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We present a global measurement of the integrated Sachs-Wolfe (ISW) effect obtained by cross

correlating all relevant large-scale galaxy data sets with the cosmic microwave background radiation map

provided by the Wilkinson Microwave Anisotropy Probe. With these measurements, the overall ISW

signal is detected at the �4:5� level. We also examine the cosmological implications of these

measurements, particularly the dark energy equation of state w, its sound speed cs, and the overall

curvature of the Universe. The flat �CDM model is a good fit to the data and, assuming this model, we

find that the ISW data constrain�m ¼ 0:20þ0:19
�0:11 at the 95% confidence level. When we combine our ISW

results with the latest baryon oscillation and supernovae measurements, we find that the result is still

consistent with a flat �CDM model with w ¼ �1 out to redshifts z > 1.
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I. INTRODUCTION

There is growing evidence that the expansion of the
Universe is dominated by an unknown dark energy, which
accounts for more than 70% of the total matter that we
observe. Measurements of the Hubble diagram of Type Ia
supernovae [1,2] indicate this dark energy is causing the
Universe’s expansion to accelerate, while cosmic micro-
wave background (CMB) anisotropies power spectrum
experiments, such as WMAP [3], limit the amount of
spatial curvature, which might otherwise explain the low
dark matter density. Understanding the nature of this dark
energy is essential, and many possible explanations have
been proposed, from a cosmological constant, to quintes-
sence, to modifying the laws of gravity.

To discriminate between possible explanations of dark
energy, many alternative probes have been developed, in-
cluding measuring the Universe’s geometry through obser-
vations of the baryon oscillation (BAO) scale [4–6] and
probing the dark matter density through observations of
clusters of galaxies [7,8]. Here, we consider another impact
of dark energy, the creation of CMB anisotropies at late
times via the integrated Sachs-Wolfe (ISW) effect [9].
While most CMB anisotropies are generated at very early
times, further fluctuations can be induced gravitationally at
late times as photons pass through evolving gravitational
potentials. If dark matter dominates, the gravitational po-
tentials do not vary with time, but the presence of dark
energy or spatial curvature will cause the potentials to
evolve at late times, producing new temperature fluctua-
tions at low redshifts (primarily at z < 2).

Directly observing these new CMB temperature anisot-
ropies is challenging, primarily because their amplitudes
are a fraction of the anisotropies arising from higher red-
shifts. They are also predominantly seen on large scales,
where the uncertainty in the observations from cosmic
variance is biggest. The search for the ISW effect has
instead focused on finding correlations between the CMB
temperature maps and maps of the density, which trace the
local gravitational potentials [10]. Primordial anisotropies
should be uncorrelated with the local density, making it
possible to pull out the weaker ISW anisotropies.
Many groups have detected this correlation using the

accurate WMAP CMB data and various density probes
distributed at a range of redshifts and in different regions
of the electromagnetic spectrum: from shallow infrared
observations [11,12], to optical surveys such as the
Automatic Plate Measuring Machine Survey (APM) and
the Sloan Digital Sky Survey (SDSS) [13–17], radio galaxy
catalogues [18,19], x-ray surveys [18], and the deepest
quasars from the SDSS [20]. These measures span a range
of redshift going from z ¼ 0:1 to z ¼ 1:5, where the ISW
effect has been measured at significance levels, typically
around 2–3�, and appear generally compatible with the
expectation from the �CDM model.
Although indicative of the presence of dark energy, none

of these measures alone has significant power to constrain
models due to their low significance. Thus, it is important
to combine the various observations; but some care must be
taken in doing so. The surveys are often overlapping both
in sky coverage and in redshift range, meaning there are
likely covariances between them that may be important
when considering a large-scale effect like the ISW. In
addition, these measurements have been made with a vari-*tommaso.giannantonio@port.ac.uk
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ety of techniques, using angular correlations, Fourier
modes, or a range of wavelet techniques [21–24]. The error
bars themselves have also been estimated using different
techniques, using both jackknife approaches and
Monte Carlo simulations of the CMB sky.

A combined analysis has been attempted in the past
adding several measures in order to extend the constraining
power in redshift and learn more about the behavior of dark
energy and other cosmological parameters [25–28].
However, this analysis largely ignored the differences in
the observations and accounted for the covariances be-
tween experiments in a fairly arbitrary way. Here, we
perform a combined analysis by reanalyzing all the obser-
vations in a consistent way, measuring directly the cova-
riances between the different observations using a number
of different methods and looking at the cross correlations
between all the various data sets. In this way, we hope to
give a definitive result for the ISW evidence for dark
energy and the resulting cosmological constraints.

This paper is structured as follows: we begin in Sec. II
by giving a brief theoretical description of the ISW effect,
how the cross correlation is measured, and the important
issue of estimating the covariance between observations. In
Sec. III, we describe the catalogues used for the cross
correlation, and in Sec. IV, we show the measurements of
the various cross-correlation functions between the differ-
ent catalogues and their cross correlation with the CMB.
We discuss the significance of the measurements in Sec. V
and show the resulting cosmological constraints in Sec. VI,
before some concluding remarks in Sec. VII.

II. METHOD

A. The ISW effect

We begin with some theoretical background on the ISW
effect and its detection. Most of the CMB anisotropies we
observe were created at the redshift of last scattering (z�
1100) when the Universe was 400 ky old, as a result of
fluctuations in the photon density, velocity, and potential
energy. Since that time, the CMB photons have travelled
largely untouched, but anisotropies can still be produced
gravitationally if the photons pass through time varying
potential wells

�T

T
ðn̂Þ ¼ �2

Z
_�½�; n̂ð�0 � �Þ�d�; (1)

where � is the conformal time, the dot represents a
conformal-time derivative, and the integral is intended
along the line of sight of the photon. (Throughout, we
work in units where the speed of light is unity and for
simplicity assume that the effects of anisotropic stress can
be ignored.) When the gravitational potential decays due to
its linear evolution, this is usually referred to as the ISW
effect, and if the potential decay is a result of nonlinear
evolution, as in clusters, it is referred to as the Rees-Sciama
effect [29].

The physical picture is very straightforward; as a CMB
photon falls into a gravitational potential well, it gains
energy; as the photon climbs out of a potential well, it
loses energy. These effects exactly cancel if the potential is
time independent, but can result in a net kick if the poten-
tial evolves as the photon passes through it. In particular,
we know that during the matter dominated era the gravi-

tational potential stays constant, and so _� ¼ 0, which
means that in that era there will not be any ISW produced.
This changes if dark energy or curvature become important

at later times: in this case, _� � 0 and additional CMB
anisotropies will be produced. In the usual case, the po-
tential amplitudes decrease at late times, so that a tempera-
ture increase results from passing through potential wells,
while a temperature deficits results from traversing poten-
tial hills.
Since we know from the CMB experiments, such as

WMAP, that the Universe is very close to flat, we can
attribute most of the late ISW to dark energy; observing
it can therefore provide a probe of dark energy, its proper-
ties, and its evolution in time. In particular, the ISW effect
could be one of the few ways of measuring the sound speed
of dark energy [30]. However, it can also provide useful
information about the curvature of the Universe [31].
Unfortunately, measurement of the ISW effect is made

difficult by the embedding of the small ISW signal in the
much larger (10 times) primary CMB anisotropies.
Furthermore, the total ISW signal is due to all the density
fluctuations, both positive and negative, along the line of
sight. On small scales, the individual temperature differ-
ences are small, and they tend to cancel out. The most
significant ISWeffect results from the coherent large-scale
potentials, but unfortunately these scales are precisely
where cosmic variance is most troublesome.
This problem can be overcome by examining how the

ISW temperature correlates with the density of galaxies,
which should trace the potential wells and hills that bring
about the anisotropies. The observed galaxy density con-
trast in a given direction n̂1 will be

�gðn̂1Þ ¼
Z

bgðzÞ dNdz ðzÞ�mðn̂1; zÞdz; (2)

where dN=dz is the selection function of the survey, bgðzÞ
its galaxy bias relating the visible matter distribution to the
underlying dark matter, and �m the matter density pertur-
bations. Since the density �m is related to the potential �
by the Poisson equation, the observed galaxy density will
be correlated with the ISW temperature fluctuation in the
nearby direction n̂2, which is

�T

T
ðn̂2Þ ¼ �2

Z
e��ðzÞ d�

dz
ðn̂2; zÞdz; (3)

where e��ðzÞ is the visibility function of the photons, which
accounts for the effect of photons rescattering following
reionization.
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The galaxy bias bgðzÞ can evolve in time or as a function

of scale; however, we will generally assume that it is time
and scale independent for simplicity. For our purposes, a
time-dependent bias is equivalent to changing the selection
function of the survey. Scale dependence of the bias is
more problematic, but on the very large scales (> 10 Mpc)
we are considering, the scale dependence is expected to be
weak [32,33].

Given a map of the CMB and a survey of galaxies, the
angular autocorrelation and cross-correlation functions are
defined as

CTgð#Þ �
�
�T

T
ðn̂1Þ�gðn̂2Þ

�
; (4)

Cggð#Þ � h�gðn̂1Þ�gðn̂2Þi; (5)

with the average carried over all the pairs at the same
angular distance # ¼ jn̂1 � n̂2j.

