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We study inflationary cosmology and the late-time accelerated expansion of the universe in nonminimal

Yang-Mills (YM) theory, in which the YM field couples to a function of the scalar curvature. It is shown

that power-law inflation can be realized due to the nonminimal YM field-gravitational coupling which

may be caused by quantum corrections. Moreover, it is demonstrated that both inflation and the late-time

accelerated expansion of the universe can be realized in a modified YM-FðRÞ gravity which is consistent

with solar-system tests. Furthermore, it is shown that this result can be realized also in a nonminimal

vector-FðRÞ gravity. In addition, we consider the duality of the nonminimal electromagnetic theory and

that of the nonminimal YM theory, and also discuss the cosmological reconstruction of the YM theory.
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I. INTRODUCTION

Recent observations confirmed that the inflationary
stage existed in the early universe, and that also at present
the expansion of the universe is accelerating [1,2]. Various
scenarios for the late-time acceleration in the expansion of
the universe have been proposed. In fact, however, the
cosmic acceleration mechanism is not well understood
yet (for recent reviews, see [3–7]).

There exist two approaches to account for the late-time
acceleration of the universe. One is dark energy, i.e., the
general relativistic approach. The other is dark gravity, i.e.,
the modified gravity approach. Among the latter ap-
proaches studied so far, the modification to the Einstein-
Hilbert action, e.g., the addition of an arbitrary function of
the scalar curvature to it, is one of the most promising latter
approaches (for a review, see [7]). Such a modified theory
must pass cosmological bounds and solar-system tests
because it is considered as an alternative gravitational
theory.

Avery realistic modified gravitational theory that evades
solar-system tests has recently been proposed by Hu and
Sawicki [8] (for related studies, see [9]). In this theory, an
effective epoch described by the cold dark matter model
with cosmological constant (�CDM), which accounts for
high-precision observational data, is realized in general
relativity with the cosmological constant (for a review of
observational data confronted with modified gravity, see
[10]). This theory can successfully explain the late-time

acceleration of the universe. In Ref. [8], however, the
possibility of the realization of inflation has not been
discussed. In Refs. [11–13], therefore, modified gravities
in which both inflation and the late-time acceleration of the
universe can be realized, following the previous inflation-
acceleration unification proposal [14], have been presented
and investigated. The classification of viable FðRÞ gravities
has also been suggested in Ref. [12]. Here, FðRÞ is an
arbitrary function of the scalar curvature R.
Furthermore, there exists another gravitational source of

inflation and the late-time acceleration of the universe: a
coupling between the scalar curvature and matter
Lagrangian [15,16] (see also [17]). Such a coupling may
be applied for the realization of the dynamical cancellation
of cosmological constant [18]. In Refs. [19–21], the criteria
for the viability of such theories has been considered. As a
simple case, a coupling between a function of the scalar
curvature and the kinetic term of a massless scalar field in a
viable modified gravity has been considered [22].
Recently, inflation and the late-time acceleration of the

universe in nonminimal electromagnetism, in which the
electromagnetic field couples to a function of the scalar
curvature, has been studied in Ref. [23] by using the
analyzing procedure in the electromagnetic field consid-
ered in Ref. [24]. It is known that the coupling between the
scalar curvature and the Lagrangian of the electromagnetic
field arises in curved spacetime due to one-loop vacuum-
polarization effects in quantum electrodynamics (QED)
[25]. As a result, it has been shown that power-law inflation
can be realized due to the nonminimal gravitational cou-
pling of the electromagnetic field, and that large-scale
magnetic fields can be generated due to the breaking of
the conformal invariance of the electromagnetic field
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through its nonminimal gravitational coupling 1 (see also
[27]). The mechanism of inflation in this model is as
follows. In the very early universe before inflation, elec-
tromagnetic quantum fluctuations are generated due to the
breaking of the conformal invariance of the electromag-
netic field and they act as a source for inflation.
Furthermore, also during inflation electromagnetic quan-
tum fluctuations are newly generated and the scale is
stretched due to inflation, so that the scale can be larger
than the Hubble horizon at that time, and they lead to the
large-scale magnetic fields observed in galaxies and clus-
ters of galaxies. This idea is based on the assumption that a
given mode is excited quantum mechanically while it is
subhorizon sized and then as it crosses outside the horizon
‘‘freezes in’’ as a classical fluctuation [28]. These large-
scale magnetic fields can be the origin of the large-scale
magnetic fields with the field strength 10�7–10�6 G on
10 kpc–1 Mpc scale observed in clusters of galaxies [29]
(for reviews of cosmic magnetic fields, see [30]).
Furthermore, it has been demonstrated that both inflation
and the late-time acceleration of the universe can be real-
ized in a modified Maxwell-FðRÞ gravity proposed in
Ref. [13] which is consistent with solar-system tests.

In the present paper, we consider inflationary cosmology
and the late-time accelerated expansion of the universe in
nonminimal non-Abelian gauge theory, called the Yang-
Mills (YM) theory, in which the non-Abelian gauge field
(the YM field) couples to a function of the scalar curvature,
in order to investigate the cosmological consequences of
the nonminimal gravitational coupling of the YM field.
Furthermore, we consider a nonminimal vector-FðRÞ grav-
ity. In past studies, inflation driven by a vector field has
been discussed [31,32]. Moreover, as a candidate for dark
energy, the effective YM condensate [33,34], the Born-
Infeld quantum condensate [35], and a vector field [36–40]
have been proposed. In particular, the possibility that the
accelerated expansion of the universe is driven by a field
with an anisotropic equation of state has been considered in
Ref. [40]. As a result, we show that power-law inflation can
be realized due to the nonminimal gravitational coupling of
the YM field.2 Moreover, we demonstrate that both infla-
tion and the late-time accelerated expansion of the universe
can be realized in a modified Yang-Mills- FðRÞ gravity
which is consistent with solar-system tests. Furthermore,
we show that this result can be realized also in a non-
minimal vector-FðRÞ gravity. In addition, we consider the
duality of the nonminimal electromagnetic theory and that
of the nonminimal YM theory, and also discuss the recon-
struction of the YM theory.

