
Initial conditions for bubble universes

Brett McInnes*

Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543, Republic of Singapore
(Received 6 March 2008; published 23 June 2008)

The ‘‘bubble universes’’ of Coleman and De Luccia play a crucial role in string cosmology. Since our

own Universe is supposed to be of this kind, bubble cosmology should supply definite answers to the long-

standing questions regarding cosmological initial conditions. In particular, it must explain how an initial

singularity is avoided, and also how the initial conditions for inflation were established. I argue that the

simplest nonanthropic approach to these problems involves a requirement that the spatial sections defined

by distinguished bubble observers should not be allowed to have arbitrarily small volumes. Casimir

energy is a popular candidate for a quantum effect which can ensure this, but (because it violates energy

conditions) there is a danger that it could lead to nonperturbative instabilities in string theory. I make a

simple proposal for the initial conditions of a bubble universe, and show that my proposal ensures that the

system is nonperturbatively stable. Thus, low-entropy conditions can be established at the beginning of a

bubble universe without violating the second law of thermodynamics and without leading to instability in

string theory. These conditions are inherited from the ambient spacetime.
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I. GETTING INFLATION STARTED IN A BUBBLE

In string theory, the leading approach to the problem of
the cosmological constant is given by the landscape [1].
String theory gives a consistent account of a set of possible
universes which are so numerous— 10500 is the standard
estimate—and have values of the cosmological constant
spaced in such a way, that the value we actually observe
ceases to seem surprising. Instead we conclude that our
Universe corresponds to a point in the landscape.

The mathematical consistency of landscape universes
does not suffice to solve the cosmological constant prob-
lem: one needs to explain how such a vast array of possible
worlds actually comes into existence. This is achieved by
means of the nucleation of Coleman–De Luccia bubbles
[2–4]. These are bubbles of ‘‘true’’ vacuum which sponta-
neously arise within a larger spacetime containing a scalar
field which is initially in a ‘‘false’’ vacuum state. With a
suitable potential for the scalar, and with the usual assump-
tions (‘‘potential domination’’) regarding the initial con-
ditions for the inflaton, such bubbles can be made
compatible with the standard inflationary account of the
evolution of a universe like ours. This is the ‘‘open infla-
tion’’ scenario [5], which works quite well in bubble uni-
verses—provided, of course, that inflation can actually
begin inside a bubble: something which is by no means
obvious, since the precise nature of inflationary initial
conditions remains to be fully understood.

Indeed, if bubble nucleation is to be taken seriously as an
account of the origin of our Universe, then it must be
expected to answer all of the long-standing questions
regarding cosmological initial conditions. In particular, it

should supply answers to the following fundamental ques-
tions:
(i) Was the beginning singular? If not, how are the

singularity theorems evaded?
(ii) The second law of thermodynamics dictates that the

Universe began in an extremely low-entropy state.
How was that arranged? Particularly: how does one
enforce the very special conditions needed for in-
flation to start [6–8]?

The first of these questions requires no elaboration. The
second question concerns the ‘‘specialness’’ of the initial
conditions of our Universe. This specialness (or ‘‘nonge-
nericity’’) is still manifested, even after the passage of
more than 13� 109 years, as an arrow of time [9–12].
The point is that a truly generic initial state would be
dominated by black holes1 [16]. But such an initial state
would not evolve to a Universe like ours, with its extremely
strong past/future asymmetry. A crucial instance of this is
that inflation cannot begin with such initial conditions; in
fact, as Albrecht [7] and others have stressed, inflation can
only begin if the inflaton is itself initially in a very specific
state, in which extremely few of the scalar field degrees of
freedom have yet been excited. If we cannot produce a
theory which necessarily entails such extraordinarily non-
generic initial conditions for at least some universes, then
wewill not be able to find a universe, even in the landscape,
which remotely resembles our own. This was discussed at
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1It has been argued [13] that this is not true of a universe which
begins along a noncompact spatial hypersurface. Here I shall
avoid this controversial question by postulating that the original
Universe was created from ‘‘nothing’’ [14,15] along a compact
hypersurface. In this case, a singularity-dominated beginning
would indeed have been generic.
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length in [17]. (See [13,18–22] for various theories of the
origin of the arrow.)

I stress that settling this question is no mere technicality.
Recently it has become clear that uncertainty as to the
precise nature of the inflationary initial conditions has
concrete consequences even for the interpretation of future
observational data. Inflation can lose its ability to predict
certain observational signatures if one weakens the usual
assumptions regarding the preinflationary spacetime ge-
ometry [23].

The bubble universe theory addresses the first of my
questions in a surprising way. As is well known, inflation is
usually not past eternal [24]: an inflating region of space-
time must be geodesically incomplete to the past if its
average rate of expansion is positive. A cautious interpre-
tation of this fact [25] is that any inflationary history must
be preceded by some unspecified but radically different
state. This is the appropriate statement of the conclusion,
because geodesic incompleteness can have a variety of
physical interpretations. The most familiar interpretation
is that incompleteness signals a singularity, but this is not
necessarily the correct interpretation in the case of bubble
universes.

Aguirre and Gratton have examined this question in the
context of their theory of the arrow. (See [26] for a survey.)
In fact, their analysis applies quite straightforwardly also to
thin-walled Coleman–De Luccia bubbles. Their general
argument implies that these bubbles are geodesically in-
complete to the past, in the manner dictated by the Borde-
Guth-Vilenkin results, simply because the description of
the bubble interior given by the distinguished cosmological
observers inside the bubble cannot be extended arbitrarily
far into the full spacetime. In the case where the bubble
wall is infinitely thin, the explanation for this is simple: the
spacelike surfaces defined by these observers can approach
arbitrarily close to a null surface, so their volumes (or
rather the volumes of compact sets they contain) shrink
towards zero at a finite proper time to the past of any event
inside the bubble. We shall see later that this shrinkage to
zero size actually persists even when the bubble wall is not
infinitely thin: it is a generic property of bubble interiors
under certain very mild conditions. Normally, such a situ-
ation would entail the existence of a singularity; but it turns
out that the equation of state of the scalar field is such that
zero volume does not imply infinite energy density. Thus,
in this case, the incompleteness signals that the bubble
spacetime is extensible, not singular; it can be extended,
via the bubble wall, into the ambient spacetime. This is
how the bubble universe proposal deals with the singularity
problem.

This solution of the singularity problem can be ques-
tioned: clearly it depends on very strong assumptions about
the exact matter content of the prenucleation spacetime. If,
for example, the ambient spacetime contains other fields or
objects, one will need to investigate their effects if they are

absorbed by the bubble and encounter the zero-volume
spatial slice; also, quantum effects (such as the Casimir
effect) may alter the classical picture of the matter content
in a decisive way. In the case of an infinitely thin bubble
wall, incursions by external objects could be disastrous.
The most dramatic example of such incursions involves the
collision of a bubble with another bubble. The problem of
understanding these questions in that context is currently
the subject of intensive investigation; see the detailed dis-
cussions given in [27,28].
Leaving these complications aside for the moment, I can

summarize by saying that the simplest versions of bubble
universes offer an approach to the singularity problem
simply by arguing that the earliest form of matter (neces-
sarily) had an unusual equation of state, such that its energy
density was not related to spatial volume in the familiar
way. This permits an interpretation of the Borde-Guth-
Vilenkin results in a way that does not involve
singularities.
An answer to the first of the questions should set the

scene for an answer to the second: since the zero-volume
state2 at the beginning of the bubble universe is not singu-
lar, there is no obstruction to relating the thermodynamic
conditions in the early bubble universe to conditions in the
ambient spacetime.
Thus, the problem of cosmological initial conditions can

only be addressed, in the bubble universe context, by
applying the second law of thermodynamics to the bubble
nucleation process. In this work I argue that this suggests a
small but significant modification of the usual approach to
bubble nucleation theory. The idea that even exponentially
suppressed corrections to the Coleman–De Luccia instan-
ton can be important has been advocated by Buniy, Hsu,
and Zee [29]; here I consider much less drastic modifica-
tions, which alter the bubble geometry only at the very
earliest (bubble) times.
General aspects of applying the second law to bubble

nucleation are explained in Sec. II. The key point here is
that, for a bubble universe to resemble our own, its initial
total entropy must be low as seen by the distinguished
observers inside the bubble—the observers to whom the
spatial geometry appears to be isotropic. But this is very
difficult to arrange, because these same observers are the
ones whose spatial sections shrink to zero volume as they
probe backwards in time, and small spatial sections have a
very strong tendency to be anisotropic. This key point will
be reviewed in some detail. I argue that the most natural—
though perhaps not the only—way of avoiding this prob-
lem is to find some means of avoiding a zero-volume
‘‘initial’’ state for a bubble universe.