It is possible to express these quantities in the harmonic
space with the use of the Legendre polynomials Pl

CTgð#Þ ¼ X1
l¼2

2lþ 1

4�
CTg
l Pl½cosð#Þ�; (6)

and the auto- and cross-correlation power spectra are given
by

CTg
l ¼ 4�

Z dk

k
�2ðkÞIISWl ðkÞIgl ðkÞ; (7)

Cgg
l ¼ 4�

Z dk

k
�2ðkÞIgl ðkÞIgl ðkÞ; (8)

where �ðkÞ is the scale invariant matter power spectrum
�2ðkÞ � 4�k3PðkÞ=ð2�Þ3, and the two integrands are re-
spectively

IISWl ðkÞ ¼ �2
Z

e��ðzÞ d�k

dz
jl½k�ðzÞ�dz; (9)

Igl ðkÞ ¼
Z

bgðzÞdNdz ðzÞ�mðk; zÞjl½k�ðzÞ�dz; (10)

where �k, �mðk; zÞ are the Fourier components of the
gravitational potential and matter perturbations, jlðxÞ are
the spherical Bessel functions and � is the comoving
distance. These are calculated using a modified version
of cmbfast [26,34].

B. Theoretical signal-to-noise ratio

Unfortunately, the ability to detect the cross correlation
is limited because the signal falls off on small scales. Not
only is cosmic variance an important factor, but there is
also the problem of accidental correlations between the
galaxy surveys and the CMB anisotropies produced at last
scattering. Many independent measurements are needed to
reduce the impact of such accidental correlations. The

signal-to-noise ratio (SNR) of the cross-correlation func-
tion (CCF) with a particular survey is given by

�
S

N

�
2 ¼ X

l

ð2lþ 1Þ ½CTg
l �2

Cgg
l CTT

l þ ½CTg
l �2 : (11)

For the ISW, we are usually in the weak correlation regime,

so that CTg
l =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cgg
l CTT

l

q
� 1.

The SNR can be separated to obtain the contribution as a
function of redshift; for a standard �CDM cosmology,
most of the signal is expected at z < 3, with the peak
around a redshift of z ’ 0:5 [35]. While the signal is high-
est at low redshifts, more independent volumes are avail-
able for higher z. The SNR scales roughly as the square
root of the fraction of the sky observed.
The most optimistic case is when the distribution of

galaxies follows precisely the evolution of the ISW effect.

In this case, CTg
l ¼ Cgg

l ¼ CISW
l where CISW

l is the spec-

trum of the ISW temperature anisotropies alone, which is
assumed to be much smaller than the total CMB anisot-
ropy, CISW

l � CTT
l . Thus, the SNR reduces to [10]

�
S

N

�
2 ’ X

l

ð2lþ 1ÞC
ISW
l

CTT
l

; (12)

This gives an optimistic total S=N ’ 7� 10 for a standard
�CDM cosmology. The ISW constraints, which might
arise from realistic future surveys, can be found in [36].

C. Correlation estimators

Our aim is to estimate the correlation between several
galaxy surveys and the CMB: as described above, this
measure can be performed in the real space using the
CCF or in the harmonic space with the cross-correlation
power spectrum. The two methods are theoretically
equivalent for a full-sky analysis, and both have been
used to detect the ISW cross-correlations. However,
when one moves away from the ideal full-sky scenario, it
is more straightforward to account for the sky mask using
the real space correlations, and therefore, we will follow
this approach here.
The matter density and CMB temperature as well as

their projections onto the celestial sphere are in principle
continuous fields; however, we only have access to the
sampling of these fields experimentally obtained by mea-
suring the CMB temperature in some fixed directions and
counting the number of galaxies in a given patch of sky. In
practice, we pixelise these maps using the HEALPix pixe-
lization scheme [37], using a relatively coarse resolution:
Nside ¼ 64, corresponding to Npix ¼ 49, 152 pixels with

dimensions 0:92� � 0:92�. This resolution is sufficient for
large-scale correlations like the ISWand makes it tractable
to perform large numbers of Monte Carlo simulations. A
finer resolution (Nside ¼ 128) was explored, but the results
did not change significantly.
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In making the maps, we assign the average temperature
or the total number of galaxies to each pixel. The maps are
masked according to the particular requirements for each
catalogue and the most relevant foregrounds as discussed
below. It is inevitable that some pixels are only partially
covered in the original survey, either because only part of
the area was observed, or because some of this area was
masked out. In such cases, predominately occurring on the
edge of the survey, the number of galaxies in a pixel is
estimated as ni ¼ nobsi =fi where fi is the fraction of the
pixel observed. The mask was obtained through sampling
all objects in each catalogue in a higher resolution (Nhigh ¼
512) as described in [20].

From these maps, both the auto- and cross-correlations
were estimated, down weighting those pixels with partial
coverage proportionally to fi. For the autocorrelation func-
tions (ACFs), we used the estimator,

Ĉð#Þ ¼ 1

N#

X
i;j

fiðni � �nÞfjðnj � �nÞ; (13)

where �n is the average number of galaxies in a pixel for the
survey of interest, and N# ¼ P

ijfifj is the weighted num-

ber of pairs of pixels with separation #. For the tempera-
ture maps, we simply replace ni and �n with the pixel
temperature and average temperature of the CMB maps.

More generally, we are interested in the cross-
correlation function between the survey p and the survey
q; this is estimated similarly, accounting for the fact that
the pixel weighting and mean number per pixel will depend
on the survey

Ĉ pqð#Þ ¼ 1

Npq
#

X
i;j

fpi ðnpi � �npÞfqj ðnqj � �nqÞ: (14)

The number of pairs of pixels at a given separation Npq
# ¼P

ijf
p
i f

q
j will depend on both of the surveys under consid-

eration. This again extends to the density-CMB CCFs in
the obvious way.

We use Nb ¼ 13 angular bins in the range 0� <# <
12�. We use a linear binning, and have explored the
dependence of our results on the choice of binning, chang-
ing both the number and trying a logarithmic binning;
neither had significant impact on the results.

D. Covariance estimators

An important aspect of this calculation is the estimation
of the covariance of the cross-correlation measurements.
As described most recently by [38], there are a number of
different ways to calculate the errors on this measurement,
each with their own advantages and drawbacks. Here, we
calculate our errors in three ways: a Monte Carlo method
(MC1), where the covariance matrix is estimated by mea-
suring the CCF between random CMBmaps while keeping
fixed the observed density map; a second Monte Carlo
method (MC2), similar to MC1 but including also random

density maps, which are correlated at the expected level
with the random temperature maps; and jackknife errors
(JK) which are estimated by looking at the variance of the
CCF when patches of the sky are removed.
The first approach is to generate random Monte Carlo

maps of the CMB assuming theWMAP best-fit cosmology,
and estimating the covariance matrix cross correlating
these maps with the true density maps (MC1).
TheWMAP third-year fiducial model we use throughout

this paper has baryon density �b ¼ 0:04185, matter den-
sity �m ¼ 0:2402, Hubble constant H0 ¼ 73:0, scalar
spectral index ns ¼ 0:958, optical depth � ¼ 0:092, and
amplitude of density fluctuations A ¼ 0:80 at k ¼
0:002 Mpc�1.
The MC1 is the most widely used estimator in the

literature, though here we extend the usual calculation to
account for covariances between the CCFs of the CMB
with different surveys. This method is reasonably fast to
implement and accounts for the cosmic variance and the
accidental correlations with the CMB, which are the pri-
mary source of error. However, it is asymmetrical, in that it
does not account for the variance in the density maps or its
Poisson noise; the MC1 method also assumes there are no
cross correlations, though the expected (and observed)
weakness of the cross correlation indicate that this should
not introduce a large bias. Finally, like all Monte Carlo
approaches, it is model dependent and could fail if the data
model is poorly understood (e.g. foregrounds or non-
Gaussianity of the maps).
However, some of these problems can be avoided if we

also generate random density maps for each catalogue
based on the WMAP cosmology and the redshift distribu-
tion, with the addition of Poisson noise to the maps (MC2).
In this case, we have the ability to account for the expected
correlations between the maps as described in the appen-
dix. This method is more time demanding, in that it
requires more random maps for each correlation measure-
ment; it also retains the unwanted model dependence, and
unlike the previous method has no explicit dependence on
any of the observed maps.
To estimate the covariance between the different angular

bins of a single CCF following the MC1 and MC2 methods
for each catalogue k we use the following estimator of the
full covariance matrix:

C ij ¼ 1

M

XM
k¼1

½ĈTg
k ð#iÞ � �CTgð#iÞ�½ĈTg

k ð#jÞ � �CTgð#jÞ�;

(15)

where �CTgð#iÞ are the mean correlation functions in the
i-th angular bin over M realizations; the diagonal part of
these matrices gives the variance of the CCF in each bin
Ckii ¼ �2

i , while the off-diagonal part represents the covari-
ance between the points.
The last method to estimate the covariance (jackknife)

consists in estimating the variance by generating mock
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density maps from the true ones, simply discarding a small
patch of them. In practice, we can divide the original
density map in M patches, which have roughly equal
area, and discard in turn a different patch to calculate the
CCF. The estimator for the covariance matrix is in this case

Cij ¼ M� 1

M

XM
k¼1

½ĈTg
k ð#iÞ � �CTgð#iÞ�

� ½ĈTg
k ð#jÞ � �CTgð#jÞ�; (16)

The advantage of this method is its model independence,
but it has the big drawback of giving different answers
depending on the size and number of the discarded areas. It
also implicitly assumes independence of the various
patches, which is not always the case.