There are several motivations to study nonminimal YM
theory. First of all, we show that the appearance of such

nonminimal terms in the early universe is compatible with
current formulations of YM theory due to specific choice
of nonminimal function. Second, some string compactifi-
cation may lead to effective scalars-YM-Einstein theory
(plus higher order corrections). In some cases, one can
delete scalars in such a way that extra curvature terms
(nonminimal ones) appear in front of the YM
Lagrangian. Third, the celebrated asymptotic freedom phe-
nomenon may be understood as appearance of nonminimal
terms at the early universe.
This paper is organized as follows. In Sec. II we consider

a nonminimal gravitational coupling of the SUðNÞ YM
field in general relativity. First, we describe our model
and derive equations of motion from it. Next, we analyze
the gravitational field equation, and then show that power-
law inflation can be realized. In Sec. III we consider a
nonminimal gravitational coupling of the SUðNÞ YM field
in a modified gravitational theory proposed in Ref. [13].
We show that in this theory both inflation and the late-time
acceleration of the universe can be realized. In Sec. IV we
consider a nonminimal vector-FðRÞ gravity. Furthermore,
in Sec. V we consider the duality of the nonminimal
electromagnetic theory and that of the nonminimal YM
theory. In addition, in Sec. VI we discuss the reconstruction
of the YM theory. Finally, a summary is given in Sec. VII.
We use units in which kB ¼ c ¼ @ ¼ 1 and denote the
gravitational constant 8�G by �2, so that �2 � 8�=M2

Pl,

where MPl ¼ G�1=2 ¼ 1:2� 1019 GeV is the Planck
mass. Moreover, in terms of electromagnetism we adopt
Heaviside-Lorentz units.

II. INFLATION IN GENERAL RELATIVITY

In this section, following the discussion given in
Ref. [23], we first consider a nonminimal gravitational
coupling of the YM field in general relativity.

A. Model

We consider the following model action:

SGR ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ½LEH þLYM�; (2.1)

L EH ¼ 1

2�2
R; (2.2)

LYM ¼ � 1

4
IðRÞFa

��F
a��

�
�
1þ b~g2 ln

��������
�ð1=2ÞFa

��F
a��

�4

��������
�
; (2.3)

with

IðRÞ ¼ 1þ fðRÞ; (2.4)

1In Ref. [26], gravitational-electromagnetic inflation from a 5-
dimensional vacuum state has been considered.

2In Ref. [41], the spontaneous generation of chromomagnetic
fields at high temperature has been investigated.
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b ¼ 1

4

1

8�2

11

3
N; (2.5)

Fa
�� ¼ @�A

a
� � @�A

a
� þ fabcAb

�A
c
�; (2.6)

where g is the determinant of the metric tensor g��, R is

the scalar curvature arising from the spacetime metric
tensor g��, and LEH is the Einstein-Hilbert action.

Moreover, LYM with IðRÞ ¼ 1 is the effective
Lagrangian of the SUðNÞ YM theory up to one-loop order
[42,43], fðRÞ is an arbitrary function of R, b is the asymp-
totic freedom constant, Fa

�� is the field strength tensor, Aa
�

is the SUðNÞ YM field with the internal symmetry index a
(Roman indices, a, b, c, run over 1; 2; . . . ; N2 � 1, and in
Fa
��F

a�� the summation in terms of the index a is also

made), and fabc is a set of numbers called structure con-
stants and completely antisymmetric [44]. Furthermore, �
is the mass scale of the renormalization point, and a field-
strength-dependent running coupling constant is given by
[43]

~g 2ðXÞ ¼ ~g2

1þ b~g2 lnjX=�4j ; (2.7)

where

X � �1
2F

a
��F

a��: (2.8)

Hence, ~g is the value of the running coupling constant
when X ¼ �4.

The field equations can be derived by taking variations
of the action in Eq. (2.1) with respect to the metric g�� and

the SUðNÞ YM field Aa
� as follows:

R�� � 1
2g��R ¼ �2TðYMÞ

�� ; (2.9)

with

TðYMÞ
�� ¼ IðRÞðg��Fa

��F
a
��"� 1

4g��F Þ
þ 1

2ff0ðRÞFR�� þ g��h½f0ðRÞF �
� r�r�½f0ðRÞF �g; (2.10)

" ¼ 1þ b~g2 ln

��������e
��ð1=2ÞFa

��F
a��

�4

���������
¼ 1þ b~g2 ln

��������e
�
X

�4

���������; (2.11)

F ¼ Fa
��F

a��

�
1þ b~g2 ln

��������
�ð1=2ÞFa

��F
a��

�4

��������
�

¼ �2X

�
1þ b~g2 ln

��������
X

�4

��������
�
; (2.12)

and

1ffiffiffiffiffiffiffi�g
p @�½ ffiffiffiffiffiffiffi�g

p
IðRÞ"Fa��� � IðRÞ"fabcAb

�F
c�� ¼ 0;

(2.13)

where the prime denotes differentiation with respect to R,
r� is the covariant derivative operator associated with

g��, and h � g��r�r� is the covariant d’Alembertian

for a scalar field. In addition, R�� is the Ricci curvature

tensor, while TðYMÞ
�� is the contribution to the energy-

momentum tensor from the SUðNÞ YM field. Moreover,
" is a field-strength-dependent effective dielectric constant
[43], and e � 2:72 is the Napierian number. In deriving the
second equalities in Eqs. (2.11) and (2.12), we have used
Eq. (2.8).
We assume the spatially flat Friedmann-Robertson-

Walker spacetime with the metric

ds2 ¼ �dt2 þ a2ðtÞdx2 ¼ a2ð�Þð�d�2 þ dx2Þ; (2.14)

where a is the scale factor, and � is the conformal time. In
this spacetime, g�� ¼ diagð�1; a2ðtÞ; a2ðtÞ; a2ðtÞÞ, and the

components of R�� and R are given by

R00 ¼ �3ð _H þH2Þ; R0i ¼ 0;

Rij ¼ ð _H þ 3H2Þgij; R ¼ 6ð _H þ 2H2Þ; (2.15)

where H ¼ _a=a is the Hubble parameter. Here, a dot
denotes a time derivative, _ ¼ @=@t.

B. Power-law inflation

The ð�; �Þ ¼ ð0; 0Þ component and the trace part of the
ð�; �Þ ¼ ði; jÞ component of Eq. (2.9), where i and j run
from 1 to 3, read

H2 þ J1 ¼ �2

6
fIðRÞðb~g2X þ "YÞ þ 3½�f0ðRÞð _H þH2Þ

þ 6f00ðRÞHð €H þ 4H _HÞ�F þ 3f0ðRÞH _F g;
(2.16)

J1 ¼ 1
6FðRÞ � F0ðRÞð _H þH2Þ; (2.17)

and
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2 _H þ 3H2 þ J2 ¼ �2

2

�
IðRÞX

�
� 1

3
"þ b~g2

�
þ ½�f0ðRÞð _H þ 3H2Þ þ 6f00ðRÞðH::: þ 7H €H þ 4 _H2 þ 12H2 _HÞ

þ 36f000ðRÞð €H þ 4H _HÞ2�F þ 3½f0ðRÞHþ 4f00ðRÞð €H þ 4H _HÞ� _F þ f0ðRÞ €F
�
; (2.18)