2Strictly, I should say that the spatial sections have volumes
which can be made arbitrarily small, not exactly zero; the
distinction is however not important here.
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In Sec. III, I discuss in detail the way in which a standard
Coleman–De Luccia bubble universe avoids being (ini-
tially) singular and develops an arrow of time. I focus first
on the case of negative vacuum energy inside the bubble,
since the points I am making can be seen most clearly in
that case (which does occur in the landscape, in the form of
‘‘terminal vacua’’). Using singularity theory, I show that
the zero-volume spatial section will also be present in the
case of positive vacuum energy. It can only be avoided by
modifying the bubble universe in a way that violates the
null Ricci condition or NRC. This is the statement that the
Ricci tensor satisfies

R��n
�n� � 0 (1)

at all points in spacetime and for all null vectors n�; it is
equivalent to the null energy condition or NEC in cases
where corrections to the Einstein equations can be ne-
glected. If such corrections are important then the NRC
can be violated even if the NEC is satisfied; in such a case
we may speak of effective violations of the NEC.3 My
conclusion is that the required modification violates the
NEC, though perhaps only effectively.

Real and effective NEC violations in string cosmology
have been discussed in [31–33], and have recently attracted
much more interest [34,35]. The perennial concern with
regard to NEC violation is the possibility that it might lead
to some kind of fatal instability [36]. Arkani-Hamed et al.
[37,38] argue that NEC violation is not acceptable in string
theory exceptwhen it is global and quantummechanical, as
in the case of the Casimir effect [39], or in other very
special conditions (such as those associated with orbifold
planes). However, even in these cases one must also take
into account certain nonperturbative string effects, because
it has been shown that these frequently do lead to problems
when NEC violation occurs. In particular, we have to take
into account the brane-antibrane pair-production instability
analyzed by Seiberg and Witten [40] and subsequently by
Maldacena and Maoz [41] and by Kleban et al. [42]. This
instability means that NEC violation—even if it is only
effective—is not always physically acceptable even in the
cases where it does not lead to problems at the perturbative
level.

In Sec. IV, I examine a particular model in which the
interior of a bubble universe begins, with the aid of the
Casimir effect, along a surface of nonzero minimal vol-
ume. I am able to show that, despite the violation of the
NEC entailed by Casimir energies, the spacetime narrowly
avoids becoming unstable in the Seiberg-Witten sense.
Thus I have a toy model of a bubble universe which has

satisfactory initial conditions for inflation; it is able to
inherit an arrow of time.
I stress that the metric I find is asymptotic to one of the

metrics normally used to describe bubble interiors, and
differs substantially from such a metric only for an ex-
tremely short time. Thus my conclusions do not invalidate
the large recent literature on eternal inflation in any way;
nor, of course, am I suggesting that there is anything
erroneous in the original Coleman–De Luccia analysis.
The objective is simply to show that the bubble universes
that populate the landscape can in fact have initial con-
ditions similar to those of our own Universe.

II. BUBBLE NUCLEATION RESPECTS THE
SECOND LAW

In this section I construct a very general argument to the
effect that the second law of thermodynamics has specific
consequences for the spatial geometry of the very earliest
phase of a bubble universe.
First, note that, unlike the baby universes considered by

Farhi and Guth [43] (see also [44]), a Coleman–De Luccia
bubble is not isolated from the original spacetime: on the
contrary, the bubble expands into the ambient universe and
is permanently exposed to signals from it. Indeed, to a
family of observers inside a bubble which nucleates in an
approximately Minkowski spacetime, the entire exterior
spacetime lies to the past. The second law of thermody-
namics now has the following major consequence: we
cannot simply ‘‘reset’’ the initial conditions inside the
bubble to suit ourselves. The initial thermodynamic state
of a bubble is set by the outside conditions and by what
happens as one moves through the wall. In this connection,
one should not expect the bubble wall to preserve all highly
ordered structures it encounters—let alone generate them.
That is, passage through the wall could lead to a dramatic
increase of certain kinds of entropy. This is consistent with
Coleman and De Luccia’s description of passing into such
a bubble as ‘‘the ultimate ecological catastrophe.’’
It follows from these simple observations that, if the

bubble interior has extremely low initial entropy, this can
only be a result of inheriting that condition from the
ambient spacetime. Answering my question then amounts
to establishing the following two statements:
(i) The ambient spacetime had extremely low entropy.
(ii) The inevitable increase in the entropy caused by

bubble nucleation does not appear to be large as
seen by an internal observer: low entropy is
heritable.

One way of approaching the first point was proposed in
[18]; in [19] I addressed it in a different way, by arguing
that bubble universes nucleate in a ‘‘mother universe’’
which itself is the result of ‘‘creation from nothing,’’ after
the manner of Vilenkin [14] and Ooguri et al. [15]. With a
suitable spatial topology, one can use deep theorems from
global differential geometry to argue that the original uni-

3That is, violation of the NRC amounts to violating the NEC
for the effective stress-energy-momentum tensor obtained by
absorbing the corrections into the physical stress-energy-
momentum tensor. My main example (the Casimir effect) in-
volves true NEC violation, but the distinction being made here is
important, and should be borne in mind; see for example [30].
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verse necessarily had a perfectly (locally) isotropic initial
spatial section. This means that the initial gravitational
entropy4 was (necessarily) as low as possible, and indeed
this is precisely why the total entropy of this initial uni-
verse was low [9,10]: extreme isotropy rules out black
holes, which would otherwise strongly dominate the en-
tropy accounting in a spatially compact universe. The
gravitational entropy then increases due to the usual infla-
tionary fluctuations, which mar the perfect geometric regu-
larity of the very earliest spatial sections—if only to a
microscopic degree.

This brings me to the second point. The second law
dictates that the gravitational entropy cannot decrease
during the bubble nucleation process. The question now
is: what form will the increase take, as seen by interior
observers? It is important to understand here that the
bubble interior differs, in one crucial particular, from
Minkowski or (anti) de Sitter spacetime. These latter
spacetimes have very large (in fact, maximal) isometry
groups, corresponding to their extremely simple matter
contents. It follows that they do not have distinguished
families of observers, as a generic Friedmann-Robertson-
Walker (FRW) cosmological model does. Thus, for ex-
ample, (regions of) de Sitter spacetime can be foliated in
many different ways by spacelike surfaces having a variety
of intrinsic geometries, and none of these foliations has a
preferred status; for all of them correspond to observers
who see the same thing, namely, isotropic dark energy with
a particular invariant energy density. By sharp contrast, the
surfaces of approximately constant scalar energy density
inside the bubble do distinguish a special class of observ-
ers. These observers are the ones who, using whatever
coarse graining they find appropriate, must deduce very
low-entropy conditions in their earliest history, if the bub-
ble universe is to have an arrow of time. This is another
sense—apart from the ‘‘ultimate ecological catastrophe’’
aspect—in which the interior of a bubble universe is not
analogous to (say) the interior of a forward light cone in
de Sitter spacetime. The bubble universe contains distin-
guished observers whose (coarse-grained) observations are
what we have to explain.

