
Preheating afterN -flation

Diana Battefeld* and Shinsuke Kawai+

Helsinki Institute of Physics, P.O. Box 64, University of Helsinki, FIN-00014 Helsinki, Finland
(Received 14 March 2008; published 9 June 2008)

We study preheating in N -flation, assuming the Marčenko-Pastur mass distribution, equal-energy

initial conditions at the beginning of inflation and equal axion-matter couplings, where matter is taken to

be a single, massless bosonic field. By numerical analysis we find that preheating via parametric

resonance is suppressed, indicating that the old theory of perturbative preheating is applicable. While

the tensor-to-scalar ratio, the non-Gaussianity parameters and the scalar spectral index computed for

N -flation are similar to those in single-field inflation (at least within an observationally viable parameter

region), our results suggest that the physics of preheating can differ significantly from the single-field

case.
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I. INTRODUCTION

While inflationary cosmology is becoming a precision
science, with the advent of recent and upcoming experi-
ments such as the measurement of the cosmic microwave
background radiation by the Planck satellite [1], the parti-
cle physics origin of inflatons still remains unclear.
Because of their simplicity, single-field models of inflation
are considered the most economical explanation of a
Gaussian, nearly scale invariant spectrum of primordial
fluctuations, as well as the flatness and the large-scale
homogeneity of the observed Universe. Future experi-
ments, however, could change this situation and put
single-field models under pressure. For these reasons, there
has been a keen interest in building multifield inflationary
models, see e.g. the reviews [2,3]. Promising setups of
multifield inflation include string-motivated models such
as N -flation [4], inflation from multiple M5-branes [5]
and inflation from tachyons [6].

Naturally, the large parameter space for couplings,
masses and initial conditions pertaining to multifield in-
flation makes a systematic analysis difficult. An interesting
exception, nevertheless, is N -flation. N -flation is a
string-motivated implementation of assisted inflation [7–
12] where a large number of uncoupled scalar fields,
identified with axions arising from Kachru, Kallosh,
Linde and Trivedi (KKLT) compactification of type IIB
string theory, assist each other to drive an inflationary
phase [4]; see also [13–17]. One salient feature of this
model is the possible avoidance of super-Planckian initial
values. Further, using results from random matrix theory,
the masses for the axion fields can be shown to conform to
the Marčenko-Pastur (MP) law [13] under reasonable ap-
proximations. The spectrum of the masses is controlled by
only two parameters, the average mass and a variable
controlling the ratio between the number of axions and

the total dimension of the moduli space. This renders
N -flation tractable despite the large number of fields.
To a certain extent, successful inflation is contingent
upon the initial conditions, however, the model becomes
easily tractable by assuming that each field possesses equal
initial energy.
Observable cosmological imprints fromN -flation have

been computed by several groups. The tensor-to-scalar
ratio r was calculated by Alabidi and Lyth [18] and was
shown to have the same value as in the single-field case.
The non-Gaussianity parameter fNL was computed in
[15,19] where the deviation from single-field models was
found to be negligible. Unlike r and fNL, the spectral index
of the curvature perturbation ns depends slightly on the
model’s parameters. References [13,15,16] showed that ns
is smaller (the spectrum being redder) than that found in
single-field models, in agreement with the general discus-
sion made in [20]. These results suggest that the observa-
tional data predicted by N -flation are not drastically
different from the single-inflaton case. Note however that
the 5-year Wilkinson Microwave Anisotropy Probe
(WMAP) data already exclude some region of the parame-
ter space; see [21].
In this article, we study multifield preheating, focusing

on N -flation as a specific example. To our knowledge, a
general theory of preheating for multifield inflationary
models has not been fully developed. This is in part due
to the highly nontrivial nature of the string theoretical
constructions responsible for inflation. However, even at
the phenomenological level, effects due to multiple infla-
tons contributing to preheating are largely unexplored in
contrast to single-field inflation [22–26], see also [27–32].
For instance, preheating via parametric resonance of a
matter field might be more efficient in the presence of
multiple inflatons, as indicated in Cantor preheating
[3,33]. Here, a nonperiodic variation of the matter field’s
effective mass leads to the dissolution of the stability bands
and a possible parametric amplification of almost all
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Fourier modes. This expectation is based on spectral theory
[34–37], but a quantitative study about the magnitude of
the amplification with more than two fields is missing [38].
Owing to the possible dissolution of the stability bands,
one might expect that the collective behavior of the fields
gives rise to efficient particle production after N -flation.

To introduce the notation, let us consider a single-field
model first: the equation of motion for a matter field �k

with wave number k (assuming the coupling g2’2�2=2)
can be written as a Mathieu equation [25],

d2Xk

d�2
þ ½A� 2q cosð2�Þ�Xk ¼ 0; (1)

for the comoving matter field Xk ¼ a3=2�k, where � ¼
m’t is the rescaled time, m’ the inflaton mass, and the

two resonance parameters are

q ¼ g2�2
0

4m2
’

; A ¼ k2

a2m2
’

þ 2q: (2)

Here, �0 is the slowly varying inflaton amplitude, g is the
inflaton-matter coupling and a the scale factor (see also
Sec. IV). The efficiency of parametric resonance is con-
trolled by the resonance parameter q, which needs to be
large enough (q � 1) in order for the resonance effect to
hold against cosmic expansion. The upper bound on the
coupling constant g is given by the potential’s stability
condition against quantum gravity effects as well as radia-
tive corrections [25,39] (unless the potential is protected by
supersymmetry). This upper bound on g and m’ �
10�6MP (MP is the reduced Planck mass) from the
Cosmic Background Explorer (COBE) satellite normaliza-
tion restricts the aforementioned resonance parameter q,
leaving not much room for effective parametric resonance
[39]. One might hope to alleviate this fine-tuning in multi-
field models.

For definiteness, we focus on N -flation. We use the
Marčenko-Pastur mass distribution for the axion masses,
put forth in [13] based on random matrix theory, choosing
the most likely mass distribution, see Sec. II. Further, for
simplicity, we assume equal-energy initial conditions at the
onset of inflation. Recently, aspects of preheating in the
context of N -flation have been considered in [40], point-
ing out the danger of transferring energy preferably to
hidden sectors instead of standard model particles. This
reveals an additional need for fine-tuning, a possible prob-
lem for many string-motivated models of inflation. The
study in [40] is based entirely on an effective single-field
description of N -flation, such as the one above. Thus the
common lore of parametric resonance models seems to be
applicable in this work. Here we take the optimistic view
that preheating might indeed occur in the visible sector.
However, we go beyond the single-field model. We find
that at the end of inflation more than 90% of the energy is
confined to the lightest 10% of the fields in a very narrow
mass range, while the remaining heavier fields are already

more or less settled to the bottom of their potentials. Thus

we focus on these lightest ~N fields during preheating. We
also show that slow roll is indeed a good approximation,
even though heavier fields violate the slow-roll condition
j�j< 1 long before preheating starts. The initial values for

preheating of the crucial ~N light fields are therefore given
by their slow-roll values at the end of inflation. Since the
lightest fields are highest up in their potentials, fields will
join preheating in a staggered fashion. This and the still
reasonably large number of fields makes a numerical treat-
ment mandatory, which we provide. We solve the equa-
tions of motion for the matter field for various parameters
following the above prescription and find that parametric
resonance is less effective for N -flation. The physical
reason for the suppression of parametric resonance is the
dephasing of the multiple fields. It is thus clear that effec-
tive single-field models fail to properly account for this
effect. We conclude that the old theory of perturbative
preheating, and not parametric resonance, is applicable
when many fields of different masses couple to a single
matter field.
This article is structured as follows: in Sec. II we review