J2 ¼ 1
2FðRÞ � F0ðRÞð _H þ 3H2Þ þ 6F00ðRÞ½H::: þ 4ð _H2 þH €HÞ� þ 36F000ðRÞð €Hþ 4H _HÞ2; (2.19)

respectively. Here, X and Y are given by

X ¼ jEaðproperÞ
i ðtÞj2 � jBaðproperÞ

i ðtÞj2; (2.20)

Y ¼ jEaðproperÞ
i ðtÞj2 þ jBaðproperÞ

i ðtÞj2; (2.21)

where EaðproperÞ
i ðtÞ and BaðproperÞ

i ðtÞ are the quantities corre-
sponding to proper electric and magnetic fields in the
SUðNÞ YM theory, respectively. In this paper, because
we consider the case in which there exist the YM electric
and magnetic fields as background quantities at the 0th
order, we here consider that the YM electric and magnetic
fields do not have the dependence on the space components
x. Moreover, J1 and J2 are correction terms in a modified
gravitational theory described by the action in Eq. (3.1) in
the next section. Hence, because in this section we consider
general relativity, i.e., the case FðRÞ ¼ 0 in the action in
Eq. (3.2), here both J1 and J2 are zero. Furthermore, in
deriving Eqs. (2.16) and (2.18), we have used equations in
(2.15) and the following equation:

F ¼ �2Xð"� b~g2Þ; (2.22)

which follows from Eqs. (2.8), (2.11), and (2.12).
In the search of exact solutions for nonminimal YM

(electromagnetic)-gravity theory (see [45,46]), there exists
the problem of off-diagonal components of YM (electro-
magnetic) stress tensor being nonzero while the right-hand
side of Einstein equations is zero. In our case, we consider
the following. As a simple case, we can consider the
following case in which the off-diagonal components of

TðYMÞ
�� in Eq. (2.10) vanishes: (i) Only (YM) magnetic fields

are generated and hence (YM) electric fields are negligible.
(ii) Ba ¼ ðBa

1 ; B
a
2 ; B

a
3Þ, where Ba

1 ¼ Ba
2 ¼ 0, Ba

3 � 0,
namely, we consider the case in which only one component
of Ba is nonzero and hence the other two components are
zero. In such a case, it follows from divBa ¼ 0 that the off-
diagonal components of the last term on the right-hand side

of TðYMÞ
�� , i.e.,r�r�½f0ðRÞF �, are zero. Thus, all of the off-

diagonal components of TðYMÞ
�� are zero. In this paper (in-

cluding Secs. III and IV) we consider the above case in
order to investigate the cosmological consequences of the
nonminimal gravitational coupling of the YM field.

In Eq. (2.13), because the amplitude of Aa
� is small, we

can neglect the higher order than or equal to the quadratic
terms in Aa

� and investigate the linearized equation of

Eq. (2.13) in terms of Aa
�. The linearized equation of

motion in the Coulomb gauge, @jAa
j ðt; xÞ ¼ 0, and the

case of Aa
0ðt; xÞ ¼ 0, reads

€A a
i ðt; xÞ þ

�
H þ _I

I

�
_Aa
i ðt; xÞ �

1

a2
�ð3ÞAa

i ðt; xÞ ¼ 0;

(2.23)

where �ð3Þ ¼ @i@i is the flat 3-dimensional Laplacian. It
follows from Eq. (2.23) that the Fourier mode Aa

i ðk; tÞ
satisfies the equation

€A a
i ðk; tÞ þ

�
H þ _I

I

�
_Aa
i ðk; tÞ þ

k2

a2
Aa
i ðk; tÞ ¼ 0: (2.24)

Replacing the independent variable t by �, we find that
Eq. (2.24) becomes

@2Aa
i ðk; �Þ
@�2

þ 1

Ið�Þ
dIð�Þ
d�

@Aa
i ðk; �Þ
@�

þ k2Aa
i ðk; �Þ ¼ 0:

(2.25)

By using the WKB approximation on subhorizon scales
and the long-wavelength approximation on superhorizon
scales, and matching these solutions at the horizon cross-
ing, we find [24]

jAa
i ðk; �Þj2 ¼ jCðkÞj2

¼ 1

2kIð�kÞ
��������1�

�
1

2

1

kIð�kÞ
dIð�kÞ
d�

þ i

�
k
Z �f

�k

Ið�kÞ
Ið~~�Þ d

~~�

��������
2

; (2.26)

where �k and �f are the conformal time at the horizon
crossing and one at the end of inflation, respectively.
Consequently, from Eq. (2.26) we obtain the amplitude
of the proper YMmagnetic fields on a comoving scale L ¼
2�=k in the position space

jBaðproperÞ
i ðtÞj2 ¼ kjCðkÞj2

�2

k4

a4

�
1þ 1

2
fabcubuc

kjCðkÞj2
2�2

�
;

(2.27)

where ubð¼ 1Þ and ucð¼ 1Þ are the quantities denoting the
dependence on the indices b and c, respectively. Thus,
from Eq. (2.27) we see that the YMmagnetic fields evolves

as jBaðproperÞ
i ðtÞj2 ¼ j �Baj2=a4, where j �Baj is a constant.

In this case, we find that Eqs. (2.16) and (2.18) are
reduced to
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H2 ¼ �2

�
1

6
IðRÞð"� b~g2Þ þ ½�f0ðRÞð _H þH2Þ þ 6f00ðRÞHð €H þ 4H _HÞ�ð"� b~g2Þ � 4f0ðRÞH2"

� j �Baj2
a4

; (2.28)

and

2 _H þ 3H2 ¼ �2

�
1

6
IðRÞð"� 3b~g2Þ þ ½�f0ðRÞð _H þ 3H2Þ þ 6f00ðRÞðH::: þ 7H €H þ 4 _H2 þ 12H2 _HÞ

þ 36f000ðRÞð €H þ 4H _HÞ2�ð"� b~g2Þ þ 4½f0ðRÞð� _H þH2Þ � 12f00ðRÞHð €H þ 4H _HÞ�"þ 16f0ðRÞH2b~g2
�

� j �Baj2
a4

; (2.29)

respectively. Eliminating IðRÞ from Eqs. (2.28) and (2.29), we obtain

_H þ "

"� b~g2
H2 ¼ �2

�
f0ðRÞ

�
�ð2"þ b~g2Þ _H þ

��
3"� 7b~g2

"� b~g2

�
"þ 8b~g2

�
H2

�

þ 3f00ðRÞ½ð"� b~g2ÞH::: � 2ð"þ 2b~g2ÞH €H þ 4ð"� b~g2Þ _H2 � 24"H2 _H�

þ 18f000ðRÞð"� b~g2Þð €H þ 4H _HÞ2
� j �Baj2

a4
: (2.30)

We here note the following point. From Eq. (2.11), we
see that the value of " depends on the field strength, in
other words, it varies in time. In fact, however, the change
in time of " is smaller than that of other quantities because
the dependence of " on the field strength is logarithmic, so
that we can approximately regard " as constant in
Eq. (2.30). (Thus, from this point we regard " as constant.)

