðb; �Þ is the same for both. The individual
histories need not be time symmetric [13] and indeed we
will find that they are not [cf. Fig. 14]. But the ensemble of
predicted classical histories is time symmetric in the sense
that for any history in it, its time reversed is also a member
with the same probability.

E. Measures on classical phase space

A classical history measure is any function on phase
space that is conserved along classical trajectories because
of the classical equations of motion. Classical history
measures on the phase space of classical minisuperspace
models have been adroitly employed by Gibbons and
Turok [10] to analyze the probability of inflation in the
absence of a theory of the Universe’s state.

The predictions of the NBWF for an ensemble of clas-
sical histories provide a history measure on the classical
phase space of minisuperspace models. The condition

(3.14b) between the coordinates qA and the momenta pA

shows the NBWF measure is concentrated on a surface in
classical phase space of half its dimension. One could think
of the NBWFmeasure as a �-function on this slice through
phase space that assigns zero probability to those points not
on it.
As we will see in Sec. V, not every point in phase space

defined by (3.14b) with SðqAÞ from (3.10) corresponds to a
classical history. Only for regions of this surface where the
classicality conditions are satisfied will the probabilities be
high for the correlations in time that define classical his-
tories. The classicality conditions (3.13) and (3.17) thus
generally specify a boundary to the region of the surface in
phase space in which points corresponding to classical
histories lie.
This restriction of the ensemble of possible classical

histories to a surface with boundary in phase space is
already a powerful prediction of the NBWF whatever
relative probabilities are predicted for histories in it.
Equation (3.18) gives the predictions of the NBWF for
the probabilities of the histories within the surface in phase
space defining the classical ensemble. These probabilities
define a classical history measure because they are con-
served along the classical trajectories [cf. (3.16b)].

IV. HOMOGENEOUS ISOTROPIC
MINISUPERSPACE MODELS

A. Euclidean action and equations for its extrema

From now on, we use Planck units where @ ¼ c ¼ G ¼
1. The Euclidean action I½g;�� is a sum of a curvature part
IC and a part I� for the scalar field�. The general form for
the curvature action is

IC½g� ¼ � 1

16�

Z
M
d4xðgÞ1=2ðR� 2�Þ þ ðsurface termsÞ:

(4.1)

The general form for the matter action for a scalar field
moving in a quadratic potential is

I�½g;�� ¼ 1

2

Z
M
d4xðgÞ1=2½ðr�Þ2 þm2�2�: (4.2)

The integrals in these expressions are over the manifoldM
with one boundary defining the NBWF [cf. Eq. (1.2)]. With
a convenient overall scale, the homogeneous, isotropic
metrics are defined as in (3.1). With that normalizing factor
the scale factor að�Þ, nor the lapse Nð�Þ, nor any of the
coordinates carry dimensions.4

It proves convenient to introduce dimensionless mea-
suresH,�, and� of�,�, andm, respectively, as follows:

4The scaling of the metric used here is different from that
employed in [12], as are others in this paper, but they prove
convenient for simplifying the numerical work.
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H2 � �=3; (4.3a)

� � ð4�=3Þ1=2�; (4.3b)

� � ð3=�Þ1=2m: (4.3c)

The scaling for H was chosen so that the scale factor of a
classical inflating universe is proportional to expðHtÞ—the
usual definition of H. The other scalings were chosen to
make the action simple. In these variables the Euclidean
action takes the following simple form:

I½að�Þ; �ð�Þ� ¼ 3�

4H2

Z 1

0
d�N

�
�a

�
a0

N

�
2 � aþ a3

þ a3
��

�0

N

�
2 þ�2�2

��
; (4.4)

where 0 denotes d=d� and the surface terms in (4.1) have
been chosen to eliminate second derivatives. The center of
symmetry SP and the boundary of the manifold M have
arbitrarily been labeled by coordinates � ¼ 0 and � ¼ 1,
respectively.

Three equations follow from extremizing the action with
respect to N, �, and a. They imply the following equiva-
lent relations:�

a0

N

�
2 � 1þ a2 þ a2

�
�
�
�0

N

�
2 þ�2�2

�
¼ 0; (4.5a)

1

a3N

�
a3

�0

N

�0 ��2� ¼ 0; (4.5b)

1

N

�
a0

N

�0 þ 2a

�
�0

N

�
2 þ að1þ�2�2Þ ¼ 0: (4.5c)

These three equations are not independent. The first of
them is the Hamiltonian constraint. From it, and any of
the other two, the third follows.

From (4.4) we can read off the explicit forms of the
factors in the general form of the actions (2.1) and (3.3). We
have K ¼ 3�=2H2 and

GAB ¼ diagð�a; a3Þ;
V ¼ ð1=2Þð�aþ a3 þ a3�2�2Þ:

(4.6)

B. Complex contours for the action

The extremizing solutions að�Þ, �ð�Þ, and Nð�Þ will
generally be complex. Assuming they are analytic func-
tions, the integral (4.4) can be thought of as taken over a
real contour in the complex � plane between 0 and 1.
Following Lyons [12] it is then useful to introduce a new
complex variable � defined by

�ð�Þ �
Z �

0
d�0Nð�0Þ: (4.7)

The function �ð�Þ defines a contour in the complex � plane
for each lapse function Nð�Þ. Conversely for each contour
starting at � ¼ 0, (4.7) defines a multiplier Nð�Þ �

d�ð�Þ=d�. The action (4.4) can be rewritten as an integral
over the contour Cð0; �Þ in the complex � plane corre-
sponding to theNð�Þ in (4.4) and connecting � ¼ 0with an
end point we denote by �. Specifically,

I½að�Þ; �ð�Þ� ¼ 3�

4H2

Z
Cð0;�Þ

d�½�a _a2 � aþ a3

þ a3ð _�2 þ�2�2Þ� (4.8)

and _f denotes df=d�.
The equations (4.5) also simplify in the new variable,

viz.,

_a2 � 1þ a2 þ a2ð� _�2 þ�2�2Þ ¼ 0; (4.9a)

€�þ 3ð _a=aÞ _���2� ¼ 0; (4.9b)

€aþ 2a _�2 þ að1þ�2�2Þ ¼ 0: (4.9c)

These are the equations we will use to calculate the
complex extremizing geometries and matter field
configurations.
Using these equations the value of the action (4.8) on a

solution can be reexpressed as

I½að�Þ; �ð�Þ� ¼ 3�

2H2

Z
Cð0;�Þ

d�a½a2ð1þ�2�2Þ � 1�:
(4.10)

Two contours that connect the same end points in the �
plane give the same value for the action provided they can
smoothly be distorted into one another. They are different
representations of the same extremum as far as the semi-
classical approximation to the NBWF is concerned and we
count their contributions only once. Another way of saying
this is that (4.7) defines a complex transformation of the
coordinates in the formula for the action under which it is
invariant if the contours can be smoothly distorted into one
another. It should not, however, be thought of as a trans-
formation of the coordinates on the manifold which remain
real throughout.
This suggests that a solution to Eqs. (4.9) should be

considered as a pair of complex analytic functions að�Þ
and �ð�Þ. We can evaluate the action with these functions
by picking any convenient contour in � connecting the
center of symmetry to the boundary. We will exploit this
in what follows.

C. Lorentzian equations

For the semiclassical approximation to the NBWF we
will be interested in complex solutions to Eqs. (4.9). But
the ensemble of histories to which these solutions supply
probabilities will be real, Lorentzian metrics of the form

dŝ2 ¼ ð3=�Þ½�N̂2ð�Þd�2 þ â2ð�Þd�2
3�: (4.11)

We will use hats to distinguish Lorentzian quantities that
are always real from the complex metrics that extremize
the Euclidean action.
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Both the Lorentzian action S and the equations locating
its extrema can be obtained from the complex relations by

substituting N ¼ �iN̂, a ¼ â, and � ¼ �̂ into (4.4).
Adhering to the usual convention that the kinetic energy
term of the matter be positive, the Lorentzian action is

S½âð�Þ; �̂ð�Þ� ¼ 3�

4H2

Z
d�N̂

�
�â

�
â0

N̂

�
2 þ â� â3

þ â3
��

�̂0

N̂

�
2 ��2�̂2

��
: (4.12)

We quote the consequent Lorentzian equations in terms of

dt ¼ N̂d�,

�
dâ

dt

�
2 þ 1� â2 � â2

��
d�̂

dt

�
2 þ�2�̂2

�
¼ 0; (4.13a)

1

â3
d

dt

�
â3

d�̂

dt

�
þ�2�̂ ¼ 0; (4.13b)

d2â

dt2
þ 2â

�
d�̂

dt

�
2 � âð1þ�2�̂2Þ ¼ 0: (4.13c)

The energy density in the scalar field 	� is a useful
quantity for analyzing Lorentzian solutions. For example,
if it exceeds the Planck density we can consider the solu-
tion classically singular. An expression for it can be de-
rived from the action (4.12) or from the form of the
constraint equation (4.13a). The result is

	� ¼
�
3H2

8�

���
d�̂

dt

�
2 þ�2�̂2

�
: (4.14)

D. The classical ensemble of a complex extremum

As discussed in Sec. III B, the semiclassical approxima-
tion to the NBWF given by a solution to (4.9) corresponds
to a solution to the Lorentzian equations (4.13) when the
classicality conditions (3.13) and (3.17) are satisfied. The
Lorentzian solutions obtained this way are the integral
curves of

Sðb; �Þ ¼ �Im½Iðb; �Þ�: (4.15)

To calculate this ensemble explicitly for these models we
proceed as follows: Choose a matching surface of constant
b ¼ b� in a region of minisuperspace where the classicality
conditions are satisfied—typically for large values of b�.
The integral curves of S can be labeled by the value of � ¼
�� where they intersect this matching surface. The
Lorentzian and Euclidean momenta there are given by
gradients of S and I, respectively [cf. (3.14b)]. Their ex-
plicit forms in terms of scale factor and field can be found
from the actions (4.4) and (4.12). From (4.15) we have on
the matching surface:

b̂ ¼ b�; p̂b ¼ �ImðpbÞjb� ; (4.16a)

�̂ ¼ ��; p̂� ¼ �Imðp�Þjb� : (4.16b)

These relations show how a complex extremum specifies
Cauchy data for solving the equations (4.13) to find the
complete Lorentzian history labeled by ��. The value of
exp½�2IRðb�; ��Þ� gives its relative probability. The clas-
sical ensemble is generated as �� varies across the match-
ing surface.