N -flation and its dynamics during slow roll. We extend
this discussion in Sec. III, where we provide an extrapo-
lated slow-roll solution that slightly underestimates the
inflatons’ potential energy during inflation. We compare
the slow-roll solution with a numerical solution and argue
that even after �< 1 is violated by one or more of the
heavier axion fields, the overall behavior of the inflatons is
still well approximated by the slow-roll regime, up until
preheating commences. In Sec. IV we set the stage for
preheating corresponding to the end of slow roll for the
effective single-field model. To begin, we set all axion
masses equal to each other and discuss the physics of
preheating in this particular system; then we return to
N -flation, where the Marčenko-Pastur mass spectrum is
used. Finally, in Sec. V we conclude with comments and
prospects for studying further issues on multifield preheat-
ing. In the Appendix we give a semianalytic solution that
provides an upper bound for the inflaton potential, which
further supports the observation made in Sec. III.

II. N -FLATION AND SLOW ROLL

The action for N minimally coupled scalar fields,
responsible for driving an inflationary phase, can bewritten
as (see [2] for a review on multifield inflation)

S ¼ �
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2

XN
i¼1

g��r�’ir�’i

þWð’1; ’2; . . .Þ
�
; (3)

where we assume canonical kinetic terms. The unperturbed
volume expansion rate from an initial hypersurface at t� to
a final hypersurface at tc (below we use � and c to denote
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values evaluated at t� and tc) is given by

Nðtc; t�Þ �
Z c

�
Hdt; (4)

where N is the number of e-folds, H is the Hubble pa-
rameter and t is cosmic time.

InN -flation [4], theN scalar fields that drive inflation
are associated with axion fields. All cross couplings vanish
when the periodic potentials are expanded around their
minima [13]. Therefore, in the proximity of their minima
the fields have a potential of the form

Wð’1; ’2; . . . ; ’N Þ ¼ XN
i¼1

Við’iÞ ¼
XN
i¼1

1

2
m2

i ’
2
i ; (5)

where the fields have been arranged according to the
magnitude of their masses, namely mi > mj if i > j.

N -flation is a specific realization1 of assisted inflation
[7,9,43], where the N scalar fields assist each other in
driving an inflationary phase. In this manner, individual
fields do not need to traverse a super-Planckian stretch in
field space. The spectrum of masses in (5), which were
assumed to be equal in [4], can be evaluated by means of
random matrix theory within a context of KKLT moduli
stabilization [44], and was found by Easther and
McAllister to conform to the MP law [13]. This results in
a probability for a given square mass of

pðm2Þ ¼ 1

2�m2� �m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

max �m2Þðm2 �m2
minÞ

q
; (6)

where� and �m2 completely describe the distribution. Here,
�m2 is the average mass squared and � controls the width
and shape of the spectrum. The smallest and largest masses
are given by

mmin � �mð1� ffiffiffiffi
�

p Þ; (7)

mmax � �mð1þ ffiffiffiffi
�

p Þ: (8)

In this paper we split the mass range ðmmin; mmaxÞ into N
bins,

ð ~m0; ~m1Þ; ð ~m1; ~m2Þ; . . . ; ð ~mN�1; ~mN Þ; (9)

where ~m0 ¼ mmin, ~mN ¼ mmax and ~mi�1 < ~mi, so thatZ ~m2
i

~m2
i�1

pðm2Þdm2 ¼ 1

N
; i ¼ 1; 2; . . . ;N : (10)

We then represent each bin ð ~mi�1; ~miÞ by an inflaton of
mass mi. In practice we simply set

m2
i ¼ ð ~m2

i�1 þ ~m2
i Þ=2; i ¼ 1; 2; . . . ;N ; (11)

in the numerical computations. Apart from the N infla-

tons ’1; ’2; . . . ; ’N with masses m1; m2; . . . ; mN , we
introduce a fiducial inflaton ’0 with mass m0 ¼ mmin for
computational convenience (we shall use this as a clock).
In [13], � is identified with the number of axions contrib-
uting to inflation divided by the total dimension of the
moduli space (Kähler, complex structure and dilaton) in a
given KKLT compactification of type IIB string theory.
Because of constraints arising from the renormalization of
Newton’s constant [4] �� 1=2 is preferred. Hence, we
will work with � ¼ 1=2 in the following. Further, the
magnitude of �m is constrained by the COBE normalization
[13,45], so that there is not much freedom in N -flation to
tune parameters.
At this point, we introduce a convenient dimensionless

mass parameter

xi � m2
i

m2
min

; (12)

as well as the suitable short-hand notation

� � m2
max

m2
min

¼
�
1þ ffiffiffiffi

�
p

1� ffiffiffiffi
�

p
�
2
: (13)

A properly normalized probability distribution for the
variable x ¼ m2=m2

min is ~pðxÞ ¼ m2
minpðm2Þ; hence expec-

tation values with respect to the MP distribution can be
evaluated via

hfðxÞi � 1

N

XN
i¼1

fðxiÞ ¼
Z �

1
~pðxÞfðxÞdx

¼ ð1� ffiffiffiffi
�

p Þ2
2��

Z �

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�� xÞðx� 1Þ

p fðxÞ
x

dx: (14)

In Sec. III D and in the Appendix, we make use of the
additional notation

hfðxÞijba � ð1� ffiffiffiffi
�

p Þ2
2��

Z b

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�� xÞðx� 1Þp fðxÞ
x

dx; (15)

where a and b are the limits of integration. When fðxÞ is a
polynomial in x, (14) reduces to a hypergeometric integral.
In particular,

hx�1i ¼ ��1=2; h1i ¼ 1; hxi ¼ 1

ð1� ffiffiffiffi
�

p Þ2 :
(16)

Figure 1 shows a plot of the probability distribution func-
tion ~pðxÞ, for � ¼ 1=2.
Initially, we restrict ourselves to the slow-roll approxi-

mation. As we have already seen, N fields contribute to
the energy density of the Universe through a separable
potential. In this regime, the dynamics of N -flation is as
follows: first note that the field equations and Friedmann
equations can be written as