Here we consider the case in which fðRÞ is given by the
following form:

fðRÞ ¼ fHSðRÞ � c1ðR=m2Þn
c2ðR=m2Þn þ 1

; (2.31)

which satisfies the conditions

lim
R!1fHSðRÞ ¼

c1
c2

¼ const; (2.32)

lim
R!0

fHSðRÞ ¼ 0: (2.33)

Here, c1 and c2 are dimensionless constants, n is a positive
constant, and m denotes a mass scale. This form, fHSðRÞ,
has been proposed by Hu and Sawicki [8]. The second

condition (2.33) means that there could exist a flat space-
time solution. Hence, because in the late-time universe the
value of the scalar curvature becomes zero, the YM cou-
pling I becomes unity, so that the standard YM theory can
be naturally recovered.
In order to show that power-law inflation can be realized,

we consider the case in which the scale factor is given by
aðtÞ ¼ �aðt=�tÞp, where �t is some fiducial time during infla-
tion, �a is the value of aðtÞ at t ¼ �t, and p is a positive
constant. In this case, H ¼ p=t, _H ¼ �p=t2, €H ¼ 2p=t3,

and H
::: ¼ �6p=t4. Moreover, it follows from the fourth

equation in (2.15) that R ¼ 6pð2p� 1Þ=t2. At the infla-
tionary stage, because R=m2 � 1, we are able to use the
following approximate relations:

fHSðRÞ ¼ c1
c2

�
1� 1

c2

�
R

m2

��n
�
: (2.34)

Substituting the above relations in terms of a, H, and R,
and the approximate expressions of f0HSðRÞ, f00HSðRÞ, and
f000HSðRÞ derived from Eq. (2.34) into Eq. (2.30), we find

p ¼ nþ 1

2
; (2.35)

�a

�tp
¼

�
1

3nþ1nnðnþ 1Þnþ1

ð�c1Þ
c22

ðnþ 1Þ"2 þ 3ðn� 1Þb~g2"þ 6ðb~g2Þ2
ðn� 1Þ"þ 2b~g2

j �Baj2�2m2n

�
1=4

: (2.36)

Hence, if n � 1, p becomes much larger than unity, so that
power-law inflation can be realized. Consequently, it fol-
lows from this result that the YM field with a nonminimal
gravitational coupling in Eq. (2.3) can be a source of
inflation. This result is the same as in nonminimal
Maxwell theory [23].

In this paper we consider only the case in which the
values of the terms proportional to f0ðRÞ, f00ðRÞ, and f000ðRÞ
in the right-hand sides of Eqs. (2.28) and (2.29) are domi-
nant to the value of the term proportional to IðRÞ. Among
the terms proportional to f0ðRÞ, f00ðRÞ, and f000ðRÞ, the term
proportional to f0ðRÞ is dominant, and its value is order
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f0ðRÞH2 � nðc1=c22ÞðH2=m2ÞðR=m2Þ�ðnþ1Þ, which can be
derived by using Eq. (2.34). Here, it follows fromH ¼ p=t
and R ¼ 6pð2p� 1Þ=t2 that R is order 10H2. The
condition that the term proportional to f0ðRÞ is dominant
in the source term would be IðRÞ=½f0ðRÞH2� �
10c2ðR=m2Þn=n � 1. This would require extremely small
c2 because at the inflationary stage R=m

2 � 1 and n � 1.
In such a case, the value of the right-hand side of
Eq. (2.30), which is order �2f0ðRÞH2j �Baj2=a4, can be order
H2. Consequently, the right-hand side of Eq. (2.30) can
balance with the left-hand side of Eq. (2.30), and hence
Eq. (2.30) can be satisfied without contradiction to the
result, i.e., power-law inflation in which p is much larger
than unity can be realized. The reason why we consider the
case in which the term proportional to IðRÞ on the right-
hand side of Eqs. (2.28) and (2.29) is so small in compari-
son to the term proportional to f0ðRÞ that it can be ne-
glected is as follows [23]: If the opposite case, namely, the
term proportional to IðRÞ, is dominant to the term propor-
tional to f0ðRÞ, Eqs. (2.28) and (2.29) are approximately
written as H2 � ð1=6Þ�2IðRÞj �Baj2=a4 and 2 _H þ 3H2 �
ð1=6Þ�2IðRÞj �Baj2=a4, respectively. Thus, in this case it
follows from Eqs. (2.28) and (2.29) that H2 and 2 _H þ
3H2 are the same order and their difference, 2 _Hþ 2H2,
must be much smaller than H2. In fact, Eq. (2.30) implies
that _H þ ½"=ð"� b~g2Þ�H2 balances with a much smaller
quantity than �2IðRÞj �Baj2=a4. Now, f _H þ ½"=ð"�
b~g2Þ�H2g=H2 ¼ "=ð"� b~g2Þ � 1=p � 1 and hence p
must be smaller than unity because " > 0 and b > 0.
Consequently, in this case power-law inflation cannot be
realized.

Finally, we note the following point. The constraint on a
nonminimal gravitational coupling of matter from the ob-
servational data of the central temperature of the Sun has
been proposed [21]. Furthermore, the existence of the
nonminimal gravitational coupling of the electromagnetic
field changes the value of the fine structure constant, i.e.,
the strength of the electromagnetic coupling. Hence, the
deviation of the nonminimal electromagnetism from the
ordinary Maxwell theory can be constrained from the
observations of radio and optical quasar absorption lines
[47], those of the anisotropy of the cosmic microwave

background (CMB) radiation [48,49], those of the absorp-
tion of CMB radiation at 21 cm hyperfine transition of the
neutral atomic hydrogen [50], and big bang nucleosynthe-
sis [51,52] as well as solar-system experiments [53] (for a
recent review, see [54]). On the other hand, because the
energy scale of the YM theory is higher than the electro-
weak scale, the existence of the nonminimal gravitational
coupling of YM field might influence on models of the
grand unified theories (GUT).