Our ultimate goal is to measure the total covariance
matrix between all the catalogues. To do so, we need to
estimate the total covariance matrix Cpqij , as the matrix that

has in the diagonal blocks the single catalogue Cppij , and in

the off-diagonal parts is

C pq
ij ¼ 1

M

XM
k¼1

½ĈTp
k ð#iÞ � �CTpð#iÞ�½ĈTq

k ð#jÞ � �CTqð#jÞ�:

(17)

For simplicity, we redefine the indexes i, j in a way that
they run from 1 to Ntot ¼ Nbin � Ncat, i.e. redefining the
data, theory, and mock arrays as the concatenation of all
catalogues’ CCFs with the CMB. In this way, the covari-
ance matrix is simply the square matrix Cij, identical to the
Eq. (17) but now with dimensionNtot. A similar expression
can be easily obtained for the JK case.

III. THE CATALOGUES

To best detect the ISW effect through the cross-
correlation technique, we ideally require surveys covering
large fractions of the sky, so that accidental correlations
will cancel out. The surveys also need to be sufficiently
deep, in order to probe the gravitational potentials where
the ISW effect is being created. Ideally, we would like to
span the redshift range 0< z < 3, separated into subsam-
ples of different depths so as to measure the redshift
dependence of the effect and get some handle on the
evolution of the dark energy. However, only rather coarse
redshift information is required, so redshift errors of �z�
0:1 obtainable through photometric methods should be
sufficient for these purposes. This is beyond the present
state of the observations, but the differences in the redshift
distributions of the various samples does provide some
limited information on the dark energy evolution.

At present, the best surveys available for this purpose
(and where ISW detections have previously been found)
include the following: the optical Sloan Digital Sky Survey
(SDSS), the infrared 2 Micron All-Sky Survey (2MASS),

the X-ray catalogue from the High Energy Astrophysical
Observatory (HEAO) and radio galaxy catalogue from the
NRAO VLA Sky Survey (NVSS). The high quality of the
SDSS data allows us to extract some further subsamples
from it, consisting of luminous red galaxies (LRG) and
quasars (QSO) in addition to the main galaxy sample [39].
These are the samples we use in our analysis below, and
include most of the significant reports of the ISW detec-
tion. Because the data has not been publicly released and
since it is not significantly deeper than 2MASS, we omit
the APM galaxy survey, which has also been reported to
have evidence for ISW cross correlations [14].
We show in Fig. 1 the redshift distributions dN=dz of the

catalogues we use, normalized to unity; we can see that
they span a redshift range 0< z < 2:5, similar to the
theoretical requirement, although the overlap between dif-
ferent samples is significant. This means that the covari-
ance between the measures could be large: one of the goals
of this paper is to quantify it.
In the rest of this section, we will present the character-

istics of all the samples we use, in order of increasing
redshift.

A. 2MASS

The 2 Micron All-Sky Survey (2MASS) is an infrared
catalogue; its extended source catalogue [40] contains
�800; 000 galaxies with median redshift z� 0:1 and, un-
like the point source catalogue is almost free of stellar
contamination. Some evidence for ISW cross correlations

FIG. 1 (color online). The redshift distributions of all cata-
logues dN=dz normalized to unity. The significant overlap
between redshift distributions (especially for the x-ray and radio
surveys) results in a covariance matrix with significant non-
diagonal elements.
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has been seen in 2MASS previously [11,12], and we
largely follow the galaxy selection of those previous analy-
ses here.

Accordingly, we select galaxies according to their
Ks-band isophotal magnitude K20 (k�m�i�20�c,
�20 mag=arcsec2). These magnitudes are corrected for
galactic extinction using the infrared reddening maps by
[41], as K0

20 ¼ K20 � AK, where the extinction is AK ¼
0:367ðB� VÞ. The requirement of completeness of the
catalogue is satisfied by imposing a cut in magnitude
K0

20 < 14:0, while we can exclude low redshift sources

with the condition K0
20 > 12:0. We only include objects

with a uniform detection threshold (use�src ¼ 1), and
remove known artifacts (cc�flag � a and cc�flag � z);
we also exclude a small fraction of objects where the
magnitude or its error were not recorded.

In addition to the pixelization geometry mask, we follow
earlier analyses [11,12] excluding areas of the sky with
high reddening, discarding pixels with Ak > 0:05; this
leaves 69% of the sky and 718 000 galaxies after excluding
artifacts. It is reported by [11,12] that the redshift distri-
bution of these galaxies is well approximated by the func-
tion

dN

dz
¼ 1

�ðmþ1
� Þ�

zm

zmþ1
0

exp

�
�
�
z

z0

�
�
�
; (18)

where the parameters are z0 ¼ 0:072,� ¼ 1:752, andm ¼
1:901. This distribution is shown together with the others in
Fig. 1.
To check the consistency of the dataset and its bias we

calculate its autocorrelation function (ACF). The measure
is in good agreement with the predictions for the best-fit
WMAP model with a galactic bias bg ¼ 1:4 as found by

[12], as we can see in Fig. 2.

B. SDSS galaxies

The SDSS Sixth Data Release (DR6) [42,43] is the
largest wide optical galaxy survey available at the present
for the northern hemisphere. From this catalogue we select
a magnitude limited subsample 18< r? < 21; this cata-
logue contains 30� 106 galaxies. Here r? is the extinction
corrected r SDSS übercalibrated model magnitude, i.e.
using the SDSS variables r? ¼ ubercal:modelMag�r�
extinction�r: this corresponds to the procedure of [13],
with the difference of using the data release DR6 and the

FIG. 2 (color online). Measures of the two-point correlation functions between all the combinations of catalogues, where the units in
the x-axis are degrees. The autocorrelations are on the diagonal, and the solid (red) lines show the theory from WMAP best-fit
cosmology and the galactic bias from the literature. The largest discrepancy with theory, in the NVSS-2MASS CCF, can be addressed
by a small change in the assumed NVSS redshift distribution (blue dashed line).
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übercalibrated model magnitude instead of the Petrosian
magnitude, which is less reliable for faint objects. We
apply the pixelization geometry mask and, in addition,
we discard the pixels most affected by reddening, with
Ar > 0:18. We also discard the southern stripes, since
they are most affected by foregrounds and edge effects.

We select only objects with photometric redshifts be-
tween 0:1< z < 0:9 and with an error on the redshift �z <
0:5z, leaving 23:5� 106 galaxies in the catalogue. We
could use these photometric redshifts as the basis of the
theoretical calculations; however, since the distribution of
the photometric redshifts can be affected by singularities in
the redshift determination procedure, we use instead a fit to
their distribution with the smooth function of Eq. (18). The
best-fit parameters are in this case z0 ¼ 0:113, � ¼ 1:197,
andm ¼ 3:457, corresponding to a median redshift zmed ¼
0:32. (The results are actually independent of whether the
fit or the actual redshift distribution is used). The fit is
shown together with the others in Fig. 1.

The ACF is in agreement with the prediction for the
WMAP best-fit cosmology and a bias bg ¼ 1, as we can

see in Fig. 2.

C. SDSS LRG

LRGs from the SDSS have been used often to find
evidence for the ISW effect, as they have a deeper redshift
distribution than the ordinary galaxies, with a mean red-
shift of z� 0:5 [15–17]. In this analysis, we use the MegaZ
LRG sample [44,45], which contains 1:5� 106 objects
from the SDSS DR6 selected with a neural network [46].
To ensure completeness, we require that i < 20. To reduce
stellar contamination, we implement cuts on �sg, which is

a variable of the MegaZ neural network estimator, defined
such that �sg ¼ 1 if the object is a galaxy, and �sg ¼ 0 if it

is a star [44]. Following the conservative suggestion by
[44], we choose a cut �sg > 0:2, which is reported to

reduce stellar contamination below 2% while keeping
99.9% of the galaxies. Stricter cuts have been tried with
no significant changes to the CCF.

The mask we apply to this catalogue is a combination of
the pixel geometry mask and two foreground masks, to
account for seeing (cutting pixels with median seeing in the
red band greater than 1.4 arcsec) and reddening (cutting
pixels with median extinction in the red band Ar > 0:18).
The redshift distribution function in this case is found
directly from the photometric redshifts that are given in
the catalogue, and is shown in Fig. 1.

We show the autocorrelation function in Fig. 2, where
we can see that this is in agreement with the theoretical
prediction from the best-fit WMAP cosmology and a bias
bg ¼ 1:8, which is compatible with the estimate bg ¼
1:7� 0:2 shown by [45], although some excess power at
large scales is present, which might be explained as being
produced by a residual stellar contamination.

