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I consider an extended version of Bekenstein’s Tensor-Vector-Scalar theory where the action of the
vector field is of a general Einstein-Ether form. This work presents the cosmological equations of this
theory, both at the background and perturbed level, for scalar, vector and tensor perturbation modes. By
solving the background equations in the radiation era analytically, to an excellent approximation, I
construct the primordial adiabatic perturbation for a general family of scalar field kinetic functions.
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I. INTRODUCTION

In the last two decades, cosmology has undergone a
‘‘precision’’ revolution, with a large influx of data such
as observations of the cosmic microwave background [1],
large scale structure [2], and supernovae observations [3].
There is now a consensus cosmological standard model,
named �CDM, based on general relativity as the theory of
gravity, which requires only about 4% of the energy budget
of the universe to be in known baryonic form, while the rest
is divided into two apparently distinct, dark components:
cold dark matter and dark energy. It is unfortunate how-
ever, that apart from their phenomenology as fluids, we
know nothing of their actual nature at the present time.

Cold dark matter, typically composed of very massive
slowly moving and weakly interacting particles, is required
on cosmological scales mainly to source large scale struc-
ture. To dramatize its importance, assuming general rela-
tivity, if dark matter was absent, structure as we know it
would not have even formed yet. A plethora of such
particles generally arises in particle physics models beyond
the standard model quite naturally with the right cross
sections to create the right abundance (see [4,5] for re-
views). Yet, while its phenomenology as a dust fluid has
been shown to agree with observations to a very good
degree, the actual nature of cold dark matter is left to
speculation as no cold dark matter particle has been ob-
served so far. Moreover there are still some mishaps within
the �CDM paradigm, for example, the problem of voids
[6] and the recent observations of the Abel 520 cluster [7].

Given that the law of gravity plays a key role, to all
observations from which dark matter and dark energy are
inferred, it is conceivable that general relativity breaks
down at small enough gradients and curvatures, and an
alternative theory of gravity might also provide an expla-
nation to the dark sector. One such theory was proposed
some time ago by Bekenstein [8], building on key work by
Sanders [9]. This theory was dubbed Tensor-Vector-Scalar
(TeVeS) because it relies on a bimetric transformation
involving a scalar and a vector field. It was designed to

reduce to the Aquadratic Lagrangian nonrelativistic theory
of Bekenstein and Milgrom [10]. Thus, it provides essen-
tially the same phenomenology as Milgrom’s Modified
Newtonian Dynamics (MOND) [11] for galactic rotation
curves, for which MOND has had tremendous success [12].

TeVeS theory has since been shown [13] to be able to
source structure in a similar way as dark matter. The vector
field in the theory plays a key role [14], as for a wide range
of parameters it has a power-law growing mode which
sources potential wells. In contrast with dark matter, the
vector field has shear which creates a mismatch between
the two scalar gravitational potentials. This has been iden-
tified as prospective discriminator between dark matter and
theories like TeVeS [15–18]. Other noncosmological tests
of TeVeS have also been studied, for example, gravitational
lensing [19,20]. Probing the difference between the arrival
times of neutrinos and gravitational waves from distant
supernovae is also a possibility [21].

Having shown that one can cast TeVeS in a single metric
form, with the scalar field absorbed into the vector field
[22], Zlosnik, Ferreira and Starkman, have explored a sister
theory, based solely on a unit-timelike vector field with a
noncanonical kinetic term [23] which is a noncanonical
Einstein-ether theory [24]. This theory has also been shown
to source structure in a similar way as TeVeS [25] (cos-
mology within the context of canonical Einstein-ether
theory has been extensively studied in [26–28]) while its
predictions for corrections to Newtonian gravity in the
solar system have also been studied [29]. Further explora-
tion of this theory into different directions has been con-
sidered by Halle and Zhao [30,31].

In this work I initiate a study of a version of TeVeS
which involves a generalization of the action of the vector
field into the Einstein-ether form. This is motivated in part
from the instability present in spherically symmetric solu-
tions to the original TeVeS theory [32], that possibly stems
from the fact that the kinetic term for the unit-timelike
vector field was of Maxwellian form which can violate the
dominant energy condition [33]. Seifert has shown that
more general Einstein-ether actions can be stable depend-
ing on the parameters. It is therefore of importance to
check whether forms of TeVeS exist which have stable*cskordis@perimeterinstitute.ca

PHYSICAL REVIEW D 77, 123502 (2008)

1550-7998=2008=77(12)=123502(10) 123502-1 © 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.77.123502


spherically symmetric solution and still can form large
scale structure. Possible directions for deriving TeVeS-
type theories from more fundamental theories are dis-
cussed in [34–36].