1For a different realization of assisted inflation based on M-
theory from multiple M5-branes, see [5,41]. See also [42] for
another approach to random potentials in the landscape.
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3H _’i � � @Vi

@’i

� �V0
i ; (17)

3H2 � W: (18)

Here and throughout most of our analysis, we set the

reduced Planck mass to MP ¼ ð8�GÞ�1=2 � 1. The slow-
roll approximation is valid if the parameters

"i � 1

2

V 02
i

W2
; �i � V00

i

W
; (19)

are small ("i � 1, �i � 1) and

" � XN
i¼1

"i � 1 (20)

holds. The number of e-folds of inflation becomes

Nðtc; t�Þ ¼ �XN
i¼1

Z c

�
Vi

V0
i

d’i; (21)

and the field equations can be integrated to yield�
’c

i

’�
i

�
1=m2

i ¼
�’c

j

’�
j

�
1=m2

j
: (22)

Notice that this relationship between fields does not corre-
spond to an attractor solution and predictions ofN -flation
can depend on the initial conditions. Recall that we are
assuming equal-energy initial conditions, namely V�

i ¼
V�
j , which can be rewritten as

mi	
�
i ¼ mj	

�
j : (23)

A subtle feature of N -flation is that if the mass spectrum

is broad (� � 1, corresponding to �� 1), the heavier
fields will acquire �i � 1, even as inflation continues.
This is the case even for the preferred value of �� 1=2,
corresponding to �� 34. In the next section we show how
to deal with N -flation after �i � 1 for the heaviest
inflaton.

III. EVOLUTION OF INFLATONS AND AN
EFFECTIVE SINGLE-FIELD MODEL DURING

INFLATION

In this section we investigate the evolution of the axion
fields after the slow-roll condition is violated for one or
more of them. In order to study the system’s collective
behavior, it is useful to use an effective single-field de-
scription [2]. Given equal-energy initial conditions for the
fields, the slow-roll parameter�N of the heaviest field will
be the first one to become of order unity [46]. Hence, prior
to this moment we can safely implement an effective
model composed of a single-field 
 which evolves accord-
ing to an effective potential Weffð
Þ. After �N became of
order 1, the corresponding field ’N cannot be described
by the slow-roll solution. Below we argue that in our
particular model of N -flation the whole system is never-
theless well approximated by the slow-roll solution, up
until the slow-roll parameter " of (32) becomes of order
12; during this stage, the contribution of the heavy axions is
negligible compared to that of the lighter fields. This is due
to three characteristic features of the model: (1) the ma-
jority of the axions is distributed around the lightest mass
in the MP law; (2) the small value of the heaviest fields is
prescribed by the equal-energy initial condition; hence,
heavy fields provide a small contribution from the onset;
(3) when the slow-roll condition �i < 1 is violated for the
heaviest fields the Hubble parameter is still very large,
resulting in an overdamped evolution of the heavy fields.
Naturally, it is possible to continue using the slow-roll

approximation when the next heaviest field violates slow
roll and so on and so forth. This regime ends when slow roll
fails for the effective single-field 
, after which light fields
will actually start to evolve faster and preheating starts. It is
important to note that we can trust our approximation up
until preheating starts, where possible particle production
due to nonlinear parametric resonance is our main concern.

A. Effective single-field model

Here we derive the effective single-field model based on
the slow-roll approximation. This provides a lower bound
to the evolution of the total potential energy. We identify
the effective inflaton field 
 as the path length of the
trajectory in the N dimensional field space; namely, for
N scalar fields 	i we have [2]

FIG. 1. A plot of the Marčenko-Pastur mass distribution over
the dimensionless mass variable x ¼ m2=m2

min, for � ¼ 0:5.
Note that the MP distribution peaks in the small-mass region so
that the majority of fields resides there. We use mass parameters
xi ¼ m2

i =m
2
min corresponding to the mass bins chosen according

to (9)–(11), so that x0 � 1< x1 < x2 < 	 	 	< xN�1 < xN <
� � 34.

2Or the slow-roll parameter of the effective degree of freedom
in (32) becomes of order 1.
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 �
Z t

t�

XN
i¼1


̂i _’idt; (24)

with


̂ i � _’iffiffiffiffiffiffiffiffiffiffiP
j
_’2
j

r ; (25)

where the ’i can be computed given the dynamical rela-
tions in (22), which are valid during slow roll, as well as the
initial conditions in (23). Note that
 ¼ 0 at the initial time
t�.

Using

y � ’2
0

’�2
0

(26)

(where y parameterizes how far the field ’0 rolls down its
potential) and xi is defined in (12), as well as the equal-
energy initial conditions (23), we can rewrite the dynami-
cal relations as

’2
i ¼ ’�2

0

yxi

xi
: (27)

We are using the fiducial inflaton ’0 for computational
convenience; ’0 is not one of the N inflatons driving
N -flation (note that there is a vanishing probability for
m ¼ m0 ¼ mmin according to the MP law). From the
Klein-Gordon equations during slow roll along with the
Friedmann equation we obtain _’2

i ¼ m4
0xi’

�2
0 yxi=ð3WÞ, as

well as dy ¼ �ð2m2
0y=

ffiffiffiffiffiffiffiffi
3W

p Þdt, with W ¼
ð1=2Þm2

0’
�2
0

PN
i¼1 y

xi . Using these relations in (24), we

obtain an effective single-field solution (for which the
subscript I is used),


IðyÞ ¼ �’�
0

2

Z y

1

�XN
i¼1

xis
xi

�
1=2 ds

s

¼
ffiffiffiffiffiffiffi
N

p
2

’�
0

Z 1

y

ffiffiffiffiffiffiffiffiffiffiffi
hxsxi

p ds

s
; (28)

where in the last step we used the definition of the MP-
expectation values from (14) Similarly, the corresponding
potential in (5) can be computed as

WIðyÞ ¼ 1

2
m2

0’
�2
0

XN
i¼1

yxi ¼ N
2

m2
0’

�2
0 hyxi: (29)

Equations (28) and (29) provide an implicit means of
computing WIð
IÞ. The number of e-folds can also be
computed with this approximation. From (21) we find

NIðyÞ ¼ 1

4
’�2

0

XN
i¼1

�
1

xi
� yxi

xi

�
¼ N

4
’�2

0 ½hx�1i � hx�1yxi�:

(30)

Let us look at the solution more quantitatively. Since we
would like to avoid super-Planckian initial conditions we
assume the lightest possible inflaton to set off from the
reduced Planck scale, ’�

0 ¼ 1. Then it follows from the

equal-energy initial conditions that all the other fields
evolve safely within the sub-Planckian scale. Here and in
the following we use the preferred � ¼ 1=2 so that the
ratio of the heaviest to the lightest mass squared in (13) is
about � � 34. The e-folding number (30) depends linearly
on the number of inflatons N . If we take N ¼ 1500 we
get Nmax � NIð0Þ � 64:3, which is large enough to solve
the standard cosmological problems. Note, however, that
one cannot trust (28) and (29) down to y ¼ 0, since slow
roll ends earlier. Strictly speaking, our effective single-field
solution (with subscripts I) is only valid as long as the
slow-roll conditions are satisfied, that is until �N ¼ 1.
Using (29) and mN � mmax this can be written as

hyxi ¼ 2�

N ’�2
0

; (31)

from which the value of y at �N ¼ 1 is found numerically
as yN � 0:488 for N ¼ 1500. The number of e-folds at
this instant isNIðyN Þ � 55:6 and we see that there is still a
breadth of inflation to come. If we ignore this fact, we
could extrapolate 
I up until this effective degree of free-
dom leaves its own slow rolling regime when

�
 � 1

2

�
W 0

I

WI

�
2 ¼ 1: (32)

This equation can be rewritten as

2hxyxi ¼ N ’�2
0 hyxi2; (33)

where we used

W 0
I �

@WI

@
I

¼ XN
i¼1


̂i

@Vi

@’i

¼ XN
i¼1


̂im
2
i ’i

¼ m2
0’

�
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N hxyxi

q
: (34)

Equation (33) can be numerically solved to obtain yend �
0:0836 for N ¼ 1500 so that 
IðyendÞ � 17:6 and
NIðyendÞ � 63:8. At this point inflation comes to an end
and preheating is about to commence. The potential at this
instant is WIðyendÞ � 0:128 �m2 � 1:49m2

0 (see Table I).

B. Implications for non-Gaussianities

In contrast to single-field inflationary models, in which
non-Gaussianities (NG) are known to be suppressed, in
multifield models there is a possibility that NG may be-
come large due to the existence of isocurvature perturba-
tions [47]; if there is a sudden turn of the trajectory in field
space as in the case of the curvaton scenario, a conversion
of isocurvature perturbations into adiabatic ones takes
place, giving rise to larger NG. In N -flation the nonline-
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arity parameters characterizing the bi- and trispectrum
were investigated in the horizon crossing approximations
in [19] and it was found thatN -flation is indistinguishable
from single-field inflationary models in this limit. Also,
incorporating the evolution of perturbations after horizon
crossing, but still within slow roll, revealed that additional
contributions remain negligible [19]. Hence, NG are ex-
pected to be heavily suppressed as long as slow roll is
considered [46]. In the present paper we investigate the
evolution in N -flation after the slow-roll condition is
violated for one or more of the axion fields and find (see
the next sections) that the extrapolated slow-roll solution
remains a good approximation up until preheating com-
mences. Thus, in this intermediate regime (after slow-roll
inflation but before preheating), NG should also be sup-
pressed; additional NGwould be due to the evolution of the
adiabatic mode after horizon crossing; for this to occur,
isocurvature modes have to source the adiabatic one, but in
N -flation, the trajectory in field space is smooth; there-
fore, NG should be heavily suppressed up until slow roll
fails for the effective single degree of freedom, i.e. when
preheating begins. During preheating NG may still appear;
this requires further study, and we hope to come back to
this issue in the near future.

C. Numerical solutions

Figure 2 shows the time evolution ofN ¼ 1500 axions
in our setup, namely, the MP mass distribution with � ¼
0:5 and the equal-energy initial conditions, obtained nu-
merically. The plot shows ’i with i ¼ 1, 300, 600, 900,
1200 and 1500. For the initial conditions we used (23) with
’�

0 ¼ 1 and _’�
i ¼ 0. Because of these initial values, lighter

axions evolve from larger values, closer to 1. The figure
clearly shows that heavy axions, even ’300, roll down the
potential rapidly and their oscillation amplitudes are much
smaller than that of the lightest field ’1. Indeed, fields are
usually overdamped up until preheating starts. Naturally,

the lighter fields are expected to be responsible for pre-
heating (unless the coupling between the heavy fields and a
matter field is extremely strong).
In Table I we summarize the values ofW andN obtained

by the extrapolated slow-roll solutions (I) and numerical
results, at 
 ¼ 
ðyN Þ and 
ðyendÞ. A comparison between
the analytic and numerical computation for N ¼ 100,
200, 400, 1500 reveals an agreement, roughly within
15%, indicating that the extrapolated slow-roll solution
(I) is a good approximation up until yend. In the
Appendix we provide a semianalytic computation of an
upper bound toW (solution II), which further supports this
observation. How many inflatons still satisfy the slow-roll
condition �i < 1 at yend? This can be found by comparing
the values of WðyendÞ=m2

0 and the mass parameter xi, since
�i ¼ m2

i =W ¼ xim
2
0=W. Numerically, we find that 13, 18,

25, 56 lightest fields are still in the slow-roll regime at y ¼
yend, for N ¼ 100, 200, 400, 1500. Analytically, solution

τ

FIG. 2. Evolution of the axion fields for N ¼ 1500 (numeri-
cal result). The figure shows ’i with i ¼ 1, 300, 600, 900, 1200,
1500 from the top. The time � ¼ m0t is in units measured by the
fiducial mass m0 ¼ mmin. In this unit, y ¼ yN is at � ¼ 7:14
and y ¼ yend is at � ¼ 11:6.

TABLE I. Comparison of analytic and numerical solutions for the effective single-field values W and N at 
ðyN Þ and 
ðyendÞ, for
the number of inflatons N ¼ 100, 200, 400, and 1500. The values of 
I are found using (28) and the corresponding analytic and
numerical values for W=m2

0 and N are shown. Apart from the conspicuous disagreement in the e-folding number N for small N , the

extrapolated slow-roll solutions (I) are relatively in good agreement with the numerical solutions, roughly within 15% difference.
Typically, the results of solution (I) slightly underestimate the potential W.

Solution I Numerical

N yN 
IðyN Þ WIðyN Þ NIðyN Þ WðyN Þ NðyN Þ
yend 
IðyendÞ WIðyendÞ NIðyendÞ WðyendÞ NðyendÞ

100 0.964 0.541 34.0 0.758 34.0 1.10

0.502 3.27 2.43 3.67 2.83 4.34

200 0.879 2.00 34.0 3.72 34.3 4.14

0.331 5.40 1.97 8.00 2.27 8.83

400 0.762 4.37 34.0 10.9 34.4 11.4

0.211 8.33 1.73 16.6 1.95 17.6

1500 0.488 12.86 34.0 55.6 34.4 56.3

0.0836 17.61 1.49 63.8 1.62 65.1
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I yields somewhat smaller values: 10, 13, 18, 41,
respectively.