D. NVSS

The NVSS is a flux limited radio survey at a frequency
of 1.4 GHz, with a minimum flux of �2:5 mJy. It is
complete for declinations � >�40�, covering roughly
80% of the sky and contains 1:8 	 106 sources. The mask
to this catalogue is a combination of the most aggressive
WMAP mask (kp0) plus a cut around point sources as
described in [47], which also describes corrections made
for a systematic in the mean density as a function of
declination. The cross correlations between NVSS and
WMAP have been observed by a number of groups, both
in the correlation function [18,19] and using an array of
wavelet techniques [21–24].
The redshift distribution is uncertain; we base ours on

models of Dunlop and Peacock [48], which seem to be still
widely accepted, and are largely consistent with observa-
tions of cross correlations with other surveys (though see
below for further discussion). We calculate the autocorre-
lation function and present it in Fig. 2; there is good
agreement with the theory from the WMAP best-fit model
and a galactic bias bg ¼ 1:5, compatible with the result

bg ¼ 1:5� 0:2 by [47], although we see some excess

power at small scales.

E. HEAO

The HEAO1-A2 data set is a full-sky flux map of hard x-
rays counts in the 2–10 keVenergy range [49]. We use the
map and the mask determined by [50,51]: the map is
masked for the galactic plane, a round area around the
galactic center and patch areas around bright point sources.
The redshift distribution is also uncertain and provided by
modeling the x-ray background, as described in [50,52].
The modeling of the theoretical ACF for this catalogue

is more complex than those considered above, in that we
are looking at flux rather than number counts, and the
experimental beam is large compared to the pixel size.
(The point spread function of the beam is well modeled
by a Gaussian with a full width, half maximum size of
#FWHM ¼ 3:04� [51]). In addition, the number of photons
is small, so there is an additional contribution from the
photon shot noise. Thus, the observed correlation is the
sum of three terms: the intrinsic correlations, the Poisson
correlations due to finite numbers of sources, and shot
noise due to the finite number of photons. The variance
of the x-ray map is dominated by photon shot noise (41%)
and Poisson correlations (45%), while intrinsic correla-
tions are relatively small (14%). However, the shot noise
contributes only to the 0� ACF, while the Poisson correla-
tions fall off more quickly with angle than intrinsic corre-
lations and become subdominant for � > 4�.
Consequently, the combination of shot noise and Poisson
correlations are not the primary component of the total
noise in the ISW signal. We can see in Fig. 2 that the total
modeled ACF fits the observations on large angles, assum-
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ing the WMAP best-fit model and a galactic bias bg ¼
1:06, as found by [18].

F. SDSS QSO

The quasar survey we use comes from the SDSS DR6
through the NBC-KDE (non-Bayesian classifier–kernel
density estimator) catalogue by [53,54], that contains
over a million quasars. This new DR6 edition of the
catalogue does not include as many parameter cuts as did
the previous DR4 version. To obtain the cleanest possible
data set, and for consistency with our previous measure of
the cross correlation [20], we only used quasar candidates
selected via the UV-excess-only criteria used in the pre-
vious version of this photometric quasar catalogue. In
addition, we consider only objects with a good (positive)
quality flag. Following our previous results [20], we im-
pose a cut in reddening, discarding areas with Ag > 0:18.

After these cuts, we are left with N ’ 500; 000 quasars.
This catalogue comes with estimated photometric red-

shifts, upon which we base the redshift distribution shown
in Fig. 1. There is evidence of some excess power in the
ACF on large angular separations that indicate faint stars
are still present in the catalogue after these cuts, as seen
before in [20]. The amount of stellar contamination is
�3%, as found by [54], from comparison with the ACF
of a random sample of stars taken from the SDSS, and does
not contribute to the correlation with the CMB, as ex-
pected. We can see in Fig. 2 the ACF for this sample;
this is in good agreement with theoretical expectations and
determines the bias of bg ¼ 2:3, as previously found in

[20,55].

IV. RESULTS

In this section, we present the measurements of the all
the correlation functions between the data sets we consider
and their covariance.

A. Density-density cross correlations

We begin by examining the cross correlations between
the different density maps. These measurements are shown
in Fig. 2, with the autocorrelation measurements along the
diagonal. This is the first measurement of the cross corre-
lations between most of these data sets. The error bars are
estimated by Monte Carlo realizations of all the data sets
(MC2, as described above).

The measurements largely agree with their theoretical
predictions, which are based on the WMAP best-fit model
using the visibility functions in Fig. 1 and a linear bias for
each. The agreement is to be expected for the autocorrela-
tions, which were the basis for the estimates of the linear
bias. However, the cross-correlation measurements provide
a useful consistency check for our model, and, in particu-
lar, for the visibility functions, since the cross correlations

are most sensitive to the degree that the measurements
overlap in redshift.
The largest discrepancy between the measurements and

theory is in the NVSS-2MASS cross correlation, where the
theory is roughly twice as large as expected. This is per-
haps not unexpected, since the NVSS visibility function is
known to be uncertain, and the overlap with 2MASS is in a
narrow region of redshift. It does indicate that less of the
NVSS correlations are arising from the 2MASS redshift
range than expected in the model. This could be because
either the low redshift tail of the NVSS visibility function
is overestimated relative to the high redshift region, or
because the bias of the radio galaxies increases as we
move to higher redshift. This can be addressed by a small
change in the visibility function, as demonstrated by the
dashed (blue) line in the panel (in this case, we arbitrarily
imposed a low redshift exponential damping in the visibil-
ity function, leaving the rest unchanged). Such a change
does not significantly affect the expected CMB cross cor-
relations considered here.

B. Temperature-density cross-correlations

We next turn our attention to the cross-correlation func-
tions between each density map and the CMB maps from
WMAP 3. We use the internal linear combination maps
from WMAP, which are the cleanest data, although we
have checked that the results do not depend on the fre-
quency (see below), and we also apply the kp0 mask to
them, cutting the galactic plane region. As we can see in
Fig. 3, the measures are again largely in agreement with the
theoretical predictions for the WMAP best-fit model.
We have also checked the results obtained with the new

WMAP 5 data, and we have not found any difference in the
correlations. This is expected, since WMAP maps are al-
ready cosmic variance limited at large scales.
We now discuss the results obtained following the three

methods of error estimation discussed in Sec. II above.

1. Temperature-only Monte Carlo errors

We generate 5000 Monte Carlo simulations of the CMB
anisotropy map with the WMAP best-fit parameters. We
estimate the covariance matrix for each catalogue using
Eq. (15), and the total covariance matrix follows from its
generalization.
These are the errors shown in the top panel of Fig. 3; as

we can see, the errors are quite large, especially for the low
redshift catalogues, and the significance is further de-
creased by the high correlation between the points. We
have checked that these errors converge; the convergence
is already good after �700 Monte Carlos for each single
catalogue, and after �3000 Monte Carlos for the full
covariance matrix. The covariance between the points is
shown in Fig. 5.
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2. Full Monte Carlo errors

In this case, in addition to 5000 new mock CMB maps,
we also generate 5000 mock density maps for each cata-
logue, correlated as expected theoretically, based on the
WMAP best cosmology and their redshift distributions. In
addition, the Poisson noise is added due to the expected
number of objects per pixel.

The result calculated in this way is shown in the bottom
panel of Fig. 3, and the relative full covariance matrix in

the bottom panel of Fig. 5. We can see that the errors
estimated in this way are generally consistent with their
MC1 counterparts.
The largest difference between the approaches is in the

covariance between the cross correlations measured with
different data sets (Fig. 5). Using the observed density
maps yields both positive and negative covariance, while
the covariance is only positive when all the maps are
simulated. In the first approach, the strongest correlations
are between the SDSS subsamples and 2MASS. In the

FIG. 3 (color online). Monte Carlo error estimation. Measurements of the cross-correlation functions between all the catalogues and
the WMAP CMB maps (black points), compared with the theory from WMAP best-fit cosmology and the galactic bias from the
literature (red solid lines). The best-fit amplitudes and their 1-� deviations are shown in dashed (blue) lines. In the top panel, the errors
are calculated with 5000 temperature-only Monte Carlos and, in the bottom panel, Monte Carlos for temperature and density including
expected correlations. We see that the errors are comparable for individual observations. Because of known contamination from the
Sunyaev-Zeldovich effect in the 2MASS data [11], the four smallest angle bins were excluded from the fits.
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second approach, which is purely theoretical, the largest
covariances are between 2MASS, NVSS, and HEAO. The
NVSS-HEAO covariance is expected to be large, since
they are both essentially all-sky maps and have similar
redshift coverage. The large covariance between 2MASS-
HEAO and 2MASS-NVSS is more surprising given the
differences in the redshift distributions, but seem to be
driven by the low redshift tail of the NVSS and HEAO
distributions. As noted above, the cross correlations are
smaller than expected theoretically for 2MASS-NVSS
(and to a lesser extent for 2MASS-NVSS). This indicates
that the overlap of 2MASS with NVSS and HEAO is less
than assumed, and that we have likely overestimated the
covariance somewhat. However, the low significance of the
2MASS CCF means this has a small impact on the final
result.
The differences between the two methods appear large

for the off-diagonal elements. The reasons for these differ-
ences are unclear, but they suggest that the observed den-
sity maps are somewhat atypical of those simulated.
However, it is not surprising that any particular realizations
would appear atypical in some way. Despite these differ-
ences, these covariance matrices give comparable final
significance, as is discussed below.