V. COMPLEX SOLUTIONS

As the first step in determining the probabilities of the
ensemble of classical cosmologies predicted by the NBWF,
we begin by evaluating it semiclassically in this section.
The classical ensemble implied by this approximation will
be determined in the following section.
We find the semiclassical approximation to the NBWF

by numerically solving Eqs. (4.9) for að�Þ and�ð�Þ along a
suitable contour in the complex � plane connecting the
South Pole � ¼ 0 with an end point � ¼ X þ iY where a
and � take real values b and �. The (no) boundary con-
ditions (3.19a) of regularity at the SP mean that the com-
plex value of � at the origin is the only free parameter
there. To reach the prescribed values ðb; �Þ at the boundary,
we will adjust both this and the end point of integration �.
This gives four real adjustable parameters to meet four real
conditions at �. Hence, for each b and � there is at most a
discrete set of solutions. These solutions can be found
analytically in the limits when �ð0Þ is very large and
very small. We discuss these limiting cases first as they
will motivate our numerical search procedure.
When the scalar field is large (but well below the Planck

density), the classical dynamics should be governed only
by the scalar field and its backreaction on the geometry.
The background cosmological constant should be largely
irrelevant. In this regime therefore we expect to recover the
approximate complex solutions found by Lyons [12] for a
scalar field model with a quadratic potential and � ¼ 0.
Indeed, following Lyons one can show that for j�ð0Þj 	 1
the complex Einstein equations (4.9) admit the approxi-
mate ‘‘slow roll’’ solution

�þð�Þ � �ð0Þ þ i
��

3
;

aþð�Þ � i

2��ð0Þ e
�i��ð0Þ�þ�2�2=6:

(5.1)

There is a similar approximate solution ð��ð�Þ; a�ð�ÞÞ
found by changing i to �i in (5.1).
These solutions are the complex analogs of the standard

‘‘slow roll’’ inflationary solutions. They can be found up to
a constant multiplicative normalization of the scale factor
by neglecting the cosmological constant, spatial curvature,

and €� terms in Eqs. (4.9) and solving the resulting simple
set of equations. The results are not good approximations
everywhere in the complex � ¼ xþ iy plane. They hold
when y is not so large that the slow roll assumption breaks
down, and only in regions where jað�Þj 	 1 so that the
spatial curvature is exponentially negligible as was as-
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sumed in deriving them. The existence and location of such
a region depends on the value of Re½�ð0Þ�. When
Re½�ð0Þ�> 0 the solution ðaþð�Þ; �þð�ÞÞ is valid in a
region in the y > 0 half-plane, and ða�ð�Þ; ��ð�ÞÞ holds
in a region in the lower half-plane.

When j�ð0Þj is very large and � is sufficiently small that
any change in � is negligible, these solutions must match
the ‘‘no-roll’’ solution

�ð�Þ � �ð0Þ; að�Þ � sin½��ð0Þ��
��ð0Þ : (5.2)

This is regular at the origin and valid in regions in both
half-planes. Matching with this solution determines the
multiplicative normalization factor in (5.1).

Following Lyons we now make the further approxima-
tion that Re½�ð0Þ� 	 Im½�ð0Þ�. Then in the solution (5.1)
the scalar field is approximately real along a vertical
line � ¼ �3�Ið0Þ=�þ iy where �Ið0Þ � Im½�ð0Þ�.
Eliminating � from the solution (5.1) for a gives

a � i

2��Rð0Þ e
3½�ð0ÞÞ2��ð�Þ2�=2; (5.3)

where �Rð0Þ � Re½�ð0Þ�. Therefore, if one takes
�Ið0Þ ¼ � �

6�Rð0Þ ; (5.4)

one obtains vertical lines given by

� ¼ �

2��Rð0Þ þ iy (5.5)

along which both a and� are approximately real. It is clear
that progressively finer tuning of �Ið0Þ will yield approxi-
mately vertical curves of exactly real aðyÞ and�ðyÞ. Notice
also that the condition (5.4) at the SP that fixes a and � to
be approximately real does not depend on the time parame-
ter along the vertical line.

The complex action of a solution to the equations of
motion can be obtained from (4.10). For the solutions (5.1)
the main contribution to the real part IR comes from the
integral over real � from the SP to X ¼ �=ð2��Rð0ÞÞ. In
this regime the solutions are approximately given by the
no-roll solution (5.2) with �ð0Þ � �Rð0Þ. When � is large
this yields

IR � � �

2ðH��Rð0ÞÞ2
� � �

2ðH��Þ2 ; (5.6)

where we are assuming that at the boundary �
�Rð0Þ.
This is the action of Euclidean de Sitter space with effec-
tive cosmological constant 3m2ð�Rð0ÞÞ2. The main contri-
bution to S comes from the integration over the vertical line
to an end point �. It is given by [12]

S � i��b3

3
: (5.7)

This can be used to verify whether the solutions satisfy the

classicality conditions (3.13) at large scale factor. One has

ðrIRÞ2 � � 1

b

�
@IR
@b

�
2 þ 1

b3

�
@IR
@�

�
2 � 1

b3

�
@IR
@�

�
2

� 1

�4b3�6
(5.8a)

and

ðrSÞ2 � ��2�2b3 ��2b3: (5.8b)

This means jðrbIRÞ2j=jðrbSÞ2j � 0. More particularly
from (5.6) and (5.7) we have jðr�IRÞ2j=jðr�SÞ2j �
1=ð��bÞ6 and jðrIRÞ2j=jðrSÞ2j � 1=ð�bÞ6�8. Hence
jðrAIRÞ2j � jðrASÞ2j, provided �, and hence �Rð0Þ, is
sufficiently large (which we assumed from the outset).
The complex solutions (5.1) therefore tend to solutions of
the Lorentzian Hamilton-Jacobi equation along the vertical
lines where both a and � are real, and they do so in the
‘‘inflationary’’ slow roll regime where � is still large. The
classicality conditions (3.13) and (3.17) are satisfied.
Small values of the scalar field are another regime for

which analytic approximations are possible. These can be
calculated by perturbation theory, which is the subject of
the Appendix. There we find that in the leading approxi-
mation of vanishing scalar field the contours where að�Þ is
real are exactly vertical in the complex � plane. In the
linear approximation the tuning of 
 to give a real value of
�ð�Þ along this contour can be carried out explicitly with
the result given in Fig. 18.
These analytic approximations for large and small scalar

field do not, of course, give us the complete ensemble of
classical histories in these models. To find the complete
ensemble we now solve Eqs. (4.9) numerically in a system-
atic manner. Guided by the analytic solutions (5.1) we
begin by taking the scalar field at the origin to be large
and approximately real. Define �0 and � by

�ð0Þ ¼ j�ð0Þjei� � �0e
i�: (5.9)

Then with �0 	 1 and � small, we integrate (4.9) along a
broken contour CBðXÞ that runs along the real axis to a
point X, and then up the imaginary y axis. We are able to
adjust both the turning point X and the phase angle � so
that a and � tend to real functions bðyÞ and �ðyÞ along the
vertical line given by � ¼ X þ iy in the complex � plane.
We find that for all� and for each large�0 there exists a

unique combination X and � for which the fields become
real at large y. Furthermore for these pairs ðX; �Þ, the ratio
of the gradients of the real to the imaginary part of the
action in different directions all tends to zero at large y.
Hence, the classicality condition (3.13) holds for this set of
solutions, which therefore specifies a one-parameter set of
classical histories as described in Sec. III. It will prove
convenient to label the members of this set by �0.
However, when we decrease�0 to�0 
Oð1Þ there is an

important qualitative difference between �< 3=2 models
and models with �> 3=2. We illustrate this in Fig. 1
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where we plot the values for the turning point X of the
contour CBðXÞ and for the tangent 
 � tan� of� at the SP,
both as a function of �0. The values given there have been
fine-tuned so that the complex solutions behave classically
at large scale factor. One sees 
 remains finite for all
�0 when �< 3=2. By contrast in all �> 3=2 models—
and for quadratic scalar field potentials with � ¼ 0—we
find 
 diverges as �0 decreases to a critical value
�c

0 
Oð1Þ.

The classicality conditions (3.13) do not impose a con-
straint on�0 when�< 3=2. For� ¼ 3=4, as�0 ! 0, it is
clear from Fig. 1 that 
 ! �0:32 and X ! �=2. These
limiting values agree with the predictions of the perturba-
tion theory for small values of � around empty de Sitter
space, as discussed in the Appendix, Fig. 18.
The behavior of the scalar field�ð�Þ and the scale factor

að�Þ along CBðXÞ are shown in Figs. 2 and 3 for a typical
complex solution that provides the semiclassical approxi-

FIG. 1 (color online). The complex solutions that provide the steepest descents approximation to the NBWF are found by integrating
the field equations along a broken contour CBðXÞ in the complex � plane. In order for the solutions to behave classically at late times,
one ought to tune the tangent 
 of the phase of � at the South Pole and the turning point X of the contour. We show the tangent 

(left) and the turning point X (right) here as a function of the absolute value �0 of � at the South Pole. There is a qualitative
difference between �< 3=2 models on the one hand where 
 remains finite for all �0 (dotted curve), and �> 3=2 models on the
other hand where 
 diverges at a critical value �c

0 (remaining curves). In the latter case there is no combination ðX; 
Þ for which the

classicality conditions at a large scale factor hold when �0 <�c
0: the ensemble of possible classical histories is restricted to a bounded

surface in phase space. The right panel shows the critical value �c
0 increases slightly with �, for fixed m, and tends to 1.27 as � ! 0,

independently of the value of m2. From top to bottom, the different curves show 
 and X for � ¼ 3=4, 33=20, 9=4, 3, and 
 for
m2 ¼ 0:05, � ¼ 0 in the solid curve in the left panel.