III. INFLATION AND LATE-TIME COSMIC
ACCELERATION IN MODIFIED GRAVITY

Next, in this section we consider a nonminimal gravita-
tional coupling of the YM field in a modified gravitational
theory proposed in Ref. [13].
We consider the following model action:

SMG ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ½LMG þLYM�; (3.1)

LMG ¼ 1

2�2
½Rþ FðRÞ�; (3.2)

where FðRÞ is an arbitrary function of R. Here, LYM is
given by Eq. (2.3). We note that FðRÞ is the modified part of
gravity, and hence FðRÞ is completely different from the
nonminimal gravitational coupling of the YM field fðRÞ in
Eq. (2.4).
Taking variations of the action Eq. (3.1) with respect to

the metric g��, we find that the field equation of modified

gravity is given by [13]

½1þ F0ðRÞ�R�� � 1
2g��½Rþ FðRÞ� þ g��hF0ðRÞ

� r�r�F
0ðRÞ ¼ �2TðYMÞ

�� : (3.3)

The ð�; �Þ ¼ ð0; 0Þ component and the trace part of the
ð�; �Þ ¼ ði; jÞ component of Eq. (3.3), where i and j run
from 1 to 3, are given by Eqs. (2.16) and (2.18),
respectively.
Here we consider the same case as in the preceding

section. In this case, eliminating IðRÞ from Eqs. (2.16)
and (2.18), we obtain

_H þ "

"� b~g2
H2 þ

�
"

6ð"� b~g2ÞFðRÞ � F0ðRÞ
�

b~g2

"� b~g2
_H þ "

"� b~g2
H2

�
þ 3F00ðRÞ½H::: þ 4ð _H2 þH €HÞ�

þ 18F000ðRÞð €H þ 4H _HÞ2
�

¼ �2

�
f0ðRÞ

�
�ð2"þ b~g2Þ _H þ

��
3"� 7b~g2

"� b~g2

�
"þ 8b~g2

�
H2

�
þ 3f00ðRÞ½ð"� b~g2ÞH::: � 2ð"þ 2b~g2ÞH €H

þ 4ð"� b~g2Þ _H2 � 24"H2 _H� þ 18f000ðRÞð"� b~g2Þð €Hþ 4H _HÞ2
� j �Baj2

a4
: (3.4)

Here we consider the case in which FðRÞ is given by
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FðRÞ ¼ �M2 ½ðR=M2Þ � ðR0=M
2Þ�2lþ1 þ ðR0=M

2Þ2lþ1

c3 þ c4f½ðR=M2Þ � ðR0=M
2Þ�2lþ1 þ ðR0=M

2Þ2lþ1g ; (3.5)

which satisfies the following conditions: limR!1FðRÞ ¼
�M2=c4 ¼ const, limR!0FðRÞ ¼ 0. Here, c3 and c4 are
dimensionless constants, l is a positive integer, and M
denotes a mass scale. We consider that in the limit R !
1, i.e., at the very early stage of the universe, FðRÞ
becomes an effective cosmological constant,
limR!1FðRÞ ¼ �M2=c4 ¼ �2�i, where �ið� H2

0Þ is an
effective cosmological constant in the very early universe,
and that at the present time FðRÞ becomes a small con-
stant, FðR0Þ ¼�M2ðR0=M

2Þ2lþ1=½c3 þ c4ðR0=M
2Þ2lþ1� ¼

�2R0, where R0ð� H2
0Þ is current curvature. Here, H0

is the Hubble constant at the present time: H0¼
100h kms�1Mpc�1¼ 2:1h�10�42 GeV� 1:5�10�33 eV
[55], where we have used h ¼ 0:70 [56].

Furthermore, we consider the case in which fðRÞ is
given by the following form:

fðRÞ ¼ fNOðRÞ

� ½ðR=M2Þ� ðR0=M
2Þ�2qþ1 þðR0=M

2Þ2qþ1

c5 þ c6f½ðR=M2Þ� ðR0=M
2Þ�2qþ1 þðR0=M

2Þ2qþ1g ;
(3.6)

which satisfies the following conditions: limR!1fNOðRÞ ¼
1=c6 ¼ const, limR!0fNOðRÞ ¼ 0. Here, c5 and c6 are
dimensionless constants, and q is a positive integer. The
form of FðRÞ in Eq. (3.5) and fNOðRÞ in Eq. (3.6) is taken
from Ref. [13]. This form corresponds to the extension of
the form of fHSðRÞ in Eq. (2.31). It has been shown in
Ref. [13] that modified gravitational theories described by
the action (3.2) with FðRÞ in Eq. (3.5) successfully pass the
solar-system tests as well as cosmological bounds and they
are free of instabilities.

Making the same considerations as in Ref. [23], we find
that at the very early stage of the universe, it follows from

Eq. (3.4) that aðtÞ / expð ffiffiffiffiffiffiffiffiffiffiffi
�i=3

p
tÞ, so that exponential in-

flation can be realized, and that at the present time, it

follows from Eq. (3.4) that aðtÞ / expð ffiffiffiffiffiffiffiffiffiffiffi
R0=3

p
tÞ, so that

the late-time acceleration of the universe can be realized.
These results are also the same as in nonminimal
Maxwell-FðRÞ gravity [23].

Finally, we note the following point about the logarith-
mic contribution to modified gravity, namely, the case in
which the Lagrangian of modified gravity in Eq. (3.2)
is given by LMG ¼ 1=ð2�2Þ½Rþ FðRÞ þ lnðR=M2Þ�.
Following the considerations in the previous subsections,
because the logarithmic term is a subleading contribution,
also in this case both inflation and the late-time accelera-
tion of the universe can be realized. The qualitative differ-
ence from the case of the previous subsections is only that
in the limit R ! 1 the gravitational modification term,
FðRÞ þ lnðR=M2Þ, does not become constant. In fact, how-

ever, if it is considered that some cutoff scale of R in the
very early universe should exist, the logarithmic contribu-
tion does not diverge in this limit, and hence the cosmology
of this case is the same as that of the previous sections.

IV. NONMINIMALVECTOR MODEL

In this section, we consider the cosmology in the non-
Abelian nonminimal vector-FðRÞ gravity.
We consider the following model action:

�SMG ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ½LMG þLV�; (4.1)

L V ¼ IðRÞf�1
4F

a
��F

a�� � V½Aa2�g; (4.2)

whereLMG is given by Eq. (3.2), Fa
�� is given by Eq. (2.6),

and Aa2 ¼ g��Aa
�A

a
�. (As the generalization of the above

nonminimal vector model, one can consider a model in
which the derivative in Fa

�� is the gauge covariant deriva-

tive given byD� ¼ r� � i~gA�, where A� ¼ Aa
��

a. Here,

�a are matrices and their commutation relations are con-
ventionally written as the standard form ½�a; �b� ¼ ifabc�c

[44]. In the present paper, however, as a simple nonmini-
mal vector model we consider the theory described by the
action in Eq. (4.2).)
We should note that the last term V½Aa2� in the action

(4.2) is not gauge invariant but can be rewritten in a gauge
invariant way. For example, if the gauge group is a unitary
group, we may introduce a 	-model-like field U, which
satisfiesUyU ¼ 1. Then the last term could be rewritten in
the gauge invariant form:

V½Aa2� ! V½ �c trðUyAa
�UÞðUyAa�UÞ�: (4.3)

Here �c is a constant for the normalization. If we choose the
unitary gauge U ¼ 1, the term in (4.3) reduces to the
original one: V½Aa2�. This may tell that the action (4.2)
described the theory where the gauge group is spontane-
ously broken.
The field equations can be derived by taking variations

of the action in Eq. (4.1) with respect to the metric g�� and

the vector field Aa
� as follows:

½1þ F0ðRÞ�R�� � 1
2g��½Rþ FðRÞ� þ g��hF0ðRÞ

� r�r�F
0ðRÞ ¼ �2TðVÞ

�� ; (4.4)

with
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TðVÞ
�� ¼ IðRÞ

�
g��Fa

��F
a
�� þ 2Aa

�A
a
�

dV½Aa2�
dAa2

� 1

4
g��

�F
�

þ 1

2
ff0ðRÞ �FR�� þ g��h½f0ðRÞ �F �

� r�r�½f0ðRÞ �F �g; (4.5)

�F ¼ Fa
��F

a�� þ 4V½Aa2�; (4.6)

and

1ffiffiffiffiffiffiffi�g
p @�½ ffiffiffiffiffiffiffi�g

p
IðRÞFa���

� IðRÞ
�
fabcAb

�F
c�� þ 2

dV½Aa2�
dAa2

Aa�

�
¼ 0; (4.7)

where TðVÞ
�� is the contribution to the energy-momentum

tensor from Aa
�.

Here, as an example, we consider the case in which
V½Aa2� is given by a class of the following power-law
potential:

V½Aa2� ¼ �V

�
Aa2

�m2

�
�n
; (4.8)

where �V is a constant, �m denotes a mass scale, and �nð>1Þ is
a positive integer.
Similarly to Sec. II B, because the amplitude of Aa

� is

small, we neglect the higher order than or equal to the
quadratic terms in Aa

� and consider the linearized equation

of Eq. (4.7) in terms of Aa
�. For the power-law potential

given by Eq. (4.8), the linearized equation of motion under
the ansatz @jAa

j ðt; xÞ ¼ 0 and Aa
0ðt; xÞ ¼ 0 is the same as

Eq. (2.23).3

The ð�; �Þ ¼ ð0; 0Þ component and the trace part of the
ð�; �Þ ¼ ði; jÞ component of Eq. (4.4), where i and j run
from 1 to 3, read

H2 þ 1

6
FðRÞ � F0ðRÞð _H þH2Þ

¼ �2

6
ðIðRÞfY þ 2V½Aa2�g þ 3½�f0ðRÞð _H þH2Þ

þ 6f00ðRÞHð €H þ 4H _HÞ� �F þ 3f0ðRÞH _�F Þ; (4.9)

and

2 _H þ 3H2 þ 1

2
FðRÞ � F0ðRÞð _H þ 3H2Þ þ 6F00ðRÞ½H::: þ 4ð _H2 þH €HÞ� þ 36F000ðRÞð €H þ 4H _HÞ2

¼ �2

2

�
1

3
IðRÞ

�
�X þ 6V½Aa2� � 4

1

a2
Aa
i A

a
i

dV½Aa2�
dAa2

�
þ ½�f0ðRÞð _H þ 3H2Þ þ 6f00ðRÞðH::: þ 7H €H þ 4 _H2 þ 12H2 _HÞ

þ 36f000ðRÞð €H þ 4H _HÞ2� �F þ 3½f0ðRÞH þ 4f00ðRÞð €Hþ 4H _HÞ� _�F þ f0ðRÞ €�F
�
; (4.10)

respectively. In deriving Eqs. (4.9) and (4.10), we have used equations in (2.15).
Here we consider the same case as in the previous sections. Moreover, we here consider the case in which Aa

0 ¼ 0. In this
case, we have ð1=a2ÞAa

i A
a
i dV½Aa2�=ðdAa2Þ ¼ �nV½Aa2�. Consequently, using this relation, we find that Eqs. (4.9) and (4.10)

are reduced to

H2 þ 1

6
FðRÞ � F0ðRÞð _H þH2Þ ¼ �2

��
1

6
IðRÞ � f0ðRÞð _H þ 5H2Þ þ 6f00ðRÞHð €H þ 4H _HÞ

� j �Baj2
a4

þ
�
1

3
IðRÞ � 2f0ðRÞ½ _H þ ð1þ 2 �nÞH2� þ 12f00ðRÞHð €Hþ 4H _HÞ

�
V½Aa2�

�
; (4.11)

and

2 _H þ 3H2 þ 1

2
FðRÞ � F0ðRÞð _H þ 3H2Þ þ 6F00ðRÞ½H::: þ 4ð _H2 þH €HÞ� þ 36F000ðRÞð €H þ 4H _HÞ2

¼ �2

��
1

6
IðRÞ þ f0ðRÞð�5 _H þH2Þ þ 6f00ðRÞðH::: �H €H þ 4 _H2 � 20H2 _HÞ þ 36f000ðRÞð €Hþ 4H _HÞ2

� j �Baj2
a4

þ
�
1

3
IðRÞ � 2f0ðRÞ½ð1þ 2 �nÞ _H þ ð3þ 6 �n� 4 �n2ÞH2� þ 12f00ðRÞ½H::: þ ð7� 4 �nÞH €Hþ 4 _H2 þ 4ð3� 4 �nÞH2 _H�

þ 72f000ðRÞð €H þ 4H _HÞ2
�
V½Aa2�

�
; (4.12)

3This is similar to the Coulomb gauge but since the action (4.2) is not gauge invariant, or gauge symmetry is completely fixed by the
unitary gauge as in after (4.3), this condition is only a working hypothesis.
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respectively. Eliminating IðRÞ from Eqs. (4.11) and (4.12), we obtain

_H þH2 þ
�
1

6
FðRÞ � F0ðRÞH2 þ 3F00ðRÞ½H::: þ 4ð _H2 þH €HÞ� þ 18F000ðRÞð €H þ 4H _HÞ2

�

¼ �2ð½f0ðRÞð�2 _H þ 3H2Þ þ 3f00ðRÞðH::: � 2H €H þ 4 _H2 � 24H2 _HÞ þ 18f000ðRÞð €H þ 4H _HÞ2� j �B
aj2
a4

þ 2f�f0ðRÞ½ �n _Hþð1þ 2 �n� 2 �n2ÞH2� þ 3f00ðRÞ½H::: þ 2ð3� 2 �nÞH €H þ 4 _H2 þ 8ð1� 2 �nÞH2 _H�
þ 18f000ðRÞð €H þ 4H _HÞ2gV½Aa2�Þ: (4.13)

In the case that jBaðproperÞ
i ðtÞj2 ¼ j �Baj2=a4, V½Aa2� /

a�2 �n. Hence, if �n ¼ 2, the time evolution of V½Aa2� is
the same as that of jBaðproperÞ

i ðtÞj2. On the other hand, if �n 	
2, V½Aa2� decreases much more rapidly than jBaðproperÞ

i ðtÞj2
during inflation. Thus, in the latter case we can neglect the
terms proportional to V½Aa2� on the right-hand side of
Eq. (4.13). Consequently, it follows from Eq. (4.13) that
when we consider the case in which similarly to the
preceding section, FðRÞ and fðRÞ are given by Eqs. (3.5)
and (3.6), respectively, we can make the same considera-
tion as the preceding section, and hence power-law infla-
tion and the late-time acceleration of the universe can be
realized.