D. Light axion dominance

From Fig. 2 we can infer that heavy fields lose energy
quite rapidly and that the later stage ofN -flation is driven
solely by the light fields. To see this quantitatively let us
introduce the ratio of the potential energy of ‘ lightest
fields to that of all N fields, defined by

R‘ �
Wlight

Wtotal

¼
P

‘
i¼1 ViPN
i¼1 Vi

: (35)

Using the extrapolated slow-roll solution (I), this ratio can
be evaluated as

RI
‘ðyÞ ¼

P
‘
i¼1hyxiiPN
i¼1hyxii

¼ hyxij~x‘1
hyxi : (36)

The ratio of the number of light fields to all fields is
similarly

� � ‘

N
¼ h1ij~x‘1 : (37)

Figure 3 shows RI
‘ðyÞ versus � and y. Note that this plot

does not depend on N (however yN and yend do depend
on N ). For small y (i.e. at late time), RI

‘ approaches 1 for

even small values of �, indicating that the potential energy
is dominated by light axions.
Table II summarizes the amount of the total potential

energy carried by the lightest 10% of the axions at 
 ¼

ðyendÞ, for N ¼ 100, 200, 400, 1500. These values are
calculated using both, solution I and numerical computa-
tions. The results clearly show that for large N , the
potential energy is carried by only a small portion of
lightest axion fields. Using (36), it is not difficult to check
that this tendency becomes stronger when N is larger.
This in turn justifies our usage of the approximation given
by solution I, which corresponds to using slow roll for all
fields, even if the slow-roll condition �i < 1 is violated for
the majority of fields; all in all, heavy fields do not con-
tribute much to the total potential energy, and henceforth
inflation.

IV. PREHEATING

Now let us discuss the physics of preheating. In order to
solve problems of the standard big-bang cosmology the
number of e-foldings must be large enough; with this in
mind, we assumeN ¼ 1500 in the following. If we forget
about its string theoretical origin (which we do in this
paper), N can be even larger, giving rise to a (harmless)
larger number of e-folds. Our choice of N is for definite-
ness, and also for numerical tractability.

A. The model of preheating

We first recall that the axion mass scale is observatio-
nally constrained. The power spectrum for multifield mod-
els is computed by the N-formalism [48] and for
N -flation it becomes [13,45]

P R ¼ X
i

m2
i ’

2
i

96�2M6
P

X
j

’2
j ¼

N 2m2
0’

�4
0

96�2M6
P

hyxihx�1yxi;

(38)

where in the second line the MP distribution and equal-
energy initial conditions have been used. To be specific, if
we evaluate PR at t ¼ t� (corresponding to large scales)
we obtain

FIG. 3 (color online). The ratio of potential energies of the
light fields to all axions, RI

‘, is plotted against � ¼ ‘=N and y.
The figure does not depend on N . Note that in calculating RI

‘

we are using the slow-roll approximation which is not reliable
after yend. For larger N , the value of yend tends to be smaller,
and hence the domination of light axions tends to be stronger.

TABLE II. The ratio of the potential energy carried by the
lightest axions (10%) with respect to the total potential energy,
evaluated at the end of slow-roll regime 
 ¼ 
ðyendÞ. The table
shows both semianalytic and numerical results.

N Solution I Numerical

100 62.9 63.3

200 78.4 80.0

400 88.0 89.9

1500 96.5 97.5
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P R ¼ N 2m2
0’

�4
0

96�2M6
P

hx�1i: (39)

Comparing this with PR � 2:3
 10�9 from WMAP
measurements [49–51], we find the mass of the lightest
field

m0 � 2:4
 10�6MP; (40)

forN ¼ 1500, � ¼ 0:5 and ’�
0 ¼ MP. Consequently, the

average mass is �m ¼ m0=ð1�
ffiffiffiffi
�

p Þ � 8:1
 10�6MP. In
what follows, we assume these values for the mass parame-
ters; all other masses follow via the MP distribution.

In the previous section we have seen that the late stage of
N -flation is mainly driven by a few light axions; we
naturally expect that preheating is triggered by these light-
est axions, coupled to a matter field, at least before back-
reaction becomes important. Thus, in this section we focus

on the relevant ~N ¼ 150 light axions, which carry more
than 95% of the total potential energy at y ¼ yend. It is
important to note at this point that the relevant mass scale
for preheating is set by the mass of the light fields and not
the average mass �m. For the matter into which the inflatons
decay, we consider a massless bosonic field � coupled to
the axions via the coupling 1

2g
2’2

i �
2, where we assume for

simplicity an identical coupling constant to each ’i. The
model we consider is then described by the following
Lagrangian:

L ¼ �X~N
i¼1

�
1

2
g��r�’ir�’i þ 1

2
m2

i ’
2
i þ

1

2
g2’2

i �
2

�

� 1

2
g��r��r��: (41)

The equations of motion are

€’ i þ 3H _’i þ ðm2
i þ g2h�2iÞ’i ¼ 0; (42)

€� k þ 3H _�k þ
�
k2

a2
þ g2

X
i

’2
i

�
�k ¼ 0; (43)

3H2 ¼ 1

2

X
i

_’2
i þ

1

2

X
i

m2
i ’

2
i þ

1

2
h _�2i þ 1

2
g2h�2iX

i

’2
i ;

(44)

where �k is the mode operator of the matter field and h	i is
the mode sum over k. We consider the axions and gravity as
the background, and ignore backreaction from the matter
field �k; consequently, h�2i and h _�2i are set to zero.

B. Parametric resonance in the equal-mass case

Before addressing the more involved preheating sce-

nario of N -flation, we discuss a model with ~N ¼ 150
inflatons having the same mass, mi � m.

In this case, the equal-energy initial conditions set the

same initial values for all ~N axions, so that the evolution

of the ~N axions is identical. Neglecting backreaction of
the matter field we can write the equations of motion as

€’i þ 3H _’i þm2’i ¼ 0;

€�k þ 3H _�k þ
�
k2

a2
þ ~N g2’2

i

�
�k ¼ 0;

3H2 ¼
~N
2

ð _’2
i þm2’2

i Þ:

(45)

Defining ’ �
ffiffiffiffiffiffiffi
~N

p
’i, the equations of motion reduce to

those of the well-understood single-field model, yielding
nonperturbative preheating [3,23–25,52]. The Klein-
Gordon equation for ’ reads

€’þ 3H _’ ¼ �m2’; (46)

whose solution is approximated during the preheating era
by

’ðtÞ ¼ �ðtÞ sinðmtÞ; (47)

where �ðtÞ ¼ ffiffiffi
8

p
=ð ffiffiffi

3
p

mtÞ [25] is a slowly decaying am-
plitude due to Hubble friction. The corresponding equation
for a Fourier mode of the matter field reads

€� k þ 3H _�k þ
�
k2

a2
þ g2’2

�
�k ¼ 0; (48)

where p ¼ k=a is the physical momentum. Because of the
oscillations of the inflaton field, the mass of the matter field
becomes time dependent and resonances can occur. To see
this, introduce q ¼ g2�2=4m2, � ¼ mt, Ak ¼ 2qþ
k2=m2a2 and Xk � a3=2�k so that (48) becomes

d2Xk

d�2
þ ðAk � 2q cosð2�ÞÞXk ¼ 0; (49)

where we also neglected the term proportional to the
pressure, �ð3=4ÞðH2 þ 2 €a=aÞ. If we ignore the time de-
pendence of the amplitude� in q and of Ak, Eq. (49) is the
Mathieu equation. It is known that parametric resonance
occurs for wave numbers k within resonance bands (see
[25,53] for the stability/instability chart). This means if k is
within the nth resonance band, the corresponding mode
increases exponentially