3. Jackknife errors

For completeness, we also present the errors estimated
from a jackknife method. However, there is more ambigu-
ity in implementing this method, leading to uncertainty in
the resulting estimates in the errors.
One issue is what patch size to use. Ideally, for the

jackknife approach one would like the cross-correlation

FIG. 4 (color online). Jackknife error estimation. The lines are the same as in Fig. 3. The errors are somewhat smaller than seen from
the Monte Carlo estimates, possibly due to correlations between the jackknife subsamples.
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FIG. 5 (color online). The total covariance matrix obtained
with 5000 Monte Carlos, normalized. The top panel shows the
temperature-only Monte Carlos, while the bottom panel is the
result of the full Monte Carlos. While the diagonal (single
experiment) covariances are similar, those between experiments
(off diagonal) are somewhat different.
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observations to be uncorrelated between patches. In reality,
some correlation is inevitable. We also need enough
patches to estimate the full covariance matrix without it
becoming singular, which drives the size of the patches
down. Thus, some kind of compromise is required.

Since we are interested in the CCF on scales of a few
degrees, we choose a patch size of order 10 square degrees.
Because the surveys have different geometry and masks,
the number of sectors M will be different in each one. The
number of patches we can have in this way is generally low
(� 100), so we cannot estimate the total covariance matrix
which, having a dimension Ntot ¼ 78, requires at least a
few hundred independent random measures to be correctly
estimated.

Cross-correlation measurements also introduce other
issues, since the CMB and density maps are often covering
different regions of the sky.

In the end, we tried to be conservative and ensure the
most independence between the subsamples by only in-
cluding data that were in the CMB and the density maps,
and masking out both maps in the jackknife estimates. The
results we obtained are shown in Table I, where we com-
pare the results obtained with jackknife of the density map
only and of both density and temperature maps using
identical masks.

The jackknife ambiguities are even more problematic
when calculating the full covariance between observations
using different density maps, since the density maps often
will not overlap on the sky. For this reason, and because
such a large number of jackknifes are required to estimate
the total covariance matrix, we do not attempt to estimate it
here.

The error bars we estimate using the jackknife method
are of the same order of magnitude as those seen in the
Monte Carlo approaches, but are somewhat smaller leading
to higher significance in the detection. This could be due to
the lack of independence of the jackknife patches, or

because some aspect of the data is missing from the
Monte Carlo approach. We will use the Monte Carlo esti-
mates below, focusing primarily on the results from MC2.

C. Foregrounds & systematics

Since the ISW effect is gravitational in origin, it is
frequency independent as are the resulting CMB-density
cross correlations. However, a frequency dependence may
in principle be introduced by foregrounds and local con-
tamination, such as the Sunyaev-Zel’dovich (SZ) effect. In
Fig. 6, we compare the CCF obtained with the different
frequency bands from WMAP (ILC, W, V, and Q bands),
and we see that the result is substantially independent of
frequency, with the exception of the 2MASS catalogue.
However, the 2MASS CCF detection is of low significance,
and our final answers are not greatly sensitive to its
inclusion.
Foreground contamination of the ISW signal is gener-

ally produced at low redshifts. A good way to make sure
that such effects are not dominating the measurement is to
check for the sensitivity to the masking of these fore-
grounds (e.g. [28]). For samples derived from the SDSS
(galaxies LRGs and QSO), we test for foreground effects
by cutting the 20% of pixels with the highest reddening
(extinction), seeing, sky brightness, and number of unre-
solved point sources. The most relevant masks are the
reddening and seeing masks, which do not substantially
change the results. For the other samples (2MASS, HEAO,
and NVSS), we do not explore the masking, but we refer to
the foreground analyses presented in earlier papers
[11,12,47,51].

D. Comparison with previous measures

We briefly compare our CCF measurements to others in
the literature.

TABLE I. The amplitudes and their significance for different methods of calculating the covariance. The left columns show the two
Monte Carlo methods, while the right two show the jackknife method with equal area (10deg2), in one case masking only patches of
the density map, and in the other masking both density and temperature maps. We do not calculate the full covariance matrix or the
total significance for the jackknife cases. For 2MASS, we have cut the first four angular bins because of their SZ contamination; the
total significance is obtained discarding these bins.

5000 T-only Monte Carlos 5000 full Monte Carlos JK - � only JK - � and T

Catalogue A S/N A S/N A S/N A S/N

2MASS cut 1:22� 1:87 0:7� 1:00� 1:96 0:5� 0:66� 0:77 0:9� 1:36� 1:10 1:2�
SDSS 1:58� 0:70 2:2� 1:48� 0:66 2:2� 1:24� 0:42 3:0� 1:59� 0:44 3:6�
LRG 1:67� 0:76 2:2� 1:73� 0:80 2:2� 0:92� 0:50 1:8� 1:22� 0:49 2:5�
NVSS 1:12� 0:40 2:8� 1:20� 0:37 3:3� 0:68� 0:29 2:4� 0:83� 0:27 3:1�
HEAO 1:10� 0:41 2:7� 1:22� 0:45 2:7� 0:97� 0:26 3:7� 1:00� 0:24 4:2�
QSO 1:40� 0:53 2:6� 1:33� 0:54 2:5� 1:50� 0:58 2:6� 1:33� 0:46 2:9�

TOTAL 1:02� 0:23 4:4� 1:24� 0:27 4:5� — — — —

COMBINED ANALYSIS OF THE INTEGRATED SACHS-. . . PHYSICAL REVIEW D 77, 123520 (2008)

123520-11



1. 2MASS

From Fig. 3, it is clear that the CCF for the 2MASS
survey is consistent with zero. Previous analyses of these
data found some evidence for a positive correlation
[11,12]; however, these were performed in Fourier space
and included modeling of the SZ effect, which manifests
itself with anticorrelations at small angular scales. Indeed,
it appears in Fig. 3 that the observed CCF turns over at
small angles. If the smallest four angular bins are removed,
the fit to the CCF is consistent with the �CDM theory;
however, it is only significant at the�1� level. In any case,
2MASS appears to have the least significant evidence for
cross-correlations.

2. SDSS galaxies

The main galaxy sample from the SDSS has a measured
CCF, which is also in good agreement with the theory. In
this case, we note that we do not find agreement with the
previous result of [13], who reported a measured CCF of
almost double the amplitude that we detect.

After discussions with the authors [13], we jointly found
this discrepancy resulted from an additional cleaning
cut, where they discarded all galaxies with a large error
on their Petrosian r magnitude, imposing the condition
petroMagErr�r< 0:2. Imposing this same condition, we
found that we could reproduce their result. Further, mask-
ing those areas with high proportion of Petrosian error also
gave similar results.

However, the motivation for such a cut is unclear. It is
known that the Petrosian magnitudes are not accurate for
faint objects, for which the best estimator is the model

magnitude [56]. While having objects with a well mea-
sured magnitude is desirable, we see no reason why cutting
galaxies on the basis of a poor estimate of their magnitudes
should double the correlation with the CMB. This could
happen if it were produced by some foreground mecha-
nism, such as seeing or reddening, but we checked that
none of the possible foreground maskings raised the CCF
in any way comparable to the aforementioned cut.
Therefore, lacking a valid reason to include this cut, and

preferring to be conservative, we do not make the Petrosian
error cut, and our CCF is thus lower than seen by Cabré
et al.[13]. While it is worrying that a choice of masking has
such a dramatic effect on the amplitude of the observed
cross correlation, it should be noted that the cross correla-
tion was largely independent of other masking choices.

3. SDSS MegaZ LRGs

The result for the LRG is the highest in comparison with
the�CDM theory. It agrees with the result of [13]. A direct
comparison with [16,17] is more difficult because these
analyses use multiple photometric redshift bins.
Concentrating on [17] (since it also does its analysis in
physical space, rather than Fourier space), we find approxi-
mately the same detection significance as their single
redshift bin measurements for similar data sets. An updated
version of this paper (available on the astro-ph archive, but
also unpublished) calculates a global �2 value using all
four of their LRG samples, and detects a CCF with signifi-
cance somewhat higher than we measure in this work. This
is likely due in part to a somewhat larger redshift baseline
for their measurement as well as the fact that they calcu-
lated their covariance matrix using a method similar to our

FIG. 6 (color online). Comparison of the CCF functions obtained with the different WMAP frequency bands. The black (solid) is
using the internal linear combination map; the blue (long dashed) uses the W band, the green (short dashed) uses the V band and the
cyan (dotted) uses the Q band. The thick (red) curves show the �CDM prediction.
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MC1 case. As one can see from Fig. 5, samples that cover
very similar areas and have significant redshift overlap (as
is the case with their LRG photometric redshift samples)
can result in stronger anticorrelation between samples than
one observes in covariance matrices generated with the
MC2 method. This, in turn, would lead to a moderate
overestimation of the detection significance.