I begin my investigation of this question by noting that,
for inflation to start, what is really needed is low gravita-
tional entropy: if the spatial sections are too irregular, this
will not be consistent with the required initial conditions
for the inflaton.Other forms of entropy, such as the entropy
of the Gibbons-Hawking radiation [47] associated with a
cosmological horizon, will actually increase substantially
during bubble nucleation, but this will not interfere with
the inflaton initial conditions. (Nor, however, will it help to

establish the particular form one needs for these condi-
tions.) This observation refines my question considerably.
Now as we have seen, the characteristic property of the

earliest spatial sections inside the bubble is that their
volume scales are arbitrarily small; this is the proper
interpretation of the Borde-Guth-Vilenkin results [26].
But one does not expect ‘‘small’’ spatial sections to corre-
spond to low gravitational entropy. This can be explained
as follows. Just as inflation leads an observer to think that
his spatial sections have become smoother,5 so also an
unlimited contraction of a spatial section will make any
irregularities more and more apparent. To put this another
way, suppose that we consider the history of a small spatial
patch in the present Universe. As we trace it back in time,
we will see it becoming less and less isotropic around a
generic point.
To see this, one needs to study the effect of including

anisotropy in the spacetime dynamics. The anisotropy
contributes a term of the form C=aðtÞ6 to the field equa-
tions, where aðtÞ is the scale factor and C is a constant.
(This is explained extremely clearly in [49], which should
be consulted for the details.6) This means that, as we go
back in time, the anisotropy grows much more rapidly than
the energy density of ordinary matter and radiation (or of
any kind of dark energy), so it dominates the dynamics if
the sections become sufficiently small, at least in the
absence of very exotic forms of matter.
This discussion explains why one does not expect a

realistic zero-volume state, such as that of a big crunch
or a black hole, to be geometrically regular, though of
course the intrinsic geometry of the late spatial sections
is very regular in idealized FRW or Schwarzschild space-
times. Generically, spatial sections with very small volume
scales correspond to high gravitational entropy. It follows
that observers inside a bubble universe, having deduced
from observations that inflation took place, will have to
conclude that the initial conditions for inflation were made
possible by an infinite fine-tuning at the zero-volume
state—infinite in the sense that the C=aðtÞ6 term can only
be ignored, if aðtÞ really vanishes, if C is set exactly equal
to zero. If they are aware that they live in a bubble, they
will be forced to conclude that they owe their existence to a
massive violation7 of the second law. (They will realize
that the Gibbons-Hawking entropy has increased, but since
anisotropy generically completely dominates the dark en-

4The concept of gravitational entropy has not yet been made
entirely precise: see, for example, [45,46]. That gravitational
systems behave consistently with the second law is nevertheless
not in doubt, and this is all we need here.

5See [48] for the precise statement of ‘‘cosmic baldness,’’ and
[17] for a discussion.

6Generically these irregularities are of the kind originally
discussed by Belinsky, Khalatnikov, and Lifschitz—see [50,51]
for recent detailed discussions.

7The second law, being statistical, can of course be ‘‘vio-
lated’’; but the dire consequences of assuming that the current
status of our Universe can be explained in that way are well
known: see [52–55] for a survey.
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ergy density, they will not be able to explain the situation
by using this fact.)

There are basically four ways to deal with this problem.
The first is to postulate the presence of some kind of matter
with an energy density that grows even more rapidly, as
volumes shrink towards zero, than the anisotropy; for
example, a scalar field with a very negative potential
[49,56]. One might then try to arrange for the growth of
the entropy to be diverted away from the spatial geometry
and into the scalar field. While this idea deserves (and
requires) further development, it does not appear to be
compatible with the landscape picture, and I shall not
consider it further.

The second approach is the usual one: we simply ignore
the effects of its environment on the bubble, and use
idealized models of the geometry. Recently, however, it
has been recognized [28,57–61] that collisions of bubbles
are of the utmost importance, since, even if inflation is able
to start in the aftermath, a permanent ‘‘memory’’ of the
collision may be retained by the bubbles. Furthermore, the
collisions release radiation into the ambient spacetime
[61]. However, bubble collisions are just the most dramatic
way in which the ambient spacetime can affect the initial
conditions of a bubble universe. On a vastly smaller scale,
the inflaton field in the ambient spacetime will suffer scalar
and tensor perturbations; these may be tiny, but they must
have some effect on the geometry of the bubble interior if
they strike or are absorbed by the bubble. To suppose
otherwise would, once again, amount to a violation of the
second law of thermodynamics. These developments ren-
der obsolete the picture of a bubble existing in splendid
isolation; we now have to think in terms of a bubble
expanding in an environment where it is constantly sub-
jected to a bombardment of external signals of greater or
lesser degrees of intensity. Since the bubble initial condi-
tions are ‘‘fine-tuned’’ (in the sense discussed earlier), it is
hard to see how to justify ignoring these signals.

In a third approach, one might accept that external
signals have these effects at a generic point on the earliest
spatial slices of the bubble universe, but try to argue that
there will always be some extremely atypical regions
which remain undisturbed.8 The observed Universe might
have evolved from a tiny patch of this sort. This amounts to
an invocation of the anthropic principle. Rather than be-
come involved in the anthropic debate, I note instead that it
is generally accepted that alternatives to that approach
should always be fully investigated.

The fourth approach is the one to be explored here: one
can try to prevent the spatial sections inside the bubble
from ever being too small. This has to be done by consid-
ering small modifications of the Coleman–De Luccia

analysis, taking into account effects previously neglected.
By considering subleading corrections to the Coleman–
De Luccia instanton, as advocated by Buniy et al. [29],
one can study tunnelling processes not described purely by
an analytic continuation of a single Euclidean solution.
This opens the way to including global quantum effects,
similar to the Casimir effect [39]. These will not change the
standard large-scale picture of the bubble spacetime; they
are only important when the bubble interior is very small.
One can think of this procedure in terms of allowing other
forms of energy, in addition to that of the scalar field, to act
on the spacetime geometry.
A schematic Penrose diagram of the nucleation of a

positive-vacuum-energy bubble residing in a larger space-
time (which itself has positive vacuum energy) is given in
Fig. 1. The bubble nucleates along AB and the outer
surface of its wall is represented by BD. Notice that the
entire initial spatial section inside the bubble is exposed to
outside influences. A gravitational wave (say) in the out-
side world can reach any point in the initial spatial section
of the bubble even if it originates from a point deep inside
the de Sitter ‘‘bulk’’; this is symbolized by the arrows in the
diagram.
Following Aguirre and Gratton [18], I think of semiclas-

sical bubble nucleation as a three-stage process: the am-
bient spacetime and the bubble interior (ECD in the
diagram) can be described more or less accurately by
classical geometry, but the transition region (ACDB in
the diagram) is a predominantly quantum domain. The
idea is that, in that domain, quantum effects prevent the
characteristic geodesic focussing associated with classical
gravity, thus ruling out anything analogous to a shrinking
of spatial sections to zero size. This is a reasonable expec-
tation, because it is known that this ‘‘quantum defocusing’’
is precisely what happens in the course of the Hawking

FIG. 1. Positive-vacuum-energy bubble in positive-vacuum-
energy background.

8An interesting variant of this argument, to the effect that the
region near to the center of the bubble is particularly favored,
will be mentioned in the next section.
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evaporation of a black hole—see [62] for a particularly
clear discussion of this.