FIG. 2. The real and imaginary part of the scalar field � for a typical complex solution that provides the semiclassical approximation
to the NBWF. This solution has � ¼ 3=4 and �0 ¼ 2. It is shown along a broken contour CBðXÞ in the complex � ¼ ðx; yÞ plane that
runs first along the x axis from the South Pole at x ¼ 0 to a value x ¼ X, and then vertically in the y direction. The turning point X is
the largest value of x plotted in the left-hand two figures. It and the imaginary part of � at the SP are determined by the requirement
that the imaginary part of the action becomes constant with increasing y (cf. Fig. 1). This is necessary for classicality at late times and
it implies that the imaginary part of � decays rapidly to zero with increasing y.
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mation to the NBWF. The turning point X is determined by
the requirement that the imaginary part of the action be-
comes constant with increasing y (cf. Fig. 1). This is
necessary for classicality at late times and it implies that
the imaginary part of � and a decay rapidly to zero with
increasing y. This decay can be exhibited analytically in
perturbation theory, see Fig. 16.

The critical value �c
0 that is present in all �> 3=2

models increases slightly with �, for fixed m, and tends
to approximately 1.27 when � ! 0. This limiting value is
the critical value in standard scalar field models with
quadratic potentials and vanishing cosmological constant
(see also [7]). We illustrate this in Fig. 1 (left) where the
solid (black) curve shows 
 in a � ¼ 0 model with m2 ¼
0:05. One has �c

0 ¼ 1:27 in this model, and this is inde-

pendent of the mass of the scalar field.
It also follows from the convergence of the curves in

Fig. 1 that at large�0, X 
 1=�Rð0Þ and 

�1=ð�Rð0ÞÞ2
independently of�. This is in agreement with the behavior
(5.4) and (5.5) for the analytic solutions (5.1). Hence, in
this regime, only a small complex part at the SP is required
to reach real b and � at late times. The metric representa-
tion of the complex geometries along the broken contours
thus resembles ‘‘fuzzy instantons,’’ with an approximately
Euclidean section smoothly joined onto an approximately
Lorentzian section.

Most importantly, we find numerically that in the
leading semiclassical approximation there are no solutions
that obey the classicality conditions (3.13) and (3.17)
at large scale factor, other than those shown in Fig. 1.
The one-parameter set of solutions given there com-
pletely determines the ensemble of classical

homogeneous and isotropic cosmologies predicted by the
NBWF. Histories other than these have zero probability
in this approximation. This means that for �< 3=2 there
is no boundary to the surface in phase space cor-
responding to classical NBWF histories, but there is for
�> 3=2.
To demonstrate that the solutions given in Fig. 1 satisfy

the classicality condition (3.17) we show in Fig. 4 (left) the
ratio jrIRj2=jrSj2 for a typical solution for � ¼ 3=4,
along the vertical line � ¼ X þ iy where a and � tend to
real functions bðyÞ and �ðyÞ. As discussed in Sec. III B it is
necessary for classicality that this ratio tend to zero. We
have also verified at a selection of points that the ratios of
the projections of the gradients, both in the X and Y
directions, similarly tend to zero at large y as required by
(3.13). We conclude therefore that this set of solutions
behaves classically at large scale factor.
The real part IR of the action rapidly tends to a constant

along the vertical lines where the classicality conditions
hold. This is illustrated in Fig. 4 (right) for a typical
solution with � ¼ 3=4. This means that along these lines
the complex solutions become integral curves of S. They
are the classical Lorentzian histories. The value of the real
part of the action provides the relative probability of the
different classical histories predicted by the NBWF.
The asymptotic value of IR is shown in Fig. 5 as a

function of �0 and for � ¼ 3=4. The small �0 solutions
can be interpreted as classical perturbations of de Sitter
space, and can be understood analytically in perturbation
theory. The upper curve in Fig. 5 shows the values for IR
predicted by the perturbation theory for small � around
empty de Sitter space, discussed in the Appendix [cf. (A7)

FIG. 3. The real and imaginary part of the scale factor for the same complex solution as in Fig. 2, along the same broken contour
CBðXÞ in the complex � plane. The imaginary part of að�Þ rapidly decays to zero along the y axis as a consequence of the classicality
conditions, whereas the real part grows exponentially for some time.
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and (A17)]. One sees that this provides a good approxima-
tion for �0 < 3=4.
As mentioned earlier, when �> 3=2 there is a critical

�c
0 
Oð1Þ at which 
 diverges. Furthermore there are no

solutions that obey the classicality conditions at large scale
factor for �0 <�c

0. In particular, although it is still pos-

sible to tune the angle � such that a and � are simulta-
neously real at some end point � ¼ X þ iY in the complex
� plane, we find the ratio of the projection in the X
direction of the gradients of the real to the imaginary parts
of the action is always at least of Oð1Þ.
An analytic analysis of the complex solutions in pertur-

bation theory for small values of � around the empty de
Sitter solution supports this conclusion: In the Appendix it
is shown that for �> 3=2 the real part of the action of
regular complex solutions of the scalar field perturbation
equation does not approach a constant along the vertical
integral curves of the putative classical Lorentzian solu-
tions. Instead it oscillates along these curves, as shown in
Fig. 23. The curves along which IR is constant oscillate
around some mean value �X at large y and are shown in
Fig. 21. Along these curves however the ratio of the

FIG. 4. Left panel—The ratio of the gradient squared of the real to the imaginary part of the action plotted along the y axis, for the
complex solution that behaves classically at large scale factor, with � ¼ 3=4 and �0 ¼ 2. For y < 2 the ratio still significantly
deviates from zero, not because IR varies in the y direction (as can be seen in the right panel) but because the gradient of IR in the X
direction is not small. Right panel— The real part of the action of this complex solution rapidly stabilizes along the y axis.

FIG. 5. The asymptotic value of the real part of the action of
the complex solutions that behave classically at large scale factor
plotted as a function of �0 and for � ¼ 3=4. This determines
the relative probabilities predicted by the NBWF for the corre-
sponding classical Lorentzian histories. The upper curve shows
the prediction of the perturbation theory for small � around the
empty de Sitter space with cosmological constant �.

FIG. 6 (color online). The asymptotic value of the real part of the action of the complex solutions that behave classically at late times
plotted as a function of �0, in three �> 3=2models (left) and in a scalar field model with quadratic potential and � ¼ 0 (right). The
values of � and m2 are as in Fig. 1. The action tends to a finite value at the lower bound �c

0 that arises from the classicality

conditions, and it goes to zero as 
1=�2
Rð0Þ at large �0.
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gradients projected in the � direction does not become
small at large Y, as shown in Fig. 22. Hence, at least in
the semiclassical approximation, all classical histories for
small scalar fields in all �> 3=2 models have zero proba-
bility in the NBWF. Even in perturbation theory the clas-
sicality conditions are nontrivial.

For large values of the scalar field, the background
cosmological constant is largely irrelevant in the early
universe. In this regime the complex extremizing solutions
are qualitatively similar in all models we have considered.
The asymptotic value of the real part of the action of the
complex solutions that imply classical behavior at late
times is shown in Fig. 6 as a function of �0 in three �>
3=2 models (left) and in a � ¼ 0 model with a quadratic
potential (right). The action tends to a finite value at the
lower bound�c

0 that arises from the classicality conditions.

At large�0 it goes to zero as
1=�2
Rð0Þ, in agreement with

the behavior (5.6) that follows from the slow roll approxi-
mation. One sees that, without further constraints, the
NBWF universally favors histories with �0 near the lower
bound �c

0.

VI. CLASSICAL HISTORIES

The complex ‘‘fuzzy instantons’’ that extremize the
Euclidean path integral defining the NBWFwere discussed
in the previous section. They provide the probabilities for
the ensemble of real Lorentzian classical histories which
are the subject of this section.