4. Other measurements

Not surprisingly, since we use the same maps generated
from HEAO and NVSS, our results are in agreement with
previous measures by [18,19], and the amplitudes are
consistent with the theoretical predictions. As discussed
above, the new Monte Carlo approach gives consistent
answers for individual experiments as the temperature-
only Monte Carlo approach used in earlier analyses.

We found that the measured CCF for the quasars is
consistent with the earlier measurement and the expecta-
tion from theory, and it is independent from the cleaning
level of the catalogue.

In conclusion, all the measured CCF agree with the
previous results and with the ISW theory for a �CDM
model, although, they are in some cases marginally higher
than theory predicts.

V. SIGNIFICANCE OF THE RESULT

Having established the measures of the CCFs and the
total covariance matrix, we discuss the significance of this
result and its consequences.

A. Single catalogue significance

Assuming that the detected cross correlations are due to
the ISW effect, we can assign a significance value to the
measure if the errors on the cross correlation are taken to be
Gaussian. For each catalogue, we can compare the mea-

sured CMB-density cross correlation Ĉð#iÞ with the theo-
retical expectation obtained from the WMAP best-fit
cosmological parameters with our modified version of
the cmbfast code [34].

We perform the likelihood analysis first described in
[50]. The shape of the CCF for each catalogue is assumed
to follow the �CDM predictions. The theory template is

�Cð#iÞ ¼ Agð#iÞ; (19)

where gð#iÞ is the theoretical prediction of the WMAP
best-fit model and A is the fit amplitude, which will depend
on the visibility function of the catalogue in question.
Maximizing the likelihood of

L ¼ ð2�Þ�N=2½detCij��1=2

� exp

�
�X

ij

ðCijÞ�1ðĈi � �CiÞðĈj � �CjÞ=2
�
; (20)

we can find the best value for each A

A ¼
P

N
i;j¼1 C

�1
ij giĈjP

N
i;j¼1 C

�1
ij gigj

(21)

and the variance

�2
A ¼

� XN
i;j¼1

C�1
ij gigj

��1
: (22)

We can also simply obtain the signal-to-noise ratio as
S=N ¼ A=�A.
The results obtained in this way with errors calculated

with the three methods are summarized in Table I, and the
resulting amplitudes and their errors can be seen in Figs. 3
and 4. Here we have allowed a separate amplitude A for
each catalogue. Note that while the observed CCF is the
same for the different methods, differences in the covari-
ance matrices can result in different best-fit amplitudes.
It is possible to check that the Monte Carlo estimation

has converged after N realizations by estimating the un-
certainty on the errors. In detail, we use a jackknife ap-
proach consisting in observing the effect of removing
M ¼ 10 different subsets of the N ¼ 5000 realizations of
the MC2 method. The estimator of the uncertainty on S=N
is

�2
S=N ¼ M� 1

M

XM
i¼1

½ðS=NÞi � S=N�2; (23)

where ðS=NÞi are the signal-to-noise ratios obtained with

each subset of N �M Monte Carlos, and S=N is their
average. We find in this way that the uncertainty on the
S=N is less than 5%, indicating the level to which our
Monte Carlos have converged.

B. Joint significance

We can easily generalize this to combine the different
catalogues and obtain a single significance. Redefining the
indexes i, j in a way that they now run from 1 to Ntot ¼
Nbin � Ncat, running over each of the bins of the observed
(and theoretical) cross-correlation functions for each of the
density catalogues. Using the full covariance matrix, we
can follow again the same procedure, and find a single
best-fit amplitude.
The results obtained in this way are shown at the bottom

of Table I. The significance of the two different
Monte Carlo methods, MC1 and MC2, are 4:4� and
4:5�, respectively. We also find that the uncertainty on
the S=N for the joint amplitude is again less than 5%.
The two MC methods produce similar detection signifi-

cances, but this could be a lucky coincidence, since the
covariance matrices relating different surveys are much
different. Both methods suggest some pairs of observations
should be strongly correlated, but which pairs are strongly
correlated depends on the method. If the covariance be-
tween surveys were ignored, the total significance would
be about 5:8�. Perhaps it is not surprising then that adding
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similar levels of covariance between experiments with
comparable individual detection levels would have a simi-
lar effect on the total significance.

As in the case of fits to individual correlation functions,
strong covariances can have results that are counterintui-
tive. For example, the fit for the total amplitude using the
MC1 approach is smaller than any single survey would
suggest. Also, adding the small angle 2MASS CCF, be-
lieved to be suppressed by SZ, actually increases the fits by
about 0:2�, despite the points themselves being lower than
the theory. These effects suggest that the degree of covari-
ance between the different measurements might be over-
estimated, which would not be surprising given the much
different systematics in each experiment. Even adding a
small degree (5%) of diagonal noise is enough to increase
the total MC1 amplitude to A ¼ 1:14� 0:26, with a cor-
responding S=N ¼ 4:4, so that it is more consistent with
the amplitudes of the individual experiments. The MC2
result is not affected by such a change, because the total
amplitude is already consistent with the individual survey
measurements.

Note that the theoretical model associated with a par-
ticular best-fit amplitude is not unique. While increasing
the dark energy density will generally increase the ISW
effect, the effect will generally be redshift dependent and
could impact different catalogues differently. However, the
�CDMmodel without any tweaking (A ¼ 1) improves the
likelihood at �4:5� compared with the absence of cross
correlations. Below we compare to specific alternative
cosmologies without any scaling amplitude.

C. �2 Tests

Another way to assess the significance of the measure
with respect to a theory is simply to look at the �2, defined
as

�2 ¼ X
ij

C�1
ij ðĈi � �CiÞðĈj � �CjÞ; (24)

where the inverse covariance matrix and the data can be
referred either to a single catalogue or to the total measure.
Whereas the likelihood method discussed above looks at
how well a model can reduce �2, it is also worth simply
looking at the magnitude of �2 for the null hypothesis test,
where we calculate the �2

0 assuming the theoretical cross-

correlation is zero.
In Table II, we the show the �2 for the null hypothesis, as

well as for the �CDM and best-fit models. We use the
MC2 errors, dropping the first four bins of 2MASS, which
appear to be affected by SZ. While there is much variation,
in most cases there is not clear evidence against the null
hypothesis, in that its�2

0 is not significantly greater than the

number of data points. However, the �2 values are signifi-
cantly reduced if one assumes one of the models, like
�CDM, which predict a nonzero cross correlation.

The reasons for the particularly low �2 for the LRG case
is unclear, and we investigate this more below. It might be
an indication that the error estimates are in some sense too
large, or that the covariance between angular bins is differ-
ent than expected from the simple Monte Carlo simula-
tions, perhaps as a result of foregrounds. However, it
should be emphasized that the �2 for the null hypothesis
is fairly conservative, and unlike the Bayesian likelihood
approach, it fails to account for the fact that we have strong
theoretical expectations for the signal we are looking for.

D. Eigenmode decomposition

To better understand the covariance of our data, and
especially to understand the �2, it is useful to study the
eigenmode decomposition of the covariance matrix. As a
worst-case example, we will use here the measurement and
covariance matrix for the LRG sample calculated with the
MC2 method (dimension n ¼ 13).
We can factorize the covariance matrix into the form

C ij ¼
Xn
k;l¼1

UT
ik�klUlj; (25)

where�ij ¼ �i�ij is a diagonal matrix whose elements are

the eigenvalues of Cij; the rows of Uij are the 13 eigenvec-

tors êi of the covariance matrix. We plot the variances,
�i ¼ �2

i , in the top panel of Fig. 7, and some of the
eigenvectors are shown in the bottom panel. There, we
can see that the modes associated with the biggest variance
are the low frequency ones, while the low variance modes
oscillate significantly. This reflects the fact that the greatest
differences between the Monte Carlo realizations is in the
low frequency behavior of the cross-correlation functions.
Both the measured and theoretical CCFs can be decom-

posed into this eigenvector basis. In particular, any cross-
correlation vector can be written as v ¼ P

iAiêi, where
Ai � v 	 êi. We show in Fig. 8 the decomposition of the
data and theory divided by the square root of the variance
�i. For a typical CCF from the Monte Carlos, these am-
plitudes should be Gaussian distributed with unit variance.
We can see how the smooth shape of the theoretical real
space CCF is reflected in this eigenmode decomposition:

TABLE II. A comparison of the absolute �2 for the various
experiments.

Catalogue f �2
0 �2

bestfit �2
�CDM

2MASS 9 5.4 5.2 5.2

SDSS 13 17 11 12

LRG 13 9.6 4.9 5.7

NVSS 13 17 6.0 6.3

HEAO 13 18 10 10

QSO 13 9.7 3.7 4.0

TOTAL 74 67 47 48
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the theoretical amplitude is very well approximated by the
first two modes only. However, this is not the case for the
measured CCF, for which higher frequency modes are also
significant.

We next look at the contributions to the �2 from the
different eigenmodes. We show in Fig. 9 the evolution of
the cumulative �2

i , i.e. the cumulative contribution to the
�2 from each eigenmode. Here we compare the raw �2

from the observed cross-correlation function to that for the

residuals when the theoretical models (�CDM and the
best-fit amplitude) are subtracted off. As expected, the
theoretical models only impact the lowest two eigenmodes.
The low �2, however, is largely the result of the higher
frequency modes, which seem to have slightly lower am-
plitudes than is seen in the Monte Carlos.

