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Models where the dark energy is a scalar field with a nonstandard Dirac-Born-Infeld (DBI) kinetic term

are investigated. Scaling solutions are studied and proven to be attractors. The corresponding shape of the

brane tension and of the potential is also determined and found to be, as in the standard case, either

exponentials or power law of the DBI field. In these scenarios, in contrast to the standard situation, the

vacuum expectation value of the field at small redshifts can be small in comparison to the Planck mass

which could be an advantage from the model building point of view. This situation arises when the

present-day value of the Lorentz factor is large, this property being per se interesting. Serious short-

comings are also present such as the fact that, for simple potentials, the equation of state appears to be too

far from the observational favored value �1. Another problem is that, although simple stringy-inspired

models precisely lead to the power-law shape that has been shown to possess a tracking behavior, the

power index turns out to have the wrong sign. Possible solutions to these issues are discussed.
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I. INTRODUCTION

Since the discovery of the fact that the expansion of the
Universe is presently accelerated [1–10], various sugges-
tions have been made in order to explain this observational
fact. Among them is the hypothesis of dark energy, a fluid
with a negative pressure representing about 70% of the
total energy density in the Universe. The question of the
physical nature of the dark energy has, of course, been
widely discussed. The most natural candidate, still per-
fectly compatible with all the data available, is the cosmo-
logical constant. However, the difficulty to reconcile the
value of � deduced from the observations with the value
calculated theoretically [11] (maybe too naively?) has
prompted the study of alternatives. Clearly, a simple scalar
field, a ‘‘quintessence’’ field, is a natural candidate for such
an alternative [12–16]. Among all the possibilities, scalar
fields with inverse power-law potentials have attracted a lot
of interest because, in this case, there is a solution of the
equations of motion that is an attractor [12]. This means
that the present-day behavior of the Universe is insensitive
to the initial conditions. Usually, the attractor solution is a
scaling solution, i.e. a solution for which the energy density
scales as a power of the scale factor [17].

If the above mentioned route is correct, then another
interesting issue is whether a candidate for quintessence in
high energy physics can be identified. Clearly, this cannot
be done without going beyond the standard model of
particle physics. In particular, it would be very interesting

to achieve this goal in string theory since it is presently our
best candidate as a unified theory [18].
Recently, there have been many works aiming at con-

necting string theory with inflation which is also a phase of
accelerated expansion (but taking place in the very early
Universe at a much higher energy scale). For this purpose,
new ideas in string theory based on the concept of branes
have revealed themselves especially fruitful. In particular,
scenarios where the inflaton is interpreted as the distance
between two branes moving in the extra dimensions along
a warped throat have given rise to many interesting studies
[19–23]. In this article, we want to investigate whether the
same kind of ideas can lead to sensible dark energy
scenarios.
At the technical level, scenarios of the type mentioned

above lead to scalar field models where the kinetic term is
noncanonical. More precisely, the kinetic term has a Dirac-
Born-Infeld (DBI) form. Physically, this originates from
the fact that the action of the system is proportional to the
volume traced out by the brane during its motion. This
volume is given by the square root of the induced metric
which automatically leads to a DBI kinetic term.
Therefore, as the first step toward a scenario of ‘‘DBI-
essence,’’ it is first necessary to understand whether scaling
and attractor solutions are still present when the scalar field
has a DBI kinetic term. This question constitutes the main
target of the present article.
This paper is organized as follows. In Sec. II, we briefly

review the scaling properties of a quintessence field with a
standard kinetic term. Then, in Sec. III, we reconsider this
question but with a DBI kinetic term. In particular, we
compare the DBI results with the standard ones. In Sec. IV,
we study the behavior of DBI-essence at small redshifts.
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Since, in this case, the scalar field is no longer a test field,
this requires numerical computations. Finally, in Sec. V, we
present our conclusions and discuss the open issues that
should be studied in the future.

II. SCALING SOLUTIONS WITH A STANDARD
KINETIC TERM

We consider a spatially flat Friedmann-Lemaitre-
Robertson-Walker universe containing a perfect fluid and
a scalar field �. Assuming that the scalar field and the
perfect fluid are separately conserved, the equations of
motion are given by

H2 ¼ �

3
ð�þ ��Þ; (1)

_�þ 3Hð�þ pÞ ¼ 0; (2)

_�� þ 3Hð�� þ p�Þ ¼ 0; (3)

where H � _a=a is the Hubble parameter and � and p are,
respectively, the energy density and the pressure of the
perfect fluid. The dot denotes a derivative with respect to
cosmic time and the quantity � is defined by � � 8�=m2

Pl.