In Sec.-II, I lay down the action and derive the field
equations. The cosmological equations for a (possibly
curved) Friedman-Lemaı̂tre-Robertson-Walker (FLRW)
metric are studied in Sec.-III, where it is shown that they
are identical with the TeVeS equations up to a rescaling of
Hubble’s constant. The cosmological solutions are there-
fore the same as those in TeVeS. I conclude that section by
deriving an approximate (to an excellent degree) solution
in the radiation era for a general family of scalar field
functions.

To study large scale structure we need the cosmological
perturbation equations about an FLRW universe. The
gauge form–invariant perturbed equations are derived us-
ing the techniques in [37] and are given in Sec.-IV for all
types of perturbations, namely, scalar vector and tensor
perturbations. Using the approximate background solution
in the radiation era from Sec.-III, I proceed to construct the
primordial adiabatic perturbation. The construction of the
most general, regular primordial perturbation is quite in-
volved and is given elsewhere [38]. Throughout the paper I
use the conventions of Wald [39].

II. FUNDAMENTALS: ACTION AND
FIELD EQUATIONS

A. Preliminaries

TeVeS theory and the generalization herein is a bimetric
theory where gravity is mediated by a tensor field ~gab with
associated metric-compatible connection ~ra and well-
defined inverse ~gab such that ~gac~gcb � �ab, a timelike
(dual) vector field Aa such that ~gabAaAb � �1, and a
scalar field �. Matter is required to obey the weak equiva-
lence principle, which means that there is a metric gab with
associated metric-compatible connection ra, universal to
all matter fields, such that test particles follow its geo-
desics. The tensor field ~gab will be called the Einstein-
Hilbert frame metric (see below) while gab the matter
frame metric.

The relation between the four above tensor fields (when
the field equations are satisfied) is

 gab � e�2�~gab � 2 sinh�2��AaAb (1)

with inverse

 gab � e2�~gab � 2 sinh�2��AaAb (2)

where Aa � ~gabAb.

B. The action principle

The theory is based on an action S, which splits as S �
Sg � SA � S� � Sm, where Sg, SA, S� and Sm are the

actions for ~gab, vector field Aa, scalar field � and matter,
respectively.

The action for ~gab, Aa and� is most easily written in the
Einstein-Hilbert frame, and is such that Sg is of Einstein-
Hilbert form

 Sg �
1

16�G

Z
d4x

�������
�~g

p
~R; (3)

where ~g and ~R are the determinant and scalar curvature of
~g�� respectively and G is the bare gravitational constant.
Because of the complicated nature of the equations, the
numerical value of G will not be the measured value of
Newton’s constant as measured on Earth. The precise
relation between them depends on the spherically symmet-
ric solution which apart from depending on the arbitrary
function V (see below) is not expected to be unique, just
like the case of standard TeVeS [8,40].

The action for the vector field Aa is given by
 

SA � �
1

16�G

Z
d4x

�������
�~g

p
�Kabcd ~raAb ~rcAd

� ��AaA
a � 1��; (4)

where
 

Kabcd � KB�~gac~gbd � ~gad~gbc� � K��~gac~gbd � ~gad~gbc�

� K0 ~gab~gcd � KA~gbdAaAc; (5)

� is a Lagrange multiplier ensuring the timelike constraint
on Aa, and KB, K�, K0 and KA are dimensionless
constants.

The action for the scalar field � is given by
 

S� � �
1

16�G

Z
d4x

�������
�~g

p
���~gab � AaAb�~ra�~rb�

� V���� (6)

where � is a nondynamical dimensionless scalar field, and
V��� is an arbitrary function which must be such that dVd�!
�2 as �! 0 in order to have exact MOND limit, while it
must diverge as �! �0 where �0 is a constant in order to
have exact Newtonian limit [41]. One example is the form
considered in [41] which is

 

dV
d�
�

�2
0

16�‘2
B

�̂2

�̂� 1
��̂��a�

n (7)

where ‘B is a scale, �a is a constant,n is an integer power
and �̂ � �

�0
. This general class of functions will also be

used in this work.
The matter is coupled only to the matter frame metric

gab and thus its action is of the form Sm�g; �
A� �R

d4x
�������
�g
p

L�g; �A� for some generic collection of matter
fields �A.