Complex extremizng solutions that predict classical be-
havior obey the no-boundary condition at the SP and the
classicality conditions (3.13) and (3.17) at the boundary at
large scale factor. The values of a and� together with their
derivatives at the boundary provide Cauchy data for the
ensemble of classical Lorentzian histories predicted by the
NBWF as discussed in Sec. IVD. In this section we study
various properties of the members of this ensemble by
evolving these Cauchy data backwards and forwards in
time using the Lorentzian field equations (4.13).
Combined with the results for the relative probabilities
provided by the action of the complex solutions (e.g.
Figs. 5 and 6), this allows one to predict probabilities for
several features of our specific universe if it is in the no-
boundary state. These include the amount of inflation,
whether it had an initial bounce or singularity, its future
behavior, its time asymmetry if bouncing, and its consis-
tency with the standard cosmological model. We will con-
tinue to label the individual classical histories in the
ensemble by �0, the absolute value of the scalar field at
the SP of the corresponding complex solution.

A. Inflation

For large �0 the complex solutions are well approxi-
mated by the analytic form (5.1). Moving upwards along
the vertical contours where a and � are real and �0 � 1,

one has [with yðtÞ ¼ t]

�̂ðtÞ ¼ �ðyðtÞÞ � �Rð0Þ ��t

3
;

âðtÞ ¼ aðyðtÞÞ 
 e��ðtÞt;
(6.1)

until the scalar field becomes less than 
1=2. This is just
like the behavior of Lorentzian slow roll inflationary solu-
tions, and it shows the classicality conditions imply infla-
tion at large �0.
This connection is general. Figure 7 shows the trajecto-

ries of several numerically calculated histories in ðĥ; �̂Þ
variables, where ĥðtÞ is the instantanenous Hubble constant
ĥ ¼ ðdâ=dtÞ=â � â;t=â. Five representative members of

the ensemble of classical histories for � ¼ 3 and for �0

between 1.3 and 4 are shown. When we follow the histories

back in time to higher values of ĥ and �̂, they all lie within

a very narrow band around ĥ ¼ ��̂. This is characteristic
of Lorentzian slow roll inflationary solutions. Furthermore,
since the numerical analysis shows that there are no solu-
tions other than those given in Fig. 1, and represented in
Fig. 7, we conclude that the NBWF predicts that a classical
homogeneous and isotropic universe must have an early
inflationary regime. The NBWF and classicality at late
times imply inflation at early times. This conclusion holds
for all values of �. Although the classicality conditions
imply inflation for all values of � the drivers of inflation
are different for different values. For �< 3=2 and small
�0 inflation is always driven by the background cosmo-
logical constant. In all other models, however, and for
small� at large�0, inflation in the early universe is driven
by the scalar field potential energy. By this we mean

specifically that â;tt > 0 when �̂ > 0:5, which we find is

FIG. 7. The no-boundary wave function predicts that all his-
tories that behave classically at late times undergo a period of
inflation at early times as shown here by the linear growth of the
instantaneous Hubble constant ĥ ¼ â;t=â in five representative

classical histories for � ¼ 3 and for �0 between 1.3 and 4.
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the minimum value of �̂ required for inflation to occur in
� ¼ 0 models with quadratic potentials and small m2. To
get a quantitative measure of the amount of inflation pre-

dicted, we calculated the number of e-foldings N � R
ĥdt

of scalar field driven inflation over the range of time where

â;tt > 0 and �̂ � 0:5 for the members of the ensemble of

Lorentzian histories predicted by the complex solutions
found in Sec. V. The results are summarized in Fig. 8.
For �> 3=2 the lower bound on �0 arising from the
classicality conditions implies the number of e-foldings
is always greater than one.5 It follows from Fig. 8, com-
bined with the information on the relative probability of the
histories given in Fig. 5 and 6, that by itself the no-
boundary wave function favors a small number of e-
foldings on a history by history relative probability basis.
The answers to more physical questions involving proba-
bilities conditioned on the data in our past light cone are
obtained from the no-boundary probabilities by summing
them over those for classical spacetimes that contain our
data at least once, and over the possible locations of our
light cone in them. This sum can significantly change the
no-boundary predictions based on the wave function alone
[3,21]. We return to this point in Sec. VII.

B. Bounces and initial singularities

For �> 3=2 and �c
0 � �0 � �s

0 the allowed classical

histories of the universe are singular at an initial time ts.
Near the singularity both the potential and the curvature are
unimportant in the Einstein equations (4.13), and one has

âðtÞ 
 ðt� tsÞ1=3 and �̂ðtÞ 
 lnðt� tsÞ. For �0 >�s
0 the

histories bounce at a finite radius âb in the past. The critical
value �s

0 at which there is a transition from initially

singular to bouncing is determined entirely by the

Einstein equations, and therefore independent of H. A
bounce at a finite radius in the past is possible despite the
singularity theorems because a scalar field and the cosmo-
logical constant violate the strong energy condition. Even
though such nonsingular classical solutions form only a
small subset of all scalar field gravity solutions, they have
significant probability in the no-boundary state. Near a
bounce the universe approaches a de Sitter state with radius


ðH��̂bÞ�1, where �̂b is the value of the scalar field at

the bounce. For sufficiently large �0, �̂b � �0, as shown
in Fig. 9 (right panel). The scale factor at the bounce versus
�0 is shown in Fig. 9 (left panel), which clearly reveals the
transition from bouncing solutions to initially singular
ones. The critical value �s

0 itself is shown as a function

of � in Fig. 10. One sees �s
0 slightly increases with �

asymptoting to� 1:54 as� ! 0, for fixedm. As discussed
for �c

0 above, this limit corresponds to the critical value

that separates the bouncing from singular histories in pure
scalar field models with quadratic potentials for any non-
zero mass m2 < 1.
When we evolve the data provided by the complex

solutions on the matching surface backwards in time we
find that, for �< 3=2, all the histories bounce at a mini-
mum radius in the past. Hence, in this regime, the classi-
cality conditions at late times select a set of histories in the
NBWF where either the potential energy of the scalar field
or the background cosmological constant dominate the
evolution at early times.
Figure 11 shows the ratio of the scalar field energy

density (4.14) over the vacuum energy density at the

bounce, again as a function of �0. Since �̂b � �0 for
most �0 (Fig. 9), this generally grows quadratically with
�0. When�< 3=2we find classical histories for all ranges
of densities, whereas for �> 3=2 there is a minimum
matter density needed for the history to exhibit classical
behavior at late times (except for the vacuum de Sitter
solution). For realistic values of � and �, therefore, a
nearly empty de Sitter solution with classical matter has

FIG. 8 (color online). Left panel—The number of e-foldings N of inflation driven by the scalar field (as opposed to the cosmological
constant of the background) in the classical histories predicted by the NBWF, for five different models. From top to bottom, the
different curves correspond to � ¼ 3=4, 3, 9=4, 33=20 and � ¼ 0, m2 ¼ 0:05. Right panel—Detail of the left panel showing the
regime around the critical value �c

0 in the �> 3=2 and pure scalar field models. The lower bound on �0 that arises from classicality

implies a lower bound on the number of e-foldings.

5For initially singular solutions inflation generally does not
begin immediately at the singularity, see e.g. Fig. 14.
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zero probability in the semiclassical approximation to the
NBWF.

C. Future-eternal expansion and final singularities

Next we explore the late time properties of the classical
histories. Evolving the data provided by the complex so-
lutions on the matching surface forward in time, the uni-
verse either expands forever or recollapses again to a
singularity.6 We find that when �< 18 the histories ex-

pand forever for all ranges of �0 that admit classical
histories. In these universes, when the scalar field rolls
down the potential, the cosmological constant of the back-
ground takes over to drive the exponential expansion.
When �> 18, however, there is critical value �r

0, and

for �0 <�r
0 the universe recollapses. We plot �r

0 as a

function of � in Fig. 12, which shows that this slowly
increases with �.

D. Time asymmetry

Bouncing classical histories are generally time asym-
metric about the bounce. This can be seen in perturbation
theory (e.g. Fig. 19) and a particular nonperturbative case
is the fourth example in Fig. 14. A natural measure of the
time asymmetry of histories at the bounce is given by

� � ð�̂;tÞb=�̂b: (6.2)

We plot�, as a function of�0 in Fig. 13, for� ¼ 3=4 (left)
and for several values of �> 3=2 (right). In the former
model, the limiting value� � 0:11 for�0 ! 0 agrees with
the prediction of the perturbation theory for small�, which
we obtain in the Appendix. One sees that, for �> 3=2, �
diverges when �0 ! �s

0—the boundary between singular

and bouncing histories. For large �0, � ! 0 in all models.
At the current level of our analysis in which we restrict

attention to homogeneous isotropic minisuperspace mod-
els, it is not clear whether the time-asymmetry of the
bouncing classical histories in the NBWF has any physical
(observable) effects. But one might expect observable
signatures of the time asymmetry to show up in the spec-
trum of inhomogeneous perturbations. We intend to calcu-
late these in future work. We emphasize also that, although
individual classical bouncing histories are not generally
time symmetric about the bounce, the reality of the NBWF
implies the ensemble of allowed classical histories is time
symmetric. For every history in this ensemble, its time
reversed is also a member.

E. Cosmological models

We next turn to particular kinds of Lorentzian histories.
A gallery of qualitatively different classical histories for

FIG. 9 (color online). The scale factor âb (left) and the scalar field �̂b (right) at the bounce of the classical histories predicted by the
NBWF. The values of � and � are as in Fig. 8. When �< 3=2 the histories always bounce at a minimum radius in the past. By
contrast for �> 3=2 there is a transition from bouncing to initially singular at a critical value �s

0 � 1:5. Above that �̂b � �0.

FIG. 10 (color online). A ‘‘phase diagram’’ that summarizes
some of the early universe properties of the Lorentzian histories
predicted by the NBWF. For �< 3=2 there is one classical
history associated with each value of �0 and the universe
bounces in the past for all ranges of �0. For �> 3=2, however,
there are no classical histories for �0 <�c

0 (bottom curve).