In the following, we assume that the perfect fluid has a
constant equation of state parameter w � p=�, the two
cases of main interest being w ¼ 1=3 for the radiation-
dominated era and w ¼ 0 for the matter-dominated era. In
this case, the conservation equation (2) can be integrated

exactly and leads to the familiar behavior � / a�3ð1þwÞ.
Moreover, if we further assume that the scalar field is a test
field and that the evolution of the background geometry is

mainly controlled by the perfect fluid, then one has aðtÞ /
t2=½3ð1þwÞ� or, for the Hubble parameter, H ¼ 2=½3ð1þ
wÞt�.

Let us first briefly recall the scaling solutions in the
simple case where the scalar field has a standard kinetic
term. In this situation, the energy density and the pressure
are given by the familiar expressions

�� ¼
_�2

2
þ Vð�Þ; p� ¼

_�2

2
� Vð�Þ: (4)

If one inserts these expressions into the conservation equa-
tion for the scalar field (3), then one obtains the Klein-
Gordon equation

€�þ 3H _�þ V0ð�Þ ¼ 0; (5)

where the prime denotes a derivative with respect to �.
Then, we seek potentials Vð�Þ such that the energy density
of the test scalar field scales as a power law of the scale

factor, namely �� / a�3ð1þw�Þ where w� � p�=�� is a

constant. It has been established in Ref. [12] that scaling
solutions exist if the potential has an exponential shape,

Vð�Þ ¼ M4e���; (6)

where � is a constant or is of the Ratra-Peebles type (i.e.
inverse power law of the field), namely

Vð�Þ ¼ M4þ����: (7)

In the first case, the particular solution leading to the
scaling behavior reads

�ðtÞ ¼ 2

�
ln

�
t

t0

�
; (8)

the constant � and the mass scale M being linked by the
relation

�2M4t20 ¼
2ð1� wÞ
1þ w

: (9)

As is well known, the quintessence equation of state pa-
rameter is just given by the equation of state of the back-
ground perfect fluid,w� ¼ w. The particular solution (8) is

important because it is an attractor. This means that the
final (i.e. present-day) evolution of the field is in fact
independent of the initial conditions. At the technical level,
this can be seen by studying small (linear) perturbations
around the attractor. The eigenvalues of the perturbations
around the critical point can be expressed as

�� ¼ 1

2m
½ðm� 6Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm� 6Þ2 þ 8mðm� 6Þ

q
�; (10)

where we have defined m � 3ð1þ wÞ. Since w< 1, one
has m< 6 and the eigenvalues are negative and one has a
stable spiral point. Moreover, for the particular solution
(8), one has

d2V

d�2
¼ 9

2
ð1� w2

�ÞH2: (11)

This is an important formula because it implies that ��
mPl today. Indeed, V

00 � V=�2 and H2 � V=m2
Pl when the

field starts dominating the energy density content of the
Universe; equating these two quantities leads to the above
mentioned conclusion. For this reason, if one considers the
supersymmetric extensions of the standard model of parti-
cle physics, a sensible model building of quintessence is
only possible in a supergravity (SUGRA) framework
[14,15]. Indeed, the SUGRA corrections (that are ignored
in global supersymmetry) are here of order hQi=mPl � 1
and cannot be neglected at small redshifts. However, a
well-known difficulty of the exponential case is that the
property w� ¼ w implies that the scalar field cannot drive

an accelerated expansion. This is why the inverse power
law case seems to be more interesting.
In the case of the Ratra-Peebles potential (7), there also

exists an exact particular solution of the Klein-Gordon
equation that is an attractor. It reads

� ¼ �0

�
t

t0

�
2=ð�þ2Þ

; (12)

where the quantity �0 is linked to the mass scaleM by the
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formula

M4þ�����2
0 t20 ¼

2

�ð�þ 2Þ
�

2

1þ w
� �

�þ 2

�
: (13)

For this particular solution, the equation of state parameter
can be expressed as

w� ¼ �w� 2

�þ 2
: (14)

As expected, in the limit � ! þ1, one recovers the ex-
ponential case, w� ¼ w. However, the crucial difference

with the exponential potential is that one can now have
w� < w, that is to say, the scalar field energy density can

now scale more slowly than the background fluid and,
hence, eventually dominates, causing the Universe to ac-
celerate. Moreover, the solution (12) is also an attractor as
revealed by a dynamical system analysis. Indeed, the ei-
genvalues of small perturbations around the critical point
read