One can further generalize the vector field action by
making the constants KB, K�, K0 and KA functions of
the scalar field �, as well as generalizing the scalar field
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action by inserting �-dependent functions as coefficients
of the terms ~gab and AaAb in the kinetic term and a
potential for �. I leave this for future investigations (if
warranted).

C. The field equations

Variation with respect to the Lagrange multiplier � gives
back the timelike constraint on the vector field, ~gabAaAb �
�1. The matter stress-energy tensor Tab is defined by
varying of the matter action with respect to the matter
frame metric as �Sm � �

1
2

R
d4x

�������
�g
p

Tab�gab.
Now consider the tensors Sefcdab and Jabcde defined as

 

Sefcdab �
�Kefcd

�~gab

� KB��e�a�
c
b�~g

fd� ~gec�f�a�
d
b� � �

e
�a�

d
b�~g

fc

��f
�a�

c
b�~g

ed� �K���e�a�
c
b�~g

fd� ~gec�f
�a�

d
b�

��e
�a�

d
b�~g

fc� �f
�a�

c
b�~g

ed� �K0��e�a�
f
b�~g

cd

��c
�a�

d
b�~g

ef� �KA��f�a�
d
b�A

eAc

� ~gfd�e
�aAb�A

c� ~gfd�c
�aAb�A

e� (8)

and

 Jabcde �
�Kabcd

�Ae
� KA~gbd�~gaeAc � ~gceAa� (9)

respectively.
Then the field equations for ~gab are given by

 

~Gab � 8�G�Tab � 2�1� e�4��AcTc�aAb�� � �AaAb

���~ra�~rb�� 2Ac ~rc�A�a ~rb��� �
1

2
��V 0

� V�~gab �
�
Sefcdab �

1

2
Kefcdgab

�
~reAf ~rcAd

� ~re��A�aK
ecd

b� � A�aKb�
ecd � AeK�ab�

cd�~rcAd�

(10)

where ~Gab is the Einstein tensor of ~gab.
The field equations for the vector field Aa are

 

Kabc
d

~rc ~raAb �
�

1

2
Jabced � J

a
d
ceb
�

~raAb ~rcAe

� �Ad ��A
b ~rb�~rd�

� 8�G�1� e�4��AbTba: (11)

The field equation for the scalar field � is

 

~r a���~gab � AaAb�~rb�� � 8�Ge�2��gab

� 2e�2�AaAb�Tab (12)

where the nondynamical field � is found by inverting

 �~gab � AaAb�~ra�~rb� � �V 0; (13)

and therefore the arbitrary function V and its derivatives
are nothing but functions of kinetic terms for�, contracted
with ~gab and Aa.

III. FLRW COSMOLOGY

A. Equations

A most convenient coordinate system that is commonly
used in cosmological perturbation theory is the conformal
synchronous coordinate system with t denoting conformal
time and xâ the spatial coordinates. This gives the matter
frame metric with scale factor a as

 ds2 � a2��dt2 � qijdxidxj� (14)

where qab is the metric of a space of constant curvature K
r2
c
,

with radius of curvature rc and whereK � 0 for a flat,K �
1 for positively curved and K � �1 for negatively curved
space. The scale factor of the Einstein-frame metric is b �
ae�. The vanishing of the Lie derivative with respect to all
the Killing vectors of the background spacetime gives� �
���t� only, while the vector field is pure gauge for this

background.
The scalar field is governed by the TeVeS constraint

which in this coordinate system reads

 

_�� 2 �
1

2
a2e�2� dV

d�
(15)

which must be inverted to get ���a; ��; _���, and the second-
order equation

 

��� � _��
�

_a
a
� _��

�
�

1

U

�
3 ��

_b
b

_��� 4�Ga2e�4 ��� ��� 3 �P�
�
;

(16)

where U � �� 2 dV
d� =

d2V
d�2 . Both of the above are un-

changed from TeVeS, because they are not affected by
the vector field action.

Defining the constant KF � 1� K0 �
3
2K�, the

Friedmann equation gives

 3KF
_b2

b2 � a2e�4�
�

1

2
e2�

�
�
dV
d�
� V

�
� 8�G ���

3K

r2
ca2

�

(17)

while the Raychaudhuri equation is
 

KF

�
�2

�b
b
�

_b2

b2 � 4
_b
b

_��
�
� a2e�4�

�
1

2
e2 ��

�
�
dV
d�
� V

�

� 8�G �P�
K

r2
ca

2

�
(18)

where �� and �P are the energy density and pressure of a
matter fluid, and evolve as
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_��� 3
_a
a
�1� w� �� � 0 (19)

with w � �P= ��.
One quickly notices that the only change from the

original TeVeS theory, at the background level, is a con-
stant rescaling of the Friedman and Raychaudhuri equa-
tions. Thus FLRW solutions to this theory are identical to
those in TeVeS up to a rescaling of the Hubble’s constant.

