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In this paper we analyze the biasing effect of point sources, either thermal Sunyaev-Zeldovich clusters

or standard radio sources, on the estimated strength of the non-Gaussianity in the cosmic microwave

background (CMB). We show that the biggest contribution comes from the cross correlation of the CMB

with the matter density rather than from the Poisson term which is conventionally assumed in these

calculations. For the three year WMAP data, we estimate that point sources could produce a non-Gaussian

signature equivalent to a bias in fNL of 0.35, 0.24, �0:097, �0:13 in the Ka, Q, V, and W bands,

respectively. The level of bias we find is largely insufficient to explain the very high fNL values recently

detected by Yadav and Wandelt. For Planck, we estimate the point source bispectra to contaminate the fNL

estimator with a bias of 1.3, 0.34,�0:25,�0:48 at 30, 44, 70, 100 GHz, respectively. These results depend

on the assumed redshift distribution of the point sources. However, given the projected Planck sensitivity

of �fNL ’ 5 (95% C.L.), a good estimate of point sources’ properties including their number density and

redshift distribution is essential before deriving strong conclusions on primordial non-Gaussianity.

DOI: 10.1103/PhysRevD.77.123011 PACS numbers: 98.70.Dk, 98.80.�k

I. INTRODUCTION

Recent claims by Yadav andWandelt [1] of the detection
of strong primordial non-Gaussianity in the three year
Wilkinson Microwave Anisotropy Probe (WMAP) data
[2] have the potential to revolutionize our understanding
of the early universe. These results were also found in the
WMAP five year analysis, although with less statistical
significance [3]. The strength of the non-Gaussianity de-
tected in their analysis is more than 2 orders of magnitude
larger than the non-Gaussianity expected in the simplest
model of the single field, slow roll model of inflation [4].
This detection, if it stands up to scrutiny, will be the first
definitive indication that the simplest model of inflation
cannot adequately explain all of the current cosmological
observations and must be modified in some way.

In Yadav and Wandelt’s analysis [1], the detection of the
non-Gaussian signal is due to the simultaneous reduction in
the estimator’s error bars and the shift in the central value
as smaller angular scale information was included in the
analysis. One obvious concern is that the estimator is
contaminated by foreground emission, in particular, radio
points sources and the thermal Sunyaev-Zeldovich (SZ)
effect which become increasingly more important on small
angular scales.

In this paper we will analyze the influence of point
sources, for the experiment resolution of WMAP both the
radio sources and SZ clusters effectively act as point
sources, on the standard non-Gaussianity estimator.

While it has been claimed that the non-Gaussianity caused
by Poisson fluctuations in the number density of radio
point sources can be safely separated from the primordial
non-Gaussian signal [5], we will demonstrate the other
forms of point source non-Gaussianity cannot be safely
ignored. In addition to the standard forms of non-
Gaussianity produced by point sources, we will show that
cross correlation between the point source power spectrum
and the cosmic microwave background (CMB) tempera-
ture anisotropies or instrument noise will produce non-
Gaussianity of a very similar form as the local model.
The local model is the form typically assumed in analyses
of primordial non-Gaussianity, so these new non-Gaussian
contributions will bias the estimator in a fashion that
cannot easily be corrected.
This paper is organized as follows. In Sec. III we dem-

onstrate that point sources can produce a bispectrum that
has the same form as the local model. In Sec. II we derive
the bias induced by the various point source bispectra. In
Sec. VI we conclude. We use the WMAP three year
cosmological model [2] for numerical calculations.

II. ESTIMATOR BIAS

While non-Gaussianity generically implies that any
higher-order connected correlation function is nonzero, it
is typical to focus on the three-point correlation function,
or equivalently the bispectrum, because it has the simplest
form of all non-Gaussian correlation functions and for
weak non-Gaussianity it contains nearly all of the infor-
mation [6]. The three-point correlation function can be
factored into a component fixed by rotational invariance,

*babich@tapir.caltech.edu
+pierpaol@usc.edu

PHYSICAL REVIEW D 77, 123011 (2008)

1550-7998=2008=77(12)=123011(12) 123011-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.77.123011


which is assumed a prioiri, and a piece determined by the
underlying mechanism that produced the non-Gaussianity
[5]. Rotational invariance forces the three-point correlation
function to be proportional to the Gaunt integral,
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and the CMB three-point correlation function can be writ-
ten as

ha‘1m1
a‘2m2

a‘3m3
i ¼ G‘1‘2‘3
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b‘1;‘2;‘3 ; (2)

where the reduced bispectrum, b‘1;‘2;‘3 , contains informa-

tion about the form of non-Gaussianity.
The estimators used in CMB non-Gaussianity analyses

are optimized for the detection of a signal with a very
particular form, namely, the local model [6]. The local
model assumes that the initial curvature perturbations can
be written as

�ðxÞ ¼ �gðxÞ þ fNL½�2
gðxÞ � h�2

gðxÞi�; (3)

where �g is Gaussian. The nonlinear terms in this model

lead to the following bispectrum for the initial curvature
perturbations

Bðk1; k2; k3Þ ¼ 2fNL½Pðk1ÞPðk2Þ þ cyc�; (4)

where PðkÞ is the power spectrum. The ordinary linear
radiative transfer functions are subsequently used to cal-
culate the CMB temperature anisotropies from these initial
curvature perturbations. The statistical properties of the
CMB temperature anisotropies will mirror the statistical
properties of underlying curvature perturbations since we
consider linear radiative transfer. The levels of non-
Gaussianity claimed by Yadav and Wandelt are signifi-
cantly larger than the expected non-Gaussianity produced
by nonlinear radiative transfer.