�� ¼ ð2n�m� 6Þ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2n�m� 6Þ2 þ 8mðn� 6Þp
2m

;

(15)

where we have defined n � 3ð1þ w�Þ. Again, one can

show that there exists a stable spiral point as long as both
eigenvalues are negative, which is equivalent to 2n�m�
6< 0. On this attractor, the evolution of the second order
derivative of the potential is given by

d2V

d�2
¼ 9

2

�þ 1

�
ð1� w2

�ÞH2; (16)

and one can check that this last equation reproduces the
corresponding equation in the exponential case when � !
þ1. Again, this prompts a SUGRA treatment of the model
building issue since one still has ��mPl.

III. SCALING SOLUTIONS WITH A DBI KINETIC
TERM

Let us now consider that the dark energy scalar field is a
DBI scalar field. In this case, the action of the field can be
written as

SDBI ¼ �
Z

d4xa3ðtÞ
�
Tð�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

_�2

Tð�Þ

s
þ Vð�Þ � Tð�Þ

�
;

(17)

where Tð�Þ is the tension and Vð�Þ is the potential. In this
article, gravity is assumed to obey four-dimensional gen-
eral relativity with a standard Einstein-Hilbert Lagrangian.
Then, it is easy to obtain the corresponding energy density
and pressure of the scalar field by varying the action with
respect to the metric tensor. They read

�� ¼ ð�� 1ÞTð�Þ þ Vð�Þ;

p� ¼ �� 1

�
Tð�Þ � Vð�Þ; (18)

where the quantity � is reminiscent of the usual relativistic
Lorentz factor and is given by

� � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� _�2=Tð�Þ

q : (19)

The expressions (18) of the energy density and pressure of
the DBI field should be compared to their standard counter-
part; see Eqs. (4). As usual, if one inserts Eqs. (18) in the
conservation equation (3), one obtains the DBI Klein-
Gordon equation, namely

€�� 3T0ð�Þ
2Tð�Þ

_�2þT0ð�Þþ 3H

�2
_�þ 1

�3
½V 0ð�Þ�T0ð�Þ� ¼ 0:

(20)

We notice that the equation of motion for � is quite
complicated compared to Eq. (5) despite the fact that the
conservation equation has retained its standard form.
Let us also compare with other works in the literature.

Let us start with K-essence where the action can be written
as

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
pð�;XÞ; (21)

where X ¼ ðr�Þ2=2. Clearly the action (17) is a special
case of the above action. However, as first discussed in
Ref. [24], K-essence usually means that the potential term
vanishes and the negative pressure of the scalar field is
realized only by considering the kinetic term [25–28]. On
the other hand, our model cannot realize the negative
pressure without the potential term, as shown below.
Therefore, this class of models cannot encompass
Eq. (17). Another model related to the present study is
the case where the dark energy field is a tachyon for which
the action is given by [29–31]

S ¼ �
Z

d4x
ffiffiffiffiffiffiffi�g

p
VðTÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

M4
g�	@�T@	T

s
; (22)

where M is a fundamental scale and VðTÞ is a potential
which, of course, needs not to be the same function as Vð�Þ
in Eq. (17). This class of theory is equivalent to the case
studied here (through a redefinition of the field) only when
the potential in Eq. (17) vanishes. Let us also notice that
when VðTÞ is constant the model is in fact equivalent to the
Chaplygin gas with the equation of state p / �1=�
[32,33]. Therefore, beside the fact that the search of scaling
solutions has not yet been investigated in this type of
models, we conclude that the class of scenarios under
scrutiny in this paper was not considered before.
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Let us now return to the DBI case. As a warm-up, let us
find the scaling solutions in the simple case where the
potential vanishes. As already mentioned before, this
means that we now seek tensions Tð�Þ such that the energy
density of the test DBI scalar field scales as a �� /
a�3ð1þw�Þ. From Eqs. (18), it is easy to show that � is, in
this case, constant and given by � ¼ 1=w�. Then, the

formula of the energy density, �� ¼ ð�� 1ÞTð�Þ /
a�3ð1þw�Þ immediately gives the scaling in time of Tð�Þ
which in turn, combined with _�2=Tð�Þ ¼ ð�2 � 1Þ=�2

and the fact that � is constant, implies that

_� / t�ð1þw�Þ=ð1þwÞ: (23)