B. Solution in the radiation era

For the form of the function above (7), it has been shown
[13,14,41] that the scalar field tracks the dominant fluid.
This simply means that the energy density of the fluid
relative to the energy density in the scalar field is constant.
This tracker behavior is found in many scalar field dark
energy (quintessence) models [42]. On the other hand it has
also been shown [14] for the special case of the Bekenstein
toy model (n � 2 and �a � 2 in the function above), that
in the radiation era for realistic baryon and radiation den-
sities (where by radiation, I mean the total contribution
from all relativistic species, like photons, neutrinos, etc.),
the radiation tracker is almost never reached until just
before the transition to the matter era. Instead the solution
is such that _� evolves as a power law of the scale factor.
The purpose of this subsection is to show that this is also
true for the generalized function above.

In the deep radiation era, for the function (7), � is very
large and we get that

 C� �
�
U
!

1� n
3� n

: (20)

During this time _�� is very subdominant and we may
assume that _b

b 	
_a
a . The Friedmann equation then assumes

the standard form

 3KF
_a2

a2 � 8�Ga2e�4 ��i ��r (21)

up to a rescaling of the radiation energy density by
e�4 ��i=KF, where ��i is the initial condition of � and ��r
is the radiation energy density. Let us define

 �0r �
8�G�0re�4 ��i

3KFH
2
0

(22)

where �0r is the proper radiation density today (as given by
the radiation temperature) and H0 is the Hubble constant
today. The solution to the Friedman equation during the
radiation era gives the well-known form

 a �
��������
�0r

p
H0t (23)

for the scale factor a as a function of conformal time t.
Although _�� is subdominant, we expect it to grow in

order to approach the tracker solution. We therefore as-
sume the ansatz

 � � �i ��1am (24)

where�1 andm are constants to be determined below. The
second initial condition for �� is assumed to be _�� � 0.
Consider now the variable q � �2� e ��

a
_��. Using the con-

straint (15) and the evolution equation for the scalar field
(16) we get that in the radiation era under the above
assumptions, q evolves as

 

dq
d lna

� 3q � 6KF
_a

a2 : (25)

Therefore � (again under the above assumptions) evolves
as

 

d�
d lna

� �m� 1�� �
3

m�1
KFe�m lna: (26)

The solution is

 � �
3

m�1
KFa

�m; (27)

and from the positivity of � we get that �1 > 0.
Combining (24) with (27) we get the relation � �

3KF
m��i���

which holds irrespective of the constants ‘B and
�0.

We can now determine the constants m and �1 which
appear in the approximated solutions above. To do so we
use the TeVeS constraint (15) in the large � limit to get

 

_�� 2 �
�2

0

32�‘2
B

a2e�2 ��i�̂1�n: (28)

Using the solution for the scale factor a�t� (23) to find��t�
and ��t� in terms of conformal time t, and then using the
above equation we get that the constant m is given by

 m �
4

3� n
(29)

while the constant �1 is given as

 �1 �
1

m

�
e�2 ��i�3KF�

1�n

32�‘2
B�

n�1
0 �0rH

2
0

�
1=�3�n�

: (30)

For the TeVeS case, i.e. n � 2, and ��i � 0, we get the

Dodelson-Liguori [14] result m � 4=5 and �1 �
5
4 
�

27
32�‘2

B�0rH2
0�0

�
1=5

.

It is important to note that the approximate solutions for
a�t�,��t� and��t� found in this subsection are excellent up
to the radiation-matter equality. Figure 1 shows the exact
numerical solution (solid curve) for �� (upper panel) and �
(lower panel) as well as the approximated solution of this
subsection (dashed curve), both plotted against H0t.
Similarly, Fig. 2 shows the exact numerical solution (solid
curve) for _�� (upper panel) and � _��t (lower panel) and the
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approximated solution of this subsection (dashed curve)
again plotted against H0t. The vertical lines in both figures
show the position of the radiation-matter equality.

IV. COSMOLOGICAL PERTURBATIONS

The perturbed equations are written directly in Fourier
space, and are thus dependent on the wave number k.