While this fourth proposal seems to be the simplest way
of explaining how a bubble universe can inherit the geo-
metric regularity of the ambient spacetime, it forces one to
confront a basic issue: what, exactly, are the initial con-
ditions for the bubble universe? That is, if one consider the
spatial section along which a semiclassical description first
becomes appropriate, the surface CD in Fig. 1, one needs to
know something about the conditions imposed on this
section by the quantum domain. Without this information,
one will of course be unable to predict the subsequent
evolution of the bubble interior.

The appropriate initial (and boundary) conditions for
matter fields will be discussed in Sec. IV; for the moment,
I shall focus on the initial conditions for the spacetime
geometry of the bubble. I propose that the correct initial
condition for the interior semiclassical spacetime is that the
initial spatial section CD is of minimal but nonzero volume
[specifically, that it is a spacelike surface of (approxi-
mately) vanishing extrinsic curvature].

There are four reasons for thinking that this is the right
procedure. First, one can argue that, in string theory, it is
not reasonable for any cosmological model with compact
spatial sections to have spatial volumes much below the
cube of the string length scale; so there should be a spatial
section of minimal volume or zero extrinsic curvature, and
that spatial section is the natural locus for a semiclassical
description to be appropriate [17]. (Strictly speaking, the
spatial sections of a bubble universe are infinite in extent,
but in the ‘‘holographic’’ interpretation I adopt here [63]
they are effectively finite. This will be discussed later.)

Second, a connection between zero extrinsic curvature
and low entropy is suggested by Verlinde’s [64] observa-
tion that Cardy’s formula for the entropy of a conformal
field theory can reproduce the Friedmann equation.
Minimal volume is then naturally associated with low
‘‘holographic entropy,’’ because the latter is related
[65,66] to the extrinsic curvature of spatial sections.

Third, the Borde-Guth-Vilenkin theorem implies that the
only way an inflating spacetime can avoid having zero-
volume spatial sections is to have a longer history of
contraction than of expansion. I therefore need to use
part of a ‘‘bouncing’’ cosmological model [67], that is,
part of a spacetime which does have a spacelike surface of
zero extrinsic curvature. This surface is the only distin-
guished one in the spacetime, and so it is natural to use the
part which begins along this surface. (True ‘‘bounce’’
cosmologies, including the contracting part, are interesting
[68,69], but they encounter notorious entropic difficulties
of precisely the kind I hope to resolve here, and the most
recent work [70] only serves to reinforce these doubts
regarding the thermodynamics of ‘‘bounces.’’) To put it
another way: if the surface CD in Fig. 1 does not have
vanishing extrinsic curvature, then this nonzero object

would define a new fundamental time scale. [In the special
case of FRW cosmology, the extrinsic curvature is given by
� _aðtÞ=aðtÞ, where aðtÞ is the scale factor and the dot
denotes a time derivative.] It is hard to see how such a
scale could arise in string theory.
Finally, my picture of the origin of the arrow of time in

the ambient spacetime [19] supposes that the latter
emerges from a state with no classical description—that
is, from nothing [14,15]—along a surface of zero extrinsic
curvature; so, to be consistent, I should assume that a
similar principle applies when classicality emerges inside
the bubble.
With a concrete proposal for the initial conditions of a

bubble universe, one can explore the structure of the space-
time in the early history of such universes. Before doing so,
however, let us see more concretely how all of these
observations apply to the usual description of bubble
universes.

III. THE ARROWOFTIME IN STANDARDBUBBLE
UNIVERSES

The original examples of bubble universes were those
studied by Coleman and De Luccia [2], who showed that
they arise in the interior of bubbles of true vacuum nucleat-
ing in a false vacuum defined by a local minimum of a
scalar field potential Vð’Þ. The scalar is assumed to be the
only form of matter present in the spacetime. Let us con-
sider in detail how an arrow can arise, under this assump-
tion. Let us begin with a bubble of negative vacuum energy
nucleating in a Minkowskian background; that is, follow-
ing Coleman and De Luccia, I represent the scalar field
inside the bubble by a negative cosmological constant, and
I treat the wall as being infinitely thin. The conformal
geometry of the bubble and its environment is depicted
in Fig. 2.
The original Minkowski space is represented by the

triangle BCF, and the bubble wall is the null surface AE.
In a more realistic version, the bubble wall would be
timelike; but then the wall would accelerate, so the curve
representing it would not be geodesic, and so it is still able
to terminate on future null infinity. This is important,
because it means that the bubble is exposed to signals
from the entire exterior spacetime, whether the wall is
thin or not. The region FAEG represents the interior of
the bubble; it is a part of the maximally symmetric simply
connected four-dimensional spacetime of negative vacuum
energy density �1=8�L2, the anti–de Sitter spacetime
AdS4.
The timelike conformal boundary of this part of AdS4 is

represented by EG; as usual this causes the surface DE to
have a future Cauchy horizon, EF, and also a past ‘‘Cauchy
horizon,’’ AE. (That is, AE is a Cauchy horizon in the
original AdS4.) The region FAE can be covered by coor-
dinates such that DE is t ¼ 0; in these coordinates the
metric in FAE takes the form
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gðAdS4Þ ¼ �dt2 þ cos2ðt=LÞ
� ½dr2 þ L2sinh2ðr=LÞfd�2 þ sin2ð�Þd�2g�:

(2)

Notice that the spatial sections are, at least locally,9 copies
of the hyperbolic space, H3. Notice too that the spacelike
hypersurfaces near to t ¼ ��L=2 have volumes which are
tending to zero. These regions are, respectively, the past
and future Cauchy horizons of DE, that is, they correspond
to AE and EF in the diagram. They are not singularities in
the sense of having divergent curvature, despite the fact
that their volume vanishes, because the equation of state of
vacuum energy—the only form of energy in pure AdS4—
has a particular form: the energy density is constant, and
cannot diverge under any circumstances. Notice finally that
the spacetime is apparently time dependent; this is due to

the fact that the corresponding inertial observers are not the
Killing observers: but there is in fact a timelike Killing
vector in this spacetime. Time does not pass in this bubble;
vacuum energy cannot ‘‘age,’’ and the spacetime itself is
static.
Of course, this model is unrealistic in several ways: the

bubble has a thin wall, the scalar field is treated as if it were
exactly equivalent to vacuum energy, and the computation
assumes strict semiclassical dominance of tunnelling am-
plitudes [29]; in particular, no allowance has been made for
any kind of perturbation impinging on the bubble wall from
outside.
In fact, a first step towards greater realism was taken by

Coleman and De Luccia themselves, who gave a beauti-
fully simple discussion of the consequences taking into
account the first-order corrections to the thin-wall approxi-
mation. The essential point is that while the rotational
symmetry of their instanton continues to enforce the initial
vanishing of the time derivative of ’, it cannot force ’
itself to vanish exactly. The results can best be pictured in
the following way. I remarked above that the metric in
Eq. (2) appears to represent a spacetime, with H3 spatial
sections, which is dynamic. This is not in fact the case.
Coleman and De Luccia find, however, that the slightest
perturbation away from the exact thin-wall conditions
produces a spacetime which really is dynamic: the
Killing vector is lost. This paves the way for an arrow to
be established.
There is a crucial point here, however: making the

spacetime more realistic can be expected to do away
with the Cauchy horizons of the exact AdS4 spacetime,
since these horizons are typically unstable. But the Cauchy
horizons do not simply disappear: generically, they turn
into spacelike surfaces of zero volume. This aspect ofAdS4
was understood long ago: see, for example, the discussion
on page 172 of the review article of Tipler, Clarke, and
Ellis [71]. One says that the Cauchy horizons are replaced
by crushing singularities, though these need not be ‘‘sin-
gular’’ in the sense I use here; see [71], page 166, for a
definition.
With all this in mind, I proceed to the usual description

of realistic versions of bubble universes with negative
vacuum energy; it runs as follows. Once one recognizes
that the spacetime is dynamic, one must expect the scalar
field to fluctuate and to transfer energy to any other field to
which it may be coupled, as happens in inflationary reheat-
ing. By the time the bubble interior nears the zero-volume
spatial section which replaces the Cauchy horizon EF in
Fig. 2, then, it will contain forms of matter with conven-
tional equations of state, such that the energy density does
diverge at late times. In short, a realistic version of a
negative-energy bubble terminates in a true crunch.
These are the ‘‘terminal vacua’’ in the landscape.
But if I grant that one Cauchy horizon becomes singular,

why does that not happen along the other Cauchy horizon,

FIG. 2. Negative vacuum energy bubble in Minkowski space-
time.