This equation is easily solved. Let us start withw� ¼ w. In

this case, one has � / lnt and, as a consequence,

Tð�Þ ¼ M4e���; (24)

where � is a constant. Again, this case is very similar to the
situation where we have a standard kinetic term and an
exponential potential. As a consequence, this model suffers
from the standard phenomenological problems. Since the
scalar fields exactly track the background matter, one
cannot have a large enough contribution of dark energy
density today without spoiling big bang nucleosynthesis.
Moreover, the scalar field behaves as matter today and,
therefore, cannot cause the acceleration of the Universe.

On the other hand, ifw� � w, then the scalar field is just

a power law of the cosmic time which implies that Tð�Þ
can be expressed as

Tð�Þ ¼ M4þ����; (25)

where M is a mass scale and w� is related to � and the

background equation of state parameter w through the
relation

w� ¼ �w� 2

�þ 2
¼ 1

�
: (26)

Interestingly enough, as discussed before, this is exactly
the equation obtained when there is a standard kinetic term
with a Ratra-Peebles potential; see Eq. (14). However, in
the present case, w� ¼ 1=� > 0. This means that the

solution is physically relevant only if w> 2=� which
excludes the case w ¼ 0, at least for �> 0.

Since it appears that the previously described situation is
not satisfactory, we now envisage the case where the
potential Vð�Þ is nonvanishing. In order to deal with this
problem, we assume that � is a constant. Without this
hypothesis, the problem is technically very complicated
but the actual convincing argument in favor of this assump-
tion is that the corresponding scaling solutions (with �
constant) are attractors; see below. Then, the crucial ob-
servation is that Eq. (23) is still valid because, in its
derivation, one has never assumed that V ¼ 0. This implies
that, as in the case of a vanishing potential, scaling solu-

tions exist for tensions Tð�Þ given by Eq. (24) or Eq. (25).
Then, the Klein-Gordon equation (20) can be used to
determine the potential. Straightforward manipulations
lead to

Vð�Þ
Tð�Þ ¼ �2 � 1

�

�
1

1þ w�

� �

1þ �

�
; (27)

that is to say the potential is proportional to the tension and
has also the exponential shape or inverse power-law shape.
It is interesting to notice that, when the field is on tracks in
the standard kinetic case, the potential term is also propor-
tional to the kinetic term, that is to say the ratio of the

potential term to the kinetic term K � _�2=2 is a constant
given by Vð�Þ=Kð�Þ ¼ 2=ð1þ w�Þ � 1.

In the case of an exponential potential, the exact solution
(from now on, we use a subscript ‘‘e’’ to denote the
quantities that are evaluated with the exact particular so-
lution of the Klein-Gordon equation) reads �eðtÞ ¼
2=� lnðt=t0Þ with �2M4t20 ¼ 4�2

e=ð�2
e � 1Þ and the equa-

tion of state parameter is w� ¼ w. In the Ratra-Peebles

case, one has �eðtÞ ¼ �0ðt=t0Þ2=ð�þ2Þ with

M4þ�����2
0 t20 ¼

4�2
e

ð�þ 2Þ2ð�2
e � 1Þ ; (28)

and the equation of state has the standard form given by
Eq. (14). It is important to notice that, because we deal with
a modified Klein-Gordon equation, the expressions of
�2M4t20 and M4þ�����2

0 t20 are different from the ones

obtained previously; see Eqs. (9) and (13). Let us also
remark that these formulas can either be obtained from
the requirement that the Lorentz factor is constant or by
brute force calculation using the Klein-Gordon equation.
Let us now study the behavior of small perturbations

around the particular solutions. Let us first start with the
exponential case. For this purpose, we rewrite the equation
of motion in terms of uð
Þ defined by u � �ð���eÞ and
t � e
. If we write p � u0, then one obtains the system

dp

d

¼ �

�
5þ 2

�2

1

1þ w

�
p� 3

2
p2 � 4

1þ w

�
1

�2
� 1

�2
e

�
þ �2M4ðe�u � 1Þ

þ �2M4

�
�2
e � 1

�e

�
1

1þ w
� �e

1þ �e

�
� 1

�

�
�
e�u

�3
� 1

�3
e

�
¼ 0; (29)

du

d

¼ p;