We will find it easier to define the following combina-
tions of constants :

 Kt � KB � K� � KA (31)

 	d � K� �
1

2
K0 (32)

 KF � 1� K0 � 	d (33)

 RK � 1�
3	d
KF

(34)

as it is these combinations which appear in the perturbed
equations. Moreover in the limit that the scalar field is
switched off, these constants must obey certain relations by
requiring that the energy density and square speed of sound
on the linear modes are both positive.

As it turns out, for scalar and tensor modes KA never
appears by itself to linear order and is always absorbed in
to the combination Kt defined above. Moreover the con-
stant 	d functions as a damping constant in the scalar mode
vector field equation when expressed in gauge invariant
variables. When 	d � 0, the vector field equation is inde-
pendent of k. Thus 	d must be positive and very close to
zero, for if it were negative, the perturbations would have
negative square speed of sound on flat space and thus be
greatly unstable on small scales, while if it were large and
positive, it would damp the vector field on cosmological
scales, which would render the theory irrelevant for struc-
ture formation. The constants Kt and RK must be obey 0<
Kt < 2 and 0<RK � 1 respectively for the energy den-
sities and the square speed of sound of all modes to be
positive (the last conditions are sufficient to ensure that
	d � 0). Scalar modes depend on Kt, KF and RK and
tensor modes on KF and RK only.

For vector modes the situation is slightly different and
all constants Ki are needed. In that case one can use the
parameters Kt, KF and RK defined above but one more is
needed which can be either KA or KB which must obey
KB �

KFRK�1
2KFRK

.

A. Scalar modes

Scalar modes are defined as in [37]. The scalar field is
perturbed as � � ��� ’. The vector field has only one
scalar mode, 
, because the other one is fixed by the
timelike constraint and is defined as Ai � ae� �� ~ri
. The
matter frame metric has four scalar modes, �, �, �

0.001

0.01

0.0001 0.001 0.01 0.1 1

100

1000

FIG. 1. Exact numerical evolution (solid) and the analytical
approximation (dashed) for �� (upper panel) and� (lower panel).
The initial condition for �� is 10�3. Both approximations are
excellent in the radiation era and depart from the true solution
once the Universe starts to enter the matter era. The radiation-
matter equality is indicated by the vertical dotted lines.

FIG. 2. Exact numerical evolution (solid) and the analytical
approximation (dashed) for _�� (upper panel) and � _��t (lower
panel) for the same model in Fig. 1. Both approximations are
excellent in the radiation era and depart from the true solution
once the Universe starts to enter the matter era. The radiation-
matter equality is indicated by the vertical dotted lines.
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and �, such that g00 � �a
2�1� 2��, g0i � �a

2 ~ri� ,
gij � a2�1� 1

3��qij � a
2�qi

kqj
l � 1

3qijq
kl� ~rk ~rl�. The

Einstein-frame metric has also four scalar modes, ~�, ~�,
~� and ~�, defined in a similar way, related to the matter
frame metric as ~� � �� ’, ~� � �� 6’, ~� � � � �1�
e�4 ���
 and ~� � �. The fluid variables are the density
contrast � � ��

�� and momentum divergence � such that

the fluid velocity perturbation is defined as ui � a ~ri�,
where ua is the unit-timelike with respect to gab fluid
velocity.

1. Fluid equations

The density contrast evolves as

 

_� � 3
_a
a
�w� C2

s��� �1� w�
�
�k2��

1

2
_�� k2�

�

(35)

where C2
s �

�P
�� is the speed of sound.

The momentum divergence evolves as
 

_� � ���
_a
a
�3w� 1���

C2
s

1� w
��

_w
1� w

�

�
2

3

�
k2 �

3K

r2
c

�
� (36)

where � is the fluid’s scalar anisotropic stress (see [37]).