9That is, ignoring topological questions.
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AE in Fig. 2? To see how this works, I consider the
situation described in [3], where the scalar field inside
the bubble is no longer represented by a simple vacuum
energy.

The metric is a FRW metric with spatial sections of
constant negative curvature; the O(4) symmetry group of
the Coleman–De Luccia instanton becomes the O(1,3)
group of (local) symmetries of three-dimensional hyper-
bolic space. Regularity of the Euclidean instanton, which
has a characteristic length scale L, guarantees that the
Lorentzian metric has the following general form:

gðBubbleÞ ¼ �dt2 þ aðt=LÞ2½dr2 þ L2sinh2ðr=LÞ
� fd�2 þ sin2ð�Þd�2g�; (3)

where, if I choose zero as the origin of time,

aðt=LÞ ¼ t=LþOðt3=L3Þ: (4)

In a FRW cosmology with negatively curved spatial sec-
tions (with curvature proportional to �1=L2), one can
show straightforwardly that the pressure is given by

8�p ¼ 1=L2 � 2a €a� _a2

a2
; (5)

where the dot denotes a proper time derivative, while the
energy density is

8�� ¼ 3
_a2 � 1=L2

a2
: (6)

Applying this to the case at hand, I find, if I set aðt=LÞ �
t=Lþ �t3=L3, where � is a constant ([which is negative if
the energy density is negative at small t), that

8�p � �18�� 21�2t2=L2

L2ð1þ �t2=L2Þ2 (7)

and

8�� � 18�þ 27�2t2=L2

L2ð1þ �t2=L2Þ2 : (8)

Thus I see that, even though the spatial sections shrink to
zero size as t approaches zero, neither the pressure nor the
density diverges in this limit, as would be the case for any
normal form of matter or radiation. The scalar field pres-
sure and density are related by a somewhat bizarre equa-
tion of state (obtained by eliminating t in the above
relations for p and �), and this is what allows this field
to avoid causing a singularity at t ¼ 0.

Obviously this bubble universe has a very definite arrow
of time: it begins in a perfectly smooth nonsingular state
and ends in a (no doubt highly irregular) crunch singularity.
In particular, it is clear that the gravitational entropy is
initially low and finally very large. But the origin of this
arrow is all too clear: I built it in, by assuming that the
tunnelling originated in perfectly smooth Minkowski
space, which justifies the description of the tunnelling by

a perfectly smooth, exactly O(4)-invariant Euclidean in-
stanton. I have in fact been guilty of practising Price’s [10]
‘‘double standard’’: I made assumptions about the begin-
ning of the bubble universe that I would never apply to its
‘‘generically’’ singular end. If I had allowed for perturba-
tions in the ambient spacetime propagating into the bubble
and—in accord with the second law—disturbing the ge-
ometry there, then, as I discussed in Sec. II, the arbitrarily
small spatial slices near to t ¼ 0 would not be perfectly
smooth, and the scalar field might not be in a sufficiently
low-entropy initial state.
It is true that, even in this case, the entropy of the initial

state could still be somewhat lower than that of the final
state, so the bubble might have an arrow of a sort. This
argument has particular force when one considers the
region of spacetime near to the initial nucleation event.
Recall that Aguirre and Gratton [26] argued that the geo-
desic incompleteness of a (thin-walled) bubble universe is
due to the fact that the spatial sections defined by distin-
guished observers have a tendency to become null. This
tendency is less marked near the center of the bubble, and
so one might hope that the growth of anisotropies as one
moves back in time could be controlled in that region. If
this is true, then it might pave the way towards dealing with
the notorious problems associated with the infinite extent
of the bubble spatial sections, since only a relatively small
region of the bubble could come to resemble our Universe.
Against this, however, one has to bear in mind that the

only Universe we have observed does not just have ‘‘low’’
initial entropy: its initial entropy is fantastically lower than
it might have been, as Penrose [9] has shown by a well-
known calculation. Thus my task is not just to show how
bubble universes can have some kind of arrow—rather, I
have to show how they can have an arrow of the kind we
observe. Again, it is hard to see how such delicate initial
conditions can be maintained in the face of anisotropies
which, as I have discussed, grow extremely rapidly if
spatial sections are allowed to become arbitrarily small.
This is a matter which can be settled only by means of a
detailed calculation, which I shall not attempt here.
Because it has both a beginning and an end, the negative-

energy bubble is particularly suited to a discussion of the
arrow, but the problem persists even in the more directly
interesting case of a bubble with positive vacuum energy.
An arrow of time will emerge in this case too, provided that
the scalar field is in a sufficiently low-entropy state ini-
tially. But in this case too I will find a geometry like the one
given in Eqs. (3) and (4), with a zero-volume initial state.
Again, the pressure and density [given by (7) and (8), but
with positive�] do not diverge even at zero volume, but the
problem of large initial gravitational entropy persists. For
that problem is associated with zero volume, not with the
question as to whether a singularity is present.
As mentioned above, one way to deal with this problem

would be to investigate, in detail, whether the growth of
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anisotropies can be controlled in the favorable region near
the center of the bubble. Here, instead, I shall postulate that
the scalar field is not the only important contributor to the
total energy density inside the bubble: there must be an-
other contribution due to quantum effects which ‘‘defo-
cus’’ geodesics, so that there is never any surface of zero
volume. The question now is: what is the mathematical
description of this quantum contribution to the energy
density?

Since the geometry of the earliest spatial sections inside
a bubble universe is precisely the issue here, I must not
base my arguments on FRW spacetime geometries. It will
be useful, however, to begin by reminding ourselves of the
reasons for the fact that FRW models with negatively
curved spatial sections tend to be geodesically incomplete.
The relevant singularity theorem is the one due to Penrose;
it may be stated as follows. (See [72], page 239 for the
theorem and the relevant concepts).

THEOREM (Penrose): LetM4 be a spacetime satisfying
the Einstein equations and the following conditions:

(a) The Null Ricci Condition (NRC) holds.
(b) M4 is globally hyperbolic and contains a noncom-

pact Cauchy surface.
(c) M4 contains a trapped surface.
Then there is at least one incomplete future-directed null

geodesic orthogonal to the trapped surface.
With regard to condition (a), recall the discussion of the

NRC in Sec. I; with regard to (b), note that ‘‘noncompact
Cauchy surface’’ can be weakened to ‘‘Cauchy surface
with a noncompact universal cover.’’ Thus, compactifying
the hyperbolic spatial sections of a bubble10 does not in
itself allowme to avoid geodesic incompleteness here—but
see Sec. IV, below.