However the estimators are sensitive to any bispectrum
form that might be present in the data, regardless of its
origin. In this section we will determine the induced bias
produced by the various cross correlation bispectra de-
scribed in the next section.

The non-Gaussianity estimator can be expressed as [7]

f̂ NL ¼ 1
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where the normalization is
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here CT
‘ ¼ C‘ þ CN

‘ is the sum of the CMB signal and

noise. The CMB experimental noise parameters are de-
scribed in Table I.
We are ignoring the additional linear term in the esti-

mator because the contribution of radio point source will
not bias this piece of the estimator if the signal and noise
covariance matrices well represent the real data.
The weight functions used in the estimator are optimized

for a bispectrum produced by the local model. The esti-
mator bias will be determined by substituting the various
forms of the point sources’ bispectra into the estimator

�f�NL ¼ 1

A

X ð2‘1 þ 1Þð2‘2 þ 1Þð2‘3 þ 1Þ
4�

� ‘1 ‘2 ‘3

0 0 0

 !
2 b‘1;‘2;‘3b

�
‘1;‘2;‘3

CT
‘1
CT
‘2
CT
‘3

: (7)

Here b�‘1;‘2;‘3 is one of the reduced bispectrum produced by

point sources. The CMB bispectrum produced by the local
model is generally negative. The collapsed triangle modes,
which have the highest signal-to-noise, are always nega-
tive. So a positive point source bispectrum will cause a
negative estimator bias. We will now discuss the possible
bispectrum terms.

III. POINT SOURCE BISPECTRA

The observed signal is the sum of the primordial and
secondary temperature anisotropies, foreground emission,
and instrument noise. While the secondary anisotropies
and extra-galactic foregrounds, which maybe quite non-
Gaussian, are important on small angular scales, the signal
on the large angular scales relevant for WMAP is domi-
nated by primary anisotropies. Thus it is assumed that any
measured non-Gaussianity by WMAP is primordial in
nature. We will argue that cross correlations between
some of these signals may induce bispectra on large angu-
lar scales.
Moreover these bispectra may have similar forms as the

local model if the signal power spectrum becomes spatial

TABLE I. Radio point source flux threshold, FWHM, and
instrument pixel noise (in 10�6) for the relevant WMAP and
Planck frequency bands. For WMAP the various band names are
also listed.

Frequency (GHz) �S (Jy) FWHM (arcmin) �T=T

WMAP-33 (Ka) 0.7 41 5.7

WMAP-41 (Q) 0.7 28 8.2

WMAP-61 (V) 0.7 21 11.0

WAMP-94 (W) 0.7 13 18.3

Planck-30 0.33 33 1.6

Planck-44 0.36 23 2.4

Planck-70 0.34 14 3.6

Planck-100 0.13 11 1.6
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inhomogeneous in a manner that then correlates with a
second component in the observed signal. For example, the
matter overdensity will bias the local radio point source
power spectrum and it will be correlated with the CMB
temperature anisotropies produced via the integrated
Sachs-Wolfe (ISW) effect. This will produce a bispectrum
similar in form to the local model.

This is not a coincidence as the non-Gaussianity in the
local model is produced by the modulation of the small
scale inflaton power spectrum by the large scale inflaton
fluctuations that have already left the horizon and frozen
out. The parameter fNL is a measure of the nonlinear
coupling between these different scales. Likewise the large
scale matter overdensity modulates the small scale Poisson
fluctuation power spectrum by altering the local number
density of radio point sources. In an analogous fashion the
bias describes the coupling between the different scales. As
discussed in the previous section any bispectrum present in
the data can bias the estimator.

IV. ANISOTROPY MECHANISMS

Now we will discuss the various physical effects con-
sidered in this paper—radio point source emission, the
thermal Sunyaev-Zeldovich effect, and the integrated
Sachs-Wolfe effect.

A. Radio point sources

The temperature anisotropy induced by unresolved radio
point sources can be expressed as an integral over their flux
distribution function

�T

T
ðn̂; �Þ ¼ 1

c�

Z �Sðn̂Þ

0
dSS

dN

dS
ðS; �; n̂Þ: (8)

The conversion between the temperature and intensity
fluctuations is

c� ¼ @B�

@ lnT
ðTCMBÞ; (9)

where TCMB ¼ 2:728 K and B�ðTÞ is a blackbody fre-
quency distribution.

Note that we have allowed both the upper flux limit for
unresolved radio point sources and their number density to
be spatially inhomogeneous. As we will describe below,
these spatial inhomogeneities will correlate with other
signals present in the data to produce bispectra in the
observed CMB data.