2. Scalar field equations

The scalar field perturbation evolves as

 _’ � �
C�

2� _��
� _�� ~� (37)

where the auxiliary scalar field perturbation  [43]
evolves as
 

_ � �
�
�1� 3C��

_b
b
� 4 _��� 8�Ga2e�4 �� C�

2 �� _��


 � ��� 3 �P�
�
� �� _��k2e�4 ���’� _��
�

� �� _��2
� _~�� 2k2 ~�� � 8�Ga2e�4 �� �� _����1� 3C2

s��

� �1� 3w�� ~�� 2’��: (38)

3. Vector equation

The vector field equation is

 _
 � E� ~��
�

_���
_a
a

�

 (39)

where the auxiliary gauge invariant vector mode E
evolves as

 

Kt

�
_E�

_b
b
E
�
�
K

r2
c
�1� KFe

4 ���� _�� 2�� � 
��

� e4 ��	d

�
k2 �

3K

r2
c

�
� _�� 2�� � 
�� �

1

3
�KFe

4 �� � 1�




�
_~�� k2 _�� 6

_b
b

~�� 6
�
�

�b
b
� 2

_b2

b2 � 2
_b
b

_��
�


�

� �2e4 �� � 1� �� _��
�
’� _��


�
� 0: (40)

The coupling to the matter velocity in the equation above
has been eliminated with the use of (42) below.

4. Einstein equations

The two Einstein constraint equations are
 

_b
b
KF

�
_~�� 2k2�
� �� � 6

_b
b

~�
�
�

1

3

�
k2 �

3K

r2
c

�


 e�4��~�� k2��

� 8�Ga2e�4� ����� 2’� � e�4�k2

�
KtE� 2

_b
b


�
� 

(41)

and

 � KF

�
1

3
� _~�� k2 _�� � 2

_b
b

~�
�

� 8�Ga2e�4�� ��� �P��� 2 �� _��’�
2K

r2
c
e�4 ��


�

�
KF

K

r2
c
� 	d

�
k2 �

3K

r2
c

��
� _�� 2�� � 
�� (42)

while the propagation equations are
 

�KF

�
�~�� 2k2� _
� _�� � 6

_b
b

_~�� 6
�

2
�b
b
�

_b2

b2 � 4 _��
_b
b

�
~�

� 2
� _b
b
� _��

�
� _~�� 2k2�
� ���

�

�
1

3
e�4 ��

�
k2 �

3K

r2
c

�
�~�� k2�� � 3C�

� 24�Ga2e�4 �� ���C2
s�� 2w’�

� 2k2e�4 ��E� 2k2e�4 ��
_b
b

 (43)

for the coupling to the perturbed pressure and

 KFRK

�
��� 2� _� � _
� � 2

�
_���

_b
b

�
� _�� 2� � 2
�

�

� 2e�4 ��E� e�4 ��
�

2
_b
b

�

1

3
�~�� k2��

�

� 16�Ga2e�4 ��� ��� �P�� (44)

for the coupling to the shear.
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B. Vector modes

Vector modes are defined as in [37]. All vector modes
have two polarizations and are purely spacial and diver-
genceless. The vector field has a vector mode �i and is
defined as Ai � ae� ���i. The matter frame metric has two
vector modes ri and fi such that g0i � �a2ri and gij �

2a2 ~r�ifj�. The Einstein-frame metric has also two vector
modes ~ri and ~fi defined in a similar way, related to the
matter frame metric as ~ri � ri � �1� e

�4 ����i and ~fi �
fi. The fluid variable is the vector mode vi in the fluid
momentum such that the fluid velocity perturbation is
defined as ui � avi.

1. Fluid equations

The fluid vector mode v evolves as

 

_v � �
�
�1� 3w�

_a
a
�

_w
1� w

�
v�

�
k2 �

2K

r2
c

�
��v� (45)

where ��v� is the fluid’s vector anisotropic stress (see [37]).

2. Vector field equations

The vector mode equation is

 

_� � ��
�

_���
_a
a

�
� (46)

while the auxiliary vector mode � evolves as
 

�Kt

�
_��

_b
b
�
�
�

1

2
�1� �2KB � 1�e�4��

�
k2 �

2K

r2
c

�
�

�
1

2
�1� KFRKe4 ���

�
k2 �

2K

r2
c

�
� _f� r� ��

� �KFe
4� � 1�

�
2

�b
b
� 4

_b2

b2 � 4
_b
b

_��
�
�

� �2e4� � 1�� _��2� � 0:

Notice that unlike scalar modes, the parameter KA is no
longer redundant. In this case we can parametrize the
vector field with Kt, KB, KF and RK.