Between �c
0 and �s

0 (top curve) the Lorentzian histories have an

initial singularity. Finally, for �0 >�s
0 the Lorentzian solutions

bounce at a nonzero minimum radius in the past. The limiting
values of �c

0 and �s
0 when � ! 0, for fixed m, are 1.27 and

1.54, respectively.

6We did not find any Lorentzian solutions with multiple
bounces [22,23]. However, our numerical search procedure
identifies discrete solutions and may miss such highly fine-tuned
examples.
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one value of �0 is exhibited in Fig. 14. A class of histories
that are particularly interesting from an observational point
of view is represented by points that lie just above the curve
of �r

0 vs �0 over a range of � in Fig. 12. These turn out to

correspond to universes that undergo an early period of

inflation that is followed by an era of oscillating scalar field
that will lead to matter generation and domination.
Eventually the cosmological constant takes over to drive
a second phase of exponential expansion that lasts forever.
The NBWF, therefore, appears to be consistent with the
standard picture of inflationary cosmology for our universe
in which a scalar field rolls down from high up the potential
and subsequently oscillates around the minimum losing its
energy into created particles. An example of a history of
this kind is given in Fig. 14 (2nd row).
Further increasing � for fixed �0 yields a qualitatively

different universe. For �> 98 the �0 ¼ 1:32 histories lie
below the solid curve in Fig. 12. These universes have an
initial singularity and recollapse again to a big crunch. An
example of a universe of this kind is given in Fig. 14, 1st
row. The third example in Fig. 14 shows the (initially
singular) �0 ¼ 1:32 history for � ¼ 9=4, where the cos-
mological constant immediately takes over to drive the
expansion when the scalar field has rolled down its poten-
tial. Inflation never really ends in this universe.

VII. VOLUME WEIGHTING

The NBWF gives the probabilities of entire classical
histories. But we are interested in probabilities that refer
to our data, which are limited to a part of our past light
cone. Among these are the top-down probabilities for our

FIG. 12 (color online). A ‘‘phase diagram’’ that combines
some of the early and late time properties of the Lorentzian
histories predicted by the NBWF. Below the solid curve the
homogeneous isotropic classical universes predicted by the
NBWF recollapse to a big crunch, whereas above the curve
the universes continue to expand forever.

FIG. 11 (color online). The ratio of the energy density 	b in the scalar field at the bounce over the vacuum energy density 	V , for
the allowed Lorentzian histories for � ¼ 3=4 (left) and for (right, from top to bottom) � ¼ 3, 9=4, and 33=20. When �> 3=2 there
is a minimum matter density needed at early times for the history to exhibit classical behavior at late times.

FIG. 13 (color online). The reality of the NBWF implies the ensemble of allowed classical histories is time symmetric. The
individual classical bouncing histories, however, are generally not time symmetric about the bounce. A natural measure of the amount
of time asymmetry of the individual histories is provided by the quantity � ¼ ð�̂;tÞb=�̂b. The left panel shows �, as a function of �0,

for � ¼ 3=4. In the right panel we plot � for (from top to bottom) � ¼ 33=20, 9=4, and 3. One sees that for �> 3=2, � diverges
when �0 ! �s

0 where �s
0 separates singular from bouncing solutions.
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past conditioned on (a subset of) our present data [24].
Hawking [21] and the current authors [3] have argued that
in homogeneous models these are obtained by multiplying
the NBWF probabilities for classical histories by a factor
expð3NÞ proportional to the volume of the hypersurface on
which our data approximately lie.7 This multiplication can
be understood as resulting from a sum over the probabil-
ities for classical spacetimes that contain our data at least

once, and over the possible locations of our light cone in
them [3]. In a large universe there are more places for our
data to be.
In order for the volume-weighted probabilities to be

physically meaningful as probabilities relevant for what
we observe, the universe must obviously last to the present
age of 14 Gyr. This further restricts the ensemble of
histories, requiring �0 to be larger than a critical value
�g

0 
 2 or, equivalently, N � 5.
Figure 15 shows the qualitative effect in m2�2 models

of multiplying the relative probabilities for classical histor-
ies expð�2IRÞ coming from the NBWF by a volume factor

FIG. 14. A gallery of classical Lorentzian histories. The scale factor âðtÞ (left) and the scalar field �̂ðtÞ (right) in the classical
histories labeled by �0 ¼ 1:32, for four different values of �. The value of � decreases from top to bottom taking the values
� ¼ 100, 96, 9=4, 33=20. If m2 is fixed these correspond to increasing �. These are four qualitatively different cosmologies, ranging
from initially singular histories that recollapse again (top) to eternally expanding universes that bounce in the past (bottom). At
intermediate values of � (2nd row) the NBWF is consistent with the standard picture of inflationary cosmology, consisting of a short
period of inflation as the scalar field rolls down from high up the potential followed by an era of oscillation representing particle
creation and ensuing matter domination. Eventually the cosmological constant takes over to drive a second (future-eternal) phase of
exponential expansion.

7Anthropic reasoning has also been used as an argument to
include a volume factor [25].
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expð3NÞ. Volume weighting clearly enhances the probabil-
ity for a large number of e-foldings. An important feature
of the volume-weighted probability distribution is that
there is a wide region where the probability is strongly
increasing with N. Indeed when one considers the proba-
bility distribution 
 expð3N � 2IRÞ, as a function of the
value � ¼ �i at which inflation starts, the gradient of this
probability distribution is positive provided8

V3 � jV;�j2: (7.1)

For quadratic potentials this condition is satisfied well
below the Planck density.

For a realistic value of m, Fig. 15 shows qualitatively
that the two constraints of classicality and minimum age
yield a restricted ensemble of histories whose volume-
weighted probabilities slightly favor a large number of e-
foldings. This can be understood analytically. Since�IR 

1=ðm�Rð0ÞÞ2 
 1=ðm�0Þ2 for the slow roll solutions pre-
dicted by the NBWF, and since �i � �Rð0Þ � �0, the
volume factor expð3NÞ is comparable to the no-boundary
weight expð�2IRÞ for �i ¼ 1=m, i.e. for solutions that
start inflating near the Planck density. Hence, the
volume-weighted probability distribution is peaked both
at low �0 and for solutions that start inflating near the
Planck density. The latter peak slightly dominates when the
constraint that the universe lasts 
14 Gyr is taken in
account (solid curve).

We expect the effect of the volume factor on the proba-
bility distribution to be much more dramatic in the context
of a landscape potential [3]. Indeed it appears likely that in
some regions of a landscape potential and, in particular,
around broad saddle points of V, the volume factor more
than compensates for the reduction in amplitude due to the

higher value of the potential. This would lead to the
prediction that in a landscape potential, the most probable
universe consistent with our data had a large number of e-
foldings and began in an unstable de Sitter like state near a
broad saddle point of the potential. Because the dominant
saddle points are well below the Planck density, we fur-
thermore expect that the most probable histories lie en-
tirely in the semiclassical regime [24,26].

VIII. ARROWS OF TIME

Suppose that our classical universe bounced at an early
time at a radius well above the Planck length. At no time in
its history were there large quantum fluctuations in the
geometry of spacetime. Could events, structures, and pro-
cesses before the bounce have influenced events, struc-
tures, and processes today? Could we receive information
from intelligent aliens living before the bounce encoded in
gravitational waves, neutrinos, or boxes made of some
durable form of matter not yet discovered by us?
The overwhelming observational evidence for an early

hot period in the universe suggests that most information
from before the bounce could not get through to us in any
accessible form. Matter was in thermal equilibrium at least
at temperatures high enough to dissociate nuclei and in-
formation encoded at lower energy scale phenomena
would be wiped out. Gravitational waves whose coupling
to matter is the same as that governing the expansion may
not participate in this equilibrium.
Even if information could propagate from one side of the

bounce to another, we have to consider the thermodynamic
arrow of time to discuss whether events on one side could
influence events on the other. Causation is generally pos-
sible only in that direction. That, for instance, is why we
remember past events but not future ones.
In the trenchant analysis of the arrow of time by

Hawking, LaFlamme, and Lyons [13], the thermodynamic
arrow of time is taken to coincide with the time direction in
which fluctuations away from homogeneity and isotropy
grow. Small fluctuations grow under the action of gravita-

FIG. 15. To account for the different possible locations in the universe of the Hubble volume that contains our data, one ought to
multiply the relative probabilities for classical histories coming from the NBWF (left) by a volume factor, to obtain the probability
(right) for what we observe in our past light cone. The resulting volume-weighted probability distribution favors a large number of e-
foldings when the ensemble is restricted to universes that last sufficiently long.

8Remarkably, this condition is the same as the condition for
eternal inflation. However, the precise nature of a possible
connection between our work and eternal inflation is to be found
in the study of inhomogeneous models, which we plan to pursue
in future work.
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tional attraction into large inhomogeneities. That is order
into disorder. Hawking, LaFlamme, and Lyons examine the
evolution of fluctuations in the extremizing solutions that
provide the semiclassical approximation to the NBWF.
They show that regularity conditions at the South Pole
imply that the fluctuations in the extremizing solutions
are small there and therefore increase away from the
South Pole because they have nowhere to go but up.