The actual values for the bispectra calculated in this
paper depend on the radio point sources’ properties (both
flux and redshift distributions) and on the flux cut at a given
frequency for a specific experiment. In order to evaluate
the residual point source contribution to the total estimated
bispectrum in the WMAP-three year’s data, we must con-
sider the technique used by WMAP to identify and sub-
stract radio point sources [8] and the point source mask
applied to the data. The WMAP source selection criterion

does not correspond to a single flux threshold at a given
frequency, rather it requires that a candidate source should
be seen with a minimal statistical significance in all chan-
nels [9]. As Yadav and Wandelt’s results [1], which are the
motivation for this paper, were derived using the V and W
frequency bands, the radio point source populations at
these frequencies is the most relevant. Unfortunately, as
most radio sources are stronger at low frequencies, they
tend to be detected with higher significance in the K–Q
bands than in the V–W ones.
In addition from a blind search, at 20–30 GHz it is

possible to use lower-frequency catalogs of point sources
as tracers for detection [10]. As a result, the source popu-
lation at such frequencies is much better characterized than
the one at higher frequencies. By considering flux number
counts at low frequencies it is possible to give an estimate
of the flux above which the detected point sources create a
complete catalog. This flux threshold is estimated to be
abov e1.1 Jy at 23 GHz (K Band) [10,11], while in the W
band (94 GHz) the number counts are not sufficiently well
determined to allow such an estimate. An alternative blind
search technique applied to the WMAP Vand W band data
increases the number of sources found in the V band by
50% compared to the WMAP team results [12]. These
results include some sources that were not contained in
the WMAP point source mask. The new sources found,
however, do not seem to represent a different population
than the ones previously detected. As the WMAP five year
data is now available, more work on point source charac-
terization at the frequencies where the CMB science is
derived should be possible.
The actual residual contribution of point sources de-

pends upon the mask applied to the observed map. In the
case of WMAP, this mask considers the WMAP detected
sources (about 300) as well as some bright sources from
other low-frequencies catalogs, for a total of approximately
700 sources masked. The actual selection function that this
procedure imposes at the V and W bands is poorly under-
stood, and indeed some sources detected by [12] were not
masked. However, while the detection threshold implied
by this whole procedure is poorly defined, there is good
agreement in the residual point sources power spectrum
contribution as derived by different authors [8,12,13]. This
can be approximately translated in a flux threshold of 0.6 Jy
in the Q band [13] and 0.75 Jy in the V band [12]. For
illustrative purposes, we will adopt here an approximate
estimate for the flux cutoff of 0.7 Jy in all WMAP bands. In
Sec. V we discuss the dependence of our results on this
choice.
The Planck satellite will have better resolution and

sensitivity, resulting in a lower detection threshold for
point sources. In the following, we make predictions of
the bispectrum expected in the final Planck maps, consid-
ering the detection thresholds for a 95% complete sample
derived by [14] using realistic Planck sky simulations. The
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flux cutoffs for both WMAP and Planck, as well as the
adopted instrument noise parameters are given in Table I.

Finally, in order to compute the bispectra implied by
point sources below a given flux, we adopt the source
counts predictions of Toffolatti et al. [15] rescaled by a
factor 0.8, as suggested by the matching of these predic-
tions with the actual number counts at fluxes above 1.1 at
41 GHz obtained by [11]. We will use the radio point
source (PS) bias bPS ’ 1:7 [16–18] as inferred for low
frequency radio point sources. This value is uncertain
and almost definitely varies for the various population
type that constitute the high frequency sample.

It is difficult to constrain the redshift distribution due to
the lack of optical studies of 60–96 GHz source population,
work at 23 GHz has been conducted by González et al. for
fluxes above 1 Jy [11]. At these fluxes and frequencies the
number counts are dominated by quasistellar objects for
relatively high redshifts. This population is well approxi-
mated by the following analytical formula

nPSðzÞ / 0:75� e�ðz�z0Þ2=ð2�Þ2 ; (10)

with z0 ¼ 0:95 and � is 0.4 (0.9) for z < 1 (z > 1). This
redshift distribution is in agreement with recent studies of
radio sources’ populations at 90 GHz with ATCA [19]. In
addition, there is a small (10%–15%) of the total popula-
tion that consists of radio loud galaxies which peaks at
much lower redshifts (z � 0:1). Given the small number of
sources, it is difficult to derive an appropriate fitting for-
mula for this other population. In the following, we will
adopt the following distribution of low-redshift sources

nPSðzÞ / 0:25� 10�3z; (11)

that provides a better fit to counts found by González et al.
[11]. We will take the sum of Eqs. (10) and (11) with a
common proportionality factor determined by requiring
nPSðzÞ to integrate to unity over the range z ¼ 0 to z ¼
3:1. The relative amplitude of the quasistellar objects and
radio galaxy contribution to the sources is derived from the
optical identifications of González et al. [11]. This fit will
be called model 1. González et al. [11] provide a fit to a
theoretical model of the luminosity functions of the various
source populations as derived from [20]. To understand
how the uncertainty in the source redshift distribution
affects our results, we also do calculations with the model
of González [11]; this will be called model 2.

WMAP only resolves the high-flux sources which are
typically dominated by active galactic nucleus. Most likely
lower flux sources consist of a different population (e.g.
[20,21]) and therefore have a different redshift distribution
with possibly more weight either at lower or higher red-
shifts. An analogous redshift analysis on a higher frequen-
cies catalog is strongly needed, but is not available at this
time. Future investigations of radio point sources’ catalogs
plus WMAP and Planck results are higher frequencies will
help clarify this issue. For the aims of this paper we take

Eq. (10) to be the redshift distribution at all frequencies and
fluxes and keep in mind the potential uncertainty that this
assumption introduces.