Assuming that the NRC is not violated, the only condi-
tion of this theorem which needs to be verified in the case
of FRW cosmologies with negatively curved spatial sec-
tions (whether compactified or not) is the last. Take the
metric given in Eq. (3) and consider a 2-sphere with radial
coordinate r at time t; its area is 4�L2aðtÞ2sinh2ðr=LÞ. The
orthogonal outward-directed set of past-pointing null geo-
desics intersect the surface t ¼ tþ dt (with negative dt) at
radial coordinate r� dt=aðtÞ, and so the change in the area
of the sphere as r increases is

dA ¼ 8�L2aðtÞ
�
sinh2ðr=LÞda� dt

L
sinhðr=LÞ

� coshðr=LÞ
�

¼ 8�Lsinh2ðr=LÞaðtÞdt½L _a� cothðr=LÞ�: (9)

For a trapped surface to exist in this spacetime, one must be
able to choose r and t in such a manner that dA is negative,

that is, has the same sign as dt. Now suppose that there is at
least one value of t, say t�, such that L _aðt�Þ> 1 at that
time; if I assume the validity of the Einstein equations, then
I see from Eq. (6) that this is precisely equivalent to
assuming the existence of at least one spatial section on
which the total energy density is strictly positive. Then the
spacelike hypersurface t ¼ t� contains a trapped surface,
because if r is chosen sufficiently large then cothðr=LÞ
(which of course is always greater than unity, but ap-
proaches it as r tends to infinity) becomes smaller than
L _aðt�Þ.
For example, in the case where a bubble universe con-

tains nothing but pure positive vacuum energy, I obtain the
version of de Sitter spacetime with hyperbolic spatial
sections, with the ‘‘bubble de Sitter’’ metric:

gðBdSÞ ¼ �dt2 þ sinh2ðt=LÞ½dr2 þ L2sinh2ðr=LÞ
� fd�2 þ sin2ð�Þd�2g�; (10)

in this case I have

dA ¼ 8�Lsinh2ðr=LÞ sinhðt=LÞdt½coshðt=LÞ
� cothðr=LÞ�: (11)

Notice that, in this case, it becomes steadily easier to keep
the expression in square brackets positive as time pro-
gresses (in the sense that one need not take particularly
large values of r in order to ensure this). The existence of
trapped surfaces is in this sense a local question at late
stages of inflation. Clearly, the spatial volume does vanish
at t ¼ 0.
The Penrose theorem now explains why FRW space-

times with negatively curved spatial sections tend to be
geodesically incomplete in the past (since I am applying
the theorem to past-directed null geodesics). All I needed
were the very mild conditions that the NRC should be
satisfied—recall that this is equivalent to assuming the
NEC if the Einstein equations hold—and that there should
be at least one spatial section containing a trapped set. Note
that both of these conditions are satisfied by the version of
de Sitter spacetime with spherical spatial sections. Thus,
contrary perhaps to intuition, what saves spatially spherical
de Sitter spacetime from being geodesically incomplete is
not ‘‘gravitational repulsion’’ (that is, violation of the
strong energy condition, which is not assumed in the
Penrose theorem) but rather the fact that the spatial sec-
tions do not have a noncompact universal cover.
I conclude that the only way to avoid having a zero-

volume spacelike surface in a FRW bubble spacetime is to
violate the NEC, at least effectively.
This discussion used FRW geometry, so this result is not

surprising; but the advantage of using the Penrose theorem
is that the argument can be adapted to show that similar
conclusions follow if an inflating bubble is perturbed, even
to a large extent. Bubble interiors do have spatial sections
with noncompact universal covers, and this topological

10That is, projecting to a compact quotient of hyperbolic space
by a discrete freely acting group of isometries.
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statement is robust against perturbations. If one assumes
that inflation occurs at late times, then the existence of
spatial surfaces with positive total energy density at those
times is only to be expected, since the positive energy
density of the inflaton will dominate; this will lead to the
existence of trapped surfaces. From another perspective:
the existence of trapped surfaces seems to be inevitable,
since it is a local question at late times, even in the case
where the bubble has been perturbed extensively at early
times. Thus, I expect to be able to apply the Penrose
theorem even to bubbles which are not close to a FRW
form. It follows quite generally (even for strongly per-
turbed spacetimes with highly irregular spatial geometries)
that an inflating bubble universe can only have an initial
spacelike surface with vanishing extrinsic curvature and
nonzero volume if the NEC is violated inside the bubble.

A completely rigorous theory supporting this physical
argument has been given by Andersson and Galloway [73],
who prove a theorem (Theorem 4.1) to the following effect.
Suppose that I take a globally hyperbolic asymptotically
de Sitter spacetime satisfying the NRC, and assume that
the Cauchy surfaces (or their universal covers) are not
compact. Suppose now that I try to avoid having any
spacelike surface with zero volume, by having a bounce.
(‘‘Asymptotically de Sitter’’ is then assumed to hold both
to the past and to the future.) Then Andersson and
Galloway show that some future-directed null geodesic
must fail to reach future infinity. (The spacetime must
also satisfy a certain genericity condition, which essen-
tially states that all spatial dimensions take part in the
accelerated expansion; see [74] for further discussion,
and see [75] for another application of results like this.)
Since these spacetimes are supposed to evolve to a
de Sitter-like (inflationary) state (in which all future-
directed null geodesics do reach future infinity) I can
conclude that the NEC must indeed be violated by all
spacetimes of the kind in which I am interested here.

I now have an answer to my question as to how the
matter content of a bubble universe must be modified in
order to avoid spacelike sections of zero volume. The
answer is simply that the NRC must be violated inside
the bubble, by some effect which is normally ignored in
discussions of bubble universes. This will involve either
modifying the Einstein equations so that the NRC can be
violated without violating the NEC, or directly violating
the NEC itself. In the next section, I explore the second
option.

IV. CASIMIR BUBBLES

My proposal is that the correct initial condition for a
bubble interior as it emerges from the quantum domain is
that of vanishing extrinsic curvature: this applies to the
spacelike surface CD in Fig. 1. Formally, but not physi-
cally, the geometry here is like that of a bounce cosmology
[67]; the great difference is that, in my case, the initial

conditions for the semiclassical spacetime are not prepared
by an earlier period of contraction. I stress that this is just a
(natural) proposal: I have to verify that it makes sense
physically, within the context of string theory.
The idea that the Casimir effectmight play a crucial role

in cosmology has often been suggested: see, for example,
[39,76–79] and references therein. It has recently been
raised in connection with the ‘‘standard model landscape’’
[37]. As is well known, the Casimir effect naturally leads to
negative energy densities and pressures, violating the NEC.
This is of great interest in string theory, because all cur-
rently known modulus stabilization schemes violate the
NEC in one way or another. (Furthermore, it seems likely
[80] that NEC violation of some kind is a fairly generic
feature of theories involving higher dimensions.)
Subsequently [38] it was found that by no means all forms
of NEC violation are acceptable in string theory; Casimir
effects are of great interest precisely because they belong
to the ‘‘acceptable’’ class (outside the ‘‘clock and rod’’
sector). If I wish to embed my discussion in string theory,
then ‘‘Casimir cosmology’’ is a particularly natural—
though surely not the only—way to proceed.
The Casimir effect essentially arises from certain kinds

of boundary conditions which one might find it physically
appropriate to impose. In the case of a bubble universe, one
has to ask: what kinds of boundary conditions are appro-
priate for fields inside the bubble, and how can they be
enforced?
This brings me directly to attempts (see particularly [63]

and references therein) to extend black hole complemen-
tarity to cosmology. Recall that black hole complementar-
ity resolves the puzzles concerning Hawking radiation by
declaring that one can describe black hole radiation by
taking either but not both of two points of view (following
the star as it collapses or using the observations of an
observer who stays far away from it). Either perspective
is postulated to give a complete description; paradoxes
only arise if one tries to take a ‘‘global’’ point of view.
In the cosmological context, attention is focussed on