(30)

where, now, the quantity � is no longer a constant and can
be written as
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� ¼
�
1� �2

e � 1

�e

eu
�
1þ p

2

�
2
��1=2

: (31)

As a consequence, we see that the critical point is ðp; uÞ ¼
ð0; 0Þ. Notice that, for the critical point, one checks that
� ¼ �e. We now consider the behavior of small perturba-
tions ð�p; �uÞ around the critical point ð0; 0Þ. It is straight-
forward to establish that

d

d


�p
�u

� �
¼ 1� 2

1þw 2� 2
1þw

1þ�2
e

�2
e

1 0

 !
�p
�u

� �
: (32)

Then, the eigenvalues of this matrix can be expressed as

�� ¼ 1

2m

�
ðm� 6Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm� 6Þ2 þ 8m

�
m� 3

�2
e þ 1

�2
e

�s �
:

(33)

This expression should be compared with Eq. (10). The
only difference is the presence of the factor �e in the last
term inside the square root. Otherwise, and this is quite
remarkable, the expression is the same. Let us also notice
that the condition where the kinetic energy cannot exceed
the total energy is equivalent to n � 3ð�e þ 1Þ=�e. Since
�e � 1, the condition n � 3ð�2

e þ 1Þ=�2
e is stronger than

the condition n � 3ð�e þ 1Þ=�e and, therefore, is not au-
tomatically satisfied in our case. We conclude that there is a
stable spiral point if n � 3ð�2

e þ 1Þ=�2
e .

Let us now turn to the inverse power-law case. This time,
the dimensionless function uð
Þ is defined by uð
Þ �
�=�e, the definition of the time 
 remaining the same.
Then, a straightforward calculation leads to the following
system of equations:

dp

d

¼ �

�
5�þ 2

�þ 2
þ 2

�2

1

1þ w

�
p� 3�

2

p2

u
� 4

1þ w

u

�þ 2

�
�
1

�2
� 1

�2
e

�
þ �M4þ�����2

0 ðu���1 � uÞ

þ �M4þ�����2
0

�
�2
e � 1

�e

�
1

1þ w
� �e

1þ �e

�
� 1

�

�
�
u���1

�3
� u

�3
e

�
¼ 0; (34)

du

d

¼ p;

(35)

where, this time, the Lorentz factor can be written as

� ¼
�
1� u�

M4þ�����2
0

�
p2 þ 4up

�þ 2
þ 4u2

ð�þ 2Þ2
���1=2

:

(36)

It is clear from the above system that the critical point is
now given by ðp; uÞ ¼ ð0; 1Þ. The next step is to study the
behavior of small perturbations ð�p; 1þ �uÞ around the

critical point. One arrives at

d

d


�p
�u

� �
¼ ��2

�þ2 � 2
1þw

2�
�þ2 � 2

1þw
1þ�2

e

�2
e

1 0

 !
�p
�u

� �
:

(37)

As expected, in the limit � ! þ1, the above matrix
exactly reproduces the matrix obtained in the exponential
case; see Eq. (32). Then, the next step is to determine the
eigenvalues. The result reads

�� ¼ 2n�m� 6

2m
� 1

2m

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2n�m� 6Þ2 þ 8m

�
n� 3

�2
e þ 1

�2
e

�s
: (38)

This expression should be compared with Eq. (15). As was
the case before, the modification introduced by the DBI
kinetic term is only apparent in the last term inside the
square root. Therefore, there is a stable spiral point if n �
3ð�2

e þ 1Þ=�2
e and 2n�m� 6< 0 are satisfied.

Finally, on the attractor, in the exponential case, it is
easy to establish that the following relation holds:

d2V

d�2
¼ 9�eð1þ wÞ

�
1� ð1þ wÞ �e

1þ �e

�
H2: (39)

This formula is the generalization of Eq. (11). Obviously,
one can also establish the corresponding expression in the
inverse power-law case. It reads

d2V

d�2
¼ 9

�þ 1

�
�eð1þ w�Þ

�
1� ð1þ w�Þ �e

1þ �e

�
H2;

(40)

and this is equivalent to Eq. (16). This has important
consequences for model building. Indeed, if one repeats
the discussion after Eq. (11), then one arrives at the con-
clusion that