Xk / e�
ðnÞ
k
�; (50)

where�ðnÞ
k > 0 is the Floquet index [53]. Physical parame-

ters correspond to the region Ak � 2q and, in particular,
the zero mode k ¼ 0 evolves along the Ak ¼ 2q line from
large q to q� 0, as the inflaton amplitude� decays slowly.
As it evolves, the system crosses resonance bands where
exponential particle production takes place. Particle pro-
duction is efficient in the large q (q � 1) region, broad
resonance (or stochastic resonancewhen expansion effects
are included). For small q the resonance effect is limited as

it is not strong enough to hold against redshifting �k /
a�3=2. Then the main concern is whether it is possible to
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have a large enough q in a given model. A stringent
constraint comes from radiative corrections, restricting
the value of the coupling to g & 10�3 [25,39].

From the above discussion it can be deduced that having
many inflatons does not increase q, and resonance effects
are not enhanced. Given that the equations of motion lead

to the one of the single-field model, ’ð¼
ffiffiffiffiffiffiffi
~N

p
’iÞ starts

oscillating from the single-field value �0:2MP. Each in-

flaton ’i oscillates with smaller amplitude �=
ffiffiffiffiffiffiffi
~N

p
, while

q is unaltered. In the next subsection, we compare the
equal-mass case to a broader mass distribution (MP mass
distribution). To this aim, we provide numerical plots. In
Fig. 4, we show the evolution of the oscillating term ’2 in

the equal-mass case, where we have chosen ~N ¼ 150,
m ¼ m0 ¼ 2:4
 10�6MP. The initial values of ’i are all
taken to beMP ¼ 1, and the initial velocities are _’i ¼ 0. In
Fig. 5 the evolution of the matter field mode function �k

and the comoving occupation number of particles, defined
by

nk ¼ 1

2

�j _Xkj2
!k

þ!kjXkj2
�
� 1

2
; (51)

are shown for g ¼ 10�3 and k=ainit ¼ 6:0
m (corre-
sponding to a fastest growing mode, see [25]). Here,

!k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

a2
þ g2

X
i

’2
i

vuut ; (52)

which reduces to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=a2 þ g2’2

p
in the present case. The

condition on the resonance parameter q ¼ g2�2=4m2 *
Oð1Þ corresponds to j’j2 * 10�5 for g ¼ 10�3, which is
roughly � & 4000. We are ignoring both, backreaction and
rescattering effects. The corresponding plots for the
Marčenko-Pastur distribution are shown in Figs. 6 and 10
below.

C. Numerical results for the Marčenko-Pastur case

Let us turn to the question of multiple fields whose
masses obey the MP law. The equations of motion of our
system are (42)–(44); we are assuming that all inflaton
fields are coupled to the same matter field with identical

strength g2, and we consider only ~N ¼ 150 axions since
the heavier 90% of the axions are negligible in the later
stage ofN -flation. We also ignore backreaction, meaning
we set h�2i ¼ h _�2i ¼ 0 (which, in the end, is justified
since amplification of the matter field is found to be sup-
pressed). The initial values and the velocities of the axions
at the onset of preheating y ¼ yend correspond to the ex-
trapolated slow-roll solution, discussed in Sec. III:

’iðyendÞ ¼ ’�
0

ffiffiffiffiffiffiffiffi
yxiend
xi

s
; (53)

_’ iðyendÞ ¼ �m2
0’

�
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xiy

xi
end

3WIðyendÞ

s
: (54)

The initial conditions for the matter field are set by the

τ

FIG. 4. The evolution of the oscillating term ’2 that drives
parametric resonance. The horizontal axis is the dimensionless

time � ¼ m0t. Since ’ ¼
ffiffiffiffiffiffiffi
~N

p
’i and ’i are chosen to start

from MP ¼ 1, ’2 starts from ~N ¼ 150 at � ¼ 0.

τ

τ

χ

FIG. 5. The evolution of (the real part of) the mode �k (a) and the occupation number nk (b). The initial conditions for �k are set by
the positive-frequency solution at � ¼ 13:5, when the slow-roll conditions break down. The coupling constant is g ¼ 10�3 and the
wave number is chosen as k=am ¼ 6:0 at � ¼ 13:5. One can see amplification due to typical stochastic resonance, i.e. the overall
amplitude grows exponentially while there are occasional decreases of the amplitude. We are ignoring backreaction so that resonances
are present until q � Oð1Þ, corresponding to � � 4000 for g ¼ 10�3. Backreaction from the matter field shuts off resonances earlier.
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positive-frequency mode function, XkðtÞ ¼ a3=2�kðtÞ ’
e�i!kðt��end=m0Þ=

ffiffiffiffiffiffiffiffiffi
2!k

p
, at � ¼ �end ¼ 11:6 corresponding

to the onset of the preheating stage y ¼ yend.
Short time scale behavior: Fig. 6 shows the evolution ofP
i’

2
i until � ¼ 50. The horizontal axis used here is the

dimensionless time � ¼ m0t. Clearly, the axion masses are
all different in the Marčenko-Pastur case, resulting in a
somewhat different evolution of the

P
i’

2
i term from the

equal-mass case. We can see that the oscillations are more
obtuse compared to Fig. 4; this is a consequence of dephas-
ing of the axion oscillations owed to relative mass differ-
ences. As the time-dependent mass term oscillates, some
resonance effects for the dynamics of �k are expected. This
is indeed the case, at least to some extent. Figure 7(a)
shows the time evolution of the matter field mode function
(g ¼ 10�3 and k=am0 ¼ 6:0 at � ¼ �end, as in the previous
section). The temporal enhancement of the amplitude
(which is clearly seen for small � but becomes weaker
for large �) is caused by parametric resonance with (the
collective behavior of) the axions. In contrast to the equal-
mass case, the amplitude of �k decreases on average; the
resonance effect is not strong enough to resist dilution due

to cosmic expansion, even when the coupling constant is as
large as g� 10�3.
One can separate out the effect of cosmic expansion by

looking at the comoving field Xk ¼ a3=2�k. The equation
of motion for Xk is

€X k þ
�
k2

a2
þ g2

X
i

’2
i �

3

4
ð2 _H þ 3H2Þ

�
Xk ¼ 0; (55)

where the last term in the square bracket is proportional to
the pressure and is very small during reheating. Figure 7(b)
shows the numerical plot of the evolution of Xk. We can see
that the peaks occur when

P
i’

2
i of Fig. 6 reaches local

minima, and _!k=!
2
k becomes large (see Fig. 8), i.e. when

the system becomes less adiabatic; this is characteristic of
parametric resonance. In contrast to the equal-mass case,
the minima of the mass term do not approach zero due to
dephasing, caused by the relative mass differences of the
axion fields. This yields relatively small _!k=!