causal diamonds, the entire region of a spacetime which
is causally connected to the worldline of a single observer.
The remainder of the global spacetime is then regarded as a
set of redundant descriptions of the same data, and, once
again, paradoxes arise if one attempts a global perspective.
Now, in the case at hand, I wish to apply this philosophy to
the bubble universe portrayed in Fig. 1. Take the observer
whose worldline corresponds to the vertical left-hand

boundary of the diagram. The relevant part of the corre-
sponding causal diamond is represented by the dotted line.
This line intersects any spatial section (such as CD) at a
finite distance from the observer. From the point of view of
complementarity, then, the spatial sections inside the bub-
ble are effectively finite; regarding them as infinite means
taking the global point of view of the bubble universe, and
this is precisely what complementarity forbids.
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The problem of deciding how to implement this insight
mathematically is a difficult one. In order to proceed, I
shall suggest a simple ansatz, which is not intended to be
fully realistic but which will allow me to proceed in a
quantitative way. My suggestion is prompted by the ideas
discussed in Refs. [81,82], in which the authors discuss
cosmological spacetimes with negatively curved spatial
sections. As is well known, it is possible to perform peri-
odic identifications of domains in ordinary hyperbolic
space H3, so that the quotient is compact. In classical
general relativity this makes no difference if the domain
involved is very large, but in [81,82] it is argued that string
theory is sensitive to such identifications, and that the
periodic structure has profound physical implications.11

Motivated by this, I propose to implement observer
complementarity in the following simple manner: when
studying quantum-mechanical aspects of the interior of a
bubble universe, I should enforce periodic boundary con-
ditions on all fields. Concretely, what this idea means is
that I should reject all fluctuations of fields beyond a finite
limit. Doing so will lead to a Casimir effect, which will
however be significant only in the very earliest era of the
bubble universe. I can now try to construct an internally
consistent model of an inflating bubble with spatial sec-
tions which, with the help of Casimir energy, are able to
avoid shrinking to size zero at any time. Since I am
interested in the very earliest history of the bubble, where
the inflaton is assumed to be rolling extremely slowly, I can
approximate the energy density of the inflaton by that of a
positive cosmological constant with characteristic length
scale L; the negative Casimir energy density is superim-
posed on this.

Casimir energies can depend sensitively on the kinds of
matter fields involved and whether the effects of higher
dimensions are to be taken into account, and so on; but let
me continue to proceed in the simplest possible manner,
and assume as usual [79] that, for a four-dimensional FRW
spacetime with effectively compact spatial sections, the
Casimir density depends on the inverse fourth power of
the scale factor. The total energy density is then a combi-
nation of the background vacuum density þ3=8�L2 with
the Casimir energy; so the Friedmann equation takes the
form

L2 _a2 ¼ 8�

3
L2a2

�
3

8�L2
� 6

8�L2a4

�
þ 1: (12)

Here the coefficient of the Casimir term has been fixed by
requiring the surface of zero extrinsic curvature to corre-

spond to a scale factor equal to unity. The solution for the
‘‘bubble de Sitter plus Casimir’’ metric is remarkably
simple:

gðBdSþCÞ ¼�dt2 þ½1þ 3sinh2ðt=LÞ�
� ½dr2 þL2sinh2ðr=LÞfd�2 þ sin2ð�Þd�2g�:

(13)

Notice that this is asymptotic, as t tends to infinity, to
bubble de Sitter spacetime [Eq. (10); the factor of 3 can
be absorbed in the limit], but it has a spatial surface of zero
extrinsic curvature at t ¼ 0. If I simply postulate that the
semiclassical bubble history begins at that time, then we
have a picture of the bubble interior in which the Casimir
effect is significant for a very brief period, which is suc-
ceeded (as the Casimir energy rapidly dilutes but the
inflaton energy does not) by an ordinary accelerated ex-
pansion. The Casimir effect allows the low-entropy con-
ditions in the exterior to establish, via the surface t ¼ 0,
similar conditions in the interior; having done this duty, it
rapidly disappears, and the usual description of a bubble
interior becomes valid.
The Casimir effect is completely harmless at the pertur-

bative level, but it is far from clear that this remains true
nonperturbatively, particularly when it plays such an im-
portant role in fixing the spacetime geometry. In fact, it is
known that such effects can lead to serious consequences
[33], as follows. Seiberg and Witten [40] observed that
branes, being extended objects, can be extremely sensitive
to the geometry of the spaces in which they propagate. If
the geometry takes certain forms, it can actually lead to a
situation which Maldacena and Maoz [41] (see also [42])
describe as a pair-production instability for branes.
To be specific: suppose that a given spacetime has a

Euclidean version which is conformally compactifiable;
that is, it is conformal to the interior of a compact
manifold-with-boundary. Such manifolds are said to be
asymptotically hyperbolic: that is, the geometry comes to
resemble that of hyperbolic space12 at sufficiently large
distances. For Euclidean Bogomol’nyi-Prasad-
Sommerfield branes in four dimensions, the brane action
consists of two terms: a positive one proportional to the
(three-dimensional) area of the brane, and a negative one
proportional to the volume enclosed by it. So I have, in four
dimensions,

S ¼ �

�
A� 3

L
V

�
; (14)

where � is the tension, A is the area, V the volume
enclosed, and L is the background asymptotic curvature
radius. If at any point the volume term is larger than the

11Notice that the local isometry group of a compactified
negatively curved space is the same as that of ordinary hyper-
bolic space H3, namely, O(1,3), since the local metric is com-
pletely unaffected by the compactification. Therefore, the usual
argument, whereby the O(4) symmetry of the Euclidean instan-
ton becomes the O(1,3) symmetry of the spatial sections of the
bubble, is unaffected.

12In my case this space will be four-dimensional; it should not
be confused with the (also hyperbolic) three-dimensional trans-
verse slices of the Lorentzian version.
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area term, it will be possible to reduce the action of the
system by creating brane-antibrane pairs and moving them
to the appropriate positions, as described by Maldacena
and Maoz [41]. Thus a severe nonperturbative instability
will arise. In this way I obtain a powerful criterion for the
acceptability of specific geometries from a stringy point of
view: powerful because it applies even when the NEC is
only violated effectively.

To see how this works in the present case, let me proceed
as follows. I begin by constructing the asymptotically
hyperbolic version of bubble de Sitter spacetime, with
metric given in Eq. (10). I simply complexify both t and
L, but not r. Relabelling the latter as L�, I obtain

gðAHBdSÞ ¼ dt2 þ L2sinh2ðt=LÞ
� ½d�2 þ sin2ð�Þfd�2 þ sin2ð�Þd�2g�; (15)

this ‘‘asymptotically hyperbolic bubble de Sitter’’ metric is
in fact the metric of four-dimensional hyperbolic space,
foliated by 2-spheres. Note that the sign of the curvature
has been reversed by the complexification of L. (In order to
obtain anti–de Sitter spacetime from H4, one chooses a
quite different foliation, with negatively curved slices, and
of course one does not complexify L; see [83] for the
details.) Notice that this foliation makes it obvious that
the conformal boundary is positively curved; this is im-
portant for establishing nonperturbative stability at large
values of t, as was shown by Seiberg and Witten [40]. In
fact, the brane action in this case can be evaluated explic-
itly: from Eq. (14) I have

S½BdS�ðtÞ ¼ 2�2�L3½sinh3ðt=LÞ � 1
4 coshð3t=LÞ

þ 9
4 coshðt=LÞ � 2�: (16)

This function is actually non-negative at all positive values
of t, large or small, so bubble de Sitter spacetime is
completely stable against this particular nonperturbative
effect. Actually, the function increases monotonically
with t; this is characteristic of spatially flat or negatively
curved asymptotically de Sitter spacetimes which satisfy
the NEC. When the NEC is violated, there are grounds for
serious concern that the action will not behave so benignly.