B. Thermal Sunyaev-Zeldovich effect

The hot plasma in the intracluster medium will produce
temperature anisotropies via Thomson scattering of the
incident CMB photons; this is the well-known thermal
SZ effect (see Carlstrom et al. [22] for a review).
Following the model of Komatsu and Seljak [23,24], the
temperature anisotropies produced by the SZ effect can be
expressed as an integral over the cluster mass distribution
function

�T

T
ðn̂; �Þ ¼ g�

Z
dz

dV

dz

Z 1

0
dMyðM; zÞ dn

dM
½M; z; ^n�ðzÞ�;

(12)

here the frequency dependence of the thermal SZ effect is
given by

g� ¼ x
ex þ 1

ex � 1
� 4; (13)

where x ¼ h�=kBTCMB. The Compton y parameter is re-
lated to the line-of-sight integral of the cluster’s thermal
pressure, dn=dM is the cluster mass function, and the
volume element is

dV

dz
¼ c

HðzÞ�
2ðzÞ; (14)

where �ðzÞ is the comoving distance to redshift z. The
details of the implementation of this model are extensively
discussed in [23]. Ignoring clustering terms in the power
spectrum, we find the thermal SZ point source power
spectrum

CSZ
‘ ð�Þ ¼ g2�

Z
dz

dV

dz

Z 1

0
dMy2‘ðM; zÞ dn

dM
ðM; zÞ: (15)

In a similar fashion to the radio point sources, the
number density of massive clusters will be changed by
both the biasing effect of the large scale matter overdensity
and gravitational lensing magnification. In order to deter-
mine how these processes will affect the SZ power spec-
trum we need to know the redshift distribution of power in
the SZ effect. The weighted redshift distribution of power
produced by the SZ effect can be expressed as the integral
over halo mass of the Sheth-Tormen [25] halo mass func-
tion

nSZðzÞ / dV

dz

Z Mmax

Mmin

dMM2� dn

dM
ðM; zÞ: (16)

The cluster y parameter mass scaling relationship slope is
taken to be � ¼ 1:6 [26]. The limits of integration are
taken to be Mmin ¼ 1014M� and Mmax ¼ 5� 1015M�.
The redshift distribution is normalized so it will integrate
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to unity. We also need the bias weighted redshift distribu-
tion of power produced by the SZ effect which can be
expressed as the integral over the Sheth-Tormen halo mass
function

ðbnÞSZðzÞ / dV

dz

Z Mmax

Mmin

dMM2� dn

dM
ðM; zÞbðM; zÞ; (17)

where bðM; zÞ is the standard bias of the Sheth-Tormen
mass function.

C. Integrated Sachs-Wolfe effect

Most of the power in the CMB temperature anisotropies
is produced at high redshift during recombination. There
will be very little cross correlation between these tempera-
ture anisotropies and the low-redshift matter overdensity
responsible for altering the small scale point source power
spectrum. However additional CMB temperature anisotro-
pies can be generated at low redshift via the ISW effect if
the gravitational potential fluctuations are evolving in time.
In a fully matter dominated regime the gravitational po-
tential fluctuations are static, however as the Universe
becomes dark energy dominated the ISW effect can occur.

The temperature anisotropy produced by the ISW effect
can be expressed as

�T

T
ðn̂Þ ¼ �2

Z
dz

@�

@z
; (18)

¼ 3H2
0�M

Z
dz½ð1þ zÞDðzÞ�0

Z d3k

ð2�Þ3 e
ik�n̂� �ðkÞ

k2
;

(19)

where DðzÞ is the linear theory growth function and the
prime denotes differentiation with respect to z.
In Fig. 1 we show the redshift weight functions for the

ISW effect ½ð1þ zÞDðzÞ�0 (green, dot-dashed line); the
radio point sources bPSnPSðzÞDðzÞ—model 1 (red, dashed
line) and model 2 (blue, long-dashed line); and the thermal
SZ effect ðbnÞSZðzÞDðzÞ (solid, black line). The overlap of
these weight functions will determine the amplitude of the
cross correlation spectra as described in Sec. IVB and IVC
and shown in Figs. 2 and 5.

1. Point source bispectrum

The simplest bispectrum form produced in the CMB is
due to radio point source Poisson fluctuations. The reduced
bispectrum is independent of scale and can be written as

b‘1;‘2;‘3 ¼ c�3
�

Z �S

0
dSS3

dN

dS
ðS; �Þ: (20)

This bispectrum component has been detected in the
WMAP data [27]. Since its functional form is not similar
to the local model it will not significantly bias the estimator
and we will ignore it as did Yadav and Wandelt. The five
year WMAP analysis [3] includes estimates (and correc-
tions) for the estimator bias produced by this bispectrum
form.

FIG. 1 (color online). Redshift weight functions for the ISW
effect (green, dot-dashed line); radio point sources—model 1
(red, dashed line) and model 2 (blue, long-dashed line); and
thermal SZ effect (solid, black line).

FIG. 2 (color online). Density-ISW cross correlation spectrum
for thermal SZ (solid, black line); radio point sources—model 1
(red, dashed line) and model 2 (blue, long-dashed line).
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2. Number density modulation

The Poisson fluctuation power spectrum in a certain
region of the sky can be written as an integral over the
distribution of sources in that region. If the anisotropic
component of the power spectrum correlates with any other
signal present in the data, non-Gaussian correlation func-
tions will be generated. In this subsection we will focus on
correlation of the large scale matter overdensity, which
biases the number density of point sources, with the ISW
effect.