FIG. 7 (color online). Eigenvalues of the MC2 covariance
matrices of the cross correlation between the LRG sample and
the CMB (top panel), and first three eigenvectors (bottom panel).
The dashed (red) line shows the highest frequency mode.

FIG. 8 (color online). Eigenmode decomposition of the ampli-
tude of the measured (red dashed), theoretical (black solid) and
best-fit (green long dashed) CCF.

FIG. 9 (color online). Cumulative �2
i obtained summing the

contribution up to the i-th eigenmode, for the three models: null
hypothesis (red solid), best-fit and �CDM.
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If we consider only those two modes that are expected
theoretically, the �2 for the null hypothesis is actually
fairly high: �2

2 ¼ 4:8. This would exclude the null hy-
pothesis at more than the 90% level.

VI. COSMOLOGICAL CONSTRAINTS

Assuming the observed cross correlations are produced
by the ISW effect, we can compare them with the theory
predictions to obtain cosmological constraints. As de-
scribed above, the ISW temperature anisotropies are pro-
duced as a result of time variation in the gravitational
potential, and it is the evolution of the potential that our
measurements constrain most directly. The cosmological
parameters that impact the linear evolution of the potential
are the dark energy density and its evolution, and the
curvature of the Universe.

The actual cross-correlation measurements will also
depend on the nature of the large-scale structure probe,
its spectrum, and its bias. For example, if we normalize to
the large-scale CMB, changing the shape of the power
spectrum (e.g. by changing the Hubble constant or the
dark matter density) will change the variance of the dark
matter distribution on smaller scales, quantified by �8.
Since the ACFs of the surveys are fixed by observations,
changing �8 effectively means a different bias will be
inferred for each survey.

The cross correlations will rise and fall with the amount
of structure in the probe. Thus, instead one could focus on
the dimensionless cross correlation, effectively

r ¼ CTg
‘ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CTT
‘ Cgg

‘

q ¼ CT�
‘ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CTT
‘ C��

‘

q ; (26)

which removes the dependence on bias (assuming it is
linear) and probes more directly the ISW effect itself.
The ISW effect arises on fairly large scales, e.g. k�
0:01h Mpc�1, depending on the redshift distribution of
the survey. Equivalently, for each model, we calculate the
bias of each survey based on the observed ACF, and use
this to find the predicted CCF for the model.

This makes our measurements largely independent of
parameters other than �DE, w, cs, and �k. In practice, we
choose to keep the dark matter physical density fixed
!m � �mh

2 ¼ 0:128 to the WMAP best-fit value, but
the constraints are largely independent of this assumption.

A. Models without dark energy

While many independent probes seem to indicate the
existence of dark energy, it is worth exploring models
which might account for the observations without dark
energy; recently, an attempt has been made that does
this, but which requires a significantly lower Hubble con-
stant, modifications to the primordial power spectrum and
other nonstandard features [57]. Such models would be
dark matter dominated today, and have no late-time ISW

effect. Our observations of the ISW cross correlations rule
out such models at the �4:5� level, based on the differ-
ence in the �2 between the null hypothesis and the �CDM
model in Table II. Such models also struggle to fit the
recent observations of the angular scale of baryon oscil-
lations [58].

FIG. 10 (color online). Likelihood for flat models with varying
�m from the MC1 and MC2 errors. The shaded areas represent
1, 2, and 3� intervals for �m. �CDM is a good fit to the data.
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B. Flat �CDM models

Next, we study the likelihood of a family of flat models
with varying�m,�� ¼ 1��m. As we can see in Fig. 10,
the �CDM model is an excellent fit to our data: the 1�
interval for the parameter is �m ¼ 0:26þ0:09

�0:07 using the

MC1 covariance estimate. A higher ISW signal and
slightly lower estimate for�m results from the MC2 errors
(�m ¼ 0:20þ0:09

�0:07); this is due to the higher best-fit ampli-

tude in this case. The error bars can be seen to be very

asymmetric, as the ISWeffect increases dramatically when
the matter density becomes small. Models with �m < 0:1
would predict a much greater cross correlation than is
observed.

C. Flat wCDMmodels

We next study the likelihood of a family of flat dark
energy models, where we allow the dark energy density to
evolve with equation of state w. The results are shown in
Fig. 11, from which we can see that �CDM (w ¼ �1) is
very consistent with the measures. We can understand this
if we observe that the measured excess in the ISW signal is
largely redshift independent, while models along the same
degeneracy line with a lower (higher) w would predict an
excess at low (high) redshifts, respectively.
Initially, we assume that the dark energy sound speed is

c2s ¼ 1, as is typical in scalar field models like quintes-
sence. We also show the same range of models, but with a
different dark energy sound speed c2s ¼ 0 in Fig. 11. We
can see that in this case the degeneracy line changes
direction due to the clustering of dark energy. �CDM is
still a good fit to the data, as the cosmological constant
likelihoods are not affected by the sound speed, and there is
no clustering in that case.
The constraint on the sound speed itself is very weak.

There are too many dark energy parameters (density, equa-
tion of state, sound speed) to expect any strong constraint.
We reduce the numbers by assuming the CMB shift pa-
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FIG. 11 (color online). Likelihood for flat models with varying
�m and w from the MC2 errors. The shaded areas represent 1
and 2� intervals. The top panel assumes relativistic sound
speed, such as would occur in a quintessence model, while the
lower panel assumes the opposite extreme of zero sound speed.
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FIG. 12 (color online). Likelihood for flat models with dy-
namical dark energy as a function of the sound speed, where we
fix the matter density based on the equation of state, assuming
the CMB shift constraint. 1 and 2� intervals are shown. No
constraint is possible for the cosmological constant limit (w ¼
�1).
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rameter is fixed to the observed value, coupling the equa-
tion of state to the dark energy density. The results can be
seen in Fig. 12. Even with this additional constraint, the
sound speed is weakly constrained because the data are
consistent with a �CDM model, where there is no depen-
dence on the sound speed possible.

D. Curved �CDM models

Since curvature can also cause the gravitational potential
to evolve, we explore the constraints if we relax the flatness
condition. However, for simplicity we assume the dark
energy is a cosmological constant. We study the likelihood
of �m, with a corresponding curvature �k ¼ 1��� �
�m. We explore the full �m ��� space; we see the
relative likelihoods in Fig. 13, which is obtained with
MC2 errors.

From this figure, we see that �CDM is still a good fit to
the data. An interesting feature of this figure is the degen-
eracy line between �m and ��: this is related to the
relative efficiency of the curvature and dark energy as
sources of ISW. Closed models (above the flat line) give
negative ISW, and can cancel the effect of increasing the
cosmological constant, while the opposite happens for
open models (below the flat line).

E. Comparison with other constraints

Finally, we wish to compare the ISW constraints to those
arising from other cosmological observations, including
the CMB power spectrum, baryon oscillations, and
Type Ia supernovae. For the latter, we use measurements

of the luminosity distance from the Supernova Legacy
Survey [1].
For the CMB observations, most of the dark energy

information (at least that independent of the ISW effect)
is distilled in the CMB shift parameter, defined as

R � ffiffiffiffiffiffiffiffi
�m

p
H0 	 ð1þ z?ÞdAðz?Þ; (27)
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FIG. 13 (color online). Likelihood for curved models with
varying �m and �� from the MC2 errors. The shaded areas
represent 1 and 2� intervals. �CDM is a good fit to the data.
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FIG. 14 (color online). Comparison with constraints from
other observations, including CMB shift (black), SNe (red),
and BAO (blue) (top panel), and combined likelihoods using
the ISWþ each one of these other constraints (bottom panel,
same color coding). 1 and 2� contours are shown (solid and
dashed lines, respectively). The MC2 errors are used.
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where dAðzÞ is the angular diameter distance and z? is the
redshift of the last scattering surface (z? ¼ 1090); this
expression in the flat case reduces to

R ¼ ffiffiffiffiffiffiffiffi
�m

p
H0

Z z?

0

dz0

Hðz0Þ : (28)

R has been measured to be R ¼ 1:70� 0:03 [59]. We can
see from Figs. 14 and 15 that this constraint has a degen-
eracy direction parallel to the ISW degeneracy in the flat
case, but is less so in the general curved case.

Finally, for the BAO measurements [6] we use the con-
straint on the volume distance measure defined as

dVðzÞ � ½ð1þ zÞ2d2AðzÞzc=HðzÞ�1=3: (29)

The constraint on this parameter by [6] is
dVð0:35Þ=dVð0:2Þ ¼ 1:812� 0:060.
The SN data is orthogonal to the ISW constraints, and

jointly, they are consistent with the �CDM model; there is
little evidence for additional curvature or evolving dark
energy. The CMB shift constraint is similarly consistent
with the cosmological constant concordance model,
though the constraints are not as orthogonal to the ISW
constraints. The �CDM model preferred by the SN and
ISW measurements is consistent with the CMB shift com-
bined with the measurements of the Hubble constant from
the HST Key Project [60].
The exception to this concordance picture comes when

the BAO data is considered. The BAO contours are similar
to those from the SN, but shifted. In the flat dark energy
case, the combination with the ISW prefers a larger dark
energy density, which has increased with time (phantom).
When all observations are combined, the BAO data are
swamped by the SN data, and the result is fully consistent
with the concordance model as found by [6].