�� mPlffiffiffiffiffiffi
�e

p (41)

because the second term in the bracket in Eq. (40) cannot
exceed unity. Therefore, if �e 	 1, then the vacuum ex-
pectation value of the field is not necessarily large in
Planck units. This is certainly an important advantage of
the DBI models over the standard ones with respect to
model building issues.
Finally, it is also worth commenting about the shape of

the tension Tð�Þ. From a stringy point of view, the inverse
of Tð�Þ represents the warp factor of the throat in which
the branes are living. A natural choice [21] is Tð�Þ / �4,
that is to say � ¼ �4. Therefore, this case belongs to the
class of tracking models considered here which is a non-
trivial result. Unfortunately, the sign of the exponent is not
the correct one. Indeed, for � ¼ �4, one has w� ¼ 2wþ
1>w which means that, despite the presence of an attrac-
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tor, the scalar field drops faster than the background fluid
and, hence, can never dominate the matter content of the
Universe.

IV. NUMERICAL CALCULATIONS

In this section, we investigate the behavior of the DBI
scalar field at small redshifts, when it starts dominating the
matter content of the Universe. In this situation, the as-
sumption that it is a test field breaks down and numerical
calculations are required.

We first check that the attractor is observed numerically.
As a representative example, we have chosen to investigate
the case � ¼ 4. In Fig. 1, we have represented the evolu-
tion of the DBI energy density for three different initial
conditions (more precisely, the initial velocity is always the
same and corresponds to an initial value of the Lorentz
factor �ini ¼ 5 but different initial vacuum expectation
values �ini are considered). In order to have a DBI energy
density today equal to 70% of the critical energy density,
we have tuned the scale M of the brane tension Tð�Þ; see
Eq. (25). The mass scale of the potential is determined by
Eq. (27) which implies that Vð�Þ ¼ CM4þ���� where C
is defined by

C � �2
e � 1

�e

�
1

1þ w�

� �e

1þ �e

�

¼ �2
e � 1

�e

�
�þ 2

�ð1þ wÞ �
�e

1þ �e

�
: (42)

Choosing a value of C is in fact equivalent to choosing the
value of the Lorentz factor on the attractor, �e, during a
phase of evolution characterized by the background equa-
tion of state w. So, for instance, in Fig. 1, we have chosen
�e ¼ 20 and w ¼ 1=3. This means that the attractor solu-
tion should be such that �e ¼ 20 during the radiation-
dominated era. Given Eq. (42) and � ¼ 4, this choice
implies that C� 3:443. In this case, there is also an attrac-
tor during the matter-dominated era but the corresponding
value of the Lorentz factor is different. It is easy to show
that it reads

�cdm
e ¼ �ðC� 1Þ

4

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8ð�þ 2Þ

�2ðC� 1Þ2
s �

: (43)

In the present case, this gives �cdm
e � 5:438.

The attractor behavior is clearly seen in Fig. 1. For initial
conditions �ini=mPl � 10�9 and �ini=mPl � 10�8, the at-
tractor is joined during the radiation-dominated era while
for �ini=mPl � 10�10, it is reached during the matter-
dominated era.
In Fig. 2, we have represented the evolution of the

equation of state for the same situation. Again, the attractor
behavior is clearly noticed. We can even check numerically
that, on the attractor, Eq. (14) is valid. Since we consider a
model with � ¼ 4, the DBI equation of state during the
radiation-dominated era should be w� ’ �0:11. Clearly,

this is what is obtained in Fig. 2. The present-day value of

FIG. 1. Evolution of the DBI energy density for different
initial conditions in the case where the potential is of the
Ratra-Peebles type with � ¼ 4. The value of C is chosen to
be C� 3:443 which corresponds to �e ¼ 20; see Eq. (42). The
initial velocity _�ini is always chosen such that �ini ¼ 5. The
solid line corresponds to an initial vacuum expectation value of
�ini=mPl � 10�10, the dotted line to �ini=mPl � 10�9 and the
dashed line to �ini=mPl � 10�8. The energy density of radiation
(dot-dashed line) and cold dark matter (dot-dot-dashed line) are
also represented.