The power spectrum produced by radio point sources in
direction n̂ is

CPSðn̂Þ ¼ c�2
�

Z �S

0
dSS2

dN

dS
ðS; �; n̂Þ; (21)

where the anisotropic point source distribution can be ex-
pressed in terms of the matter overdensity as

dN

dS
ðS; �; n̂Þ ¼ dN

dS
ðS; �Þ

�
1þ bPS

Z
dznPSðzÞ�ðn̂; zÞ

�
;

(22)

the mean point source distribution was described in
Sec. III. The large scale matter overdensity, which biases
the local number density of point sources as shown in
Eq. (22), will be correlated with the large scale CMB
temperature anisotropies produced by the ISW effect and
the following reduced bispectrum will be induced

b‘1;‘2;‘3 ¼ 2 �CPSðXPS
‘1

þ cycÞ: (23)

Here the isotropic source distribution dN=dS leads to an
isotropic power spectrum �CPS. The matter-ISW cross cor-
relation spectrum can be expressed as

XPS
‘ ¼ 3H2

0�Mb
PS

‘2

Z HðzÞdz
c

P

�
‘

�ðzÞ
�

�DðzÞnPSðzÞ½ð1þ zÞDðzÞ�0 (24)

where PðkÞ is the matter power spectrum and bPS ’ 1:7 is
the radio point source bias. The cross correlation spectrum
is positive because matter overdensities correspond to
potential wells. At low redshift as the amplitude of the
potential wells decay the CMB photons experience a net
blueshift, thus the cross correlation is positive. In Eq. (24)
we have employed Limber’s approximation to simplify the
cross correlation spectrum (see [28] for an overview of
using Limber’s approximation to calculate cross correla-
tion spectra). The function nPSðzÞ is the redshift probability
distribution function of the radio point sources defined in
Eq. (10). The large scale matter overdensity affects the
thermal SZ power spectrum in an analogous fashion.

In Fig. 2 we show the matter-ISW cross correlation
spectrum for the thermal SZ effect (solid, black line) and
the radio point sources—model 1 (red, dashed line),
model 2 (blue, long-dashed line). The thermal SZ effect
has the largest cross correlation because the clusters tend to

be located at lower redshift than the radio point sources.
The ISW effect primarily occurs at low redshift once the
Universe is strongly dark energy dominated, so it most
strongly overlaps with the SZ effect.
In Fig. 3 we show the number density modulation equi-

lateral bispectra (‘1 ¼ ‘2 ¼ ‘3 ¼ ‘) for the thermal SZ
effect (solid, black line) and the radio point sources—
model 1 (red, dashed line), model 2 (blue, long-dashed
line). Also shown for reference is the primordial local
model bispectrum (fNL ¼ 1) (green, dot-dashed line). In
Fig. 4 we show a representative collapsed shape (‘1 ¼ 5,
‘2 ¼ ‘3 ¼ ‘) for the same bispectra. The equilateral shape
of the local model bispectrum changes signs, the zero
crossing are obvious from the plot. This is a consequence
of the radiative transfer functions producing both hot and
cold regions on the sky. The collapsed shape always has the
same sign, opposite the sign of fNL. For the local model the
collapsed bispectra have the highest signal-to-noise.

3. Magnification modulation

The distribution of matter along the line-of-sight be-
tween the observer and the sources will gravitationally
lens these point sources. The principle effect of gravita-
tional lensing will be to change the source density by
magnifying and demagnifying certain regions of the sky.
The magnification in a given direction can be written, to
first order, as

FIG. 3 (color online). Number density modulation equilateral
bispectra for thermal SZ (solid, black line); radio point
sources—model 1 (red, dashed line) and model 2 (blue, long-
dashed line). The local model (fNL ¼ 1) (green, dot-dashed
line) is also shown for reference. The equilateral shape corre-
sponds to (‘1 ¼ ‘2 ¼ ‘3 ¼ ‘).
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�ðn̂Þ ’ 1þ 2	ðn̂Þ: (25)

The convergence field distorting a background source at z
is related to matter overdensity as

	ðn̂; zÞ ¼ 3�MH
2
0

2

Z cdz0

Hðz0Þ ð1þ z0Þ�ðz
0Þ

�ðzÞ ½�ðzÞ � �ðz0Þ�
� �ðn̂; z0Þ; (26)

and the average magnification of SZ point sources in a
given direction is then given by

	ðn̂Þ ¼
Z

dznSZðzÞ	ðn̂; zÞ: (27)

The observed SZ cluster number density in a given direc-
tion will be related to the intrinsic number density as

dnobs

dM
ðM; n̂Þ ¼ 1

�ðn̂Þ
dn

dM
ðM; n̂Þ; (28)

’ ½1� 2	ðn̂Þ� dn
dM

ðM; n̂Þ: (29)

The convergence field is correlated with the CMB tem-
perature anisotropies produced via the ISW effect,

MSZ
‘ ¼ 9�2

MH
4
0

2‘2

Z 1

0
dznSZðzÞ

Z z

0
dz1P

�
‘

�ðz1Þ
�
ð1þ z1Þ

�Dðz1Þ½ð1þ z1ÞDðz1Þ�0 �ðz1Þ�ðzÞ ½�ðzÞ � �ðz1Þ�:
(30)