The Lorentzian histories predicted by the NBWF are not
the same as the extremizing solutions, but they are closely
connected. In the homogeneous, isotropic case, for ex-
ample, the curves of constant real part of the action are
Lorentzian trajectories in minisuperspace when the classi-
cality conditions (3.13) and (3.17) hold. We have not yet
calculated the fluctuations to these models. When we do, it
seems reasonable to suppose that regularity at the South
Pole will imply that the fluctuations are small near the
bounce and tend to increase away from it for a significant
time.

Assuming this result, the arrow of time in bouncing
solutions increases away from the bounce.9 Put differently
it points in opposite directions on opposite sides of the
bounce. It therefore seems unlikely on general thermody-
namic grounds that events on the opposite side of the
bounce could influence events on this side. To do so their
influence would have to travel backward in time. Unless
intelligent aliens find some way to send information back-
ward in time over billions of years, we are as unlikely to
find any messages from them as we are to find ones sent by
intelligent aliens in our own future. Can we say then that
the other side of a bounce is ‘‘real’’? It is just as real as the
pocket universes in an eternally inflating spacetime which
also can neither communicate with us nor influence us.

This situation is in sharp contrast with the causality in
ekpyrotic cosmologies [28] and in the ‘‘pre-big bang’’
models discussed in [29], where one typically starts with
an ordered state in the infinite past and as the universe
evolves, departures from this state grow in time. Hence in
these models the arrow of time always points forward.

However, a subset of the class of histories predicted by
the NBWF has a singularity in the past. We have seen
(cf. Figure 13) that the time asymmetry becomes infinitely
large as we approach the regime of initially singular solu-
tions. The NBWF does not tell us whether evolution con-
tinues past this singularity, and it has in fact not been
shown rigorously whether this is possible at all in any
realistic model.10 If evolution continues past this singular-
ity, it is conceivable based on Fig. 13 that the arrow of time
in these histories will always point in the same direction.
This subset of histories may therefore represent the pre-big
bang spacetimes predicted by the NBWF in which the

arrow of time always points forward and information can
propagate from the contracting phase to the expanding
regime.

IX. CONCLUSIONS

The large scale properties of our specific universe can be
summarized in a short list of facts [31]: Classical physics
applies on coarse-graining scales above the Planck length.
The universe is expanding from a hot big bang in which
light elements were synthesized. There was a period of
inflation, which led to a flat universe today. Structure was
seeded by Gaussian irregularities, which are relics of
quantum fluctuations. The dominant matter is cold and
dark, and there is dark energy which is dynamically domi-
nant at late times. Very roughly this list of features con-
stitutes the standard cosmological model. Quantum
cosmology seeks to provide a theory of the quantum state
of the universe that would predict connections between
these facts.
The first item on the list—the wide range of time, place,

and scale on which classical physics applies—is central to
all the others. This quasiclassical realm is such a manifest
feature of our experience that most treatments of cosmol-
ogy assume it. But, classical behavior is not a general
feature of quantum systems. Rather, it emerges only for
particular coarse grainings in a restricted class of states.
That is especially true for the emergence of classical space-
time geometry in a quantum theory of gravity.11 Any viable
theory of the quantum state of our universe must predict
classical spacetime over the whole of its visible part from
the Planck epoch to the distant future. Broadly speaking,
this paper has mainly focused on two issues connected with
the emergence of a classical cosmological spacetime from
the ‘‘no-boundary’’ theory of its quantum state: (a) What is
the ensemble of classical histories predicted by the NBWF
and what are their probabilities? (b) What are the implica-
tions of the classicality conditions for the standard model
of cosmology? In particular, what are the important prop-
erties of the members of the ensemble of classical histories
predicted by the NBWF, and what are the resulting prob-
abilities for what we observe in our past light cone?
We have analyzed these issues in a very simple class of

homogeneous, isotropic minisuperspace models with a
single scalar field moving in a quadratic potential and a
cosmological constant. Our main results are as follows.
Classical prediction.—Generalized quantum mechanics

is a clear framework for the prediction of classical behavior
from the NBWF [4,15]. Probabilities are predicted for an
ensemble of four-dimensional classical histories of geome-
try and matter field. The complex ‘‘fuzzy instanton’’ met-

9This has also been considered by Carroll and Chen in a
different context [27].
10See however [30] for recent work on this.

11Eternal inflation is sometimes said to vitiate the dependence
of the present universe on the details of its initial quantum state.
But those statements typically assume that spacetime geometry
is classical.
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rics that extremize the sum-over-histories defining the
NBWF are distinct from the real Lorentzian classical met-
rics for which they provide the probabilities.

The no-boundary measure of the universe.—The proba-
bilities for histories in the NBWF classical ensemble
define a measure on classical phase space. The NBWF
measure is concentrated on a surface in phase space which
in realistic models has a boundary arising from the classi-
cality conditions. It is this concentration to a bounded
surface in phase space that gives the NBWF predictive
power. More specifically, for given� the NBWF generally
singles out at most a one-parameter subfamily from the two
parameter family of classical, Lorentzian homogeneous,
isotropic solutions. For �< 3=2 we found classical
histories for all ranges of possible matter content. For
the more realistic case of �> 3=2 we found a certain
minimum amount of matter (�0 > 1:27) is necessary for
classical behavior if there is any matter at all. For�> 3=2
a nearly empty, almost de Sitter space is not the
most probable Lorentzian history. A significant amount
of matter is required for classical histories of geometry
and field.

Inflation and classicality.—All allowed histories that
behave classically at late times inflate at early times near
the bounce or the initial singularity. For�< 3=2 and small
�0, the cosmological constant drives the inflation. For�>
3=2 the required matter is the driver. The NBWF and
classicality imply inflation. This result illustrates the pre-
dictive power of the NBWF. Indeed, using a measure
extending over all of phase space motivated by classical
dynamics, Gibbons and Turok found a negligible probabil-
ity for inflation [10].

Number of e-foldings.—As Figs. 5 and 6, combined
with Fig. 8, show, the NBWF on its own favors a
small number of e-foldings on a history by history relative
probability basis. However, we can ask the more physical,
top-down, question of what is the probability of inflation in
our past conditioned on our limited present data in a
Hubble volume. Then the probability for a long period of
inflation is enhanced as discussed in Sec. VII. Roughly
inflation leads to a larger universe with more possible
locations for our Hubble volume. Requiring that the uni-
verse lasts to the age of 14 Gyr inferred from observation
enhances the probability for a long period of inflation
further.

Bounces and initial singularities.—Some histories
of the NBWF classical ensemble bounce at a minimum
radius and some are initially singular. The diagram in
Fig. 10 shows the range of parameters corresponding
to each. On a history by history relative basis, Figs. 5
and 6 show that the NBWF prefers singular beginnings.
We can again ask the more physical, top-down question
of what is the most probable origin of the universe given
our limited present data in a Hubble volume. Then, as
discussed in [3] and in Sec. VII here, the most probable
origin may be (depending on the model) a bouncing uni-

verse in which the universe was always in the semiclassical
regime.
Future-eternal expansion and final singularities.—The

NBWF predicts probabilities for classical histories and
therefore for their long term fate just as much as for their
origins. Recollapse to a singularity and future-eternal in-
flation are the two possible futures for homogeneous mod-
els. Figure 12 shows the range of parameters� and�0 that
correspond to each. Recollapse is possible only for large�
(small �) and for universes that have an initial big bang
singularity as well as a final singular big crunch.
Singularity resolution.—Even for classical histories that

are singular at early times, the NBWF unambiguously
predicts probabilities for late time observables such as
CMB fluctuations. That is because it predicts probabilities
for histories rather than their initial data. The NBWF
therefore resolves the big bang singularity, in the sense
that it is no longer an obstruction to prediction.
Time asymmetry and the arrow of time.—Fig. 13 shows

that individual Lorentzian histories are generally time
asymmetric although the ensemble of histories is time
symmetric on general grounds. For large �0 this asymme-
try is small. The restriction to homogeneous models does
not permit a conclusive discussion of the thermodynamic
arrow of time. However, one possibility is that it points
away from a bounce on either side. Causality in this set of
histories would be very different from causality in ekpyr-
otic and pre-big bang cosmologies, where the arrow of time
always points in the same direction.
There is much to be done to extend these models to more

realistic ones and to back up various theoretical assump-
tions that have been made. Two extensions are of particular
importance: First, relaxing the restriction to homogeneous
and isotropic models would allow consideration of the
evolution of quantum fluctuations whose effects could be
detectable in the CMB. Further, bubble nucleation, and the
arrow of time could be discussed. Second, as we suggested
in [3] in more realistic landscape potentials the classicality
conditions can act as a vacuum selection principle resulting
in top-down probabilities that favor a bouncing universe
that had a long period inflation and was always in the
semiclassical regime.
On a technical level, going beyond the lowest semiclas-

sical approximation that has been used here could yield
more satisfactory probabilities and facilitate comparison
with other measures such as the classical one developed in
[10]. A study of physically realistic coarse grainings of
spacetime geometry and the decoherence of sets of alter-
native histories defined by them would help back up a
number of assumptions that we have made.
These opportunities for extension, however, should not

obscure the fact that our results in the simple models of this
paper already demonstrate that the NBWF and the classi-
cality conditions can play a central role in understanding
what we observe of our quantum universe.
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APPENDIX: PERTURBATION THEORY

When the scalar field is small it is a perturbation on the
model with only a cosmological constant. This is not a
physically interesting case since we do not live in a nearly
empty de Sitter space. But, it is a case where the entire
discussion can be carried out essentially analytically so as
to provide a guide for the detailed numerical calculations
for the physically interesting nonperturbative situations.
(See, e.g. [32].)