VII. CONCLUSIONS

In this paper, we have measured the cross correlation
between the CMB and a large range of probes of the
density in a consistent way, and have calculated their
covariance taking into account their overlapping sky cover-
age and redshift distributions. While individual measure-
ments vary somewhat depending on how the data are
cleaned and how the covariance is calculated, the overall
significance of the detection of cross correlations is at the
�4:5� level.
These observations provide important independent evi-

dence for the existence and nature of the dark energy. The
observed cross correlations are consistent with the ex-
pected signal arising from the ISW effect in the concord-
ance model with a cosmological constant. The observed
signal is slightly higher than expected, higher than the
expectation from WMAP best-fit model by about 1�,
thus favoring models with a lower �m. However, we do
not see any significant trend for the excess as a function of
redshift, and so there is no indication of an evolving dark
energy density. By combining these results with other
cosmological data, we find a generally consistent picture
of the behavior of the Universe, which is converging
towards the �CDM model, although the uncertainties
remain considerable. The only partial exception to this
picture is the BAO result which, even when combined
with our ISW measurement, is in slight tension with the
�CDM model (at �1�).
The results of our analysis and the covariance matrices

are available upon request from the authors (Giannantonio)
and from [61].
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FIG. 15 (color online). Same as Fig. 14 for the curved case.
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Malte Schäfer, and Jussi Väliviita for useful conversations.
We also thank Filipe Abdalla, Chris Blake, and Ofer Lahav
for the use of the DR6 MegaZ data, and Anna Cabré and
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APPENDIX: CORRELATEDMONTECARLOMAPS

1. Basics

Here, we describe how to make Gaussian maps with a
prescribed set of auto- and cross-correlation functions for
use in the estimation of covariance matrices. Let us assume
we have n maps, which could include temperature and
various density maps at different redshifts or frequencies.
Let us call these maps mi, where i ranges from 1 to n.

Any two maps,mi andmj, will be correlated, and these

correlations will be described by a correlation function

Cijð#Þ and associated multipole moments Cij
‘ . These cor-

relations will be symmetric under interchange of the maps
Cijð#Þ ¼ Cjið#Þ, so we have nðnþ 1Þ=2 correlation func-
tions or spectra, which describe the two maps.

Most map making algorithms, like synfast [37], work
in Fourier or spherical harmonic space. Effectively, every
mode is given a random amplitude 	, which is a complex
number with unit variance and zero mean h		
i ¼ 1 and
h	i ¼ 0: These are then multiplied by the square root of the
power spectrum in order to ensure the proper correlation
functions. (There are additional constraints to preserve the
reality of the fields on the lattice, e.g. 	k ¼ 	


�k, but it is
not necessary to go through these here.)

It is sufficient to consider a single mode or harmonic
amplitude of each map, as all the others will be similar but
independent. Assuming we are working with spherical
harmonics, we want to ensure that

hai‘maj
‘0m0 i ¼ Cij
‘ �‘‘0�mm0 : (A1)

The � functions follow simply from using uncorrelated
random amplitudes for each harmonic mode. For a single
map, the right power spectrum is ensured by simply using

ai‘m ¼
ffiffiffiffiffiffi
Cii
‘

q
	; (A2)

and this is effectively the prescription used by synfast.
When considering more maps, it is necessary to use

more random phases, building the final maps from a com-

bination of different maps. With nmaps, n different phases
are required for each mode. Here, we denote the different
phases with Latin letters, a; b; c; . . . Different phases will
be assumed uncorrelated, so that h	a	



a0 i ¼ �aa0 .

The simplest example is to consider two correlated
maps, m1 and m2. These are described by three spectra:
C11
‘ , C12

‘ , and C22
‘ . These are made using the amplitudes

a1‘m ¼ 	a

ffiffiffiffiffiffiffiffi
C11
‘

q

a2‘m ¼ 	aC
12
‘ =

ffiffiffiffiffiffiffiffi
C11
‘

q
þ 	b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C22
‘ � ðC12

‘ Þ2=C11
‘

q
:

(A3)

It is simple to verify that with these amplitudes ha1‘ma1
‘mi ¼
C11
‘ , ha1‘ma2
‘mi ¼ C12

‘ , and ha2‘ma2
‘mi ¼ C22
‘ .

This is simple to implement with synfast. First create
a map with power spectrum C11

‘ , and then make a second

map using the same seeds and power spectrum ðC12
‘ Þ2=C11

‘ .

Add this second map to a third map made with a new seed
and with power C22

‘ � ðC12
‘ Þ2=C11

‘ . Note that this should

never require taking the square root of a negative number;
however, if it is very strongly correlated, numerical errors
could cause problems. However, for the weak correlations
considered here, this is never an issue.
The only difficulty is that this inherently produces posi-

tive correlations, as the default of the synfast code. This
can be worked around simply. For example, if C12

‘ is al-

ways negative, one can simply flip the signs of the second
map after it is produced. If instead C12

‘ changes sign, then

break up the power spectrum into positive and negative
pieces, making a map for each and subtracting the ‘‘nega-
tive’’ map from the ‘‘positive’’ map.

2. The general case

Next, we consider an arbitrary number of maps. For
simplicity, we drop the ‘ and m subscripts where the
meaning is unambiguous. Effectively, the challenge is to
solve for a particular set of amplitudes T, where

a1 ¼ 	aT1a a2 ¼ 	aT2a þ 	bT2b

a3 ¼ 	aT3a þ 	bT3b þ 	cT3c

a4 ¼ 	aT4a þ 	bT4b þ 	cT4c þ 	dT4d;

(A4)

etc., subject to the constraints that haiaj
i ¼ Cij.
One thus has nðnþ 1Þ=2 equations with the same num-

ber of unknowns T. These begin as

C11 ¼ T2
1a C12 ¼ T1aT2a C22 ¼ T2

2a þ T2
2b

C13 ¼ T1aT3a C23 ¼ T2aT3a þ T2bT3b

C33 ¼ T2
3a þ T2

3b þ T2
3c C14 ¼ T1aT4a

C24 ¼ T2aT4a þ T2bT4b

C34 ¼ T3aT4a þ T3bT4b þ T3cT4c

C44 ¼ T2
4a þ T2

4b þ T2
4c þ T2

4d;

(A5)
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etc. While quadratic, these can be solved in stages linearly.

Solve the first for T1a ¼
ffiffiffiffiffiffiffiffi
C11

p
. Use the second to show

T2a ¼ C12=
ffiffiffiffiffiffiffiffi
C11

p
and the third to get T2b ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C22 � ðC12Þ2=C11
p

. This reproduces what was shown
above.

After this, things continue similarly. At each point, we
use the next equation to solve for the next missing variable

T1a ¼
ffiffiffiffiffiffiffiffi
C11

p
T2a ¼ C12=

ffiffiffiffiffiffiffiffi
C11

p

T2b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C22 � ðC12Þ2=C11

q
T3a ¼ C13=

ffiffiffiffiffiffiffiffi
C11

p

T3b ¼ ðC23 � C12C13=C11Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C22 � ðC12Þ2=C11

q

T3c ¼
�
C33 � ðC13Þ2=C11 � ðC23 � C12C13=C11Þ2

C22 � ðC12Þ2=C11

�
1=2

T4a ¼ C14=
ffiffiffiffiffiffiffiffi
C11

p
T4b

¼ ðC24 � C12C14=C11Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C22 � ðC12Þ2=C11

q
; (A6)

etc. Things will take similar forms as one goes on, but
become progressively more complicated.

It can also be programmed recursively, which may be
simpler to implement. By this, we mean

T1a ¼
ffiffiffiffiffiffiffiffi
C11

p
T2a ¼ C12=T1a T2b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C22 � T2

2a

q
T3a ¼ C13=T1a T3b ¼ ðC23 � T2aT3aÞ=T2b

T3c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C33 � T2

3a � T2
3b

q
T4a ¼ C14=T1a

T4b ¼ ðC24 � T2aT4aÞ=T2b

T4c ¼ ðC34 � T3aT4a � T3bT4bÞ=T3c

T4d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C44 � T2

4a � T2
4b � T2

4c

q
;

(A7)

etc., with each step using only variables already solved.
The general recursive expression for these spectra is

Tij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cji � Xj�1

k¼1

T2
ik

vuut ; if i ¼ j

Tij ¼
Cji �Pj�1

k¼1 TikTjk

Tjj

; if i > j:

(A8)

These amplitudes are squared for the input spectra for
synfast, but one must beware negative cross correla-
tions as discussed above. A simple modification to a pro-
gram like synfast could enable it to read in amplitudes
rather than spectra, and this would be more efficient com-
pared with reversing the sign of the maps after they are
created.
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[14] P. Fosalba and E. Gaztañaga, Mon. Not. R. Astron. Soc.
350, L37 (2004).
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