Again we have evaluated the cross correlation according to
Limber’s approximation and the convergence-ISW cross
correlation spectrum is positive. This magnification effect
will result in the following reduced bispectrum

b‘1;‘2;‘3 ¼ �2½MSZ
‘1
ðCSZ

‘2
þ CSZ

‘3
Þ þMSZ

‘2
ðCSZ

‘1
þ CSZ

‘3
Þ

�MSZ
‘3
ðCSZ

‘1
þ CSZ

‘2
Þ�: (31)

The bispectrum is negative because large scale CMB hot
spots (positive ISW effect) correlate with positive magni-
fication which always reduces the amplitude of point
source Poisson fluctuations.
The radio point source selection function is expressed in

terms of the observed flux which can be affected by gravi-
tational lensing due matter along the line-of-sight. The
gravitational lensing magnification will modulate the flux
cutoff and be correlated with the ISW temperature anisot-
ropies. The point source dilution effect discussed above
will also occur. The radio point source Poisson fluctuation
power spectrum can be expressed as

CPSðn̂Þ ¼ c�2
�

Z �S=�ðn̂Þ

0
dSS2

1

�ðn̂Þ
dN

dS
ðS; �Þ: (32)

Linearizing in the convergence field, we find that the
Poisson fluctuation power spectrum becomes anisotropic

CPSðn̂Þ ¼ 2c�2
� 	ðn̂Þ

�
�S3
dN

dS
ð �S; �Þ þ �CPS

�
: (33)

This will result in the following reduced bispectrum

b‘1;‘2;‘3 ¼ �4ðMPS
‘1

þ cycÞ
�
�S3
dN

dS
ð �S; �Þ þ �CPS

�
; (34)

where MPS
‘ is the radio point source version of Eq. (30).

Note that gravitational lensing affects the radio point
source power spectrum by changing both the upper flux
cutoff and the source counts, whereas the SZ power spec-
trum is only altered by changes in the local cluster counts.
If the SZ clusters are detected with high signal-to-noise and
removed from the CMB maps then flux cutoff modulation
effect will also produce an additional bispectrum term.
In Fig. 5 we show the convergence-ISW cross correla-

tion spectrum for the thermal SZ effect (solid, black line)
and the radio point sources—mode 1 (red, dashed line),
model 2 (blue, long-dashed line). The model 2 of the radio
point sources has the largest cross correlation because it
predicts that the point sources tend to be located at higher
redshift. As opposed to the matter-ISW cross correlation,
which requires that the sources lie in the same redshift

FIG. 4 (color online). Number density modulation collapsed
bispectra for thermal SZ (solid, black line); radio point
sources—model 1 (red, dashed line) and model 2 (blue, long-
dashed line). The local model (fNL ¼ 1) (green, dot-dashed
line) is also shown for reference. We show representative col-
lapsed bispectra with ‘1 ¼ 5, ‘2 ¼ ‘3 ¼ ‘.
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range over which the ISW effect occurs, in this case the
point source do not have to be at the same redshift at which
the ISWoccurs in order for the contribution to be relevant. In fact the point sources experience greater magnification

if they are at substantially higher redshift than the matter
distribution that is simultaneously magnifying them and is
correlated with the ISW effect.
In Fig. 6 we show the magnification modulation equi-

lateral bispectra for the thermal SZ effect (solid, black
line); radio point sources—model 1 (red, dashed line)
and model 2 (blue, long-dashed line). The local model
bispectrum (fNL ¼ 1) (green, dot-dashed line) is also
shown for reference. In Fig. 7 we show a representative
collapsed shape (‘1 ¼ 5, ‘2 ¼ ‘3 ¼ ‘) for the same
bispectra.

4. Selection modulation

The amplitude of the Poisson fluctuation power spec-
trum depends on the number density of radio point sources
below some flux limit determined by the radio point source
removal technique. If the selection criterion used produces
an anisotropic flux limit that is correlated with either the
large scale temperature anisotropy or the instrument noise,
then a bispectrum will be produced. If the radio point
sources are identified via external catalogs, such as
NVSS or PMN, then there will be no cross correlation
and therefore no bispectrum. And if multiwavelength
data is differenced to isolate the power-law frequency
dependence of the radio point source, then the modulated
selection function will produce correlations between the
data in different frequency bands.

FIG. 5 (color online). Convergence-ISW cross correlation
spectrum for thermal SZ (solid, black line); radio point
sources—model 1 (red, dashed line) and model 2 (blue, long-
dashed line).

FIG. 6 (color online). Magnification modulation equilateral
bispectra for thermal SZ effect (solid, black line); radio point
sources—model 1 (red, dashed line) and model 2 (blue, long-
dashed line). The local model bispectrum (fNL ¼ 1) (green, dot-
dashed line) is also shown for reference.