3. Einstein field equations

We have the constraint equations

 

�
k2 �

2K

r2
c

�
�KFRK� _f� r� �� � e�4 ����

� �16�Ga2e�4 ��� ��� �P�v

and the propagation equation
 

KFRK

�
�f� _r� _�� 2

� _b
b
� _��

�
� _f� r� ��

�

� e�4 ��
�

_�� 2
_a
a
�
�
� 16�Ga2e�4 ��� ��� �P���v�:

C. Tensor modes

Tensor modes are defined as in [37]. All tensor modes
have two polarizations and are purely spacial and diver-
genceless. The matter frame metric has a tensor mode Hij,
such that gij � a2Hij. The Einstein-frame metric has also a
tensor mode ~Hij defined in a similar way, related to the
matter frame metric as ~Hij � Hij. The equation of motion
for the tensor mode H is

 KFRK

�
�H � 2

� _b
b
� _��

�
_H
�
� e�4 ��

�
k2 �

2K

r2
c

�
H

� 16�Ga2e�4 ��� ��� �P���T�

where ��T� is the fluid’s tensor anisotropic stress (see [37]).

D. Adiabatic initial conditions for scalar modes

1. Conformal synchronous gauge in radiation era

We start by adopting the scalar mode perturbation equa-
tions, to the synchronous gauge (defined as � � � � 0,
� � h and�k2� � h� 6�), in the radiation era, using the
background solution discussed above. Let us also define
the following dimensionless variables : x � kt, v � k�,
u � k
, � � 2

3 k
2� and y � 

k2 . All equations are then
written in dimensionless form, where derivatives with
respect to x are denoted by a prime. For simplicity let us
also define �r � m�1�m=2

0r H
m
k where Hk � H0=k, such

that ��0 � ��rx
m�1 (see Sec.-III B). Furthermore let S� �

�0�
�0���0

and S �
�0

�0���0
.

We have the fluid equations for photons given by

 �0 � �
4

3
v �

2

3
h0 (47)

and

 v0 �
1

4
� (48)

where the photon shear as well as higher moments of the
Boltzmann hierarchy are vanishingly small due to the tight-
coupling of photons to baryons and are ignored. Likewise
the fluid equations for neutrinos are

 �0� � �
4

3
v� �

2

3
h0 (49)

 v0� �
1

4
�� � �� (50)

and

 �0� �
4

15
v� �

2

15
�h0 � 6�0� (51)

where higher moments of the Boltzmann hierarchy are
small because they are of higher powers in expansions
about x and are ignored.
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The scalar field evolves according to

 ’0 �
C�
6KF

xy��rx
m�1’ (52)

and
 

y0 � �
�1� 2C��

x
y�

3KF
x
e�4 ��i’�

3KF
x
�rxm�1


 �h0 � 6’0� �
3KF
x
�rx

m�1�2� e�4 ��i�u

� 6KF�rx
m�3�S� � S��� � 3’�: (53)

The vector field obeys

 u0 � E� ’�
1

x
u (54)

and
 

Kt

�
E0 �

1

x
E
�
� e4 ��i	d�h0 � 2u� � 2�1� KFRKe4 ��i��0

� 2�KFe
4 ��i � 1�

�
’0 �

1

x
’�

2

x2 u
�

�
3KF
x
�2e4 ��i � 1��’��rxm�1u� � 0:

Finally we need the two Einstein constraint equations
 

1

x
KF

�
h0 � 6’0 � 2u�

12

x
’
�

�
3KF
x2 �S� � S���� � 2e�4 ��i��� ’�

� e�4 ��i

�
KtE�

2

x
u
�
� 

and

 RK�
0 �

2

x2 �Sv � S�v�� � ’
0 �

2

x
’�

	d
2KF
�h0 � 2u�:

2. Adiabatic ansatz

The adiabatic mode is such that �! 1 for x! 0 while
all other perturbations vanish in this limit (regularity as-
sumption). The adiabatic mode ansatz � � 1� �2x2, h �
h2x2 solves the matter equations to give �� � � �
� 2

3h2x2, v � �
1
18 h2x3, v� � �

1
18 h2x3 � 2

45 


�h2 � 6�2�x3 and �� �
2
15 �h2 � 6�2�x2. We seek solu-

tions to the scalar and vector field variables which are
regular as x! 0. All the scalar and vector field terms in
the Einstein constraint equations are then subdominant to
lowest order in x, and we can solve them to get h2 �

e�4 ��i

2KF

and �2 �
10�15RK�4S�
6�15RK�4S��

h2.
Now consider the scalar field Eq. (52) where the first

term clearly dominates at early times because of the regu-
larity condition on ’ and y. Let y � y0xp for some power
p � 0 to leading order. We can then solve (52) to get

 ’ � ’0x
2�p �

C�
6�2� p�KF

y0x
2�p (55)

and using the above solution along with the one already
found for h and � into (53) we get

 