FIG. 2. Evolution of the DBI equation of state for different
initial conditions in the case where the potential is of the Ratra-
Peebles potential with � ¼ 4. As in Fig. 1, the value of C is
chosen to be C� 3:443 which corresponds to �e ¼ 20 and the
initial velocity _�ini is such that �ini ¼ 5. The solid line
corresponds to an initial vacuum expectation value of
�ini=mPl � 10�10, the dotted line to �ini=mPl � 10�9 and the
dashed line to �ini=mPl � 10�8. The final (present-day) value of
� is �0 � 3:96 and �0=mPl � 1:37. Finally, the equation of
state is such that w0 ��0:42, w1 � 6:68� 10�2.
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the equation of state is w0 ’ �0:42 (the derivative of the
equation of state at vanishing redshift being w1 ’ 6:68�
10�2). The corresponding value for a scalar field with a
standard kinetic term and the same Ratra-Peebles potential
is w0 ’ �0:487. Firstly, and contrary to a naive expecta-
tion, the equation of state is not pushed toward �1.
Therefore, it seems that we do not gain anything in com-
parison with the model with a standard kinetic term.
Secondly, the value obtained seems to be too large given
the constraints available on w0. Even if one should put a
damper on these constraints since they have not been
obtained for the model under considerations here (usually,
a simple law of the form w ¼ w0 þ w1z are used, which is
clearly not valid for the model under consideration here,
and this can cause a ‘‘bias problem,’’ see Ref. [34]), the
value is so far from �1 that the model is probably in
trouble from the observational point of view. This is clearly
a very serious problem for the class of models studied in
the present article. One possibility is to decrease the value
of �. For instance, � ¼ 0:3 impliesw� ��0:9. Of course,

the corresponding model seems contrived and, in addition,
in this case, a small value of the equation of state would
also be obtained with a standard kinetic term. Another
possibility would be to consider other shapes for the ten-
sion and the potential. The new shapes of Tð�Þ and Vð�Þ
should approximatively reduce to the inverse power-law
shape at large redshifts such that the attractor behavior is
preserved and should differ from it at small redshifts in
order to obtain an equation of state closer to �1. In the
standard non-DBI case, such a mechanism can be realized,
for instance, with the SUGRA potential [14,15].

Let us now study the evolution of the Lorentz factor �. It
is represented in Fig. 3 for different initial conditions,
similar to the ones considered in the previous figures. In
particular, the attractor value, valid during the radiation-
dominated era, �e ¼ 20, is clearly seen on this plot. The
value �cdm

e � 5:4, valid during the matter-dominated era,
can also be noticed. An interesting point is that the present
value of the Lorentz factor is far from 1. For the case under
consideration, it is �0 � 3:96. This means that the non-
standard kinetic term still plays a role even today. As
noticed earlier, this can have important implications for
model building issues since a large �e implies a small
vacuum expectation value of the field. We have studied
this point in more detail in Fig. 4 where the evolution of the
Lorentz factor is represented for different values of �e. We
notice that the larger �e, the larger the present-day value �0

and the smaller �0. For instance, for �e ¼ 1000, one
obtains �0 � 176 and �0=mPl � 0:2< 1. This is certainly
a desirable feature since, usually, vacuum expectation val-
ues of the order of the Planck mass are at the origin of
many serious problems as, for instance, a coupling with the
observable sector which violates the constraint on the
presence of a fifth force and/or on the weak equivalence
principle [35–38]. On the other hand, if the vacuum expec-
tation value remains small in comparison with the Planck
mass, then it could be difficult to use the SUGRA potential
model to push the equation of state toward �1. Therefore,
we face again the ‘‘no-go theorem’’ discussed recently in
Refs. [36–38]: what is interesting from the cosmological
point of view (a large vacuum expectation value in order to
have w0 close to �1) seems to be incompatible with local

FIG. 3. Evolution of the Lorentz factor for different initial
conditions for the Ratra-Peebles potential with � ¼ 4. The
value of C is chosen to be C� 3:443 which corresponds to
�e ¼ 20 and the initial velocity _�ini is chosen such that �ini ¼
5. The solid line corresponds to an initial vacuum expectation
value of �ini=mPl � 10�10, the dotted line to �ini=mPl � 10�9

and the dashed line to �ini=mPl � 10�8. The final value of the
Lorentz factor is �0 � 3:96

FIG. 4. Evolution of the Lorentz factor for different values of
�e in the case where the potential is of the Ratra-Peebles type
with � ¼ 4. The values considered are �e ¼ 20 (solid line),
�e ¼ 100 (dotted line), �e ¼ 500 (dashed line) and �e ¼ 1000
(dot-dashed line). The corresponding values of the Lorentz
factor today are �0 � 3:96, �0 � 17:87, �0 � 88:56 and �0 �
176:17 respectively. The final vacuum expectation values of the
DBI field are �0=mPl � 1:37, �0=mPl � 0:66, �0=mPl � 0:29
and �0=mPl � 0:2 respectively.
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tests of gravity (a large vacuum expectation value usually
means a strong coupling with ordinary matter).