FIG. 7 (color online). Magnification modulation collapsed bis-
pectra for thermal SZ (solid, black line); radio point sources—
model 1 (red, dashed line) and model 2 (blue, long-dashed line).
The local model (fNL ¼ 1) (green, dot-dashed line) is also
shown for reference. We show representative collapsed bispectra
with ‘1 ¼ 5, ‘2 ¼ ‘3 ¼ ‘.
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The simplest method is to removal pixels above some
multiple (
) of the pixel variance

�Sðn̂Þ ¼ c�

�

�p ���

�
�T

T
ðn̂Þ þ Nðn̂Þ

��
: (35)

The temperature anisotropy and instrument noise have
vanishing expectation values, so the mean flux cutoff is

�S 0 ¼ c�
�p; (36)

where the pixel variance is defined as

�2
p ¼ ð��Þ2X

‘

ð2‘þ 1Þ
4�

CT
‘ ; (37)

here CT
‘ ¼ C‘ þ CN

‘ is the sum of the CMB signal and

noise and �� is the pixel size. There will be fluctuations
about the expected flux cutoff that are correlated with
either the temperature anisotropy or the instrument noise.
Linearizing in these fluctuations, we find the following
reduced bispectrum

b‘1;‘2;‘3 ¼ ���

c�
ðCT

‘1
þ cycÞ �S20

dN

dS
ð �S; �Þ: (38)

The selection criterion used by WMAP is based on an
algorithm developed by Tegmark and de Oliveira-Costa
[29]. The map is filtered in order to reduce the importance
of the long-wavelength CMB modes. The filtered total
temperature fluctuation in some pixel is

yðn̂Þ ¼X
‘m

1

CT
‘

Y‘mðn̂Þða‘mþ n‘mÞ��þX
‘

ð2‘þ 1Þ
4�

Sðn̂Þ
c�C

T
‘

:

(39)

The algorithm removes any pixel that has a value greater
than some multiple (
) of the filtered map pixel variance

~��2
p ¼ ð��Þ�2

X
‘

ð2‘þ 1Þ
4�

1

CT
‘

: (40)

The threshold 
 is chosen according to some compromise
between false positive and negatives. Since the threshold-
ing is applied to the total signal in a pixel, the correspond-
ing radio point source flux cutoff in a pixel is

�Sðn̂Þ ¼ c�
F

�

~�p ���

X
‘m

1

CT
‘

Y‘mðn̂Þða‘m þ n‘mÞ
�
;

(41)

where the normalization is

F ¼X
‘

ð2‘þ 1Þ
4�

1

CT
‘

: (42)

The temperature anisotropy and instrument noise have
vanishing expectation values, so the mean flux cutoff is

�S 0 ¼ c�
F

~�p: (43)

There will be fluctuations about this expected value and
these fluctuations will be correlated with either the tem-
perature anisotropy or the instrument noise. Linearizing in
these fluctuations, we find the following reduced bispec-
trum

b‘1;‘2;‘3 ¼ � 3��

c�F
�S20
dN

dS
ð�; �S0Þ: (44)

In regions with large instrument noise or CMB temperature
anisotropy, the radio point source flux cutoff will be low-
ered. This reduces the total number density of radio point
sources in that region and therefore the Poisson fluctuation
power spectrum. This effect explains the negative sign in
the reduced bispectrum, Eq. (44).
Since the filtering applied to the maps produces a bis-

pectrum independent of scale, similar to the point source
bispectrum described in Sec. IVA, we will ignore it. In
reality the actual selection function is more complicate
than this simple filter technique predicts and it might
produce a bispectrum of a much different form.
Numerical simulations incorporating the exact selection
procedure will need to be done in order to fully determine
its effect on the estimator.

V. NUMERICAL RESULTS

In this section we will present numerical results for the
contamination of the standard non-Gaussianity estimator
by the various bispectra discussed in this paper. This is
done for both the WMAP and Planck instrument noise
levels, frequency bands, and flux cutoffs given in Table I.
In Fig. 8 the fNL estimator bias as a function of ‘max is

shown for the different bispectra—radio point source num-
ber density modulation (solid, black line); SZ number
density modulation (dotted, red line); radio point source
gravitational lensing magnification modulation (dashed,
blue line); and SZ gravitational lensing magnification
modulation (long-dashed, green line) with WMAP instru-
ment noise. The bias plots are shown for the four relevant
WMAP frequency bands—upper left Ka� 33 GHz; upper
right Q� 40 GHz; lower left V� 61 GHz; lower right
W� 94 GHz. The magnification modulation effect pro-
duces a positive bias since its bispectrum is negative, while
the density modulation effect produces a negative bias.
Yadav and Wandelt claim a central value of fNL ¼ 86:8

with a standard deviation of � ¼ 30:0 for a 2:9� detection
of non-Gaussianity [1]. In the five year WMAP data the
central value is found to be fNL ¼ 67 with a standard
deviation of � ¼ 31 [3]. At ‘max ¼ 750 the total estimator
bias �fNL ¼ 0:35 in the Ka band, �fNL ¼ 0:24 in the Q
band, �fNL ¼ �0:097 in the V band, and �fNL ¼ �0:13
in the W band. Since the density modulation and the
magnification modulation bispectra have different signs
they partially cancel and reduce the overall effect. At low
frequency the radio point source magnification modulation
bispectrum is the most important so the bias is positive. At
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higher frequencies the SZ density modulation bispectrum
dominates which makes the bias negative. These numbers
should be compared to the estimator bias produced by the
radio point source Poisson fluctuation bispectrum.
Komatsu et al. [3] have estimated this bias to be �fNL ’
�ð3–5Þ at ‘max ¼ 700.