This Appendix discusses the first two orders of pertur-
bation theory. To avoid an excess of indices we will use a,
â for the leading order Euclidean and Lorentzian scale

factors driven only by a cosmological constant, and �, �̂
for the perturbations in the scalar field.

1. No-boundary semiclassical solutions

We first calculate the complex solutions to the equa-
tions (4.9) that provide the semiclassical approximation to
the no-boundary wave function at given real values of
ðb; �Þ. These are solutions which are regular at the South
Pole and match the given values at the other end point.

No scalar field.—When there is no scalar field our only
concern is the geometry. There is only one solution of
(4.9a) that is regular at the South Pole � ¼ 0 and that is

að�Þ ¼ sinð�Þ ¼ sinðxþ iyÞ: (A1)

As discussed in Sec. IVB, finding a regular solution for a
given value of b means finding a contour in the � plane
connecting the origin to a point � ¼ � � X þ iY, where
að�Þ is real and equal to b. The scale factor að�Þ ¼ sinð�Þ is
real along the curves y ¼ 0 and along x ¼ ��=2, x ¼
�3�=2, . . .. If b < 1 there is a solution with � on the real
axis. If b > 1 there are two candidate solutions correspond-
ing to complex conjugate values of � along the constant x
curves where aðxþ iyÞ is real with Y ¼ �cosh�1ðbÞ. We
will argue in a moment that only X ¼ �=2 corresponds to a
solution on the no-boundary manifold.

If b < 1 the contour between � ¼ 0 and � ¼ � can be
chosen to lie on the real axis. Then the metric is real,
Euclidean and corresponds to part of the Euclidean 4-
sphere. For b > 1 consider the solution with X ¼ �=2
and Y ¼ cosh�1ðbÞ. The connecting contour can be taken
to run along the real axis to X ¼ �=2 and then up the y axis
to Y. This corresponds to the geometry of half a unit radius
round Euclidean four-sphere joined smoothly across a
surface of vanishing extrinsic curvature to half of a
Lorentzian de Sitter space starting at the bounce. This is
the well-known no-boundary instanton [20] nucleating de
Sitter space, and we will call the connecting contour the
NBI contour.
Proceeding along a contour of real � to X ¼ 3�=2 and

then upwards to Y gives the same geometry as with X ¼
�=2 but with an additional Euclidean four-sphere attached
at the South Pole. This geometry is not strictly regular on
the no-boundary manifold. We therefore exclude it and all
candidate solutions with larger values of X. Solutions with
X ¼ ��=2 are the same as those with X ¼ þ�=2.
The solution with X ¼ �=2 and Y ¼ �cosh�1ðbÞ has

the opposite sign of the imaginary part of the action from
the one with positive Y. We therefore count it as an
independent semiclassical solution. The two solutions
make complex conjugate contributions to the wave func-
tion ensuring that it is real as discussed in Sec. III D. These
two solutions dominate the semiclassical approximation to
the no-boundary wave function when there is no scalar
field.
Perturbing scalar field.—The first order scalar field

perturbations to the empty extremizing solutions for the
scale factor found above satisfy (4.9b) with að�Þ given by
(A1). The boundary conditions are that �ð�Þ be regular at
the South Pole � ¼ 0 (meaning that _� vanishes there) and
match the given � at the boundary.
We denote by Gð�Þ the (regular) solution to (4.9b) with

Gð0Þ ¼ 1 and _Gð0Þ ¼ 0. This is

Gð�Þ ¼ Fða; b; 2; ð1� cosð�ÞÞ=2Þ; (A2)

where Fða; b; c; zÞ is the hypergeometric function, �� �
2�=3, and

a � ð3=2Þð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ��2

q
Þ; b � ð3=2Þð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ��2

q
Þ:

(A3)

(Evidently, G depends on ��2 as well as � but we will not
usually indicate this explicitly.) The function Gð�Þ is real
on the real axis for x < � and therefore real analytic,
specifically G�ð�Þ � ½Gð��Þ�� ¼ Gð�Þ. The function Gð�Þ
is multivalued and there is therefore a cut which can be
taken to extend along the real axis from x ¼ � to infinity.
We will assume that we are considering perturbations of
the no-boundary instanton solution defined by the NBI
contour discussed above and that this lies on the first sheet
of Gð�Þ. The behavior of Gð�Þ for several values of �� is
illustrated in Figs. 16 and 17.
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The general regular solution will be a complex number
times Gð�Þ. This number can be found as follows: The
value of b determines a point in the complex plane from the
zeroth order calculation above. For b < 1 this is on the real
axis at ðX ¼ sin�1ðbÞ<�=2; Y ¼ 0Þ. Thus the required
solution is

�ð�; b; �Þ ¼ �Gð�Þ=Gðsin�1ðbÞÞ; ðb < 1Þ: (A4a)

This is not an especially interesting case from the point of
semiclassical prediction since the imaginary part of the
action, S, will vanish. The interesting case b > 1 is similar.
For definiteness, focus on the specific extremizing solution
whose zeroth order approximation is labeled by the point
ðX ¼ �=2; Y ¼ þcosh�1ðbÞÞ. The regular solution for the
scalar field matching � at that value is

�ð�;b; �Þ ¼ �Gð�Þ=Gð�=2þ icosh�1ðbÞÞ; ðb > 1Þ:
(A4b)

This solution is unique once the contour defining the un-
perturbed solution is fixed.

For the nonperturbative case discussed in Secs. Vand VI
analytic solutions are not available. Typically we start at
the origin with a value for �ð0Þ, integrate along some
contour in the � plane, and adjust the end point of integra-

tion and the complex value of �ð0Þ to reach given real
values of b and �. This connection between �ð0; b; �Þ and
ðb; �Þ is given in perturbation theory by Eqs. (A4), e.g. for
b > 1,

�ð0;b; �Þ � �0ðb; �Þ exp½i�ðb; �Þ�
¼ �=Gð�=2þ icosh�1ðbÞÞ: (A5)

Since � is real we have

�ðb; �Þ ¼ �Arg½Gð�=2þ icosh�1ðbÞÞ� (A6)

where Arg is the complex phase, and

�0ðb; �Þ ¼ �=jGð�=2þ icosh�1ðbÞÞj: (A7)

Figure 18 shows the perturbative values of 
 � tanð�Þ for
various values of ��.

2. The classical ensemble

We next turn to the perturbative construction of the
ensemble of classical Lorentzian histories predicted by
the no-boundary wave function and the evaluation of their
probabilities. The prescription for this is described in
Sec. IVD and is straightforward to implement explicitly
in perturbation theory. For each extremizing solution, we

FIG. 16. The complex extremizing solution G. Gð�; ��Þ is the complex solution of the linearized equation for the scalar field which
is regular at the origin and equal to 1 there. All other field extrema are multiples of G. Three plots are shown for �� equalling 0.25,
0.50, and 0.75. Each uses the NBI contour in the � plane that extends horizontally from the origin along the real axis to x ¼ �=2 and
then vertically in the imaginary (y) direction. Along this particular contour the unperturbed metric makes a smooth transition between
a Euclidean instanton and a Lorentzian de Sitter metric. G is real along the real part of the contour but complex along the imaginary
component. The real parts of G are indicated by solid lines, the imaginary parts by dashed lines. The curves are in fact continuous
along the contour with appropriate matching conditions for the derivatives reflecting the change in direction of the contour at x ¼
�=2, y ¼ 0. (cf. Fig. 2.).

FIG. 17. The complex extremizing solution Gð�; ��Þ for �� equaling 1.25, 1.50, and 1.75. The figure is otherwise the same as Fig. 16.
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chose a matching surface b ¼ b� in minisuperspace and at
each point along it labeled by � ¼ �� we evaluate initial

data for the classical Lorentzian solutions ðb̂ðtÞ; �̂ðtÞÞ that
are the integral curves of S � �ImðIÞ.

With this data we then integrate the Lorentzian equa-
tions to find the classical solutions labeled by ðb�; ��Þ.
Later we find the probabilities for these Lorentzian histor-
ies. The complete ensemble of classical predictions is the
union of those from all the extremizing solutions that
contribute to the semiclassical approximation to the no-
boundary wave function.

Choosing a different value of b� to implement this
procedure simply means that the same Lorentzian solution
will be labeled by a different value �� of the � at which it
intersects the new surface in minisuperspace.

Zeroth order—no scalar field.—The Lorentzian equa-

tion for the scale factor b̂ðtÞ is
db̂

dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b̂2 � 1

p
: (A8)

There is only one solution to this equation which is the
scale factor for empty de Sitter space. Choosing the origin
of t to be the time of the bounce this is

b̂ðtÞ ¼ coshðtÞ: (A9)

It is easy to verify that this solution satisfies the zeroth
order versions of the Cauchy data (4.16) determined by the

complex solution (A1), namely,

b̂ðt�Þ ¼ b�; db̂=dtjt� ¼ �Imð _aÞj�� ; (A10)

where �� ¼ �=2þ iY�, t� ¼ Y� for one extremizing solu-
tion and �� ¼ �=2� iY�, t� ¼ �Y� for the other.
First order in the scalar field.—The Lorentzian equation

for the scalar field is (4.13b)

1

b̂3
d

dt

�
b̂3

d�̂

dt

�
þ ��2�̂ ¼ 0; (A11)

where b̂ðtÞ is the scale factor (A9) determined in zeroth
order. For each contributing extremizing solution the
Cauchy data along the b ¼ b� surface specified by
(4.16b) is

�̂ðt�Þ ¼ ��; d�̂=dtjt� ¼ �Imð _�Þj�� ; (A12)

Let us first consider the extremizing solution defined by
�� ¼ �=2þ iY�, t� ¼ Y�. It is straightforward to see that
the following is the Lorentzian solution with the boundary
conditions (A12),

�̂ðtÞ ¼ ��Re½Gð�=2þ itÞ=Gð�=2þ it�Þ� (A13)

provided t� is identified with Y�. Using (A4b) the
Lorentzian solutions can also be parametrized by the value
of �0ð1Þ as described in the main text for the nonpertur-

FIG. 18. The parameter 
 � Imð�0Þ=Reð�0Þ plotted along the vertical contour x ¼ �=2. This is the ratio required to have � real
along this contour. On the left the curves reading from bottom to top for �� equal to 0.2, 0.4, 0.6, and 0.8. The ratio becomes constant at
large y. On the right the single value �� ¼ 1:5 is plotted showing the generic lack of stabilization at large y. (cf. Fig. 1.).