Applying this same complexification to the metric in
Eq. (13), I have the asymptotically hyperbolic version of
gðBdSþ CÞ:

gðAHBdSþ CÞ ¼ dt2 þ L2½1þ 3sinh2ðt=LÞ�
� ½d�2 þ sin2ð�Þfd�2 þ sin2ð�Þd�2g�:

(17)

Note that t=L is not complexified, so I can still interpret it
as a dimensionless measure of time in this case. If I
truncate this space at t ¼ T, then the brane action for t �
T is

S½BdSþ C�TðtÞ ¼ 2�2�L3

�
ð1þ 3sinh2ðt=LÞÞ3=2

� 3

L

Z t

T
ð1þ 3sinh2ð	=LÞÞ3=2d	

�
; (18)

where � is the tension, as in Eq. (14).
If T ¼ 0, this function begins at t ¼ 0 with a positive

value equal to 2�2�L3 and then immediately declines as t
increases. This decrease is characteristic of NEC-violating
spacetimes, as was shown in the case of flat compact
spatial sections in [33]; it is the reason for the fact that
NEC-violating spacetimes are in danger of being nonper-
turbatively unstable. The positive curvature of the t ¼
constant sections in this case means that—as in the case
of bubble de Sitter space—there is no such instability at
large values of t, but there might be a problem at small
values of t if the NEC violation causes the action to fall too
low. (Maldacena and Maoz [41] discuss examples where
this happens.) Since the Seiberg-Witten argument shows
that the action is positive at large t, its decline must be
halted at some point. The question is whether it is halted in
time to prevent the action from becoming negative. The
graph of the action function has a unique minimum (for all

T) at t ¼ ðlnð ffiffiffi
3

p ÞÞL. In the case where I cut off the space at
its neck (so that the spatial sections inside the bubble never
contract, which is what I am supposing here), I have T ¼ 0,
and a simple numerical investigation shows that the action

decreases from a positive value at t ¼ 0 down to S½BdSþ
C�0ððlnð

ffiffiffi
3

p ÞÞLÞ, which is still positive (for all L). The brane
action subsequently increases indefinitely as the area term
decisively overcomes the volume term as the Casimir
energy is diluted (so that the action function comes to
resemble that of bubble de Sitter). Thus the action is
positive everywhere. Given this, it is easy to see that the
same statement holds true for any T � 0: there is no
Seiberg-Witten instability in this system, as long as the
spatial sections never contract. The graph13 of the action
for T ¼ 0 is given in Fig. 3; notice that the system escapes
from being unstable despite the initial decrease of the
action.
Allowing the spatial sections to contract means taking T

to be negative. In this case, the initial value of S½BdSþ
C�TðtÞ becomes a larger positive number; but on the other
hand the function decreases for a longer time, so it is not
obvious that it remains positive everywhere. A numerical
investigation shows that, as T is modified downwards,

S½BdSþ C�Tððlnð
ffiffiffi
3

p ÞÞLÞ, the minimum value of the ac-
tion, stays non-negative only down to a value of T that is
very close to zero, T � �0:0928L. The scale factor at that
value of t is given approximately by að�0:0928LÞ �
1:006 44. Clearly there is essentially no contraction in

13The horizontal axis is t=L, the vertical axis is S½BdSþ C�0 �ðtÞ=2�2�L3.
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this case (the minimum value of the scale factor being
unity).

I interpret this last result as strong evidence in favor of
my postulate that the bubble history begins on or near to
the surface of vanishing extrinsic curvature: if it tries to
begin earlier, the system becomes violently unstable. The
spacetime geometry is not like that of a bounce spacetime:
there is little or no contraction as seen by the distinguished
bubble observers.

Of course, the example I have considered here is a very
special one: it is motivated by a desire to present a fully
explicit metric. In fact, Casimir effects are not the only way
to achieve NEC violation (or ‘‘effective’’ NEC violation—
see [33,84]). However, numerical experiments lead us to
believe that if the NEC is violated, effectively or otherwise,
in ways that are compatible with the ideas of Arkani-
Hamed et al. [38], then one will be led to a picture similar
to the one presented in detail here: that is, the requirement
of nonperturbative string stability will prohibit any more
than a negligible amount of contraction inside a bubble
universe.

In summary, it is very difficult for a bubble universe to
resemble our world, because to do so it needs to begin with
very special and delicate properties; but it may be possible
if NEC violation is indeed compatible with, yet con-
strained by, stringy considerations.

V. CONCLUSION: BUILDING A LANDSCAPE

In the stringy picture of ‘‘creation from nothing’’ (or the
‘‘emergence of time’’) [15], the original ‘‘mother of all
universes’’ is born along a spatial section that is as smooth
as it can be, up to quantum fluctuations [17,19]. This
allows inflation to start in the mother universe. The latter
may however subsequently nucleate bubble universes of
the kind I have been considering in this work. The arrow in
these bubbles, if any, must be inherited from the mother

universe; the arrow can then be handed down to subsequent
generations. In this way one obtains an explanation of the
observed arrow that does not involve wildly improbable or
rare fluctuations into lower-entropy states. In this work, I
have suggested a way of ensuring that this process of
‘‘inheritance’’ does occur.
However, the argument in favor of ‘‘arrow inheritance’’

in the NEC-violating case does depend on the ‘‘causal
diamond’’ or ‘‘observer complementarity’’ philosophy. I
needed this principle to justify the compactification of the
bubble’s spatial sections—or ‘‘periodic boundary condi-
tions’’—used in the previous section. While this idea is
well motivated by black hole complementarity (and by
ideas from string theory [81,82]), the extrapolation to
cosmological horizons is not entirely secure. I should
therefore ask: what would be the consequences for the
landscape if this extrapolation had to be abandoned?
In that case, I would be led to conclude that we are in the

original universe, the one presented to us directly by
creation from nothing. For this original universe does
have an arrow of time, such as we in fact observe; whereas
no bubble universe would have this remarkable property.
This would drastically change the role of bubble universes:
far from seeding new life, they would merely destroy any
ordered structure with which they collided in the original
universe. This phenomenon might have to be taken into
account in discussions of the nature of observers at very
late times.
If bubble universes are unable to inherit an arrow, then

we must find another way of building a landscape—that is,
of actually constructing universes which realize the full set
of string vacuum solutions. A way of doing so which
automatically gives rise to spacetimes with low initial
entropy is suggested by the work of Gibbons and Hartle
[85], who raised the interesting question as to whether a
universe created from nothing must be topologically con-
nected. This is not at all obvious, because a compact
manifold-with-boundary can, and generically will, have a
boundary which breaks up into disconnected pieces; this
idea is familiar from cobordism theory [86]. Gibbons and
Hartle gave an elegant proof that the boundary must indeed
be connected in the Hartle-Hawking case if all eigenvalues
of the Ricci curvature of the Euclidean space are positive
and bounded away from zero. This condition is certainly
not satisfied by the spaces used in the work of Ooguri et al.,
however, and so the question remains open. If indeed the
relevant Euclidean space has multiple boundary compo-
nents of zero extrinsic curvature, then potentially large
numbers of spacetimes can be born from a single
Euclidean ancestor; those born from a boundary compo-
nent with a suitable (toral) topology will have an arrow, as
explained in [19]. The question then, of course, will be
whether these universes have suitably spaced values of the
cosmological constant. Perhaps the methods of Dijkgraaf
et al. [87] can be adapted to study this.

FIG. 3. The action S½BdSþ C�0ðtÞ.
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The Lorentzian spacetimes so created would be com-
pletely mutually inaccessible. However, it might be pos-
sible to find indirect evidence of the existence of the other
universes in our own past, since all universes originate
from a common Euclidean space.
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