2
k and makes

preheating inefficient.
One can see that the amplitude of Xk exhibits power-

law–like growth on average. This growth does not neces-
sarily mean production of particles, since it is mainly due
to redshift [25]. When k is large the power Xk � a� tends to

τ τ

χ

FIG. 7. (a) The evolution of the mode function of the matter field �k, in N -flation using the MP mass distribution. The coupling is
g ¼ 10�3 and the wave number is chosen as k=am0 ¼ 6:0 at � ¼ �end ¼ 11:6. (b) The evolution of Xk ¼ a3=2�k for the same
parameters. There are wiggles in the oscillation amplitude (these are evident for small � and become smaller for larger times)
indicating some effect of parametric resonance. This resonance is, however, not strong enough and the amplitude of �k decays on
average.

τ

FIG. 6. The evolution of the term
P

i’
2
i that couples to the

matter field. The time is as in Fig. 2. Oscillations are less sharp
than in the equal-mass case, Fig. 4.

FIG. 8. The adiabaticity parameter _!k=!
2
k, for � & 50. The

slight negative shift is due to the cosmic expansion.
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� � 0:5, which is understood as follows: in the mass term
of (55), k2=a2 is dominant and it stays dominant since

a�2 � t�4=3, ’2
i � t�2, _H� t�2 and H2 � t�2 as a� t2=3

during preheating. Then (55) becomes €Xk þ Ct�4=3Xk ¼ 0
for some constantC, which is exactly soluble in the form of
Xk � t�FðtÞ where FðtÞ is a fast oscillating function; dis-
carding the decaying solution we find � ¼ 3�=2 ¼ 0:5.
For smaller k, Xk grows faster than �a0:5; for k � 0 we
find �a0:75 numerically.

Long time scale behavior: In the equal-mass model (see
Sec. IVB), with a large enough value of g, the resonance
parameter is q � 1 and resonances arise for reasonably
long time scales, specifically, up until � � 4000 for g ¼
10�3 (ignoring backreaction). Similarly, in the MP case,
even though there is no well-defined q-parameter, reso-
nances can ensue during short time intervals for large �,
again assuming a similar large coupling g. In this case, the
collective behavior of the axions is crucial and the adiaba-
ticity parameter _!k=!

2
k shows a rather complicated behav-

ior [see Fig. 9(a)]. Since the mass differences between the
neighboring axions in (11) with N ¼ 1500 is typically of
order of �m2 � Oð10�2Þ 
m2

0, once dephased, the axi-

ons’ collective oscillations return to near coherence in time
scales of order�� � Oð102Þ, causing beats in the effective
mass for �k [see Fig. 9(b)]. In Fig. 10 we show the
evolution of �k until � ¼ 2000 [Fig. 10(a)], and the evo-
lution of the comoving occupation number nk calculated
for Xk [Fig. 10(b)]. In this example, there is some ampli-
fication due to parametric resonances around � � 450. On

these time scales, for g * 10�3 and small k, we find the
occasional amplitude enhancement of a few orders of
magnitude. For larger wave numbers (k=am0 * 104 at � ¼
�end) we find somewhat different behavior of nk. The over-
all amplitude of _!k=!

2
k becomes smaller but the spikes at

large � remain. Consequently, the bursts at � � 450 dis-
appear and the late time dynamics is dominated by a
random-walk–like behavior. These resonance effects are,
however, not frequent or long enough to dominate
preheating.
To summarize, we saw that preheating of a single matter

field is not due to explosive particle production in
N -flation; even though there is some amplification, it is
too weak in small time scales and not very frequent in large
time scales, to compete with the dilution due to Hubble
expansion. We have also studied parameters not presented
above, including larger values of the coupling g; for g ¼
3
 10�3 the resonance is barely sufficient to compete with
the Hubble expansion. For the MP parameter � ¼ 0:7 and
0.9, we found similar results (inefficient resonance). The
physical reason for the suppression of parametric reso-
nance can be understood as follows: the axions are all
out of phase, averaging out each other’s contribution, so
that the driving term / P

’2
i in the equation of motion for

�k does not provide a coherent oscillatory behavior that is
needed for efficient parametric resonance. Hence, instead
of an exponential increase, we observe power-law–like

behavior �k � a��3=2 in time scales � & 200, where � is
typically between 0.5 and 0.75 for the parameter region we

x

FIG. 9. (a) The long time scale behavior of the adiabaticity parameter _!k=!
2
k. (b) The sum of axions’ squared amplitudes

P
i’

2
i , for

the time scale � ¼ 200 to 600. The coupling g and the wave number k are the same as in Fig. 7.

FIG. 10. (a) Long time behavior of �k, exhibiting short-lived, weak resonances around � � 450. The choice of parameters is the
same as in Fig. 7. (b) The comoving occupation number nk calculated for Xk.
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have studied. For longer time scales � � 200–2000, we
find occasional particle production, although these are not
strong enough to dominate preheating. This conclusion
differs from the common lore, namely, that parametric
resonance effects are crucial for preheating [3].

V. CONCLUSIONS

In this paper we studied the late time dynamics of
N -flation, a string-motivated realization of assisted infla-
tion, assuming the Marčenko-Pastur mass distribution
(arising from random matrix theory) and equal-energy
initial conditions at the onset of slow-roll inflation. We
provided analytic and numerical calculations of the inter-
mediate phase after the slow-roll conditions are violated
for heavy fields, but before preheating commences. We
find that the majority of the energy at the onset of preheat-
ing is carried by the axions with light masses, because
�90% of the energy is carried by only�10% of the fields.
Thus, only these light fields need to be taken into account
during preheating. To study preheating, we coupled a
single massless bosonic matter field � to the axions ’i,
assuming the same coupling constant g2 between � and’i.
Within this setup, we solved for the evolution of the matter
field numerically, including the expansion of the Universe,
and found power-law–like behavior in short time scales
and occasional, not very frequent resonance amplifications
in long time scales in the parameter region that would give
rise to stochastic resonance in single-field models. In par-
ticular, the growth of the matter field is generically not
strong enough to resist redshifting due to cosmic expan-
sion. As a result, the old theory of perturbative preheating
(see e.g. [25]) applies to this scenario and not parametric
resonance models. The outcome is desirable for the model,
as there is no danger of producing unwanted relics. The
prediction of this model is hence rather different from the
accepted view that parametric resonance effects are crucial
for preheating [3].