Furthermore, as another case, we consider the case in
which FðRÞ is given by Eq. (3.5) and fðRÞ is given by the
following form:

fðRÞ ¼ �fðRÞ � c7ðR= �M2Þ �q � 1

c8ðR= �M2Þ �q þ 1
; (4.14)

which satisfies the following conditions: limR!1 �fðRÞ ¼
c7=c8 ¼ const, limR!0

�fðRÞ ¼ �1. Here, c7 and c8 are
dimensionless constants, �q is a positive constant, and �M
denotes a mass scale. In this case, the value of IðRÞ ¼
1þ fðRÞ becomes close to zero when that of R is very
small, namely, at the present time. Making the same con-
sideration as the preceding section, we can also find in this
case that power-law inflation and the late-time acceleration
of the universe can be realized.

V. DUALITY

In this section, we consider the duality of the nonmini-
mal electromagnetic theory and that of the nonminimal
YM theory.

A. Duality of the nonminimal electromagnetic theory

We consider the duality of the action of ~fðRÞ-coupled
electromagnetic theory:

S~fA ¼ 1

4

Z
d4x

ffiffiffiffiffiffiffi�g
p ~fðRÞFA��F

��
A ;

FA�� � @�A� � @�A�;
(5.1)

where ~fðRÞ is an arbitrary function of R, and A� is theUð1Þ
gauge field. Before going to the duality of the action in

Eq. (5.1), we consider the duality without gravity:

SA ¼ 1
4

Z
d4xFA��F

��
A ; FA�� � @�A� � @�A�:

(5.2)

By introducing a new field �B�, the action can be rewritten

as

S �F �B ¼ 1

4

Z
d4x

�
�F��

�F�� þ 1

2

���	ð@� �B�Þ �F�	

�
: (5.3)

Here, �F�� is an independent field (not given in terms of A�

or �B� as in FA��). The variation of �B� gives


���	@� �F�	 ¼ 0; (5.4)

which tells that �F�� can be given in terms of a vector field

A� as

�F �� ¼ FA�� ¼ @�A� � @�A�: (5.5)

Then the action S �F �B in Eq. (5.3) reduces to SA in Eq. (5.2).
On the other hand, by the variation of �F��, we obtain

�F �� ¼ �1
4


���	@� �B	: (5.6)

By substituting Eq. (5.6) into the action in Eq. (5.2), we
obtain

S �B ¼ 1

4

Z
d4xF �B��F

��
�B
; F �B�� � @� �B� � @� �B�:

(5.7)

Equations (5.5) and (5.6) give

F
��
A ¼ 1

2

���	F �B�	; (5.8)

which tells that FB�� are dual to FA��, that is, the magnetic

field exchanges with the electric field.
We now consider the action in Eq. (5.1), which can be

rewritten as

S~f �F �B ¼ 1

4

Z
d4x

� ffiffiffiffiffiffiffi�g
p ~fðRÞ �F��

�F��

þ 1

2

���	ð@� �B�Þ �F�	

�
: (5.9)

Now �F�� is an independent field again. From the variation

of �B�, we obtain Eq. (5.4), which can be solved as
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Eq. (5.5), and we find the action S~f �F �B in Eq. (5.9) is

equivalent to Eq. (5.1). On the other hand, by the variation
of �F��, instead of Eq. (5.6), we obtain

�F �� ¼ � 1

4


���	@� �B	

~fðRÞ ffiffiffiffiffiffiffi�g
p : (5.10)

Then substituting Eq. (5.10) into Eq. (5.9) and using the
identity


���	
���
g��g�� ¼ 2gðg��g	
 � g�
g	�Þ; (5.11)

we obtain an action dual to Eq. (5.1):

SfB ¼ 1

4

Z
d4x

ffiffiffiffiffiffiffi�g
p 1

~fðRÞF �B��F
��
�B
;

F �B�� � @� �B� � @� �B�:
(5.12)

B. Duality of the nonminimal Yang-Mills theory

As in the case of the electromagnetic theory, we may

consider the duality of the action of ~fðRÞ-coupled Yang-
Mills theory:

S~fA ¼ 1

4

Z
d4x

ffiffiffiffiffiffiffi�g
p ~fðRÞFA��F

��
A ;

FA�� � @�A� � @�A� þ fabcAb
�A

c
�:

(5.13)

The action can be rewritten in the following form:

S~f �F �B ¼ 1

4

Z
d4x

� ffiffiffiffiffiffiffi�g
p ~fðRÞ �F��

�F�� þ 1

4

���	FA

��
�F�	

�
:

(5.14)

Now �F�� is an independent field again. From the variation

of Aa
� in Fa

��, we obtain


���	D�
�F�	 ¼ 0: (5.15)

Here D� is a covariant derivative. The solution of (5.15) is

given by

�F �� ¼ FA��: (5.16)

By substituting (5.16) into (5.14), we obtain (5.13). On the
other hand, by the variation of �F��, we obtain

�F �� ¼ � 1

8


���	FA�	

~fðRÞ ffiffiffiffiffiffiffi�g
p : (5.17)

Then substituting Eq. (5.17) into Eq. (5.14) and using the
identity (5.11), we obtain a dual action:

SfB ¼ 1

4

Z
d4x

ffiffiffiffiffiffiffi�g
p 1

~fðRÞFA��F
��
A : (5.18)

Note that dual form of the action may be useful in the
cosmological considerations.