V. CONCLUSIONS

In this section, we recap our main findings and discuss
further issues that should be investigated. We have studied
scenarios where the dark energy is a scalar field with a DBI
kinetic term. We have shown that, if the brane tension and
the potential possess either an exponential or a power-law
shape, then there exist scaling solutions that are attractors.
Moreover, if the Lorentz factor is large today, then the
vacuum expectation value of the field can be small in
comparison with the Planck mass. Let us also notice that
the fact that the scaling solutions obtained in this article
correspond to brane tensions of the power-law form,
Tð�Þ / ���, is fairly remarkable since this general class
of solutions encompasses the simple string-inspired mod-
els; see Ref. [20]. Unfortunately, for these stringy models,
one typically finds � ¼ �4< 0 for which the dark energy
density drops faster than that of the background. This
means that, despite the presence of an attractor, the model
is not realistic because the dark energy can never dominate
the energy density budget of our universe. Finally, maybe
the most problematic aspect of the scenario is the fact that
the equation of state today is too far from �1.

In order to improve the above described situation, one
probably needs more complicated string-inspired models.
In particular, one needs shapes of Tð�Þ and Vð�Þ that, for
� 
 mPl=

ffiffiffiffiffiffi
�e

p
are of the power-law form (with �> 0) in

order to preserve the attractor, and, for � 	 mPl=
ffiffiffiffiffiffi
�e

p
,

deviate from this form in order to push the equation of
state toward �1. Let us recall at this stage that this is
exactly what the SUGRA model does, the characteristic
scale being the Planck mass instead of mPl=

ffiffiffiffiffiffi
�e

p
.

The fact that the present-day value of �e can be large is
also an interesting feature of the models under scrutiny. For
example, this implies that the sound velocity squared c2s
can significantly deviate from 1 in contrast to the standard
case. Indeed, in the DBI case, the sound velocity squared
c2s is given by the following expression:

c2s ¼ @p

@X

�
@�

@X

��1 ¼ 1

�2
e

; (44)

where p ¼ pðX;�Þ, � ¼ �ðX;�Þ (and X ¼ _�2=2). A dark
energy component with c2s 
 1 implies less power on
large scales and, hence, could account for the low multi-
poles of the cosmic microwave background anisotropies.
Moreover, this would also produce peculiar features in the
matter power spectrum as discussed in Refs. [39–41]. All
these properties could be used to distinguish the DBI
models from the standard ones. On more general grounds,

it is clear that a complete calculation of the dark energy
perturbations could bring new insights to the model.
It is also interesting to compare the case of dark energy

with that of inflation. It seems that the DBI inflationary
solution is also an attractor as studied in Ref. [42].
However, there are also important differences. Firstly, the
energy scales involved are completely different: quintes-
sence is a low-energy phenomenon contrary to inflation.
Secondly, the inflaton field is never a test field (recall that
the attractor solutions are found when the backreaction of
the quintessence on the background geometry is ne-
glected). Thirdly, the potentials have different shapes. In
DBI inflation, one typically deals with potentials of the
form V0 �m2�2 and not with inverse power-law shapes.
An important exception is the Coulomb potential, V ¼
M4½1� ð�=�Þ4�, but one can show [22] that, if inflation
is possible with such a potential, DBI-inflation is not. In
other words, in this last case, inflation always occurs in the
regime where � ’ 1, i.e. in a regime where the kinetic term
can be considered as standard.
Finally, another interesting issue is that of the coupling

of dark energy with the rest of the world. As already
mentioned, this is usually a problem for quintessence
because a small mass means a force with a very long range;
see Refs. [36–38]. In some scenarios, this also implies
variation of the constants, as, for instance, the fine structure
constant. However, in the present context, the couplings are
totally different. For example, the coupling with the elec-

tromagnetic field is of the form
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðg�	 þ F�	Þ

q
, where,

here, g�	 is the induced metric on the brane [43]. The role

of the quintessence field is usually played by one of the
coordinates the metric g�	 depends on. One sees that,

because the formula expressing a determinant is quite
complicated, the coupling can be different than the ones
generally considered, for instance fð�ÞF�	F

�	. There-

fore, one can maybe expect this issue to be less problematic
than in the standard case. More work is clearly needed in
order to draw definitive conclusions on these matters.
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