FIG. 19. The first figure shows Lorentzian histories of the scalar field for various values of ��. The value of �̂=�0 is plotted
vertically. Starting from the top on the left and moving downward the values of �� are 0.2, 0.4, 0.6, and 0.8. The solutions are not
generally time symmetric although the ensemble of Lorentzian solutions is time symmetric. The second figure shows the time-
asymmetry parameter � (6.2) as a function of ��. (cf. Fig. 13.)
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bative case. Figure 19 shows a few examples of
�̂ðtÞ=�0ð1Þ.

Another set of extremizing solutions is defined by �� ¼
�=2� iY�. This subensemble of Lorentzian histories is
just the time ðtÞ reversed of the one defined by �� ¼ �=2þ
iY�. The whole ensemble of classical Lorentzian solutions
is therefore time symmetric. The individual solutions are
generally not as Fig. 19 shows.

3. Perturbative action

The action function Iðb; �Þ determines both when clas-
sical Lorentzian histories are predicted by the NBWF
through (3.13), and, if so, what their probabilities are
through expð�2IRÞ. In perturbation theory the action can
be expanded in powers of �, viz.

Iðb; �Þ ¼ Ið0ÞðbÞ þ Ið2Þðb; �Þ þ � � � ; (A14)

where the second term is proportional to �2. The terms

Ið0ÞðbÞ and Ið2Þðb; �Þ are determined by evaluating the
action integral (4.8) to quadratic order in � using the
perturbative complex extremizing solutions found in the
first part of this Appendix. The integral in that expression is
carried out along a contour from � ¼ 0 to an end point � ¼
� ¼ X þ iY corresponding to the given value of ðb; �Þ. In
the following we carry out this perturbative evaluation
focusing exclusively on the range b > 1 needed for classi-
cal prediction.
Zeroth order—no scalar field.—The extremizing solu-

tion is given by (A1). The end point is � ¼ �=2þ
icosh�1ðbÞ. The result of carrying out the integral is

Ið0ÞðbÞ ¼ � �

2H2
½1� iðb2 � 1Þ3=2�: (A15)

Second order in the scalar field.—The action integral
(4.8) depends on�ð�Þ, að�Þ, and �. There are perturbations
in all three. Only the linear order solution for �ð�Þ is
needed to evaluate the field contribution to the action to

FIG. 20. Curves of constant real part of the action in minisuperspace. When the conditions for classicality are satisfied these will be
classical Lorentzian solutions for large b. That will be the case for the curves on the left with ��< 1, but not those on the right for
which ��> 1. Since the real part of the zeroth order action contributes an overall additive constant ��=ð2H2Þ it is convenient to label
the constant action curves by the value of ð2H2=3�ÞIð2Þ, [cf. (A17)]. Reading from left to right the values of ð2H2=3�ÞIð2Þ shown are
0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 for the �� ¼ 0:5 on the left. For �� ¼ 1:5 on the right the values are 0.01, 0.1, 1, 10, 100. Note
that the b axis starts from 1 which is the value of b at the bounce.

FIG. 21. Curves of the constant real part of the action in the complex � plane. The end point values ðX; YÞ provide a set of
coordinates for minisuperspace that are alternatives to ðb; �Þ. The unperturbed curve where b is real is the vertical curve at X ¼ �=2
along which 2H2IR=3� ¼ �1=3. Perturbations in that curve along which the perturbing matter action is constant are shown here for
several values of ��. On the left are curves where �� has the values 0.25, 0.50, and 0.75 reading up from the lowest to highest. On the
right curves corresponding to 1.0 to 1.4 in steps of 0.1 reading left to right. The perturbative calculation of these curves is only valid
when they remain close to the vertical line at X ¼ �=2. For that reason no scale is indicated for the X axis. For ��< 1 the curves of
constant IR approach classical solutions. For ��> 1 the oscillation at large y is an indication that they do not approach classical
solutions.
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quadratic order in �. It turns out that the second order
perturbations of the scale factor and of the end point cancel
essentially as a consequence of reparametrization invari-
ance. Integrating the� part of the action by parts and using
the equation of motion for � then gives the following

simple expression for Ið2Þ:

Ið2Þðb; �Þ ¼ 3�

4H2
b3�ð�Þ _�ð�Þ: (A16)

Explicitly, using (A4b), this is

Ið2Þðb; �Þ ¼ 3�

4H2
�2b3

_G½�=2þ icosh�1ðbÞ�
G½�=2þ icosh�1ðbÞ�

� 3�

4H2
�2b3FðbÞ: (A17)

It is straightforward although laborious to check that this
perturbation in the action satisfies the Hamilton-Jacobi
equation (3.15a) expanded to second order in � as a con-
sequence of the equation of motion (4.9b).
Figures 20 and 21 show curves of constant real part of

the action plotted in ðb; �Þ and ðX; YÞ coordinates on
minisuperspace for typical values of �� less and greater

FIG. 22. The classicality ratios Clb and Cl� plotted for � ¼ 0:75 (top pair) and � ¼ 3 (bottom pair) in minisuperspace ðb; �Þ
where Y � cosh�1ðbÞ. In lowest order perturbation theory Clb is proportional to �2, and the value � ¼ 0:1 was used for these
illustrations. Cl� is independent of � in leading order. The classicality conditions are well satisfied for Y * 2 when � ¼ 0:75. For

� ¼ 3 it is not satisfied at all because Cl� never drops much below unity. There are no classical histories for �> 3=2.

FIG. 23. The real part of the action along the classical Lorentzian solution with �0 ¼ 1 for several values of ��. The curves on the
left reading bottom to top range from �� ¼ :3 to �� ¼ 0:9 in steps of 0.1. On the right the range from bottom to top is �� ¼ 1:1 to
�� ¼ 1:7 in steps of 0.1. The marked qualitative difference between the ��< 1 and ��> 1 is important for classical predictions. On the
left the real part approaches a constant at large t. Its gradient in this direction is small compared to the gradient of S. The curves
approach the integral curves for classical, Lorentzian solutions with probabilities proportional to expð�2IRÞ. For ��> 1 the real part
of the action does not approach a constant, its gradient remains comparable to the gradient of S, and, as a consequence, classical
behavior is not predicted for the scalar field.
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than 1. In regions of superspace where the classicality
conditions (3.13) and (3.17) are satisfied, these curves are
integral curves of the imaginary part of the action�Sðb; �Þ
to a good approximation and would represent the predicted
classical Lorentzian histories to that approximation. In
each case the curves display the decay of the scalar field
with the expansion of the universe that is a property of
Lorentzian solutions.

4. Perturbative classicality and perturbative
probabilities

As discussed in Sec. III B, a necessary condition for
classical Lorentzian histories is a region of minisuperspace
where the gradients of the real part of the action IRðb; �Þ
are all small compared with those of minus the imaginary
part Sðb; �Þ. A convenient measure of this classicality
condition (3.13) is the classicality ratio

ClAðb; �Þ � jrAIRðb; �Þj=jrASðb; �Þj: (A18)

When both of these ratios are small, the classicality con-
dition (3.13) is satisfied. In lowest nonvanishing perturba-
tion theory order we have

Clb ¼ jrbI
ð2Þj

jrbS
ð0Þj �

1

2
�2 b

ðb2 � 1Þ1=2
�
3FR þ b

dFR

db

�

(A19a)

Cl� ¼ jr�I
ð2Þj

jr�S
ð2Þj ¼

FR

FI

: (A19b)

The ratio Clb will be small for small �, but the ratio Cl� is

independent of � for small �.
Figure 22 shows these ratios for two values of �—one

below 3=2 and one above. It is evident that the classicality
condition is not satisfied for Cl� for the larger value and

this is true for all values �> 3=2. By contrast, the condi-

tion is satisfied for all �< 3=2. It can also be checked that
the condition (3.17) is satisfied.
Figure 23 shows the situation with respect to classicality

in the �< 3=2 and �> 3=2 regimes in a different way.
The real part of the action must become constant along any
curve in superspace that is a predicted classical history.
Were IR not constant along a Lorentzian history, then
expð�2IRÞ could not be its probability. There is one proba-
bility for each history. In the approximations that we are
using in this paper, the relative probabilities of classical
Lorentzian histories are given by expð�2IRÞ when the
classicality conditions are satisfied. For small values of
the scalar field this is when ��< 1. The results for the
real part of the action are shown in Fig. 24 for a range of
values of ��< 1. Comparison with Fig. 5 shows that the
perturbation theory is a reasonable approximation for small
values of �0.
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