VI. RECONSTRUCTION OF THE YM THEORY

In this section, we indicate how to reconstruct the YM
theory from the known universe evolution (for a review, see
[57]).
We now consider the following action:

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
R

2�2
þ ~F ðFa

��F
a��Þ

�
: (6.1)

By introducing an auxiliary scalar field �, we may rewrite
the action (6.1) in the following form:

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
R

2�2
þ 1

4
Pð�ÞFa

��F
a�� þ 1

4
Qð�Þ

�
:

(6.2)

By the variation of �, we obtain

0 ¼ P0ð�ÞFa
��F

a�� þQ0ð�Þ; (6.3)

which could be solved with respect to � as � ¼
�ðFa

��F
a��Þ. Here, the prime denotes differentiation

with respect to �. Then by substituting the expression
into (6.2), we obtain the action (6.1) with

~F ðFa
��F

a��Þ ¼ 1
4fPð�ðFa

��F
a��ÞÞFa

��F
a��

þQð�ðFa
��F

a��ÞÞg: (6.4)

By the variation of the action (6.2) with respect to the
metric tensor g��, we obtain the Einstein equation:

1

2�2

�
R�� � 1

2
Rg��

�
¼ � 1

2
Pð�ÞFa

��F
a
�
�

þ 1

8
g��ðPð�ÞFa

�	F
a�	 þQð�ÞÞ:

(6.5)

On the other hand, by the variation with respect to Aa
�, we

obtain

0 ¼ @�ð ffiffiffiffiffiffiffi�g
p

Pð�ÞFa��Þ � ffiffiffiffiffiffiffi�g
p

Pð�ÞfabcAb
�F

c��: (6.6)

For simplicity, we only consider the case that the gauge
algebra is SUð2Þ, where fabc ¼ 
abc, and we assume the
gauge fields are given in the following form:

Aa
� ¼

�
��e�ðtÞ
a

i ð� ¼ i ¼ 1; 2; 3Þ
0 ð� ¼ 0Þ: (6.7)

Here �� is a constant with mass dimension and � is a proper
function of t. In general, if the vector field is condensed, the
rotational invariance of the universe could be broken. In
case of (6.7), the direction of the vector field is gauge
variant. Then all the gauge invariant quantities given by
(6.7) do not break the rotational invariance.
By the assumption, (6.3) has the following form:

0 ¼ 6ð� ��2 _�2e2�a�2 þ ��4e4�a�4ÞP0ð�Þ þQ0ð�Þ; (6.8)

and the ðt; tÞ-component of Eq. (6.5) is given by
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0 ¼ 3

�2
H2 � 3

2
ð ��2 _�2e2�a�2 þ ��4e4�a�4Þ � 1

4
Qð�Þ:

(6.9)

The � ¼ 0 component of (6.6) becomes identity and the
� ¼ i component gives

0 ¼ @tðaPð�Þ _�e�Þ � 2 ��2a�1Pð�Þe3�: (6.10)

Since we can always define the scalar field � properly,
we may identify the scalar field with the time coordinate
� ¼ t. Then by differentiating Eq. (6.9) with respect to t
and eliminating _Q ¼ Q0ð�Þ, we obtain

0 ¼ 2

�2
H _H þ ��2 _�2e2�a�2 _P

� Pf ��2ð _� €�þ _�3 � �2HÞe2�a�2

þ 2 ��4ð _��HÞe4�a�4g: (6.11)

Furthermore by eliminating _P by using (6.10), we find

P ¼ 2H _H

�2f2 ��2a�2e2�ð _�2 þ _� €�Þ � ��4e4�a�4Hg : (6.12)

Then by using (6.12), we can eliminate P (and _P) in (6.10)
and obtain

0 ¼ 2ð _��
:::þ €�2 þ 3 _�2 €�Þ � ��2e2�a�2 _H þ 4f _�3 þ _� €�� ��2

� e2�a�2Hgð _��HÞ þ f2ð _�3 þ _� €�Þ

� ��2e2�a�2Hg
� _H

H
þ €H

_H
þH þ

€�
_�
þ _�� 2 ��2a�2e2�

_�

�
:

(6.13)

If we give a proper a ¼ aðtÞ and therefore H ¼ HðtÞ,
Eq. (6.13) can be regarded as a third order differential
equation with respect to �. If we find the solution of �
with three constants of the integration, we find the explicit
form of Pð�Þ ¼ PðtÞ by using (6.12) and further obtain
Qð�Þ by using (6.9). Then we find the explicit form of three
parameter families of the action (6.2). This tells that almost
arbitrary time development of the university could be
realized by the action (6.2) or (6.1).

As an example, we may consider the case of the power-
law expansion:

a ¼
�
t

t1

�
h1

�
H ¼ h1

t

�
: (6.14)

Here t1 and h1 are constants. By assuming

� ¼ ðh1 � 1Þ ln
�
t

t1

�
þ �1 (6.15)

(�1 is a constant), Eq. (6.3) reduces to the algebraic equa-
tion:

0 ¼ 2h1
h1 � 1

�X2 þ ð�4h21 þ 13h1 þ 2Þ �X
þ ðh1 � 1Þ2ðh1 � 2Þð4H1 � 20Þ: (6.16)

Here �X ¼ ��2t21e
2�. If (6.16) has a real positive solution

with respect to �X, we obtain �1 and therefore the exact
form of �. Then we can reconstruct a model to give the
power expansion (6.14). Similarly, any other universe evo-
lution history may be reproduced by specific form of the
action under consideration.

VII. CONCLUSION

In the present paper, we have considered inflationary
cosmology and the late-time accelerated expansion of the
universe in the YM theory, in which the YM field couples
to a function of the scalar curvature, in order to investigate
the cosmological consequences of the nonminimal gravi-
tational coupling of the YM field. As a result, we have
shown that power-law inflation can be realized due to the
nonminimal gravitational coupling of the YM field.
Moreover, we have demonstrated that both inflation and
the late-time accelerated expansion of the universe can be
realized in a modified YM-FðRÞ gravity proposed in
Ref. [13] which is consistent with solar-system tests.
Furthermore, we have shown that this result can be realized
also in a nonminimal vector-FðRÞ gravity. In addition, we
have considered the duality of the nonminimal electromag-
netic theory and that of the nonminimal YM theory.
Furthermore, we also discussed the reconstruction of the
YM theory from the known universe history expansion. As
an example, it has been shown that a model to give the
power expansion of the scale factor can be reconstructed.
Finally, we remark the following point. It is interesting

that our models may be extended by another gauge-
noninvariant nonminimal coupling with the curvature like
the ones done in Ref. [58] (for models of vector curvaton,
see [59]). Such a nonminimal vector curvaton may give an
extra contribution to curvature perturbations if compared
with the present models. Another important point is related
to the exit from the inflation. In the models under consid-
eration, it may be realized via the gravitational scenario, as
the instability of de Sitter universe, due to extra gravita-
tional terms. This scenario will be investigated in detail
elsewhere. It may be also relevant for the study of the
future universe: if our universe will stay as a �-CDM
one forever or it will evolve to another singular/nonsingu-
lar state.
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