In Fig. 9 the fNL estimator bias as a function of ‘max is
shown for the different bispectra—radio point source num-
ber density modulation (solid, black line); SZ number
density modulation (dotted, red line); radio point source
gravitational lensing magnification modulation (dashed,
blue line); and SZ gravitational lensing magnification
modulation (long-dashed, green line) for Planck at
30 GHz (upper left); 44 GHz (upper left); 70 GHz (lower
left), and 100 GHz (lower right).

Estimates of the sensitivity on fNL achievable with
Planck suggest that �fNL ’ 10 at 95% C.L. using just
temperature information and �fNL ’ 5 at 95% C.L also
including polarization. Summing the various biases we find
�fNL ¼ 1:3 at � ¼ 30 GHz, �fNL ¼ 0:34 at � ¼
44 GHz, �fNL ¼ �0:25 at � ¼ 70 GHz, and �fNL ¼
�0:48 at � ¼ 100 GHz. These results imply that a good
knowledge of point source properties is important if Planck

will be able to achieve its full potential in constraining
primordial non-Gaussianity.
There are uncertainties in the models we have used to

describe the radio point sources. These model uncertainties
will directly lead to uncertainties in the above predictions.
As can be directly seen in Figs. 2–6, that the differences
between the radio point source redshift distributions,
model 1 and model 2, are not significant. This is not
surprising as the ISW kernel, with which the radio point
source redshift distributions are being cross correlated, is
quite broad. The redshift distributions are supposed to trace
both the high-flux source populations at low frequencies.
However, they may not be representative of the source
populations at all frequencies considered here for lower
flux cut thresholds. If a lower flux cut implies a higher
population of low-redshift objects, the amplitude of the
ISW-density cross correlation spectrum would be in-
creased. The decrease in the flux cutoff will decrease the
Poisson fluctuation power spectrum, so the change in the
bias of the fNL estimator is not clear. We also note that
reducing the flux cutoff from the WMAP to the Planck
level does not reduce the bias implied on fNL as the Planck
noise levels and beam sizes are also smaller.

FIG. 8 (color online). The WMAP estimator bias terms �f�NL as a function of ‘max for radio point source density modulation (solid,
black line); SZ number density modulation (dotted, red line); radio point source gravitational lensing magnification modulation
(dashed, blue line); and SZ gravitational lensing magnification modulation (long-dashed, green line) in Ka� 33 GHz (upper left);
Q� 40 GHz (upper right); V� 61 GHz; and W� 94 GHz. The density modulation terms produce a negative bias, while the
magnification bias produce a positive bias.
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VI. CONCLUSION

In this paper we analyzed the effect of point sources,
both due to radio emission and the cluster SZ effect, on the
estimation of primordial non-Gaussianity in the cosmic
microwave background. The standard non-Gaussianity es-
timator is sensitive to any bispectrum present in the data. In
addition to the standard Poisson fluctuation bispectrum, we
found that cross correlations between the radio point
source and SZ power spectra and either the CMB tempera-
ture anisotropies or instrument noise can produce bispec-
tra. These bispectra have forms somewhat similar to the
local model, which is the standard bispectrum form used to
search for primordial non-Gaussianity in CMB data. These
similarities are not accidental, but occur because the same
basic principle generates the non-Gaussianity in these
cases. Because of this similarity it will be much more
difficult to distinguish this non-Gaussianity from the pri-
mordial signal than other secondary bispectra with shapes
which can be quite different.

A related paper by Serra and Cooray [30] has examined
different secondary bispectra, but has reached similar con-
clusions. They examined the bispectra produced by the
cross correlation of the thermal SZ effect and the gravita-
tional lensing of the primary CMB anisotropies. They

concluded that the effects are too small to account for the
inferred values of fNL from the WMAP data and will start
to become important for the Planck data set. The estimator
biases calculated in this paper are generally smaller than
the bias produced by the radio point source Poisson fluc-
tuation bispectrum despite the fact that Poisson fluctua-
tions produce a bispectrum with a dissimilar shape when
compared to the local model. The overall amplitude of the
ISW effect is quite small which means that the amplitudes
of both the cross correlation spectra and the bispectra
calculated in this paper are also very small. The amplitude
of the radio point source Poisson fluctuation bispectrum is
much larger than any of the bispectra calculated in this
paper and still dominates the estimator bias despite the
difference in bispectrum shape.
The estimator bias that we have calculated is small and

is not able to explain the results found by Yadav and
Wandelt, although the bispectra considered in our paper
will start to become important for the Planck non-
Gaussianity analysis. We should emphasize that if Planck
detects a large value of fNL the various estimator biases we
discuss in this paper, and others that are discussed else-
where, will not change the qualitative interpretation of that
result. However a correction to the estimator’s central
value due to the estimator’s bias will be required. This

FIG. 9 (color online). The Planck estimator bias terms �f�NL for 30 GHz (upper left); 44 GHz (upper right); 70 GHz (lower left), and
100 GHz (lower right). The curves are the same as Fig. 8. The density modulation terms produce a negative bias, while the
magnification bias produce a positive bias.
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correction will be comparable to the estimator’s statistical
uncertainty which will be much smaller than the value
claimed by Yadav and Wandelt for Planck data.
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Argüeso, Astrophys. J. Suppl. Ser. 170, 108 (2007).
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