The analysis presented in this paper is dependent upon
several assumptions, such as the chosen matter content and
coupling constants. In particular, we considered only one
matter field coupled to the whole spectrum of axion fields
with the same coupling strength g. Although we believe
this choice to be reasonable and the model to be rather
generic, dropping some of the assumptions might change
the scenario. For instance, it is argued in [33,38] that the
oscillations of multiple inflatons (with irrational mass ra-
tios) can enhance drastically the decay rate (Cantor pre-
heating). This argument is based on two pillars: first,
theorems in spectral theory indicate that stability bands
vanish [33,34,38] in the case of more fields whose masses
are not related by rational numbers. Second, numerical
evidence in two field models indicates a slight enhance-
ment of particle production for well-chosen parameters
[38]. In the latter study of Cantor preheating, dephasing
of fields is unimportant since only two fields are consid-

ered. Nevertheless, an enhancement effect like in Cantor
preheating cannot be excluded in N -flation, especially if
only a few axions couple to a given matter field.
Besides Cantor preheating, we would like to comment

on yet another effect. It has been shown in [54,55]
that noise on top of an oscillating driving force can also
enhance resonant particle production.3 This phenomenon
could also occur in multifield inflation, if preheating is
dominated by one or two fields: the oscillations of the
many other fields would then act similar to noise, poten-
tially enhancing preheating.
Further, we have ignored backreaction and rescattering

during preheating, since modifications due to these two
effects should be minor. Explosive �-particle production
due to parametric resonance is irrelevant in N -flation, as
argued above, so that h�2i remains small; in addition, their
inclusion would only diminish resonance effects further.
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APPENDIX: FURTHER ANALYTIC ESTIMATES

In Sec. III A we developed a semianalytic solution (I)
which underestimates the numerical values of the potential
energy W (see Table I). Here we present a second analytic
approximation, which we call solution (II), that gives an
upper bound for W after the slow-roll condition for the
heaviest field is violated, to check the numerical solution in
Table I. In addition, both analytic solutions can be used for
arbitrarily large numbers of fields that would not be trac-
table via a brute force numerical integration.
The basic idea consists of holding fixed heavy fields as

soon as the corresponding � becomes of order 1: first, we
take the continuum limit so that we can make use of the
Marčenko-Pastur law for the continuous mass variable 1 �
x � �. Second, we partition this interval into M bins
according to a simple rule and denote the upper boundaries
of bins with XA, A ¼ 1; . . . ;M, so that XM ¼ �. Third,
whenever �A (corresponding to some XA) becomes of
order 1, we hold fixed all fields with masses in the Ath
bin. Naturally, one recovers the full microscopic model if

3However, see [56].
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one takesM ¼ N and uses the Marčenko-Pastur law as a
rule for choosing the bins so that XA ¼ ~m2

A=m
2
0.

TakingM<N leads to a coarse-grained model which
is more tractable, but one pays the price of having a larger
W. This approximation is justified as long as the energy left
in the heavy fields is small compared to the energy in the
light fields;M� 50 suffices for the range of y-values that
we are interested in.4

We now proceed to computeWII,
II andNII as outlined
above. We assume first a partition fX1; . . . ; XMg of the
interval 1 � x � � and denote with YA the values of y
where �ðM�Aþ1Þ ¼ 1 (note that YA < YB if A > B). If we
further denote the energy WII that is valid in the range
YA < y < YA�1 with WA, we can calculate the correspond-
ing YA as the solution to

WAðYAÞ ¼ m2
0XM�Aþ1; (A1)

starting withW1 � WI. Note that Y1 ¼ yN from (31), as it
should. We can then compute WA for A � 2 to

WAðyÞ ¼ N
2

m2
0’

�2
0

�
hyxijXM�Aþ1

1 þ XA�1

n¼1

hYx
nijXM�nþ1

XM�n

�
:

(A2)

Similarly, if we denote with 
A the effective field which is
valid in the range YA < y < YA�1 (so that 
1 ¼ 
I), we
arrive at


AðyÞ ¼ 
A�1ðYA�1Þ þ
ffiffiffiffiffiffiffi
N

p
2

’�
0

Z YA�1

y

1

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hxsxijXM�Aþ1

1

q
ds;

(A3)

and finally the number of e-folds becomes (with Y0 ¼ 1)

NAðyÞ ¼ NA�1ðYA�1Þ þ
Z YA�1

y

WAðsÞ
2m2

0s
ds: (A4)

In an appropriate large M-limit the above approxima-
tion becomes independent of the partition, which is of
course our aim. We would like to use WII up to when WI

is no longer a viable lower bound for the true energy W,
that is, until 
 � 
IðyendÞ. This is possible by tuning X1

such that 
IIðYMÞ � 
IðyendÞ.5
That way, the energy ratio of heavy to light fields

becomes

R � Wheavy

Wlight

¼
2

Nm2
0

WIIðYMÞ � hYx
MijX1

1

hYx
MijX1

1

(A5)

which has to be smaller than 1 (see Table III), so that we
can trust our approximation.
We compare (I) and (II) solutions in Table III, where we

also vary the number of fields. The solutions approach each
other in the large N limit. Henceforth, the numerical
solution is well approximated by either one in the case of
N -flation, where we deal with thousands of fields, and
consequently, we are justified to use the slow-roll approxi-
mation to set the initial stage for preheating.

TABLE III. Semianalytic solution II for N ¼ 200, 400, 1500, to be compared with the
slow-roll result I from Table I. Here, R is the ratio between the potential energy of the heavy
(held-fixed) fields to that of the light (dynamical) ones. We use a mass splitting into M ¼ 50
bins. X1 is chosen such that 
IIðYMÞ � 
IðyendÞ. The approximation (II) approaches the slow-
roll result for increasing N . The numerical results in Table I lie nestled between the two
approximations.

N X1 
IIðYMÞ WIIðYMÞ WIIðYMÞ
WI ðyendÞ

NIIðYMÞ
NIðyendÞ R

200 2.90 5.40 2.91 1.47 1.07 0.97

400 2.15 8.32 2.15 1.24 1.01 0.74

1500 1.75 17.57 1.75 1.17 1.00 0.53

4Note, generically 
IðyÞ � 
IIðyÞ because first, a number of
fields are artificially held fixed and no longer contribute to the
path length 
, and second, the total potential energy is bigger so
that light fields evolve slightly slower. Only small corrections
result, since fixed fields are already near the minimum of their
potential, not contributing much to 
 anyhow. Moreover, we
demand R < 1. Consequently, we have yII � yI and 
II � 
I.

5We choose X1 as large as possible so that R< 1, while
keeping X1 small enough to ensure that the solution (II) remains
applicable up until 
I leaves slow roll; thus we demand

IIðYMÞ � 
IðyendÞ, leading to X1 ¼ 1:75 for N ¼ 1500.
Simultaneously, to distribute the remaining bins, we choose
ðM� 2Þ=2 narrow bins from X1 to XM=2 � 11 (the MP-
distribution peaks in that region), followed by larger bins up
until XM ¼ � � 34. ForN ¼ 1500 evenM & 50 yield results
insensitive to the chosen partition.
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