�1� p� 2C��y0xp � 10KF�rh2xm � 3KFe�4 ��i’0x2�p

� 18�3� p�KF�r’0xm�p

� 3KF�r�2� e�4 ��i�uxm�1: (56)

Since all terms above save the last one are regular as x!
0, then the u-term must also be regular which means that
u � u0xl with l�m> 1. Since 0<m< 1 and p > 0, we
have that 2� p >m and m� p >m which means that as
x! 0, the first term would always dominate over the
second and third term and the above equation is reduced to

 

�1� p� 2C��y0xp � 10KF�rh2xm

� 3KF�r�2� e�4 ��i�u0xl�m�1:

(57)

Now, the vector field equations become

 �l� 1�u0x
l�1 � E0x

q � ’0x
2�p (58)

and

 

Kt�1� q�E0x
q � 2e4 ��i	dh2x

2

� 4�1� KFRKe4 ��i��2x2 � 4�KFe4 ��i � 1�u0xl�1 � 0

(59)

where I have ignored the ’-terms because they are all
x2�p, and so the h- and �-terms always dominate them
as x! 0. I have also kept only the leading u-term. Using
(58) into (59) we get

 �
Kt�1� q� �

4

1� l
�KFe

4 ��
i � 1�

�
E0xq � 2e4 ��i	dh2x2

� 4�1� KFRKe
4 ��i��2x

2 � 0 (60)

where once again the ’-term has been ignored as it is of
higher order than the h- and �-terms. Therefore consis-
tency requires that q � 2 from which we get that the
’-term is of higher order than the E-term in (58) which
gives l � 3. Hence, the u-term in (57) is of higher order
and we get p � m.

Reconstructing the full solution by using the above
powers and matching coefficients then gives
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 h �
e�4 ��i

2KF
x2 � � 1�

10� 15RK � 4S�
6�15RK � 4S��

h

4

3
�b � � � �� � �

2

3
h � � �

1

18
ht

�� � �
15RK � 8� 4S�
18�15RK � 4S��

ht �� �
4

3�15RK � 4S��
h

E �
20�KFRKe4 ��i � 1� � 2�15RK � 4S���1� e4 ��iKF�

3�15RK � 4S���3Kt � KFe
4 ��
i � 1�

h


 �
1

4
Et  �

5m�1�m=2
0r H

m
k e
�4 ��i

1�m� 2C�
k2xm

’ �
C�

6�2�m�KF
t2:

Note that for standard TeVeS with ��i�0 we get that E�0
and 
 � 0 to this order. In this very special case E � O�3�
and 
 � O�4� and depend on higher powers of h and �.

Figure 3 shows the exact numerical evolution (solid)
compared with the approximate solution above (dashed)
for the variables h (upper left panel), � (lower left panel),
v (upper right panel) and �� (lower right panel) for k �
10�10 Mpc�1. Similarly Fig. 4 shows the exact numerical

evolution (solid) compared with the approximate solution
above (dashed) for the variables ’ (upper left panel), y
(lower left panel), u (upper right panel) and E (lower right
panel). Notice the excellent agreement in the deep radia-
tion era. The figures indicate that initial conditions should
be set around kt 10�10. Thus for typical k values used in
numerical simulations, initial conditions are conservatively
set at t 10�5, i.e. much earlier than initial times in
�CDM.

V. CONCLUSION

I have formulated the cosmological equations both at the
background and linear perturbation level for a version of
TeVeS theory with a generalized vector field action. Using
an analytical solution to the background equations for a
general family of scalar field functions, I constructed the
primordial adiabatic perturbation. The most general type of
regular primordial perturbation is studied elsewhere [38].
These equations can be used to study large scale structure
for these theories, to check whether there are stable ver-
sions of TeVeS which can agree with observations.
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FIG. 3. Exact numerical evolution (solid) and the analytical
approximation (dashed) for h (upper left panel), v� (upper right
panel), � (lower left panel), and �� (lower right panel), for the
same model in Fig. 1. All approximations are excellent in the
radiation era during tight-coupling and depart from the exact
numerical solution once the Universe starts to enter the matter
era and/or departs from tight-coupling.

FIG. 4. Exact numerical evolution (solid) and the analytical
approximation (dashed) for ’ (upper left panel), y (lower left
panel), u (upper right panel) and E (lower right panel), for the
same model as in Fig. 1. All approximations are excellent in the
radiation era during tight-coupling and depart from the exact
numerical solution once the Universe starts to enter the matter
era and/or departs from tight-coupling.
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